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Abstract: It is shown that a small change in the argument of Harper and Murty implies that
there are at most two real quadratic fields with class-number one and without Euclidean algo-
rithm.
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It has been proved by M.Harper ([H]) that if K is a real quadratic field of
class-number one and discriminant not exceeding 100, then there is a Euclidean
algorithm in K , i.e., K is Euclidean, and it has been established by M.Harper
and M.Ram Murty ([HRM]) that the same happens if K is a normal extension
of the rationals with class-number one and unit rank > 4. The aim of this note
is to point out that a small modification of the arguments in these papers leads
to the same assertion for real quadratic and normal cubic fields with at most two
exceptions:

Theorem. (i) If K is a real quadratic field with class-number one, then K is
Euclidean, except for at most two fields.

(ii) If K is a normal cubic extensions of the rationals with class-number one,
then K is Euclidean, except for at most one field.

Note that a result of P.J.Weinberger ([W]) implies that the existence of
exceptions in these theorems would contradict the General Riemann Hypothesis.

Proof. In [H] and [HRM] Dirichlet’s theorem has been invoked at some point,
however actually another result should be used here, which we state as a lemma.
It is a simple consequence of Hecke’s theorem on prime ideals in ideal classes.

Lemma 1. Let K be an algebraic number field of class-number one, and let ZK
be its ring of integers. If α, β ∈ ZK generate co-prime ideals, then denote by
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πα,β(x) the number of principal prime ideals I of K with N(I) 6 x , which have
a generator θ , satisfying θ ≡ α (mod β) . Then for x tending to infinity one has

πα,β(x) =
(

1
hf

+ o(1)
)

x

log x
,

where f is the ideal generated by β , and hf is the class-number mod f .

Proof. Observe that the set of all ideals θZK with θ ≡ α (mod β) forms an
ideal class in the class-group mod βZK , and apply Hecke’s theorem (see e.g. [N1],
corollary 4 to proposition 7.17).

Let B0 be the unit group of K and denote for n = 1, 2, . . . , following [H],
by Bn be the set of all primes π of the ring ZK of integers of K such that every
non-zero residue class mod π contains an element of Bn−1 . Denote by Bn(x) the
number of distinct ideals generated by elements of Bn , which have their norms
bounded by x . Lemma 2 of [H] shows that if B1(x) � x/ log2 x , then K is
Euclidean. The next lemma weakens slightly the assumption, without changing its
proof:

Lemma 2. If for a sequence 1 < x1 < x2 < . . . tending to infinity one has

B1(xn) > c
xn

log2 xn
(1)

with a positive constant c , then K is Euclidean.

Proof. The sieve argument given in [H] (pp.62–63) shows that (1) implies

B2(
√
xn) = (1 + o(1))

√
xn

log(
√
xn)

. (2)

Indeed, assume that (1) holds, and put yn =
√
xn . Let A be the set of represen-

tatives of B1(xn) = B1(y2
n),

Z = #A = #B1(xn)� xn

log2 xn
,

and let P be the set of prime ideals of norm 6 yn which do not lie in B2(yn).
If now for P ∈ P we denote by ω(P ) the number of residue classes mod P

which do not contain elements of A , then Lemma 9.1 of [H] implies
∑

P∈P

ω(P )
NP

� log2 yn.

Denote by f(P ) the number of residue classes mod P containing units.
Since ω(P ) > f(P ), we get

log2 yn �
∑

P∈P

f(P )
N(P )

>
∑
P∈P

f(P )>N(P )1/4

f(P )
N(P )

>
∑
P∈P

f(P )>N(P )1/4

1
N(P )3/4

> #{P ∈ P : f(P ) > N(P )1/4}
y

3/4
n

,
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hence
#{P ∈ P : f(P ) > N(P )1/4} 6 y3/4

n log2 yn. (3)

On the other hand the Gupta-Murty bound implies

#{P : f(P ) 6 Y } � Y 2,

hence in particular

#{P : N(P ) 6 yn, f(P ) 6 N(P )1/4} � √yn, (4)

and from (3) and (4) we get

#{P ∈ P : N(P ) 6 yn} � y3/4
n log2 yn,

showing that
#B2(yn) = (1 + o(1))

yn
log yn

. (5)

To show that (5) implies that all primes lie in B3 we repeat the argument of
[H]: were π 6∈ B3 , then a residue class mod π would have no representative from
B2 , and the application of Lemma 1 would lead for large n to

#B2(yn) 6 (1− δ) yn
log yn

,

with a certain δ > 0, contradicting (5). Our Lemma follows now from Lemma 1
of [H].

It follows from Theorem III of [N] that if K is a real Abelian field and
a1, a2, a3 ∈ K∗ are multiplicatively independent, then for some i ∈ {1, 2, 3} either
ai or −ai is a primitive root mod P for infinitely many splitting prime ideals P .
The proof given in [N] shows that if A(x) denotes the number of such P ’s with
N(P ) 6 x , then for a sequence xi tending to infinity one has

A(xi)� xi/ log2 xi. (3)

Let now Ki = Q(
√
di) (i = 1, 2, 3) be distinct real quadratic fields, and

denote by εi the fundamental unit of Ki . Moreover let K = K1K2K3 , and let
U(K) be its group of units. Observe now that the numbers ε1, ε2, ε3 are multipli-
catively independent, hence at least one of the units ±εi (i = 1, 2, 3), say η ∈ Ks

generates U(K) mod P for a set Ω of splitting prime ideals P of K , with

#{P ∈ Ω : N(P ) 6 xi} > c
xi

log2 xi

for a sequence xi tending to infinity and a certain c > 0. Put p = P ∩Ks , and
Ω∗ = {p} . Since the map

ZKs/p −→ ZK/P
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is an isomorphism, η generates the group of units of Ks modulo p , and because
of N(P ) = N(p) we get from (3) the inequality

#{p ∈ Ω∗ : N(p) 6 xi} � xi/ log2 xi.

Since the generators of ideals lying in Ω∗ belong to B1 , the application of Lemma 2
shows that Ks is Euclidean. Therefore from every triplet of real quadratic fields
with class-number one at least one is Euclidean, so the number of exceptions is at
most two.

The same argument works also in the case if there would be two normal
cubic, hence Abelian, extensions of the rationals having class-number one, but not
being Euclidean.
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