POLYNOMIAL PARAMETRIZATION OF THE SOLUTIONS OF DIOPHANTINE EQUATIONS OF GENUS 0

Sophie Frisch, Günter Lettl

Dedicated to Prof. Władysław Narkiewicz on the occasion of his $70^{\rm th}$ birthday

Abstract: Let $f \in \mathbb{Z}[X,Y,Z]$ be a non-constant, absolutely irreducible, homogeneous polynomial with integer coefficients, such that the projective curve given by f=0 has a function field isomorphic to the rational function field $\mathbb{Q}(T)$. We show that all integral solutions of the Diophantine equation f=0 (up to those corresponding to some singular points) can be parametrized by a single triple of integer-valued polynomials. In general, it is not possible to parametrize this set of solutions by a single triple of polynomials with integer coefficients.

Keywords: Diophantine equation, integer-valued polynomial, resultant, polynomial parametrization

Recently, the first author and L. Vaserstein proved that the set of all Pythagorean triples can be parametrized by a single triple of integer-valued polynomials, but not by a single triple of polynomials with integer coefficients (in any number of variables) [2]. We denote by $\operatorname{Int}(\mathbb{Z}^m)$ the ring of integer-valued polynomials in m variables,

Int
$$(\mathbb{Z}^m) = \{ \varphi \in \mathbb{Q}[X_1, \dots, X_m] \mid \varphi(\mathbb{Z}^m) \subset \mathbb{Z} \}.$$

In this paper we will generalize the affirmative part of [2] to such homogeneous equations as define a (plane) projective curve with a rational function field.

Throughout this paper, $f \in \mathbb{Z}[X,Y,Z] \setminus \{0\}$ denotes an irreducible polynomial with integer coefficients, which is homogeneous of degree $n \geq 1$. Let $\overline{\mathbb{Q}}$ be an algebraic closure of \mathbb{Q} and $C_f \subset \mathbb{P}^2(\overline{\mathbb{Q}})$ the plane projective curve defined by f = 0,

$$C_f = \{(x:y:z) \in \mathbb{P}^2(\overline{\mathbb{Q}}) \mid f(x,y,z) = 0\}$$
.

We will further suppose that the function field $K = \mathbb{Q}(C_f)$ of C_f over \mathbb{Q} is isomorphic to the rational function field $\mathbb{Q}(T)$. This implies that f is absolutely irreducible (i.e., irreducible in $\overline{\mathbb{Q}}[X,Y,Z]$). Our assumption is satisfied, for instance, if C_f has genus 0 and possesses a regular point defined over \mathbb{Q} .

²⁰⁰⁰ Mathematics Subject Classification: primary 11D85, secondary 13F20, 11D41, 14H05.

Recall that a point $(x:y:z) \in C_f$ is singular if and only if the local ring $R_{(x:y:z)} \subset K$ of all rational functions of C_f that are defined at (x:y:z) is not a discrete valuation ring (cf. [3, pp. 56-57]). In this case, there are finitely many discrete valuation rings $\mathcal{O}_{P_i} \subset K$ above $R_{(x:y:z)}$ (meaning $R_{(x:y:z)} \subset \mathcal{O}_{P_i}$ and $\mathfrak{m}_{(x:y:z)} \subset P_i$, where $\mathfrak{m}_{(x:y:z)}$ and P_i denote the corresponding maximal ideals). Let C_f^{bad} denote the set of those singular points $(x:y:z) \in C_f$ for which there exists no discrete valuation ring \mathcal{O}_P above $R_{(x:y:z)}$ with $\mathcal{O}_P/P \simeq \mathbb{Q}$. These points will be "bad" for our main theorem.

We investigate the set of integer solutions of the Diophantine equation f(X, Y, Z) = 0,

$$\mathcal{L}_f := \{ (x, y, z) \in \mathbb{Z}^3 \mid f(x, y, z) = 0 \},$$

up to those solutions which correspond to the "bad" points of the curve. We set

$$\mathcal{L}_f^{\mathrm{bad}} = \{(x, y, z) \in \mathcal{L}_f \mid (x : y : z) \in C_f^{\mathrm{bad}}\}.$$

Theorem 1. Let $f \in \mathbb{Z}[X,Y,Z] \setminus \{0\}$ be an irreducible, homogeneous polynomial of degree $n \geq 1$ such that the function field $K = \mathbb{Q}(C_f)$ is isomorphic to $\mathbb{Q}(T)$. Then there exist polynomials $g_1, g_2, g_3 \in Int(\mathbb{Z}^m)$ for some $m \in \mathbb{N}$ such that

$$\mathcal{L}_f \setminus \mathcal{L}_f^{bad} = \left\{ \left(g_1(\underline{x}), g_2(\underline{x}), g_3(\underline{x}) \right) \mid \underline{x} \in \mathbb{Z}^m \right\};$$

in other words, up to the "bad" solutions, all solutions of the Diophantine equation

$$f(X,Y,Z) = 0 (1)$$

can be parametrized by one triple of integer-valued polynomials.

The suppositions of Theorem 1 imply that for $n \leq 2$ the curve C_f has no singular point. For n = 1, C_f is just a line and the result of Theorem 1 is obvious (even with $g_i \in \mathbb{Z}[U, V]$). For n = 2, we immediately obtain

Corollary 2. Let $f \in \mathbb{Z}[X,Y,Z]$ be an absolutely irreducible quadratic form. Then there exist polynomials $g_1, g_2, g_3 \in Int(\mathbb{Z}^m)$ for some $m \in \mathbb{N}$ such that

$$\mathcal{L}_f = \left\{ \left(g_1(\underline{x}), g_2(\underline{x}), g_3(\underline{x}) \right) \mid \underline{x} \in \mathbb{Z}^m \right\}.$$

For the proof of Theorem 1 we will use the resultant of polynomials and therefore recall some well-known results on it (cf. [5, Chap. I, §9-10]).

Given polynomials $g, h \in \mathbb{Z}[U, V]$ in the variables U, V, let $\mathrm{Res}_V(g, h) \in \mathbb{Z}[U]$ denote the resultant of g, h when considered as polynomials in the variable V over the ring $\mathbb{Z}[U]$, and, vice versa, $\mathrm{Res}_U(g, h) \in \mathbb{Z}[V]$ the resultant of g, h as polynomials in U.

Lemma 3. Let $g, h \in \mathbb{Z}[U, V]$ be relatively prime polynomials.

a) Then $Res_U(g,h) \neq 0$ and $Res_V(g,h) \neq 0$, and there exist polynomials $r, s, r', s' \in \mathbb{Z}[U,V]$ with

$$gr + hs = Res_U(g, h)$$
 and $gr' + hs' = Res_V(g, h)$.

b) If g and h are homogeneous of degree d_1 and d_2 , resp., then $Res_U(g,h)$ and $Res_V(g,h)$ are each homogeneous of degree d_1d_2 , and consequently

$$Res_U(g,h) = a V^{d_1 d_2}$$
 and $Res_V(g,h) = b U^{d_1 d_2}$ with $a,b \in \mathbb{Z} \setminus \{0\}$.

We will also use the implication $(D)\Rightarrow(B)$ of the main theorem of [1], which for the sake of completeness we state in the following

Proposition 4. Let $k \in \mathbb{N}$ and suppose that $S \subset \mathbb{Z}^k$ is the set of integer k-tuples in the range of a k-tuple of polynomials with rational coefficients, as the variables range through the integers, i.e., there exist $h_1, \ldots, h_k \in \mathbb{Q}[X_1, \ldots, X_r]$ for some $r \in \mathbb{N}$ such that

$$S = \{(h_1(\underline{x}), \dots, h_k(\underline{x})) \mid \underline{x} \in \mathbb{Z}^r\} \cap \mathbb{Z}^k .$$

Then S is parametrizable by a k-tuple of integer-valued polynomials, i.e., there exist $g_1, \ldots, g_k \in Int(\mathbb{Z}^m)$ for some $m \in \mathbb{N}$ such that

$$S = \{ (g_1(\underline{x}), \dots, g_k(\underline{x})) \mid \underline{x} \in \mathbb{Z}^m \} .$$

Proof of Theorem 1. Let f be as in the statement of the theorem. Then there exist homogeneous polynomials $h_1, h_2, h_3 \in \mathbb{Q}[U, V]$ such that

$$(X, Y, Z) = (h_1(U, V), h_2(U, V), h_3(U, V))$$

defines a birational (projective) isomorphism between C_f and the projective line. We may assume $h_1, h_2, h_3 \in \mathbb{Z}[U, V]$ and $gcd(h_1, h_2, h_3) = 1$ (see, for instance, [4, Sect. 2]).

For every \mathbb{Q} -rational point $(u:v) \in \mathbb{P}^1(\mathbb{Q})$, $(h_1(u,v):h_2(u,v):h_3(u,v))$ is the evaluation of the birational isomorphism at this point. This means that $(h_1(u,v):h_2(u,v):h_3(u,v))$ is a \mathbb{Q} -rational point of C_f and its local ring is contained in some discrete valuation ring of K of degree 1. Therefore

$$\mathcal{L}_{\mathbb{Q}} := \left\{ \left(w \, h_1(u, v), w \, h_2(u, v), w \, h_3(u, v) \right) \, \middle| \, u, v, w \in \mathbb{Q} \right\} =$$

$$\left\{ \left(w \, h_1(u, v), w \, h_2(u, v), w \, h_3(u, v) \right) \, \middle| \, w \in \mathbb{Q}, \, u, v \in \mathbb{Z} \text{ with } \gcd(u, v) = 1 \right\}$$

is exactly the set of all rational solutions of (1) except for those corresponding to points of C_f^{bad} , and $\mathcal{L}_f \setminus \mathcal{L}_f^{\text{bad}} = \mathcal{L}_{\mathbb{Q}} \cap \mathbb{Z}^3$ is just the set of all integral triples of $\mathcal{L}_{\mathbb{Q}}$.

We claim that there exists some $d\in\mathbb{N}$ such that for all $u,v\in\mathbb{Z}$ with $\gcd(u,v)=1$ it follows that

$$\gcd(h_1(u,v),h_2(u,v),h_3(u,v)) \mid d$$
.

Let $\gcd(h_1,h_2)=t\in\mathbb{Z}[U,V]$ and put $h_i=t\,h_i'$ with $h_i'\in\mathbb{Z}[U,V],\,i=1,2.$ Since h_1',h_2' are relatively prime, we obtain that $\mathrm{Res}_V(h_1',h_2')=a\,U^\delta$ with some $0\neq a\in\mathbb{Z}$ and $\delta\geq 0$, and polynomials $\rho_1,\rho_2\in\mathbb{Z}[U,V]$ with $\rho_1h_1+\rho_2h_2=atU^\delta.$ Since $h_1,\,h_2,\,h_3$ were assumed to be relatively prime, $\gcd(atU^\delta,h_3)=cU^\alpha$ with $c\in\mathbb{Z}$ and $0\leq\alpha\leq\delta.$ Dividing both atU^δ and h_3 by cU^α and applying the same reasoning as above we finally obtain that there are $0\neq a_1\in\mathbb{Z},\,\delta_1\geq 0$ and polynomials $\varphi_1,\varphi_2,\varphi_3\in\mathbb{Z}[U,V]$ with

$$\varphi_1 h_1 + \varphi_2 h_2 + \varphi_3 h_3 = a_1 U^{\delta_1} . \tag{2}$$

Using Res_U in the same way, we obtain polynomials $\psi_1, \psi_2, \psi_3 \in \mathbb{Z}[U, V]$, $0 \neq a_2 \in \mathbb{Z}$ and $\delta_2 \geq 0$ such that

$$\psi_1 h_1 + \psi_2 h_2 + \psi_3 h_3 = a_2 V^{\delta_2} . \tag{3}$$

For any $u, v \in \mathbb{Z}$ with gcd(u, v) = 1, (2) and (3) imply that $gcd(h_1(u, v), h_2(u, v), h_3(u, v))$ divides both $a_1u^{\delta_1}$ and $a_2v^{\delta_2}$. It follows that

$$\gcd(h_1(u,v),h_2(u,v),h_3(u,v)) \mid \operatorname{lcm}(a_1,a_2) := d.$$

So we obtain polynomials $k_i = \frac{1}{d}h_i \in \mathbb{Q}[U,V]$ with rational coefficients such that

$$\mathcal{L}_f \setminus \mathcal{L}_f^{\mathrm{bad}} = \left\{ \left(w \, k_1(u, v), w \, k_2(u, v), w \, k_3(u, v) \right) \, \middle| \, u, v, w \in \mathbb{Z} \right\} \cap \mathbb{Z}^3 \ .$$

Now we apply Proposition 4, which yields the assertion of Theorem 1.

Remarks. If the integers a_1, a_2 appearing in (2) and (3) in the proof of Theorem 1 are both equal to 1, then $k_i = h_i \in \mathbb{Z}[U, V]$ and $\mathcal{L}_f \setminus \mathcal{L}_f^{\text{bad}}$ can actually be parametrized by a triple of polynomials with integral coefficients (compare Example 2 below).

When applying Proposition 4, we have no information about the number m of variables of the integer-valued polynomials g_i appearing in Theorem 1.

Example 1. This example shows that for $n \geq 3$ "bad" singular points may appear. Consider

$$f = X^3 + Y^3 + X^2 Z - 2Y^2 Z \in \mathbb{Z}[X, Y, Z]$$
.

Then $(0:0:1) \in C_f$ is a singular point. Only one discrete valuation ring lies over the local ring $R_{(0:0:1)}$, and this valuation ring has residue class field isomorphic to $\mathbb{Q}(\sqrt{2})$. A birational (projective) isomorphism between C_f and the projective line is given by

$$(X:Y:Z) = ((V(2U^2 - V^2)): (U(2U^2 - V^2)): (V^3 + U^3)),$$

but there is no \mathbb{Q} -rational point $(u:v) \in \mathbb{P}^1(\mathbb{Q})$ corresponding to the singular point (0:0:1). Indeed, the corresponding point $(u:v) = (1:\sqrt{2})$ is only defined over $\mathbb{Q}(\sqrt{2})$.

Example 2. In contrast to the Pythagorean triples (corresponding to the unit circle, see [2]), we know that for the equilateral hyperbola the set \mathcal{L}_f can be parametrized by a single triple of polynomials with integer coefficients. Let

$$f = XY - Z^2 \in \mathbb{Z}[X, Y, Z].$$

All Q-rational points of C_f are given by $(u^2:v^2:uv)$ with $(u:v) \in \mathbb{P}^1(\mathbb{Q})$. If $u,v \in \mathbb{Z}$ with $\gcd(u,v)=1$ then also $\gcd(u^2,v^2,uv)=1$. So the set of all integral solutions of $XY-Z^2=0$ is given by

$$\{(u^2w, v^2w, uvw) \mid u, v, w \in \mathbb{Z}\}.$$

References

- [1] S. Frisch, Remarks on polynomial parametrization of sets of integer points, *Comm. Algebra* **36** (2008), 1110–1114.
- [2] S. Frisch, L. Vaserstein, Parametrization of Pythagorean triples by a single triple of polynomials, *J. Pure Appl. Algebra* **212** (2008), 271–274.
- [3] E. Kunz, Introduction to Plane Algebraic Curves, Birkhäuser, 2005.
- [4] D. Poulakis, E. Voskos, Solving genus zero Diophantine equations with at most two infinite valuations, *J. Symbolic Computation* **33** (2002), 479–491.
- [5] R. J. Walker, Algebraic Curves, Springer, 1978.

Addresses: Sophie Frisch, Institut für Mathematik A, Technische Universität Graz, Steyrergasse 30, A-8010 Graz, Austria

Günter Lettl, Institut für Mathematik und wissenschaftliches Rechnen, Karl-Franzens-Universität, Heinrichstraße 36, A-8010 Graz, Austria

E-mail: frisch@blah.math.tu-graz.ac.at, guenter.lettl@uni-graz.at

Received: 29 November 2007; revised: 28 January 2008