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ON A SEQUENCE OF INTEGERS ARISING FROM

SIMULTANEOUS PELL EQUATIONS

Florian Luca and Peter Gareth Walsh

Abstract: We define a sequence of squarefree positive integers which arise naturally in the

context of the solvability of a family of simultaneous Pell equations. It is proved that, apart from

an explicitly given finite subset, each integer in this sequence has at least eight prime factors.
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1. Introduction

In [5], Ono studied the solvability of the system of simultaneous Pell equations

(1.1) x2 − dy2 = 1, z2 − 2dy2 = 1.

Subsequently, an investigation into those squarefree positive integers d for which
(1.1) has solutions in positive integers x, y, z was pursued by the second author in
[6], and more recently by Cao et.al. in [1]. It was proved in [6] that for a given
positive integer d, equation (1.1) has at most one solution in positive integers
x, y, z. Several necessary conditions for the solvability of (1.1) were given in [6] as
well. One of the conditions given involved the number of prime factors of d. In
particular, it was shown that if (1.1) is solvable, then apart from a short list of
values, d must have at least five distinct odd prime factors. In [1], this particular
question was pursued more rigorously, and it was proved that apart from a short
list of values, the solvability of (1.1) implies that d must have at least seven distinct
prime factors.
The purpose of the present paper is to improve on the result of [1]. In particular,
we prove the following

Theorem 1.1. Assume that d is a squarefree positive integer, and that equation

(1.1) is solvable in positive integers x, y, z. Then, except for

d ∈ {6, 210, 1785, 60639, 184030, 915530, 14066106},
d has at least eight prime factors.
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2. Preliminary Results

Let α = 1 +
√

2, and for k ≥ 1, define sequences {Tk}, {Uk} by

αk = Tk + Uk

√
2.

The main tool to be used in the proof of Theorem 1 is the location of squares in
the sequences {Tk} and {Uk}. The difficulty in establishing these results is dealing
with the case that k is odd, which is tantamount to solving the two Diophantine
equations x2 − 2y4 = −1 and x4 − 2y2 = −1. These equations were both solved
completely by Ljunggren, in [3] and [4] respectively. Consequently, we have the
following

Lemma 2.1. The only square in the sequence {Tk} is T1 = 1, and the only squares

in the sequence {Uk} are U1 = 1 and U7 = 169.

We will frequently make use of some well known facts concerning terms in the
sequences {Tk}, {Uk}. For instance, for any k ≥ 1, U2k = TkUk, and if k > 0 is
odd, then T2k = 4U2

k
− 1. Moreover, if l is a positive integer and k is odd, then

Tl divides Tkl, whereas for any positive integers k, l, Ul divides Ukl. The reader is
referred to the comprehensive article by Lehmer [2] on this subject.

3. The Proof

Let us first define the sequence {dn} which we wish to study. Subtracting twice
the first equation in (1.1) from the second shows that

z2 − 2x2 = −1,

and hence z = T2n−1 for some integer n ≥ 1. It follows that (T 2
2n−1 − 1)/2 = dy2,

where it will always be assumed that d is squarefree, provided n > 1. For n ≥ 2,
define sequences {dn} and {yn}, with dn squarefree, by

dny2
n = (T 2

2n−1 − 1)/2.

As noted in [6], for n ≥ 1,

(3.1) dny2
n

= 4TnTn−1UnUn−1.

This identity will form the basis to prove the existence of eight prime factors of
dn. The proof of Theorem 1 will be separated into cases.

Case 1: n ≡ 0, 1 (mod 4)
In the case n = 4k for some integer k, we have that

dny2
n

= 4T4kT4k−1U4kU4k−1,

while if n = 4k + 1, then

dny2
n = 4T4kT4k+1U4kU4k+1.
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The argument below will prove the result in the case n = 4k. In the case n = 4k+1,
the same argument as the one below, with n replaced by n + 1 gives the desired
result.

Subcase 1a: n = 16k + 8 for some integer k ≥ 0.
In this case, equation (3.1) becomes

dny2
n

= 32T16k+8T16k+7U16k+7U2k+1T2k+1T4k+2T8k+4,

where the terms in the product on the right hand side are pairwise coprime. By
Lemma 1, the only terms in the product which can be squares are U2k+1 for k = 0
and k = 3, T2k+1 for k = 0, and U16k+7 for k = 0. Thus, for n different from 8
and 56, dn has at least 8 prime factors.

Subcase 1b: n = 16k for some integer k > 0.
In this case, equation (3.1) becomes

dny2
n = 64T16kT16k−1U16k−1UkTkT2kT4kT8k,

where the terms in the product on the right hand side are pairwise coprime. By
Lemma 1, the only terms in the product which can be squares are Uk for k = 1
and k = 7, and Tk for k = 1. Thus, for n different from 16 and 112, dn has at
least 8 prime factors.

Subcase 1c: n = 8k + 4 for some integer k ≥ 0.
In this case, equation (3.1) becomes

(3.2) dny2
n

= 16T8k+4T8k+3U8k+3U2k+1T2k+1T4k+2,

where the terms in the product on the right hand side are pairwise coprime. By
Lemma 1, the only terms in the product which can be squares are U2k+1 for k = 0
and k = 3, and T2k+1 for k = 0. This leaves the exceptional values n = 4 and
n = 28, which will be dealt with later. For all other n in this subcase, we again
separate the situation into two cases, depending on whether 3 divides n.
Assume first that 3 does not divide n. This implies that 3 properly divides T4k+2.
We will use the identity

T4k+2 = 4U2
2k+1 − 1 = (2U2k+1 − 1)(2U2k+1 + 1)

to show that, apart from a few exceptional values, T4k+2 is divisible by at least
three distinct primes, each of which divide T4k+2 exactly to an odd power.
In order to show this, we need to find all integer solutions to

2U2k+1 ± 1 = µz2, (µ ∈ {1, 3}).

The equations 2U2k+1 ± 1 = z2 can be rewritten as

x2 − 2((z2 ± 1)/2)2 = −1,
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which can be brought into the Weierstrass forms

Y 2 = X3 ± 4X2 − 4X,

with Y = 4x and X = 2z2. We used MAGMA to find the integer points on these
two curves. This results in the two solutions X = 2, z = 1, U2k+1 = 1, k = 0, and
hence n = 4, and X = 18, z = 3, U2k+1 = 5, k = 1, and hence n = 12. These two
values of n will be considered at the end of this subcase.
The equations 2U2k+1 ± 1 = 3z2 can be rewritten as

x2 − 2((3z2 ± 1)/2)2 = −1,

which can be brought into the Weierstrass forms

Y 2 = X3 ± 12X2 − 36X,

with Y = 36xz and X = 18z2. We used MAGMA to find the integer points on
these two curves. This results in the solution X = 18, z = 1, U2k+1 = 1, k = 0,
and hence n = 4.
For all other values of n in this subcase, with 3 not dividing n, we see that both
2U2k+1 + 1 and 2U2k+1 − 1 are divisible by an odd prime different from 3 to an
odd power. Therefore, T4k+2 is divisible by 3 and these two primes all to an odd
power. It follows that there are at least 8 primes dividing the right hand side of
(3.2) to an odd power.
Now consider the case that 3 divides n = 8k +4. This implies that k ≥ 2. We will
again use the fact that

(3.3) dny2
n = 16T8k+4T8k+3U8k+3U2k+1T2k+1(2U2k+1 + 1)(2U2k+1 − 1),

where as before, each pair of terms in the product are pairwise coprime. In this
case however, n = 12l for some integer l, and hence we use the identity

(3.4) T12l = T4l(4T 2
4l
− 3).

Since 3 divides T4k+2 = T6l, we know that 3 does not divide T12l, and hence the
two factors on the right hand side of (3.4) are coprime. These same two factors are
evidently not perfect squares, and hence T12l = T8k+4 is divisible by two primes
to an odd power. Since k ≥ 2, no factors in (3.3) can be squares, and hence the
product is divisible by at least eight distinct primes, each to an odd power.
The exceptional values to consider in this case are n = 4, 12, 28.
In the case n = 4k + 1, the above arguments show that the exceptional values are
n = 5, 9, 13, 17, 29, 57, 113.

Case 2: n ≡ 2, 3 (mod 4)
In the case n = 4k + 2 for some integer k, we have that

(3.5) dny2
n = 4T4k+2T4k+1U4k+2U4k+1,
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while if n = 4k + 3, then

dny2
n = 4T4k+3T4k+3U4k+2U4k+3.

The argument below will deal with the case n = 4k + 2, as essentially the same
argument will prove the desired result in the case that n = 4k + 3.
In this case, equation (3.5) shows that

(3.6) dny2
n = 8(2U2k+1 + 1)(2U2k+1 − 1)T4k+1U4k+1U2k+1T2k+1,

where as before, any two factors on the right hand side are pairwise coprime.
Assume first that k ≡ 0, 2 (mod 3). Then 3 does not divide 4k + 2, and hence
3 = T2 divides T4k+2 exactly to an odd power. Also, as argued in the previous
case, neither of the factors 2U2k+1 +1 or 2U2k+1 − 1 are a square, or three times a
square, provided k > 1. Therefore, for k > 1, each factor on the right hand side of
(3.6) contributes at least one prime factor to dn, while (2U2k+1 + 1)(2U2k+1 − 1)
contributes three prime factors. This shows that dn is divisible by at least eight
distinct prime factors, apart from the exceptional values n = 2, 6.
Assume now that k ≡ 1 (mod 3). This implies that 3 divides 2k + 1, say 2k + 1 =
3l. Therefore,

T2k+1 = T3l = Tl(4T 2
l

+ 3).

Since l is odd, 3 does not divide Tl, and hence gcd(Tl, 4T 2
l

+ 3) = 1. For l > 1,
neither of Tl or 4T 2

l
+ 3 are squares, and hence T2k+1 is divisible by at least two

primes to an odd power. Therefore, referring again to (3.6), we see that except
for k = 0, 1, 3, there are at least eight distinct prime factors dividing dn. The
exceptional values of n are n = 2, 6, 14.
This same argument applies to the case n = 4k + 3, and the exceptional values
arising from the analysis of this case are n = 3, 7, 15.
In all, the exceptional cases include the following values for n

2, 3, 4, 5, 6, 7, 8, 9, 12, 13, 14, 15, 16, 17, 28, 29, 56, 57, 112, 113.

After checking all of the corresponding values dn for the stated property, we obtain
the list in the theorem.

4. Comments and Remarks

Let ω(n) be the number of distinct prime factors of the positive integer n. We
would like to suggest the following conjecture.

Conjecture 4.1. If K is any fixed constant, there there are only finitely many
quadruples of integers (x, y, z, d) with

x2 − dy2 = 1, z2 − 2dy2 = 1

and furthermore d squarefree with ω(d) < K.
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We back up this conjecture with the following heuristic. The counting func-
tion up to X of the set of positive integers m of the form d, where ω(d) ≤ K
is, by a theorem of Landau, ∼ cKX(log log X)K−1/ logX , where cK is a pos-
itive constant depending on K. Using this result and Abel’s summation for-
mula one proves that the counting function up to X of the set of positive in-
tegers m of the form du2, where u is an integer and d is squarefree and has
ω(d) ≤ K is ∼ dKX(log log X)K−1/(log X) for some other constant dK depend-
ing on K. Thus, the expectation that a positive integer m has this form is
≪K (log log m)K−1/(log m). We now apply this heuristic to the numbers m = Tn

and m = Un appearing in equation (3.1), assuming that ω(dn) ≤ K. Thus, the
expectation that Tn is of the form du2 with some squarefree d having at most K
prime factors is ≪K (log log Tn)K−1/ log(Tn) ≪ (log n)K−1/n. The same applies
to Un. Assuming that these events are independent, we deduce that the expecta-
tion that equation (3.1) holds with some squarefree integer dn having at most K
prime factors is ≪K (log n)2(K−1)/n2. Since the series

∑

n≥1

(log n)2(K−1)

n2

is convergent, we conclude that there should be only finitely many values of n with
the desired property.
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