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ON THE REDUCED LENGTH OF A POLYNOMIAL
WITH REAL COEFFICIENTS, II

Andrzej Schinzel

To Jean-Marc Deshouillers
at the occasion of his 60th birthday

Abstract: The length L(P ) of a polynomial P is the sum of the absolute values of the coef-
ficients. For P ∈ R[x] the properties of l(P ) are studied, where l(P ) is the infimum of L(PG)
for G running through monic polynomials over R .
Keywords: length of a polynomial, unit circle.

The aim of this paper is to complement for cubic polynomials the results of [2]
and the notation of that paper is retained. Thus for

P (x) =
d∑

i=0

aix
d−i ∈ R[x]

we set

L(P ) =
d∑

i=0

|ai|, l(P ) = inf
G∈Γ

L(PG), l̂(P ) = min{l(P ), l(P ∗)},

where

Γ =
{
xn +

n∑

i=1

bix
n−i : n ∈ N ∪ {0}, bi ∈ R

}
, P ∗ = xdegPP (x−1).

In the paper [2] it has been shown how to compute l(P ), if no zero of P is on the
boundary of the unit disk, or all are inside the closed disk, or if there is just one
zero, possibly multiple, on the boundary and all zeros outside the disk are real of
the same sign. Now, we shall show
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Theorem 1. Let P (x) =
3∏
i=1

(x− αi) , where αi distinct, |α1| > |α2| > |α3| = 1 .

Then l(P ) is effectively computable.

Corollary. l̂(P ) can be effectively computed for every cubic polynomial P ∈ R[x] .

The corollary is of interest, since l̂(P ), rather than l(P ) occurs in applica-
tions given in [1].

Theorem 2. Let P (x) = (x− α)(x2 − ε) , where |α| > 1 , ε = ±1 . Then

l(P ) = 2
(|α|+ 1− |α|−1).

The proof of Theorem 2 can be extended to cover the case P (x) =
3∏
i=1

(x− αi),

where |α1| > 1 and α2, α3 are roots of unity. This however requires a tedious con-
sideration of cases and gives no key to the case where α2, α3 lie on the unit circle
and are not roots of unity, therefore we refrain from doing it here.

The proof of Theorem 1 is based on four lemmas, similar to Lemmas 4, 14,
15 and 16 of [2].

Definition 1. For P (x) =
d∏
i=1

(x − αi), αi distinct, 1 6 δ 6 d , n0 > n1 > . . . >

nδ > 0 we put

Cν(P ;nν , . . . , nδ−1+ν) =
(
α
nj
i

)
16i6d

ν6j<ν+δ
(ν = 0, 1).

Definition 2. For P (x) =
d∏
i=1

(x− αi), αi distinct 6= 0, we put

Td(P ) =
{
Q = xn0 +

δ∑

j=1

bjx
nj , 1 6 δ 6 d,

n0 > n1 > . . . > nδ = 0,
δ∏

j=1

bj 6= 0, Q ≡ 0 (modP ),

rankC0(P ;n0, . . . , nδ−1) = δ = rankC1(P ;n1, . . . , nδ), L(Q) 6 L(P )
}
.

Remark. Definition 1 is a special case of Definition 1 in [2], Definition 2 is a
modification, in the special case, of Definition 2 in [2], see Corrigendum at the end
of the paper.

Lemma 1. For P as in Theorem 1

l(P ) = inf
Q∈T3(P )

L(Q).

Proof. This is a special case of Lemma 4 in [3], the corrected version of [2].
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Definition 3. For P as in Theorem 1, let m be the order of α1/α2 , if α1/α2 is
a root of unity, m = 0 otherwise,

d1 =
log(L(P )− 1)

log |α1| , D1 = min
0<e6d1, e 6≡0 (modm)

|αe1 − αe2|,

d2 =
log 2D−1

1 (L(P )− 1)
log |α2| .

Lemma 2. For every Q ∈ T3(P ) , Q = xn0 +
δ∑
j=1

bjx
nj , n0 > . . . > nδ = 0 ,

δ∏
j=1

bj 6= 0 , we have δ > 2 ,

n0 − n1 6 d1, (1)

and
either n0 ≡ n1 (modm) or n1 − n2 6 d2. (2)

Proof. Q ≡ 0 (modP ) implies

αn0
i +

δ∑

j=1

bjα
nj
i = 0, (1 6 i 6 d) (3)

hence δ > 2 and

|α1|n0 6 |α1|n1

δ∑

j=1

|bj | 6 |α1|n1(L(P )− 1),

which gives the inequality (1). Since α1/α2 is either not a root of unity or a root
of unity of order m , we have D1 > 0. Moreover

αn1
2

(
αn0

1 + b1α
n1
1

)− αn1
1

(
αn0

2 + b1α
n1
2

)
= (α1α2)n1

(
αn0−n1

1 − αn0−n1
2

)
,

hence either n0 ≡ n1 (modm) or

max
{∣∣αn1

2

(
αn0

1 + b1α
n1
1

)∣∣, ∣∣αn1
1

(
αn0

2 + b1α
n1
2

)∣∣} > 1
2
|α1α2|n1D1,

which gives

max
{∣∣αn0−n1

1 + b1
∣∣,
∣∣αn0−n1

2 + b1
∣∣} > 1

2
D1.

In the latter case we obtain from (3) for an i ∈ {1, 2}

1
2
D1|αi|n1 6

∣∣∣
δ∑

j=2

bjα
nj
i

∣∣∣ 6 |αi|n2(L(P )− 1),

which gives (2).
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Lemma 3. Assume that, in the notation of Definition 3, n1 6≡ n2 (modm) and
α3 = 1 . If for n ∈ N , a ∈ R ,

n2 >
log
(
12n

∣∣αn2−n1
1 − αn2−n1

2

∣∣−1
max

{
1, 2n|a|

3n−1

})

log |α2| , (4)

then there exists a polynomial R ∈ R[x] , R(x) = r1x
n1 + r2x

n2 + r3 such that

(x− α1)(x− α2) |R(x)− a, (5)

x− 1 |R(x), (6)

L(R) <
1
n
. (7)

Proof. Put n3 = 0,

R(x) =
3∑

j=1

rjx
nj , rj ∈ C.

Since α1 6= α2 , the conditions (5) and (6) are equivalent to the system of linear
equations

3∑

j=1

rjα
nj
i = 0 (1 6 i 6 3). (8)

The determinant of this system equals

∆0 = (α1α2)n2 det
(
α
nj−n2
i

)
16i,j63 .

Developing the last determinant according to the last column we obtain

∣∣∣∣∣∣∣

αn1−n2
1 1 α−n2

1

αn1−n2
2 1 α−n2

2

1 1 1

∣∣∣∣∣∣∣
= αn1−n2

1 − αn1−n2
2 − α−n2

2

(
αn1−n2

1 − 1
)

+ α−n2
1

(
αn1−n2

2 − 1
)
,

hence ∣∣∣∆0(α1α2)−n2 − (αn1−n2
1 − αn1−n2

2

)∣∣∣ 6 4|α2|−n2 |α1|n1−n2

and, by (4),

∣∣∆0 −
(
αn1

1 αn2
2 − αn2

1 αn1
2

)∣∣ 6 1
3n

∣∣αn1
1 αn2

2 − αn2
1 αn1

2

∣∣,

thus
|∆0| >

(
1− 1

3n

)∣∣αn1
1 αn2

2 − αn2
1 αn1

2

∣∣ > 0 (9)
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and the system (8) is uniquely solvable. Since on replacing αi by their complex
conjugates we obtain the same system, rj are real.

The determinant ∆k obtained by substituting in
(
α
nj
i

)
16i63 for the k -th

column the column [a, a, 0]t satisfies for k < 3

∆k = ±det
(
α
nj
i

)
i<3
j 6=k

a,

hence, by (4),

|∆k| = |a|
∣∣αn3−k

1 − αn3−k
2

∣∣ < 2|a| |α1|n1 6 2|a| |α1α2|n1 |α2|−n2 (10)

6 3n− 1
12n2

∣∣αn1
1 αn2

2 − αn2
1 αn1

2

∣∣.

It follows from (9) and (10) that for k < 3, rk = ∆k/∆0 satisfies

|rk| < 1
4n

. (11)

It remains to consider k = 3. In this case

|∆k| = |a|
∣∣αn2

1 + αn1
2 − αn1

1 − αn2
2

∣∣ 6 4|a| |α1|n1

and we obtain similarly to (11)

|rk| < 1
2n

.

It follows now from (11) that

L(R) =
3∑

j=1

|rj | < 1
n
.

Lemma 4. Assume, under the assumptions of Theorem 1, that α3 = 1 , P0 =
(x− α1)(x− α2) . Then

l(P ) 6 inf
Q∈T2(P0)

(
L(Q) + |Q(1)|).

Proof. Let

Q = xq0 +
2∑

j=1

cjx
qj ,

where q0 > q1 > q2 = 0, but not necessarily
2∏
j=1

cj 6= 0.
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If q1 6≡ 0 (modm) and

n2 >
log
(
12n|α−q11 − αq12 |−1 max

{
1, 2n|Q(1)|

3n−1

})

log |α2| ,

by Lemma 3 with a = Q(1), nj = n2 + pj (1 6 j < 3), there exists a polynomial
R ∈ R[x] , R(x) = r1x

n1 +r2x
n2 +r3 satisfying (5)–(7). We consider the polynomial

S(x) = Q(x)xn2 +R(x)−Q(1).

It follows from (5)–(6) that

P0 |S, x− 1 |S, thus P |S

and, since S is monic,
l(P ) 6 L(S).

On the other hand, by (7),

L(S) 6 L(Q) + |Q(1)|+ 1
n
.

Since n is arbitrary, the lemma follows.

Proof of Theorem 1. The idea of the proof is to indicate for every n in N a finite
set Sn of monic polynomials divisible by P such that 0 > l(P )− min

Q∈Sn
L(Q) > − 1

n .

Since, by Proposition (iii) of [2], l(P (−x)) = l(P (x)), we may assume that α3 = 1.
Consider first the case where α1/α2 is not a root of unity, hence m = 0. In order
to prove the theorem in this case it suffices to show that for every n ∈ N

0 > l(P )−min
{

min∗ L(Q(P ;n0, n1, 0)),min∗∗ L(Q(P ;n0, n1, n2, 0)), (12)

min∗∗
(
L(Q(P0;n0 − n2, n1 − n2, 0)) +

∣∣Q(P0;n0 − n2, n1 − n2, 0)(1)
∣∣)}

> − 1
n
,

where the min∗ is taken over all integers n0 > n1 > 0 satisfying the conditions
(1) and (2) such that xn0 + b1x

n1 + b2 ≡ 0 (modP ) and

rankC1(P ;n1, 0) = 2, (13)

while the min∗∗ is taken over all integers n0 > n1 > n2 > 0 satisfying the
conditions (1) and (2), such that

n2 6
log
(
12n|αn2−n1

1 −αn2−n1
2 |−1max

{
1, 2n

3n−1

∣∣Q(P0;n0−n2, n1−n2, 0)
∣∣})

log |α2| (14)
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and
|C1(P ;n1, n2, 0)| 6= 0. (15)

The condition (13) implies that there is at most one polynomial Q = xn0 +
b1x

n1 + b2 divisible by P , denoted in (12) by Q(P ;n0, n1, 0); if such a polynomial
does not exist for any pair 〈n0, n1〉 , then we take min∗ =∞ . The condition (15)

implies that there is a unique polynomial Q = xn0 +
2∑
j=1

bjx
nj + b3 divisible by P ,

denoted in (12) by Q(P ;n0, n1, n2, 0). Similarly, Q(P0;n0 − n2, n1 − n2, 0) is the
unique polynomial

Q = xn0−n2 +
2∑

j=1

bjx
nj−n2

divisible by P (note that det(αnj−n2
i )16i,j62 6= 0). The inequality

l(P ) 6 min
{

min∗ L
(
Q(P ;n0, n1, 0)

)
,min∗∗ L

(
Q(P ;n0, n1, n2, 0)

)}

is clear and the inequality

l(P ) 6 min∗∗
(
L(Q(P0, n0 − n2, n1 − n2, 0)) + |Q(P0;n0 − n2, n1 − n2, 0)(1)|)

follows from Lemma 4. This shows the first of inequalities (12).
In order to prove the second one we notice that by Lemmas 1 and 2

l(P ) = inf L
(
Q(P ;n0, . . . , nδ−1, 0)

)
, (16)

where 〈n0, . . . , nδ−1〉 runs through all strictly decreasing sequences of δ ∈ {2, 3}
positive integers satisfying (1)–(2),

Q(P ;n0, . . . , nδ−1, 0) 6= 0 (17)

and
rankC1(P ;n1, 0) = 2 if δ = 2, |C1(P ;n1, n2, 0)| 6= 0 if δ = 3. (18)

Clearly
L
(
Q(P ;n0, n1, 0)

)
> min∗ L

(
Q(P ;n0, n1, 0)

)
. (19)

If δ = 3 and (14) holds, then

L
(
Q(P ;n0, n1, n2, 0)

)
> min∗∗ L

(
Q(P ;n0, n1, n2, 0)

)
(20)

and if not, then by Lemma 3 there exists a polynomial R ∈ R[x] , R(x) = r1x
n1 +

r2x
n2 + r3 such that (5)–(7) hold with

a = Q(P0;n0 − n2, n1 − n2, 0)(1).
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Then the polynomial

S(x) = Q(P0;n0 − n2, n1 − n2, 0)xn2 +R(x)−Q(P0;n0 − n2, n1 − n2, 0)(1)

is monic, satisfies
P |S(x),

and by (15)
S(x) = Q(P ;n0, n1, n2, 0). (21)

By (7)

L(S) > L
(
Q(P0;n0 − n2, n1 − n2, 0)

)
(22)

+
∣∣Q(P0;n0 − n2, n1 − n2, 0)(1)

∣∣− 1
n
.

The formulae (16)–(22) imply

L
(
Q(P ;n0, . . . , nδ−1, 0)

)

> min
{

min∗ L(Q(P ;n0, n1, 0)),min∗∗ L(Q(P ;n0, n1, n2, 0)),

min∗∗
(
L(Q(P0, n0 − n2, n1 − n2, 0)) +

∣∣Q(P0;n0 − n2, n1 − n2, 0)(1)
∣∣)}− 1

n
,

for all sequences 〈n0, . . . , nδ−1〉 satisfying (1), (2) and (18), hence by (16) the
second of the inequalities (12) follows. The conditions (1), (2) and (14) are for
a given n satisfied by only finitely many sequences 〈n0, . . . , nδ−1〉 (2 6 δ 6 3),
since for δ = 3

nj − n2 6
2∑

µ=j+1

dµ

and for all such sequences satisfying (18) bj can be effectively determined or shown
not to exist (for δ = 2), hence l(P ) can be effectively computed.

Consider now the case where α1/α2 is a root of unity of order m . Since P ∈
R[x] , α1, α2 are either real or complex conjugate, thus we have either α1 = ±r ,
α2 = ∓r , or

α1 = r exp
πil

m
, α2 = r exp

−πil
m

, (l,m) = 1, m > 1, (23)

where r ∈ R , r > 0. We shall show that

0 > l(P )−min
{

min1 L(Q(P ;n0, n1, 0)),min2 L(Q(P ;n0, n1, 0)), (24)

min2
(
L(Q(P0;n0 − n2, n1 − n2, 0))

+
∣∣Q(P0;n0 − n2, n1 − n2, 0)(1)

∣∣),
min3 L(Q(P ;n0, n1, n2, 0)),min4 L(Q(P ;n0, n1, n2, 0)),

min4
(
L(Q(P0;n0 − n2, n1 − n2, 0))

+
∣∣Q(P0;n0 − n2, n1 − n2, 0)(1)

∣∣), 2rm
}
> − 1

n
,



On the reduced length of a polynomial with real coefficients, II 453

where the min1 is taken over all integers n0 > n1 > 0 satisfying n0 − n1 6 d1 ,
n0 6≡ n1 (modm), n1 6 d2 ,

rankC1(P ;n1, 0) = 2, (25)

the min2 is taken over all integers n0 > n1 > n2 > 0 satisfying n0 − n1 6 d1 ,
n0 6≡ n1 (modm), n1 − n2 6 d2 , n1 6≡ n2 (modm),

|C1(P ;n1, n2, 0)| 6= 0, (26)

the min3 is taken over all integers n0 > n1 > n2 > 0 satisfying

n0 6≡ n1 ≡ n2 6≡ 0 (modm), (27)

n0 6
log
(

(L(P )− 1)
∣∣sin πl(n0−n2)

m

∣∣−1
)

log r
, (28)

the min4 is taken over all integers n0 > n1 > n2 > 0 satisfying

n0 − n1 6 log(L(P )− 1)
log r

, n0 ≡ n1 6≡ n2 (modm),

n1 − n2 6
log
(
2n(L(P )− 1)

)

log r
, (29)

|C1(P ;n1, n2, 0)| 6= 0. (30)

The condition (25) warrants that Q(P ;n0, n1, 0) occurring under min1 , if it
exists, is determined uniquely, otherwise we take min1 = ∞ , the condition (26)
warrants that Q(P ;n0, n1, n2, 0) occurring under min2 is determined uniquely, the
condition n1 6≡ n2 (modm) warrants that Q(P0;n0−n2, n1−n2, 0) occurring under
min2 is determined uniquely, the condition (27) warrants that Q(P ;n0, n1, n2, 0)
occurring under min3 is determined uniquely, the condition (30) warrants that
Q(P ;n0, n1, n2, 0) occurring under min4 is determined uniquely, the condition
n1 6≡ n2 (modm) warrants that Q(P0;n0 − n2, n1 − n2, 0) occurring under min4

is determined uniquely. Clearly

l(P ) 6 min
{

min1 L
(
Q(P ;n0, n1, 0)

)
,min2 L

(
Q(P ;n0, n1, n2, 0)

)
,

min3 L
(
Q(P ;n0, n1, n2, 0)

)
,min4 L

(
Q(P ;n0, n1, n2, 0)

)}

and the inequality

l(P ) 6 min
{

min2
(
L(Q(P0;n0 − n2, n1 − n2, 0))

+
∣∣Q(P0;n0 − n2, n1 − n2, 0)(1)

∣∣),
min4

(
L(Q(P0;n0 − n2, n1 − n2, 0))

+
∣∣Q(P0;n0 − n2, n1 − n2, 0)(1)

∣∣)}
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follows from Lemma 4. Finally, l(P ) 6 2rm , since by Proposition (i) and (iv)
from [2]

l(P ) 6 l
(
(xm − αm1 )(xm − 1)

)
= l
(
(x− αm1 )(x− 1)

)

and by Theorem 6 from [2] the right-hand side is 2rm . This shows the first of the
inequalities 24. In order to prove the second one we again use (16) and (18).

If δ = 2 and n0 6≡ n1 (modm), then

L
(
Q(P ;n0, n1, 0)

)
> min1 L

(
Q(P ;n0, n1, 0)

)
.

If δ = 2 and n0 ≡ n1 6≡ 0 (modm), then from

Q(P ;n0, n1, 0) = xn0 + b1x
n1 + b2 (31)

we infer that
αn1
i (αn0−n1

i + b1) + b2 = 0 (i = 1, 2),

hence
αn0−n1
i + b1 = b2 = 0,

contrary to (17).
If δ = 2 and n0 ≡ n1 ≡ 0 (modm), we infer from (31) that either

α1 = ±r, α2 =∓ r, b1 = −r
n0 − 1
rn1 − 1

, b2 = −1 +
rn0 − 1
rn1 − 1

> 0,

L(Q) = 2|b1| > 2rn0−n1 > 2rm

or (23) holds and

b1 = −(−1)l(n0−n1)/m rn0 − (−1)ln0/m

rn1 − (−1)ln1/m
,

b2 = −1 + (−1)l(n0−n1)/m rn0 − (−1)ln0/m

rn1 − (−1)ln1/m
.

If l(n0 − n1) ≡ 0 (mod 2m), then b2 > 0,

L(Q) = 2|b1| > 2 inf
n1>m

{
rn1+m − 1
rn1 − 1

,
rn1+2m + 1
rn1 + 1

}
> 2rm.

If l(n0 − n1) ≡ m (mod 2m), then b2 < 0,

L(Q) = 2(|b1|+ 1) > 2
(
r2m − 1
rm + 1

+ 1
)

= 2rm.

If δ = 3, n0 6≡ n1 6≡ n2 (modm) and (14) holds, then

L
(
Q(P ;n0, n1, n2, 0)

)
> min2 L

(
Q(P ;n0, n1, n2, 0)

)
.
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If δ = 3, n0 6≡ n1 6≡ n2 (modm) and (14) does not hold, then by Lemma 3

there exists a polynomial R ∈ R[x] , R(x) =
2∑
j=1

rjx
nj + r3 such that (5)–(7) hold

with
a = Q(P0;n0 − n2, n1 − n2, 0)(1).

Then the polynomial

S(x) = Q(P0;n0 − n2, n1 − n2, 0)xn2 +R(x)−Q(P0;n0 − n2, n1 − n2, 0)(1)

satisfies (21) and, by (7),

L
(
Q(P0;n0, n1, n2, 0)

)
> min2

(
L(Q(P0;n0 − n2, n1 − n2, 0))

+
∣∣Q(P0;n0 − n2, n1 − n2, 0)(1)

∣∣)− 1
n
.

If δ = 3, n0 6≡ n1 ≡ n2 (modm), then from

Q(P0;n0, n1, n2, 0) = xn0 + b1x
n1 + b2x

n2 + b3,

3∑

j=1

|bj | 6 L(P )− 1

we infer that

αn0
i + αn2

i (b1α
n1−n2
i + b2) + b3 = 0 (i = 1, 2),

hence

n2 6≡ 0 (modm), b3 =
αn0

1 αn2
2 − αn1

1 αn0
2

αn2
1 − αn2

2

and either rn0 6 L(P )− 1, if α1 = −α2 , or by (23)

rn0

∣∣∣sin π(n0 − n2)l
m

∣∣∣ 6 (L(P )− 1)
∣∣∣sin πn2l

m

∣∣∣ 6 L(P )− 1,

which gives (27) and

L
(
Q(P ;n0, n1, n2, 0)

)
> min3 L

(
Q(P ;n0, n1, n2, 0)

)
.

If δ = 3, n0 ≡ n1 6≡ n2 (modm) and (29) holds, then

L
(
Q(P ;n0, n1, n2, 0)

)
> min4 L

(
Q(P ;n0, n1, n2, 0)

)
.

If δ = 3, n0 ≡ n1 6≡ n2 (modm) and (29) does not hold, then

αn1
i

(
αn0−n1
i + b1

)
+ b2α

n2
i + b3 = 0 (i = 1, 2),
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hence

|αi|n1 |αn0−n1
i + b1| 6 |αi|n2(L(P )− 1);

|αi|n1−n2 |αn0−n1
i + b1| 6 L(P )− 1;

|αn0−n1
i + b1| < 1

2n
,

|b1| > |αn0−n1
i | − 1

2n
> rm − 1

2n
, |b3| = |1 + b1 + b2| > |b1| − 1− |b2|.

It follows that

L
(
Q(P ;n0, n1, n2, 0)

)
= 1 +

3∑

j=1

|bj | > 2|b1| > 2rm − 1
n
.

If δ = 3, n0 ≡ n1 ≡ n2 6≡ 0 (modm), then from

αn0
i + b1α

n1
i + b2α

n2
i + b3 = 0 (i = 1, 2)

we infer that
αn0
i + b1α

n1
i + b2 = b3 = 0,

contrary to (17).
Finally, if δ = 3, n0 ≡ n1 ≡ n2 ≡ 0 (modm), then |C0(P ;n0, n1, n2)| = 0,

contrary to the definition of T3(P ).

Proof of Corollary. If P has a multiple zero or P (0) = 0, then l(P ) and l(P ∗)
can be computed using Theorems 2, 4 or 5 of [2]. Otherwise, let

P =
3∏

i=1

(x− αi), where |α1| > |α2| > |α3| > 0.

If |α3| > 1, then l(P ) > |α1α2α3| by Proposition (ii) of [2] and l(P ∗) = |α1α2α3| ,
hence l̂(P ) = |α1α2α3| .

If |α2| > 1 = |α3| , then l(P ) can be computed from Theorem 1 above and
l(P ∗) = 2|α1α2| .

If |α2| > 1 > |α3| , then l(P ) can be computed from Theorem 2 of [2] and
l(P ∗) = |α1α2|(1 + |α3|).

If |α1| > 1 = |α2| = |α3| , then, by Theorem 6 of [2], l(P ) > 2|α1| and, by
Theorem 4 of [2], l(P ∗) = 2|α1| , hence l̂(P ) = 2|α1| .

If |α1| > 1 = |α2| > |α3| , then, by Theorem 6 of [2], l(P ) = 2|α1| = l(P ∗),
hence l̂(P ) = 2|α1| .

If |α1| > 1 > |α2| > |α3| , then l(P ) = 1+ |α1| , l(P ∗) can be computed from
Theorem 2 of [2].

If |α1| = 1 = |α2| = |α3| , then, by Theorem 4 of [2], l(P ) = 2 = l(P ∗),
hence l̂(P ) = 2.
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If |α1| = 1 = |α2| > |α3| , then l(P ) = 2 and, by Theorem 6 of [2], l(P ∗) > 2,
hence l̂(P ) = 2.

If |α1| = 1 > |α2| > |α3| , then l(P ) = 2, l(P ∗) can be computed from
Theorem 1 above.

If 1 > |α1| > |α2| > |α3| , then l(P ) = 1 and l(P ∗) > 1 by Proposition (ii)
of [2], hence l̂(P ) = 1.

Proof of Theorem 2. The idea of the proof is to estimate L(Q) for Q in T3(P )
with exponents of a given parity. By virtue of Proposition (iii) of [2] we may assume
that α > 1. Let, first, Q ∈ T3(P ) have the form xn0 + b1x

n1 + b2 , where b1b2 6= 0.
If n0 ≡ 0, n1 ≡ 1 (mod 2), from Q ≡ 0 (modx2 − ε) we obtain b1 = 0; if n0 ≡ 1,
n1 ≡ 0 (mod 2), then 1 = 0; if n0 ≡ n1 ≡ 1 (mod 2), then b2 = 0, each time a
contradiction.

Therefore, n0 ≡ n1 ≡ 0 (mod 2) and it follows from Q(x) ≡ 0 (modx2 − ε)
that εn0/2 + b1ε

n1/2 + b2 = 0 and from Q(α) = 0 that

b1 = −α
n0 − εn0/2

αn1 − εn1/2
, b2 = −εn0/2 − b1εn1/2.

If εn0/2 = εn1/2 , then |b2| = |b1| − 1 and

L(Q) = 2|b1| > 2 inf
n1>2

min
{
αn1+2 − 1
αn1 − 1

,
αn1+4 + 1
αn1 + 1

}
> 2α2 > 2(α+ 1− α−1).

If εn0/2 = −εn1/2 , then |b2| = |b1|+ 1 and

L(Q) = 2(|b1|+ 1) > 2
(α4 − 1
α2 + 1

+ 1
)

= 2α2 > 2(α+ 1− α−1).

Now, let Q ∈ T3(P ) have the form xn0 +b1xn1 +b2xn2 +b3 , where b1b2b3 6= 0.
If only one of the ni is odd or all are odd, we obtain a contradiction as above. If
all ni are even, then |C0(P ;n0, n1, n2)| = 0, contrary to the definition of T3(P ).
Therefore, we have three cases

ni ≡ 0 (mod 2), nj ≡ 1 (mod 2) for j 6= i, i = 0, 1, 2.

If i = 0 we obtain from Q ≡ 0 (modx2 − ε)

b2 = −b1ε(n1−n2)/2, b3 = −εn0/2

and from Q(α) = 0

b1 = − αn0 − εn0/2

αn1 − ε(n1−n2)/2αn2
,

thus
L(Q)− 2 = 2|b1| > 2(α− α−1).



458 Andrzej Schinzel

If ε(n1−n2)/2 = 1, the inequality is clear, and in the opposite case we have n0 > 4,
hence

αn0 − 1 > αn0 − αn0−4 = (α− α−1)(αn0−1 + αn0−3) > (α− α−1)(αn1 + αn2).

If i = 1 we obtain from Q ≡ 0 (modx2 − ε)
b2 = −ε(n0−n2)/2, b3 = −b1εn1/2

and from Q(α) = 0

b1 = −α
n0 − ε(n0−n2)/2αn2

αn1 − εn1/2
,

thus
L(Q)− 2 = 2|b1| > 2(α− α−1).

If either εn1/2 = 1 or ε(n0−n2)/2 = −1, the inequality is clear, in the opposite case
we have n0 − n2 > 4, hence

αn0 − αn2 > αn0 − αn0−4 > (α− α−1)(αn0−1 + 1) > (α− α−1)(αn1 + 1).

If i = 2 we obtain from Q ≡ 0 (modx2 − ε)
b1 = −ε(n0−n1)/2, b3 = −b2εn2/2

and from Q(α) = 0

b2 = −α
n0 − ε(n0−n1)/2αn1

αn2 − εn2/2
,

thus
L(Q)− 2 = 2|b2| > 2(α− α−1).

If either εn1/2 = 1 or ε(n0−n1)/2 = −1, the inequality is clear, in the opposite case
n0 = n1 > 4, n2 > 2, n0 > 7, hence

αn0 − αn1 > αn0 − αn0−4 = αn0−4(α2 − 1)(α2 + 1)

= α3(α2 − 1)(αn0−5 + αn0−7) > (α− α−1)(αn2 + 1).

Thus we have
l(P ) = inf

Q∈T3(P )
L(Q) > 2(α+ 1− α−1).

On the other hand, taking for ε = −1

Q = x4 − α4 − 1
α3 + α

x3 − α4 − 1
α3 + α

x− 1

we obtain Q ≡ 0 (modP ), L(Q) = 2(α+ 1− α−1), hence

l(P ) = 2(α+ 1− α−1). (32)

If ε = 1, taking

Qn = x2n+1 − α2n+1 − α2n−1

α2n − 1
x2n − x2n−1 +

α2n+1 − α2n−1

α2n − 1

we obtain Qn ≡ 0 (modP ), lim
n→∞

L(Qn) = 2(α + 1 − α−1), hence (32) holds

again.
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In connection with Theorem 2 we propose the following

Problem. Is the inequality l((x2 + tx + 1)P (x)) > 2M(P ) where M(P ), is the
Mahler measure, true for all t ∈ [−2, 2] and all P ∈ R[x]?

Corrections to [2]. Definition 2 on p. 278 should be modified as follows:

Td(P ) =
{
Q ∈ Sd(P ) : Q = xn0 +

δ∑

j=1

bjx
nj , where n0 > n1 > . . . > nδ = 0,

δ∏

j=1

bj 6= 0, δ 6 d, rankC0(P ;n0, . . . , nδ−1) = δ = rankC1(P ;n1, . . . , nδ),

L(Q) 6 L(P )
}
.

This requires a change in the proof of Lemma 4 and many small modifications
in the proofs of Theorems 2, 5 and 6. These corrections are all made in [3].

Moreover, the following mistakes should be corrected:
p. 280, line 3: for ‘L(Q0) = ’ read ‘L(Q0) = 1 + ’
p. 282, line −5: for ‘Definition 1’ read ‘Definition 4’
p. 294, line −10 and p. 299, lines 7–8: replace ‘of degree at most n1 ’ by

‘R(x) =
d−1∑
j=1

rjx
nj + rd ’

p. 298, formula (61): for ‘
∗

min’ read ‘min∗ ’
formula (63): replace the right-hand side by
‘max{n1 − nd−1, ψ(. . .)} ’
line 10: for ‘nd ’ read ‘nd−1 ’

p. 299, line −5: for ‘(64)’ read ‘(62) and (64)’
line −3: for ‘dj ’ read ‘dµ ’
line −2: for ‘all such sequences’ read ‘all such sequences bj ’
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