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CRAMÉR VS. CRAMÉR. ON CRAMÉR’S PROBABILISTIC
MODEL FOR PRIMES∗

János Pintz

Dedicated to the 60th birthday
of Jean-Marc Deshouillers

Abstract: In the 1930’s Cramér created a probabilistic model for primes. He applied his model
to express a very deep conjecture about large differences between consecutive primes. The general
belief was for a period of 50 years that the model reflects the true behaviour of primes when
applied to proper problems. It was a great surprise therefore when Helmut Maier discovered in
1985 that the model gives wrong predictions for the distribution of primes in short intervals. In the
paper we analyse this phenomen, and describe a simpler proof of Maier’s theorem which uses only
tools available at the mid thirties. We present further a completely different contradiction between
the model and the reality. Additionally, we show that, unlike to the contradiction discovered by
Maier, this new contradiction would be present in essentially all Cramér type models using
independent random variables.
Keywords: primes, probabilistic model for primes, Cramér’s model for primes.

1. Cramér’s model

Cramér’s probabilistic model for primes [3,4] (abbreviated further as CM), created
by him in the mid 1930’s, plays also today a fundamental role when formulating
conjectures concerning primes.

The prime number theorem (PNT)

π(x) =
∑

p6x
1 ∼ lix =

x∫

0

du

log u
, (1.1)

asserts that the expected density of primes around x is 1/ log x . Cramér’s pro-
babilistic model is a sequence of independent random variables ξ(n), defined for
n > 3 by

P(ξn = 1) =
1

log n
, P(ξn = 0) = 1− 1

log n
. (1.2)
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The heuristic assumption of Cramér is that in certain problems ξn imitates well the
behaviour of the characteristic function of primes, i.e. the function (P = {pn}∞n=1
denotes the set of primes)

χP(n) =
{

1 if n ∈ P,
0 otherwise.

(1.3)

Cramér used this model to formulate a conjecture about large gaps between
consecutive primes. For any infinite {0, 1} sequence, corresponding to the value
distribution {ξn}∞n=3 we can associate the series Pν , where

Pν+1 = m if
m∑
n=3

ξn = ν and
m−1∑
n=3

ξn = ν − 1. (1.4)

According to Cramér’s heuristic the largest possible gaps between primes behave
similarly to the largest possible gaps between Pn . More precisely, he proved that
with probability 1 we have

lim sup
n→∞

Pn+1 − Pn
(logPn)2 = 1. (1.5)

On the basis of (1.5) he conjectured for the primes the same relation, that is,

lim sup
n→∞

pn+1 − pn
log2 pn

= 1. (1.6)

The conjecture shows a relatively good (although not very good) agreement
with empirical data.

In the present work we will examine how well this model describes the pro-
perties of primes. We will describe in detail the obvious trivial deficiencies of
Cramér’s model (Section 2) and the surprising result of Maier from 1985 which
showed the first time a ‘non-trivial contradiction’ between the distribution of pri-
mes and Cramér’s model (Section 3). We will present another type of contradiction
in Section 4. Further we will examine whether Cramér’s model may be modified
in a way as to scope with the arising ‘contradictory’ phenomena. While such a
modification is known to be possible in case of ‘Maier’s phenomenon’, we will
show (Sections 5–6) that no non-trivial Cramér-type probabilistic model (using
independent random variables) exists, which would scope with the phenomenon
examined in Section 5. Finally following Granville [7], we describe in Section 7
how probabilistic models can help or could have helped not only to conjecture but
also prove results about primes.

2. Obvious deficiencies of Cramér’s model

Since the sequence of primes pn is a given deterministic sequence we cannot hope
that the simple probabilistic model of Cramér should well reflect all properties of
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primes. We have, for example, with probability 1 (abbreviated in the following by
w. p. 1), asymptotically as many even and odd values of ‘the probabilistic primes’
Pn , that is

∣∣{Pn 6 x; 2 | Pn}
∣∣ ∼

∣∣{Pn 6 x; 2 - Pn}
∣∣ (as x→∞) (2.1)

or
lim inf
n→∞

(Pn+1 − Pn) = 1 (2.2)

(that is, we can find w. p. 1, infinitely many consecutive ‘probabilistic primes’
Pn ). CM is clearly not sensible for the property whether a given natural number
n is divisible by small primes or not; a property which is crucial if we examine
the primality of n . This deficiency is obviously responsible for the fact that the
analogues of (2.1) and (2.2) are not true for primes, since all primes larger than
two are odd.

Naturally, for the same reason it is also totally false to assume the random
variables ξ(n) to be independent as shown by the obvious falsity of the analogue
of (2.2) for primes.

Nevertheless, we have some means to make corrections on CM and to arrive
in this way at plausible conjectures about primes. Let us consider, for example,
following Pólya [15], the number of twin primes below x . If the events that n and
n+2 are both primes would be ‘approximately’ independent, then we would arrive
at the naive conjecture:

N2(x) =
∣∣{n 6 x; n, n+ 2 ∈ P}

∣∣ ∼ x

log2 x
, (2.3)

which would be the result following w. p. 1 from CM. (This naive conjecture is
according to general belief wrong, but we have no way to disprove it.) On the
other hand, n and n+ 2 are clearly simultaneously both even or both odd, so the
probability that they are both odd is 1/2 and not 1/4 = (1/2)2 , which would be
the case if these two events would be independent.

Similarly, for any p > 2 the probability

P(p - n, p - n+ 2) = P(n 6≡ 0,−2(mod p)) =
p− 2
p

, (2.4)

contrary to the wrong probability

(
1− 1

p

)2

, (2.5)

suggested by the independence condition of CM. This suggests a correction factor(
1− 2

p

)(
1− 1

p

)−2
for any prime p > 2.
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Taking into account all these local correction factors (including the correction
factor 2 for p = 2), this means that we should multiply the naive probability
(log x)−2 of (2.3) by

2c0 := 2
∏
p>3

(
1− 2

p

)(
1− 1

p

)−2

= 2
∏
p>3

(
1− 1

(p− 1)2

)
, (2.6)

in order to arrive at the plausible conjecture

N2(x) ∼ 2c0
x

log2 x
(c0 = 0.66016 . . .), (2.7)

where 2c0 = 1.3203 . . . is the well-known twin-prime constant. This formula is
the same which is suggested by the singular series in Hardy–Littlewood’s circle
method.

The same heuristic would apply to the number of Goldbach decompositions
of even integers or to the expected number of prime k -tuples

NH(x) :=
∣∣{n 6 x;n+ hi ∈ P for i = 1, 2, . . . , k}∣∣, (2.8)

when H = {hi}ki=1 , hi ∈ Z+ ∪ {0} , hi 6= hj for i 6= j , which constitutes a
far-reaching generalization of the twin prime conjecture. Denoting by νp(H) the
number of distinct residue classes covered by H mod p , the correct probability that
all n+ hi are not divisible by a given prime p is

P
(
p - (n+ hi), 1 6 i 6 k

)
=
p− νp(H)

p
, (2.9)

in contrast to the wrong naive probability (cf. (2.4)–(2.5))

(
1− 1

p

)k
, (2.10)

suggested by the independence condition of CM. This suggests that the naive
probability (log x)−k arising from CM should be multiplied by the correction factor

S(H) :=
∏
p

(
1− νp(H)

p

)(
1− 1

p

)−k
(2.11)

to yield the plausible estimate

NH(x) ∼ S(H)
x

(log x)k
, (2.12)

which is the same formula as the one conjectured by Hardy–Littlewood, on a
completely different basis.
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3. Maier’s discovery. Serious deficiency found in CM

Despite the mentioned obvious deficiency of Cramér’s model in local problems, the
general belief was before 1985 that his model predicts correctly the behaviour of
primes in those cases where we consider problems of global nature (like distribution
of primes in long intervals) or of semi-global nature (like distribution of primes in
short intervals, like, for example, the original problem (1.5)–(1.6) of Cramér about
large gaps between consecutive primes). It was therefore a great surprise when H.
Maier [12] showed in 1985 that the Prime Number Theorem is not true in short
intervals of type [

x, x+ (log x)λ
]
, λ > 0 arbitrary, (3.1)

whereas CM would predict its truth for all λ > 2 with probability = 1.
Maier succeeded namely to show the existence of intervals of type (3.1) con-

taining 6 c1(λ) times less or > c2(λ) times more primes than expected, where

c1(λ) < 1 < c2(λ) for any λ. (3.2)

Maier examined in his work the distribution of numbers, relatively prime to

P (z) =
∏

p6z
p, (3.3)

which we shall call z -quasiprimes (and denote their set by Q(z)) in the following.
It follows trivially from the periodicity of the set Q(z) that

Φ(x, z) :=
∣∣{n 6 x; (n, P (z)) = 1}∣∣ ∼ xW (z) := x

∏

p6z

(
1− 1

p

)
, (3.4)

for any x and z = z(x) such that

xW (z)
P (z)

−→∞. (3.5)

Another plausible hypothesis (also true for fixed z and x→∞) is that the
density of primes among z -quasiprimes is larger by a factor B(z) where

B(z) :=
P (z)

ϕ(P (z))
=
∏

p6z

(
1− 1

p

)−1

= (W (z))−1. (3.6)

The above principle is true in the stronger sense also that taking any arith-
metic progression of type

Am = mP (z) + a, a ∈ Q(z)
(
=⇒ Am ∈ Q(z)

)
, (3.7)



366 János Pintz

the density of primes in the special sequence Am ∩ [x/2, x] is

∼ B(z)
log x

, (3.8)

if there are no Siegel zeros for the characters modP (z) and

log x
logP (z)

∼ log x
z

:= f(x) −→∞ (as x→∞). (3.9)

The above assertion is a deep result of Gallagher [6]. This means heuristically that
in order to find some intervals with more (or resp. less) primes than expected, it is
sufficient to produce some intervals with more (or resp. less) z -quasiprimes than
expected.

The next observation is that the number of z -quasiprimes in not too long
intervals of type

(0, y] y = zλ (λ > 1 fixed) (3.10)

is, in contrast to the asymptotic relation (3.4), by Buchstab’s theorem [1]

Φ(y, z) ∼ yW (z)ω∗(λ), (as y →∞), (3.11)

where ω∗(u) is a precisely determined continuous function with (see Iwaniec [9])

min
u∈[a,a+1]

ω∗(u) < 1 < max
u∈[a,a+1]

ω∗(u) if a > 1. (3.12)

The trivial periodic nature of the set Q(z) implies that similarly to the above
we have ω∗(λ) times the average number of z -quasiprimes in intervals of type

(xν , xν + zλ] if xν ∈ Z, P (z) | xν . (3.13)

This shows that we can expect ω∗(λ) times the expected number of primes
in intervals of type (3.13), if

zλ =
(

log xν
f(xν)

)λ
, for any f(x)→∞ as x→∞. (3.14)

To make the last heuristic precise we have only to average over intervals of
type (3.13) with

xν := (M + ν)P (z), ν = 1, 2, . . .M (3.15)

with an integer M with property logM/ logP (z)→∞ , e.g.

M = P (z)[log z] for z = n→∞. (3.16)

The (sketch of) proof can be finished with the observation that due to the
scarcity of Siegel zeros (cf. Landau–Page theorem, Davenport [5, Chapter 14,
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pp. 93–95]) we can choose a subsequence zj = nj → ∞ such that there are
no Siegel zeros mod qj , where qj = P (zj), that is,

L(s, χ) 6= 0 for s ∈ [1− c/ log qj , 1] (3.17)

for all characters mod qj with some positive absolute constant c . The asymptotic
(3.8) follows then by well-known density theorems for any modulus q satisfying
(3.17) (cf. [12, Lemma 2]). We have namely in this case

∑
x<p62x

p≡a (mod q)

log p =
x

ϕ(q)

(
1 +O

(
e− log x/ log q + e−

√
log x)). (3.18)

The ingenious idea of Maier was later used and further developed in a se-
ries of works by Granville, Friedlander (partly in collaboration with Hildebrand
and Maier) to yield a number of unexpected irregularities in the distribution of
primes in arithmetic progressions, in the sense that they all contradict the predic-
ting of Cramér’s model. These results also showed limitations to the extension of
Bombieri–Vinogradov’s theorem if the modulus q approaches x (that is, limita-
tions to Elliott–Halberstam type conjectures). To formulate the simplest of their
results: the relation

π(x, q, a) ∼ π(x)
ϕ(q)

(3.19)

is false for some values of aν , qν and xν satisfying (aν , qν) = 1,

qν >
xν

(log xν)B
(xν →∞), (3.20)

for any fixed B . On the contrary, CM predicts (3.19) to be uniformly true for any
fixed B > 2.

These results and many interesting aspects of Cramér’s model are described
in more details in the excellent survey papers [7, 8] of Granville.

4. A global deficiency in CM

Few years after Maier’s discovery [12], the present author also observed (but did
not publish) another type of deficiency in CM. We might list different features of
the two type of deficiencies as follows:

(i) the contradiction to CM is quantitatively much less significant than in
Maier’s case;
on the other hand,

(ii) the contradiction is completely global as it refers to the distribution of
primes in intervals [0, x] , whereas in Maier’s case the contradiction refers to the
distribution of primes in short intervals, so it is of a semi-global nature;
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(iii) the contradiction is true for all values of x , whereas Maier’s result refers
only for some very special short intervals of a given length;

(iv) the proof of the contradiction is quite simple, it does not require any
deep results about the distribution of primes, as density theorems in Maier’s proof;

(v) contrary to Maier’s case, it seems to be impossible to correct CM in order
to avoid the deficiency.

Some of the mentioned features of the contradiction discovered by Maier are
obvious. As of (iii) we remark that the intervals of type (3.13) really represent a
very thin subset of all intervals of length (log x)N , even if we would assume the
absence of Siegel-zeros or the Generalized Riemann Hypothesis, for example. In
the original proof of Maier even zj = nj has to run over a scarce sequence.

Concerning the possibility of the correction of Cramér’s model we expla-
ined in Section 3 that the irregularities of the distribution of primes in short
intervals were ‘caused’ in Maier’s case by the irregularities of the distribution of
z -quasiprimes in short intervals, while the density of primes reflected the density
of z -quasiprimes in the relevant short intervals (cf. 3.7–3.9). This shows the fol-
lowing possibility of correcting CM for n ∈ (x/2, x] , as described by Granville [7,
8]. Let us choose the ‘possible primes’ only among the z -quasiprimes and let us
take composite all numbers having a prime divisor 6 z . Putting it into an exact
form let us choose for all n ∈ (x/2, x] the independent random variables ζn as

ζn = 0 if n /∈ Q(z); (4.1)

and for n ∈ Q(z) let

P(ζn = 1) =
x

Φ(x, z) log n
, P(ζn = 0) = 1− x

Φ(x, z) log n
, (4.2)

where the parameter z = z(x) could be chosen in different ways, but it should
satisfy for x→∞ with any constant A > 0

z

(log x)A
→∞, z 6 xc (c < 1/2). (4.3)

It is clear that in this way we can exclude also the ‘obvious’ deficiencies
discussed in Section 2. We mention that if we allow z to reach or exceed

√
x , then

the z -quasiprimes below x will be exactly the primes above z , so it is no surprise
that then all the contradictions would disappear, since in this case every prime
in (z, x] is chosen as a probabilistic prime with probability 1, and all composite
numbers in (0, x] with probability 0. On the other hand, for z = 1 this is exactly
the original model of Cramér.

In the following we show the mentioned global contradiction to CM. For
technical reasons we weight primes and ‘probabilistic primes’ by log n , so we will
work with the independent random variables

ξ′n = ξn logn (n > 3), (4.4)
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where ξn is defined in (1.2). In this way we have E(ξ′n) = 1. Therefore we might
expect that the square (∆′(x))2 of the error term in the PNT considered in the
form

∆′(x) :=
∑

2<p6x
log p−

∑

2<n6x
1, x ∈ Z (4.5)

might be approximated well with the variance of the ‘probabilistic primes’, arising
from CM,

D2
( x∑
n=3

ξ′n

)
=

x∑
n=3

D2(ξ′n) =
x∑
n=3

(
E((ξ′n)2)− (E(ξ′n))2)

=
x∑
n=3

(
1

log n
log2 n− 1

)
∼ x log x.

(4.6)

Our knowledge about the oscillation of the error term was by the theorems
of von Koch [10], Phragmén [13] and Littlewood [11] already in 1914

∆′(x) = O
(√
x log2 x

)
(on RH), (4.7)

∆′(x) = Ω(xθ−ε) if θ = sup
ζ(%)=0

Re %, (4.8)

∆′(x) = Ω
(√
x log log log x

)
. (4.9)

It is interesting to note that the results (4.7) and (4.9) are still today, after
about one hundred years, the best known ones. Concerning (4.8), the best oscilla-
tion result, supposing the existence of a ζ -zero %0 = β0 + iγ0 , the relation

lim sup
x→∞

|∆′(x)|
(xβ0/|%0|) > π

2
(4.10)

is due to S. G. Révész [16], improving earlier results of the author [14] and Paul
Turán [18].

Here (4.8) and (4.10) imply that the correctness of CM is inconsistent with
θ > 1/2, the falsity of RH. On the other hand, the expected oscillation

√
x log x

of (4.6) is still consistent with both (4.7) and (4.9), if RH is supposed to be true.
However, there is a result from 1920, preceding Cramér’s model by 15 years,

stating that on the RH one has with ∆(x) =
∑
n6x

Λ(n)− x = ∆′(x) +O(x1/4+ε)

1
Y

Y∫

2

∆2(x)dx� Y =⇒ 1
Y

Y∫

2

(
∆′(x)

)2
dx� Y, (4.11)

contradicting CM, since (4.11) shows that |∆′(x)| is in average of size O(
√
x)

compared to the expectation
√
x log x arising from CM, as shown in (4.6). So we

see that the error term of the PNT which already reflects properties of all primes
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6 x , is not predicted correctly by CM. Further this prediction is not only for some
scarce sequence of values of x wrong, but in average for all x 6 X for any large
X . It might be worth to mention that if a conjecture of Montgomery,

∆(x) = O
(√
x(log log log x)2) (4.12)

is correct, then the prediction of CM would be false even for all sufficiently large
single values of x . These remarks show that this contradiction is really of comple-
tely global nature.

What makes the story more interesting is that the person who proved the
crucial relation (4.11) in 1920, is Harald Cramér himself [2]!

Remark. The usual weight log n , resp. log p used in this context is not essential,
since the analogue of (4.11) is also true for the error term

∆1(x) :=
∑

2<p6x
1−

∑

2<n6x

1
logn

. (4.13)

We obtain namely from (4.11) easily by partial summation

Y∫

2

∆2
1(x)dx� 1

log2 Y

Y∫

2

(
∆′(x)

)2
dx� Y 2

log2 Y
. (4.14)

5. Is a correction of CM possible?

Whereas the ‘unexpected’ irregularities of Maier turn to be consistent with the
corrected CM (abbreviated further only CCM(z)) described by Granville [7, 8],
that is, with the model (4.1)–(4.3), there seems to be no a priori reason why
CCM(z) should explain the global contradiction (4.6) vs. (4.11). On the other
hand, choosing z =

√
x , that is c = 1/2, the contradiction necessarily disappears

(whereas it is clearly present for z = 1, when CCM(1) = CM).
In fact, a repetition of the calculation (4.6) and some well-known facts about

the distribution of almost primes would lead with z = xα for any fixed α < 1/2
to the relation (with ζ ′n = ζn logn)

D2
( x∑
n=3

ζ ′n

)
∼ g(α)x log x (5.1)

where g(α) is a monotonically decreasing positive continuous function with

g(α)→ 0 as α→ 1/2, α < 1/2. (5.2)

This proves that the most obvious correction does not help.
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We will consider therefore more generally arbitrary models preserving the
idea of the original and corrected Cramér Model as

(i) to designate a set Sx of ‘possible primes’ among the integers 1, 2, . . . , x
containing all primes below x , that is

Px := {p ∈ P; p 6 x} ⊂ Sx; (5.3)

and afterwards
(ii) consider all elements outside Sx composite, while choosing independently

all elements n of Sx to be prime with a probability

x

|Sx| ·
1

log n
. (5.4)

We will call a model satisfying the above conditions a modified Cramér
model (abbreviated by MCM). We will show that an MCM also contradicts the
true distribution laws of primes unless the set Sx of ‘possible primes’ essentially
coincides with Px , the set of actual primes.

We will show that a good modified model is already impossible for any
interval (x/2, x] . We can formulate our assertion as

Theorem 1. Let x be a large even number, I = (x/2, x]∩Z . Let S∗x be arbitrary
with

P∗x := P ∩ I ⊆ S∗x ⊆ I, A =
|I|
|S∗x|

. (5.5)

Let us define independent random variables ηn for all n ∈ I as

ηn = 0 if n /∈ S∗x; (5.6)

while for n ∈ S∗x let

P(ηn = 1) =
A

log n
, P(ηn = 0) = 1− A

logn
. (5.7)

Then the truth of the relation

D2
(∑

n∈I
ηn

)
� x

log2 x
(5.8)

implies
|S∗x \ P∗x| �

x

log2 x
. (5.9)

This shows that in view of (4.14) any possibly correct probabilistic model
which is non-trivial in the sense that (5.9) is not satisfied must operate with
dependent random variables.
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6. Proof of Theorem 1

For n ∈ S∗x we have E(ηn) = A
log n and

D2
(∑

n∈I
ηn

)
=
∑

n∈I
D2(ηn) =

∑

n∈S∗x

(
E(η2

n)− (E(ηn))2)

=
∑

n∈S∗x

(
A

logn
− A2

log2 n

)

=
|I|

log2 x

(
log x+O(1)−A

(
1 +O

(
1

log x

)))
� x

log2 x

(6.1)

if and only if A = log x+O(1), that is

|S∗x| =
|I|

log x

(
1 +O

(
1

log x

))
⇔ |S∗x \ P∗x| �

x

log2 x
. (6.2)

Remark. This calculation verifies also (5.1)–(5.2) since in case of z = xα we have
ζ ′n = ηn · logn and

A =
|I|
|S∗x|

=
|I|∣∣{n ∈ I;n ∈ Q(xα)}

∣∣ ∼ f(α) log x (6.3)

with 0 < f(α) < 1, f(α)→ 1 as α→ 1/2, α < 1/2.

7. Concluding remarks

In this last section we will indicate
A) how probabilistic models can help to prove results about primes;
B) how the deep theorem of Gallagher in Maier’s proof can be substituted

by classical results available in 1918 already;
C) how the very weak implicit localization of ‘irregular’ short intervals in

Maier’s proof can be improved.
A) It is obvious that any probabilistic model yields only conjectures about

primes and no proofs. It is therefore interesting to remark that a good probabilistic
model might supply ideas for proofs of important results about primes.

For example, the discussed celebrated result of Maier could have been achie-
ved along the following lines. (The argument – Steps 1–3 – presented below is very
close to that of Granville [7, 8].)

Step 1. The obvious local deficiencies, like the existence of infinitely many
even ‘probabilistic primes’ indicate easily a change of CM to CCM(z) (see Sec-
tion 5) as described in Granville [7] and here in (4.1)–(4.3). Hence a corrected CM
could have been created right after CM.
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Step 2. Examine the distribution of probabilistic primes in short intervals of
length (log x)A using the new CCM(z) in place of CM (for example, with the aim
to check the original conjecture (1.6)).

Since in this model the possible primes are exactly the z -quasiprimes and the
probabilities of being primes are essentially (apart from the insignificant difference
in the value (log n)−1 ) equal for n,m ∈ Q(z) if n < m < 2n (so even more if
they are in the same short intervals), the CCM(z) predicts the same distribution
laws for primes and z -quasiprimes. As the irregularities in the distribution of
z -quasiprimes were proved by Buchstab [1] in 1937 one could have expected the
same irregularities as those discovered by Maier much earlier, based on Buchstab’s
result and on the corrected CM.

Step 3. Try to show that the density of primes really follow that of z -quasi-
primes, that is, that primes in short intervals are in general by a factor

B(z) =
∏
p<z

(
1− 1

p

)−1

=
P (z)

ϕ(P (z))
(7.1)

more dense among z -quasiprimes than among all integers.
This seems to be very hard (and is in fact hopeless) for any given single short

interval. On the other hand, the factor (7.1) exactly coincides with that describing
the higher concentration of primes in an arithmetic progression of type

mP (z) + a (a, P (z)) = 1. (7.2)

In this way one might be led to the idea of Maier: to average over many short
intervals, and establish the resulting irregularities in average.

B) Further, we note that the most deep analytic part, the application of a
result of Gallagher, based on log-free zero density theorems can be substituted by
a much simpler one. Namely, differently from (3.16) we may choose, for example
for any N > 2

M =
⌈

x

P (z)

⌉
= P (z)z

N−1
= ez

N (1+o(1)) ⇔ z = (1 + o(1))(log x)1/N (7.3)

in which case the classical formula (cf. (9) of Chapter 20 of Davenport [5]) yields
immediately

∑
p6x

p≡a(modP (z))

log p =
x

ϕ(P (z))

(
1− χ1(a)

xβ1−1

β1

)
+O

(
xe−c

√
log x), (7.4)

where the second term in the bracket appears only in case of the existence of an
exceptional zero β1 (called today also Siegel-zero) with

β1 > 1− c0
logP (z)

. (7.5)
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We remark that (7.4) was known already in 1918 (p. 93–95 of Davenport [5])
when Landau proved his result about scarcity of exceptional zeros which made
possible for Maier to choose a sequence z0 →∞ for which zeros with (7.5) do not
exist. If we have no zeros with (7.5) then (7.4) yields the required asymptotic for
z < c1

√
log x , which is true by (7.3). Choosing y = zλN = (1 + o(1)) logλ x we

arrive at Maier’s result (with other values of ci(λ), satisfying still (3.2)).
C) We also remark that it is possible to avoid exceptional zeros in another

way. In that way we can obtain much more (but still a thin subset of all) short
intervals with the same irregular distribution of primes, and they can be localized,
for example, between

[N, 3N ] (7.6)

for any N > N0 , in place of the localization
[
N, ec

√
N
]

(7.7)

which would follow after some considerations from Maier’s original work [12].
The needed modification is the following. If there is an exceptional real zero

of L(s, χ1, P (z)) satisfying (7.5) for a z , then consider the real primitive character
χ∗1 with conductor

P ∗(z) | P (z) (7.8)

inducing χ1 modP (z), and let p0 denote the greatest prime factor of P ∗(z).
In this case one can work instead of z -quasiprimes with a slightly modified

set of numbers: we can consider instead numbers defined by

n ∈ Q̃(z)⇔ (
n, P̃ (z)

)
= 1 where P̃ (z) =

P (z)
p0

. (7.9)

Any character χ2 mod P̃ (z) induces a character, modP (z), different from χ1 , so
we have by the Landau–Page theorem (cf. pp. 93–95 of Chapter 14, Davenport [5])
for their possible real zeros β1 and β2 the inequality

min(β1, β2) < 1− 2c0
logP (z)

(7.10)

(if c0 in (7.5) was chosen appropriately) and so

β2 < 1− 2c0
logP (z)

< 1− c0

log P̃ (z)
(7.11)

is already satisfied for all real zeros of all L(s, χ) functions with χmod P̃ (z).
It is easy to see that the whole proof runs mutatis mutandis when elements of
Q(z) (z -quasiprimes) are substituted by elements of Q̃(z). We finally remark
that although the analogue of (3.11) for Q̃(z) in place of Q(z) might be proved
analogously, the relation (3.11) itself implies the same relation for Q̃(z), since

S :=
∣∣n 6 y; n ∈ Q̃(z) \Q(z)

∣∣ 6 y

p0
= o(yW (z)) (7.12)
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unless
p0 = O(log z). (7.13)

On the other hand, if (7.13) holds, then

P ∗(z) 6
∏

p6p0

p 6 eC log z = zc. (7.14)

Hence, by Siegel’s theorem [17], any real zero of a character modP ∗(z) would
satisfy

β1 < 1− c(ε)
zcε

< 1− c0
logP (z)

if ε < 1/c, (7.15)

in contradiction with (7.5).
Another alternative is to use sieve methods to show in place of (7.12) the

stronger relation

S � y

p0
W (z) = o(yW (z)) (7.16)

unless
p0 = 0(1) =⇒ P ∗(z) = O(1). (7.17)
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