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1. Introduction

Until now, the best approximations to values of the logarithm function at some ra-
tional or algebraic points are constructed by means of hypergeometric integrals (or
hypergeometric series). An essential ingredient to improve the quality of such ap-
proximations consists in an arithmetic technique based on a careful p-adic analysis
of the approximants. Perhaps the simplest way to do this is to provide relations
showing that the quotient of two approximations is related to a quotient of factori-
als, for which the p-adic study is an easy routine. Such ‘structural’ approximations
gave rise to many important applications, and can usually be expressed through
the action of a certain finite group on a family of integrals (or series). In this
paper we discuss an interesting structure of rational approximations to logarithm
values which does not allow us to obtain improvements on the known irrationality
results or irrationality measures, but which leads to several remarks and questions
that might be useful in further study of the arithmetic problem.

2. Hypergeometric database

We shall require the following hypergeometric identities: the Euler–Pochhammer
integral [4, p. 20, (1.6.6)]

2F1

(
A, B
C

∣∣∣∣ z) =
Γ(C)

Γ(B)Γ(C −B)

∫ 1

0

tB−1(1 − t)C−B−1

(1 − zt)A
dt, (2.1)
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provided ReC > ReB > 0; the Euler transformation [4, p. 31, (1.7.1.3)]

2F1

(
A, B
C

∣∣∣∣ z) = (1 − z)−B · 2F1

(
C − A, B

C

∣∣∣∣ −z
1 − z

)
; (2.2)

its iterate — the Kummer transformation

2F1

(
A, B
C

∣∣∣∣ z) = (1 − z)C−A−B · 2F1

(
C −B, C −A

C

∣∣∣∣ z); (2.3)

the Gauss quadratic transformation [1, p. 88, (2)]

2F1

(
A, B

A+B + 1
2

∣∣∣∣ 4z(1 − z)
)

= 2F1

(
2A, 2B

A+B + 1
2

∣∣∣∣ z), (2.4)

and the quadratic transformation [4, p. 80, (2.5.33)]

2F1

(
A, B

A+B + 1
2

∣∣∣∣ − z2

4(1 − z)

)
= (1 − z)A · 2F1

(
2A, A+B
2A+ 2B

∣∣∣∣ z). (2.5)

3. A hypergeometric series

Throughout the paper dn stands for the least common multiple of the numbers
1, 2, . . . , n; we also set d0 = 1.

Let a, b, c be integers satisfying b ≥ 0 and c ≥ 0, and let λ be an algebraic
number, |λ| > 1 and λ ∈ K. Our examples include the fields K = Q and K =
Q(

√
D), where D > 1 is a square-free even integer; the corresponding rings of

integers are ZK = Z and ZK = Z[
√
D], respectively.

Consider the hypergeometric series

H = H(a, b, c;λ) =
1

λ2c+2

Γ
(
a+ 1

2

)
Γ(b+ 1)

Γ
(
a+ b + 3

2

) · 2F1

(
c+ 1, a+ 1

2
a+ b+ 3

2

∣∣∣∣ 1
λ2

)
(3.1)

=
∞∑
l=0

R(l)λ−2(l+c+1) =
∞∑

l=−c

R(l)λ−2(l+c+1),

where

R(l) = R(a, b, c; l) =

∏c
j=1(l + j)
c!

· b!∏a+b
j=a(l + j + 1

2 )
. (3.2)

The partial fraction decomposition of the latter rational function gives us

R(l) =
a+b∑
j=a

Aj

l + j + 1
2

+ P (l), (3.3)

where
Aj =

(
R(l)(l + j + 1

2 )
)∣∣

l=−j−1/2
∈ 2−2cZ (3.4)
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and 22c′d2c′P (l) is an integer-valued polynomial of degree at most c′ − 1 with
c′ = max{c− b, 0} (cf. [6, Lemma 1]). Writing

P (l) = B0 +
c′−1∑
k=1

Bk

∏k−1
j=0 (l + c− j)

k!
, 22c′d2c′Bk ∈ Z (3.5)

(this corresponds to the expansion in a basis of integer-valued polynomials), we
obtain

H =
∞∑

l=−c

λ−2(l+c+1)

( a+b∑
j=a

Aj

l + j + 1
2

+
c′−1∑
k=0

Bk

∏k−1
j=0 (l + c− j)

k!

)

=
a+b∑
j=a

Ajλ
−2(c−j)

∞∑
l=−c

λ−2(l+j+1)

l + j + 1
2

+
c′−1∑
k=0

Bkλ
−2(k+1)

∞∑
l=−c

∏k−1
j=0 (l + c− j)

k!
λ−2(l+c−k)

=
a+b∑
j=a

Ajλ
−2(c−j)

∞∑
m=j−c

λ−2(m+1)

m+ 1
2

+
c′−1∑
k=0

Bkλ
−2(k+1)

∞∑
m=0

∏k−1
j=0 (m− j)

k!
λ−2(m−k)

=
a+b∑
j=a

Ajλ
−2(c−j)

( ∞∑
m=0

−
j−c−1∑
m=0

)
λ−2(m+1)

m+ 1
2

+
c′−1∑
k=0

Bkλ
−2(k+1) 1

k!
dk

dzk

∞∑
m=0

zm

∣∣∣∣
z=λ−2

(the sum −∑j−c−1
m=0 should be interpreted as

∑−1
m=j−c if j − c ≤ −1)

=
a+b∑
j=a

Ajλ
−2(c−j)

∞∑
m=0

λ−2(m+1)

m+ 1
2

−
a+b∑
j=a

Ajλ
−2(c−j)

j−c−1∑
m=0

λ−2(m+1)

m+ 1
2

+
c′−1∑
k=0

Bkλ
−2(k+1) · 1

(1 − λ−2)k+1

=
a+b∑
j=a

Ajλ
−2c+2j−1 · log

λ+ 1
λ− 1

−
a+b∑
j=a

Ajλ
−2(c−j)

j−c−1∑
m=0

λ−2(m+1)

m+ 1
2

+
c′−1∑
k=0

Bk

(λ2 − 1)k+1
.

Denote by λ0 and λ1 the denominators of the algebraic numbers λ−1 and (λ2−1)−1,
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respectively; both λ0 and λ1 are positive integers. Then

22cλ2c−2a+1
0 ·

a+b∑
j=a

Ajλ
−2c+2j−1 ∈ ZK ,

22c+1λ2c−2a+2
0 d2 max{c−a,a+b−c} ·

a+b∑
j=a

Ajλ
−2(c−j)

j−c−1∑
m=0

λ−2(m+1)

m+ 1
2

∈ ZK ,

22c′λc′
1 d2c′ ·

c′−1∑
k=0

Bk

(λ2 − 1)k+1
∈ ZK ,

where we use (3.4) and (3.5). Combining these inclusions we finally obtain

22c+1λ2c−2a+2
0 λc′

1 d2 max{c−a,c−b,a+b−c} ·H(a, b, c;λ) ∈ ZK log
λ+ 1
λ− 1

+ ZK . (3.6)

4. A certain integral

In fact, the choice of the ‘denominator’ of the linear form H(a, b, c;λ) in (3.6) is
not optimal. But it will suffice for our practical purposes, since we will consider
just special cases of it when the linear form may be represented by a more familiar
integral [2], [5] with already known sharp denominator.

A method of providing sharp denominators of the form (3.1) is given in the
recent work [3] of E. Sal’nikova (who in turn attributes this idea to V. Salikhov),
but it works only if all the three parameters a, b, and c are non-negative integers
(recall that we do not pose the condition a ≥ 0 in Section 3). Using the Euler–
Pochhammer integral (2.1) in this case for the series in (3.1) and then performing
the change of variable x2 = t we find that

H(a, b, c;λ) =
1

λ2c+2

∫ 1

0

ta−1/2(1 − t)b

(1 − t/λ2)c+1
dt =

∫ 1

0

ta−1/2(1 − t)b

(λ2 − t)c+1
dt (4.1)

= 2
∫ 1

0

x2a(1 − x)b(1 + x)b

(λ − x)c+1(λ+ x)c+1
dx.

The integrand (admitting the symmetry x �→ −x) can be decomposed to derive
the arithmetic properties of the integral H in a way different from our approach
in Section 3. But, again, this method works when a ≥ 0 while we will require the
arithmetic in the case a < 0 as well.

An advantage of the series representation of H(a, b, c;λ) consists in the fact
that we can easily use hypergeometric transformations in order to sharpen addi-
tionally the arithmetic of the linear form. For example, applying the Kummer



Hypergeometric transformations of linear forms in one logarithm 215

transformation (2.3) we arrive at

H =
1

λ2c+2

(
1 − 1

λ2

)b−c Γ
(
a+ 1

2

)
Γ(b+ 1)

Γ
(
a+ b+ 3

2

) · 2F1

(
b+ 1, a+ b − c+ 1

2
a+ b + 3

2

∣∣∣∣ 1
λ2

)
(4.2)

= (λ2 − 1)b−c Γ
(
a+ 1

2

)
Γ(b + 1)

Γ
(
a+ b− c+ 1

2

)
Γ(c+ 1)

H(a+ b− c, c, b;λ)

while using the formulae, for a positive integer m,

Γ(m+ 1
2 )

Γ(1
2 )

= (1
2 )m = 2−2m (2m)!

m!
,

Γ(−m+ 1
2 )

Γ(1
2 )

= (−1)m22m m!
(2m)!

, (4.3)

we can write the quotient of the gamma factors as a quotient of factorials. In the
case a ≥ 0 and a+ b− c ≥ 0 we obtain

H(a, b, c;λ) =
(
4(λ2 − 1)

)b−c (2a)! (a+ b− c)! b!
a! (2a+ 2b− 2c)! c!

H(a+ b− c, c, b;λ), (4.4)

which is exactly the transformation used in [3] to derive nice irrationality measures
for some logarithms.

5. A special case

We now switch to a particular case of the above construction, when c = a:

I = I(a, b;λ) = H(a, b, a;λ) (5.1)

=
1

λ2a+2

Γ
(
a+ 1

2

)
Γ(b + 1)

Γ
(
a+ b+ 3

2

) · 2F1

(
a+ 1, a+ 1

2
a+ b+ 3

2

∣∣∣∣ 1
λ2

)
,

where both a and b are non-negative integers. The transformation rule (4.4)
applied to (5.1) yields

I(a, b;λ) =
(
4(λ2 − 1)

)b−a (2a)! b!2

a!2(2b)!
I(b, a;λ). (5.2)

Remark 1. The condition posed on the parameters looks quite restrictive. But
it happens that it becomes an actual condition in applications to irrationality
measures for the numbers log(1−1/μ) with μ > 1 an integer (cf. [3]). In particular,
the choice of the parameters a = c = 4n and b = 3n, where n is an increasing
integer parameter, yields the best known estimate for the irrationality measure
of log 2 due to E. Rukhadze [2].
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Applying to the series in (5.1) the Euler transformation (2.2) we find that

I =
1

λ2a+2

(
1 − 1

λ2

)−(a+1/2) Γ
(
a+ 1

2

)
Γ(b+ 1)

Γ
(
a+ b + 3

2

) · 2F1

(
b+ 1

2 , a+ 1
2

a+ b+ 3
2

∣∣∣∣ − 1
λ2 − 1

)
(5.3)

=
1

λ(λ2 − 1)a
√
λ2 − 1

Γ
(
a+ 1

2

)
Γ(b+ 1)

Γ
(
a+ b + 3

2

) · 2F1

(
b+ 1

2 , a+ 1
2

a+ b+ 3
2

∣∣∣∣ − 1
λ2 − 1

)
.

We now choose

z =
1
2
− λ

2
√
λ2 − 1

= −λ−√
λ2 − 1

2
√
λ2 − 1

, (5.4)

in order to satisfy the relation

4z(1 − z) = − 1
λ2 − 1

,

and apply the Gauss quadratic transformation (2.4) to (5.3):

I =
1

λ(λ2 − 1)a
√
λ2 − 1

Γ
(
a+ 1

2

)
Γ(b + 1)

Γ
(
a+ b+ 3

2

) · 2F1

(
2b+ 1, 2a+ 1
a+ b+ 3

2

∣∣∣∣ −λ−√
λ2 − 1

2
√
λ2 − 1

)
.

(5.5)
Interchanging the parameters 2b + 1 and 2a+ 1 and applying the Euler transfor-
mation (2.2) we find that

I =
1

λ(λ2 − 1)a
√
λ2 − 1

(
λ+

√
λ2 − 1

2
√
λ2 − 1

)−(2b+1) Γ
(
a+ 1

2

)
Γ(b + 1)

Γ
(
a+ b+ 3

2

) (5.6)

× 2F1

(
b− a+ 1

2 , 2b+ 1
a+ b+ 3

2

∣∣∣∣ λ−√
λ2 − 1

λ+
√
λ2 − 1

)
=

22b+1(λ− √
λ2 − 1)2b+1

λ(λ2 − 1)a−b

Γ
(
a+ 1

2

)
Γ(b + 1)

Γ
(
a+ b+ 3

2

)
× 2F1

(
b− a+ 1

2 , 2b+ 1
a+ b+ 3

2

∣∣∣∣ 1
(λ+

√
λ2 − 1)2

)
and, again, interchanging the parameters b − a + 1

2 and 2b + 1 and recalling the
definition (3.1) we obtain

I =
22b+1(λ+

√
λ2 − 1)2b+1

λ(λ2 − 1)a−b

Γ
(
a+ 1

2

)
Γ(b+ 1)

Γ
(
b− a+ 1

2

)
Γ(2a+ 1)

·H(b−a, 2a, 2b;λ+
√
λ2 − 1).

(5.7)
Since a and b enter the construction symmetrically (see also formula (5.9) below)
we may assume, without loss of generality, that a ≥ b and use the formulae in (4.3)
to write the latter transformation as follows:

I(a, b;λ) =
24b−4a+1(λ+

√
λ2 − 1)2b+1

λ(λ2 − 1)a−b

(2a− 2b)! b!
a! (a− b)!

·H(b−a, 2a, 2b;λ+
√
λ2 − 1).

(5.8)
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If we proceed in the same way with the series in (5.5) without interchanging
the parameters 2b+ 1 and 2a+ 1, we get

I =
22a+1(λ −√

λ2 − 1)2a+1

λ

Γ
(
a+ 1

2

)
Γ(b + 1)

Γ
(
a+ b+ 3

2

) (5.9)

× 2F1

(
a− b+ 1

2 , 2a+ 1
a+ b+ 3

2

∣∣∣∣ 1
(λ+

√
λ2 − 1)2

)
=

22a+1(λ +
√
λ2 − 1)2a+1

λ

Γ
(
a+ 1

2

)
Γ(b+ 1)

Γ
(
a− b+ 1

2

)
Γ(2b+ 1)

·H(a− b, 2b, 2a;λ+
√
λ2 − 1)

=
22a−2b+1(λ+

√
λ2 − 1)2a+1

λ

(2a)! (a− b)! b!
a! (2a− 2b)! (2b)!

·H(a− b, 2b, 2a;λ+
√
λ2 − 1),

where we assume a ≥ b as above.

6. Relation to the old construction

With the notation (5.1) of Section 5 (in particular, choosing a = c and using (5.3)),
we take μ = 1

2 (λ+ 1) with the motive

(1/μ)2

4(1 − 1/μ)
=

1
λ2 − 1

(6.1)

and apply the quadratic transformation (2.5):

I =
(1 − 1/μ)b+1/2

λ(λ2 − 1)a+1/2
· Γ
(
a+ 1

2

)
Γ(b+ 1)

Γ
(
a+ b+ 3

2

) · 2F1

(
2b+ 1, a+ b+ 1

2a+ 2b+ 2

∣∣∣∣ 1
μ

)
(6.2)

=
(μ− 1)b−a

22a+1μa+b+1(2μ− 1)
· Γ
(
a+ 1

2

)
Γ(b+ 1)

Γ
(
a+ b+ 3

2

) · 2F1

(
2b+ 1, a+ b+ 1

2a+ 2b+ 2

∣∣∣∣ 1
μ

)
.

Using the integral representation (2.1) we obtain

I =
(μ− 1)b−a

22a+1μa−b(2μ− 1)
· Γ
(
a+ 1

2

)
Γ(b+ 1)

Γ
(
a+ b+ 3

2

) Γ(2a+ 2b+ 2)
Γ(a+ b+ 1)2

∫ 1

0

xa+b(1 − x)a+b

(μ− x)2b+1
dx.

(6.3)
If we do the same for the series in (6.2) after interchanging the two parameters
2b+ 1 and a+ b+ 1 (which does not affect the hypergeometric series) we get

I =
(μ− 1)b−a

22a+1(2μ− 1)
· Γ
(
a+ 1

2

)
Γ(b+ 1)

Γ
(
a+ b+ 3

2

) Γ(2a+ 2b+ 2)
Γ(2a+ 1)Γ(2b+ 1)

∫ 1

0

x2b(1 − x)2a

(μ− x)a+b+1
dx.

(6.4)
It remains to use (4.3) to deduce

I(a, b;λ) =

(
4μ(μ− 1)

)b−a

2μ− 1
· b! (2a)!
a! (a+ b)!

· J(a+ b, a+ b, 2b;μ) (6.5)

=

(
4(μ− 1)

)b−a

2μ− 1
· b! (a+ b)!
a! (2b)!

· J(2b, 2a, a+ b;μ),
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where

J(A,B,C;μ) =
∫ 1

0

xA(1 − x)B

(μ− x)C

dx
μ− x

. (6.6)

7. Arithmetic of linear forms

From now on we assume that μ = 1
2 (λ + 1) is an integer greater than 1 (hence

λ = 2μ− 1 is also an integer greater than 1); the integer parameters a and b are
chosen to satisfy a ≥ b > 0.

First of all, the connection of the series considered in Section 5 with the inte-
gral (6.6) allows us to use the results of [5], since

J(a+ b, a+ b, 2b;μ) = −μ2a · I
(
a+ b, a+ b, a− b;− 1

μ

)
, (7.1)

where

I(h, j, l; z) = zh+j+1(1 + z)max{0,−l}
∫ 1

0

xh(1 − x)j

(1 + xz)j−l

dx
1 + xz

(7.2)

is the integral studied in [5]. In particular, we derive that

d2a · J(a+ b, a+ b, 2b;μ) ∈ Z log
(
1 − 1

μ

)
+ Z = Z log

λ− 1
λ+ 1

+ Z (7.3)

and, similarly,

d2a · 2a−b(λ − 1)b−aJ(2b, 2a, a+ b;μ) ∈ Z log
λ− 1
λ+ 1

+ Z. (7.4)

Now write the first formula in (6.5) in the form

λ(λ2 − 1)a−bI(a, b;λ) =
b! (2a)!
a! (a+ b)!

· J(a+ b, a+ b, 2b;μ). (7.5)

It follows from (3.6) that

d2a · 22a+1λ2(λ2 − 1)a−bI(a, b;λ) ∈ Z log
λ− 1
λ+ 1

+ Z. (7.6)

The exponent of 2 in the quotient of factorials in (7.5) is at most O(log a).1 There-
fore, using the equality in (7.5) and comparing the inclusions (7.6) and (7.3) we
conclude that

d2a · 2O(log a)λ2(λ2 − 1)a−bI(a, b;λ) ∈ Z log
λ− 1
λ+ 1

+ Z. (7.7)

1By O(log a) we mean an integer bounded by C log a for a certain explicit constant C > 0
depending only on a/b.
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In a similar way, applying the inclusion (3.6) together with the relations (5.2)
and (7.5) yields

d2a · 22(b−a)+O(log a)λ2I(b, a;λ) ∈ Z log
λ− 1
λ+ 1

+ Z. (7.8)

Furthermore, write the transformations (5.8) and (7.5) as follows:

24(b−a)+1(λ+
√
λ2 − 1)2b+1 ·H(b− a, 2a, 2b;λ+

√
λ2 − 1) (7.9)

= λ(λ2 − 1)a−b a! (a− b)!
(2a− 2b)! b!

· I(a, b;λ)

=
(a− b)! (2a)!

(a+ b)! (2a− 2b)!
· J(a+ b, a+ b, 2b;μ).

From (3.6) we get

d2(a+b) ·24b+1H(b−a, 2a, 2b;λ+
√
λ2 − 1) ∈ ZK log

λ− 1 +
√
λ2 − 1

λ+ 1 +
√
λ2 − 1

+ZK , (7.10)

where K = Q(
√
λ2 − 1). Noting that

log
λ− 1 +

√
λ2 − 1

λ+ 1 +
√
λ2 − 1

=
1
2

log
λ− 1
λ+ 1

we derive from (7.10) that

d2(a+b) ·24b+2(λ+
√
λ2 − 1)2b+1 ·H(b−a, 2a, 2b;λ+

√
λ2 − 1) ∈ ZK log

λ− 1
λ+ 1

+ZK .

(7.11)
In fact, according to (7.9), the expression in (7.11) lies in

Q log
λ− 1
λ+ 1

+ Q. (7.12)

Hence we conclude that

d2(a+b) · 24b+2(λ+
√
λ2 − 1)2b+1 ·H(b − a, 2a, 2b;λ+

√
λ2 − 1) ∈ Z log

λ− 1
λ+ 1

+ Z.

(7.13)
For the latter expression in (7.9) the primes p > 2a do not occur in the coefficients
of the linear form (viewed as an element of (7.12)) owing to (7.3). In addition,
we may compare the 2-adic order of the expressions in (7.9). This finally implies
a sharpened version of the inclusion (7.13), namely,

d2a · 24(b−a)+1+O(log a)(λ+
√
λ2 − 1)2b+1 (7.14)

×H(b − a, 2a, 2b;λ+
√
λ2 − 1) ∈ Z log

λ− 1
λ+ 1

+ Z.
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In the same vein, using (5.9) and (7.9) we obtain

d2a · 24(a−b)+1+O(log a)(λ2 − 1)a−b(λ+
√
λ2 − 1)2a+1 (7.15)

×H(a− b, 2b, 2a;λ+
√
λ2 − 1) ∈ Z log

λ− 1
λ+ 1

+ Z.

We now normalize our objects:

F0(a, b) = d2a · 2O(log a)λ2(λ2 − 1)a−b · I(a, b;λ),

F1(a, b) = d2a · 22(b−a)+O(log a)λ2 · I(b, a;λ),

F2(a, b) = d2a · 2O(log a)λ · J(a+ b, a+ b, 2b;μ),

F3(a, b) = d2a · 2a−b+O(log a)λ(λ− 1)b−a · J(2b, 2a, a+ b;μ),

F4(a, b) = d2a · 24(b−a)+1+O(log a)λ(λ+
√
λ2 − 1)2b+1

×H(b− a, 2a, 2b;λ+
√
λ2 − 1),

F5(a, b) = d2a · 24(a−b)+1+O(log a)(λ2 − 1)a−bλ(λ +
√
λ2 − 1)2a+1

×H(a− b, 2b, 2a;λ+
√
λ2 − 1),

where we choose the same (maximal) integer in O(log a). From (7.7), (7.8), (7.3),
(7.4), (7.14), and (7.15) it follows that

Fj(a, b) ∈ Z log
λ− 1
λ+ 1

+ Z, j = 0, 1, . . . , 5. (7.16)

Remark 2. We can add two more objects to the list, since from the final remark
in [5] we have two more related integrals:

J(a+ b, a+ b, 2a;μ) =
(
μ(μ− 1)

)b−a · J(a+ b, a+ b, 2b;μ), (7.17)

J(2a, 2b, a+ b;μ) = μa−b(μ− 1)b−a · J(2b, 2a, a+ b;μ). (7.18)

But these transformations do not provide new quotients of factorials.

Moreover, from (5.2), (6.5), (5.8), and (5.9) we obtain

F0(a, b) =
(2a)! b!2

a!2(2b)!
· F1(a, b) (7.19)

=
b! (2a)!
a! (a+ b)!

· F2(a, b)

=
b! (a+ b)!
a! (2b)!

· F3(a, b)

=
(2a− 2b)! b!
a! (a− b)!

· F4(a, b)

=
(2a)! (a− b)! b!
a! (2a− 2b)! (2b)!

· F5(a, b).
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These transformations combined with the inclusions in (7.16) imply that

Φ−1 · F0(a, b) ∈ Z log
λ− 1
λ+ 1

+ Z, (7.20)

where

Φ = Φ(a, b) =
∏

p>
√

2a

pνp ,

νp = max
{

0, ordp
(2a)! b!2

a!2(2b)!
, ordp

b! (2a)!
a! (a+ b)!

, ordp
b! (a+ b)!
a! (2b)!

,

ordp
(2a− 2b)! b!
a! (a− b)!

, ordp
(2a)! (a− b)! b!
a! (2a− 2b)! (2b)!

}
.

(7.21)

An easy analysis shows that, for a prime p >
√

2a, the maximum in (7.21) in
fact equals

max
{

0, ordp
(2a)! b!2

a!2(2b)!

}
= max

{
0, ordp

(2a)! b!2

a!2(2b)!
, ordp

b! (2a)!
a! (a+ b)!

, ordp
b! (a+ b)!
a! (2b)!

}
= max

{
0, ordp

(2a)! b!2

a!2(2b)!
, ordp

(2a− 2b)! b!
a! (a− b)!

, ordp
(2a)! (a− b)! b!
a! (2a− 2b)! (2b)!

}
.

This happens because of the equalities

(2a)! b!2

a!2(2b)!
=

b! (2a)!
a! (a+ b)!

· b! (a+ b)!
a! (2b)!

=
(2a− 2b)! b!
a! (a− b)!

· (2a)! (a− b)! b!
a! (2a− 2b)! (2b)!

(7.22)

and the fact that the ‘p-adic distance’ between the pairs

b! (2a)!
a! (a+ b)!

,
b! (a+ b)!
a! (2b)!

and
(2a− 2b)! b!
a! (a− b)!

,
(2a)! (a− b)! b!
a! (2a− 2b)! (2b)!

is at most one:∣∣∣∣(⌊ bp
⌋

+
⌊

2a
p

⌋
−
⌊
a

p

⌋
−
⌊
a+ b

p

⌋)
−
(⌊

b

p

⌋
+
⌊
a+ b

p

⌋
−
⌊
a

p

⌋
−
⌊

2b
p

⌋)∣∣∣∣ ≤ 1,∣∣∣∣(⌊2a− 2b
p

⌋
+
⌊
b

p

⌋
−
⌊
a

p

⌋
−
⌊
a− b

p

⌋)
−
(⌊

2a
p

⌋
+
⌊
a− b

p

⌋
+
⌊
b

p

⌋
−
⌊
a

p

⌋
−
⌊

2a− 2b
p

⌋
−
⌊

2b
p

⌋)∣∣∣∣ ≤ 1.

This shows why all the required arithmetic information is extracted just from
the first transformation in (7.19). It seems quite mysterious to us that the rich
transformation structure for linear forms does not provide a better arithmetic.
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Question 1. As already mentioned in Remark 1, the special choice of the param-
eters we deal with is quite natural in several applications. A point which seems
rather unnatural to us is the different origin of the objects we use, and a lack of
a clear algebraic structure of the quotients of factorials involved in transforma-
tions (7.19) (where we may also add two more objects, see Remark 2). It would be
nice to ‘unify’ the different approximations (for instance, to have a sole family of
integrals or series) and to settle the quotients of factorials into a more ‘algebraic’
context (as is done for instance in [5], but also in the case of dilogarithm values,
of ζ(2) and ζ(3)). One might also hope to get from such a unifying approach the
‘correct’ arithmetic of the approximations (as we noted, the inclusions (3.6) can
significantly be improved).

Question 2. We are surprised to see that under a specific choice of the parameters
in (3.1) the corresponding linear approximations may have rational coefficients
even if λ is a quadratic irrationality (see (7.14) and (7.15)). What is a general
setting for this curious phenomenon?
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