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Abstract: Upper bound estimates for the exponential sum

X

K<κj6K′<2K

αjH3
j ( 1
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„
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„
4eT

κj

««
(T ε 6 K 6 T 1/2−ε)

are considered, where αj = |ρj(1)|2(cosh πκj)
−1 , and ρj(1) is the first Fourier coefficient of

the Maass wave form corresponding to the eigenvalue λj = κ2
j + 1

4 to which the Hecke series

Hj(s) is attached. The problem is transformed to the estimation of a classical exponential sum

involving the binary additive divisor problem. The analogous exponential sums with Hj(
1
2 ) or

H2
j ( 1

2 ) replacing H3
j ( 1

2 ) are also considered. The above sum is conjectured to be ¿ε K3/2+ε ,

which is proved to be true in the mean square sense.
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1. Introduction

The main purpose of this paper is to transform and estimate exponential sums of
Hecke series at central points, namely the sums

S(K) = S(K;K ′, T ) :=
∑

K<κj6K′
αjH

3
j ( 1

2 ) cos
(
κj log

4eT
κj

)
, (1.1)

under the condition
T ε 6 K < K ′ 6 2K 6 T 1/2−ε. (1.2)

Sums of this form are important in the theory of the Riemann zeta-function ζ(s);
see e.g., (2.5) and (2.8) for more details. Here and later ε > 0 denotes arbitrarily
small constants, not necessarily the same ones at each occurrence. The quantities
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αj ,Hj( 1
2 ) and κj are connected with the spectral theory of the non-Euclidean

Laplacian. For a comprehensive account of spectral theory the reader is referred
to Y. Motohashi’s monograph [23], and here we only briefly explain some basic
notions.

Let {λj = κ2
j + 1

4}∞j=1 ∪ {0} be the eigenvalues (discrete spectrum) of the
hyperbolic Laplacian

∆ = −y2

((
∂

∂x

)2

+
(
∂

∂y

)2
)

acting over the Hilbert space composed of all Γ-automorphic functions which are
square integrable with respect to the hyperbolic measure (Γ = PSL(2, Z)). Let
{ψj}∞j=1 be a maximal orthonormal system such that ∆ψj = λjψj for each j > 1
and T (n)ψj = tj(n)ψj for each integer n ∈ N , where

(
T (n)f

)
(z) =

1√
n

∑

ad=n

d∑

b=1

f

(
az + b

d

)

is the Hecke operator. We shall further assume that ψj(−z̄) = εjψj(z) with the
parity sign εj = ±1. We then define (s = σ + it will denote a complex variable)

Hj(s) =
∞∑
n=1

tj(n)n−s (σ > 1),

which we call the Hecke series associated with the Maass wave form ψj(z), and
which can be continued analytically to an entire function over C . It is known that
Hj(1

2 ) > 0 (see Katok–Sarnak [15]), and that

∑

κj6K
αjH

3
j (1

2 ) = K2
3∑

j=0

dj logj K +O(K5/4 log37/4K) (1.3)

with suitable constants dj , proved by the author in [9]. Here as usual we insert in
the sum over κj the normalizing factor

αj = |ρj(1)|2(coshπκj)−1,

where ρj(1) is the first Fourier coefficient of ψj(z). We also have (see the author’s
paper [7]) ∑

K−G6κj6K+G

αjH
3
j (1

2 ) �ε GK1+ε (1.4)

for
Kε 6 G 6 K. (1.5)
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In view of Hj( 1
2 ) > 0 we obtain from (1.4) the convexity-breaking bound Hj( 1

2 )�ε

κ
1/3+ε
j , which is hitherto the sharpest one.

Note that by (1.3) and trivial estimation we obtain

S(K) � K2 log3K, (1.6)

and our wish is to try to decrease the exponent of K in (1.6). It was conjectured
in [8] that

∑

K−16κj6K+1

αjH
3
j (1

2 ) exp
(
iκj log

(
τ

κj

))
�ε K1/2+ε (1.7)

holds for
τ δ � K � τ1+δ (0 < δ < 1). (1.8)

This gives
S(K) �ε K3/2+ε, (1.9)

thereby improving (1.6) by essentially a factor of
√
K . The conjecture (1.7)–(1.8)

is deep, and is certainly out of reach at present. Heuristic reasons that it is best
possible are given in [8]. It was also shown there that its truth would imply essen-
tially the best possible bounds for the eighth moment of |ζ( 1

2 + it)| , and for the
error term (see (2.2)) in the fourth moment formula for |ζ( 1

2 + it)| .

2. Statement of results

If d(k) is the number of divisors of k , then we have

Theorem 1. If S(K) is defined by (1.1) and (1.2) holds, then for some constants
0 < C1 < C2, c` and L ∈ N , all of which may be effectively evaluated, we have

S(K) = <e

[ ∑

f63K

f
1
2

∑

C1TK−1f6m6C2TK−1f

m−
3
2 d(m)d(m+ f)ei

Tf
m

{
c0+

+
L∑

l=1

c`ϕ`(K,T ;m, f)
}]

+Oε(K
3
2 +ε).

(2.1)

The functions ϕ`(K,T ;m, f) may be also explicitly evaluated, and they are all
o(1) as K →∞ and (1.2) holds.

The explicit shape of the functions ϕ`(K,T ;m, f) will transpire during the
proof, and a discussion on their precise shape is given at the end of Section 5.
Essentially they are (positive or negative) powers in each variable. Thus they are
non-oscillating and, as stated, all o(1) as K →∞ and (1.2) holds. The important
fact is that they do not affect the oscillating factor ei

Tf
m in (2.1), and in fact
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can be removed conveniently by partial summation techniques. For these reasons
it seemed more expedient to formulate Theorem 1 in the form given by (2.1),
than to write down explicitly all the functions ϕ`(K,T ;m, f). The number L is
a (large) constant, arising in (3.5) (and later in a similar context). It comes from
cutting the tails of a suitable series in such a way that the tails in question make
a negligible contribution. By “negligible contribution” we shall mean, here and
later, a contribution which is � K−A0 (or � T−A ) for any fixed A > 0.

To abbreviate notation, sometimes in the proof we shall write expressions
similar to (2.1) as A � B + Oε(K

3
2 +ε). Namely A � B will mean, here and

later, that A is a multiple of B , plus a finite number of sums (terms), each of
which gives a bound not larger than the bound for B , with some non-oscillating
functions ϕ`(K,T ;m, f), as in (2.1).

The importance of the sum S(K) comes primarily from its connection with
the function E2(T ), the error term in the asymptotic formula for the fourth mo-
ment of |ζ( 1

2 + it)| . This formula is customarily written as

∫ T

0
|ζ( 1

2 + it)|4 dt = TP4(log T ) + E2(T ), P4(x) =
4∑

j=0

ajx
j . (2.2)

It was proved by A.E. Ingham that a4 = 1/(2π2) (see e.g., [2, Chapter 5]), and
much later by D.R. Heath-Brown [1] that

a3 = 2(4γ − 1− log(2π)− 12ζ ′(2)π−2)π−2,

who also produced more complicated expressions for a0, a1 and a2 in (2.3) (γ =
0.577 . . . is Euler’s constant). For an explicit evaluation of the aj ’s the reader is
referred to [4].

In recent years, due to the application of powerful methods of spectral theory,
much advance has been made in connection with E2(T ). We refer the reader to
the works [3], [5], [6], [11]–[13], [20] and [21]–[24]. Thus N.I. Zavorotnyi [24] proved
that E2(T ) = Oε(T 2/3+ε), and it is known now that

E2(T ) = O(T 2/3 logC1 T ), E2(T ) = Ω(T 1/2), (2.3)

and ∫ T

0
E2(t) dt = O(T 3/2),

∫ T

0
E2

2(t) dt = O(T 2 logC2 T ), (2.4)

with effective constants C1, C2 > 0 (the values C1 = 8, C2 = 22 are worked out
in [23]). The above results were proved by Y. Motohashi and the author (see [3],
[11], [12] and [21]). The omega-result in (2.3) (f = Ω(g) means that f = o(g)
does not hold, f = Ω±(g) means that lim sup f/g > 0 and that lim inf f/g < 0)
was improved to E2(T ) = Ω±(T 1/2) by Y. Motohashi [22]. There is an obvious
discrepancy between the O–result and Ω–result in (2.3). It was already mentioned
that the conjecture E2(T ) = Oε(T 1/2+ε) holds if the conjecture (1.7)–(1.8) is true.
It would imply (by (2.9)) the hitherto unproved bound ζ( 1

2 + it)�ε t
1/8+ε .
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Y. Motohashi proved (see [3, Chapter 6] and [23])

1√
πG

∫ ∞
−∞
|ζ( 1

2 + iT + it)|4 exp(−(t/G)2) dt (2.5)

=
π√
2T

∞∑

j=1

αjH
3
j ( 1

2 )κ
− 1

2
j sin

(
κj log

κj
4eT

)
exp
(
− 1

4

(Gκj
T

)2)
+O(log3D+9 T ),

if T 1/2 log−D T 6 G 6 T/ log T for an arbitrary, fixed constant D > 0, and

1√
πG

∫ V

0

∫ ∞
−∞
|ζ(1

2 + iT + it)|4 exp(−(t/G)2) dt dT (2.6)

= V P4(log V ) + π
√

1
2V

∞∑

j=1

αjH
3
j ( 1

2 )κ
− 3

2
j cos

(
κj log

κj
4eV

)
exp
(
− 1

4

(Gκj
V

)2)

+O(V 1/2 logC V ) +O(G log5 V ),

for V 1/2 log−A V 6 G 6 V exp(−√log V ), C = C(A) (> 0) for any arbitrary,
fixed constant A > 0, where P4 is given by (2.2). Then we have, as proved in
[3, Lemma 5.1],

E2(2T )− E2(T ) 6 S(2T + ∆ log T,∆)− S(T −∆ log T,∆)

+O(∆ log5 T ) +O(T 1/2 logC T )
(2.7)

with T 1/2 6 ∆ 6 T 1−ε and

S(T,∆) := π
√

1
2T

∞∑

j=1

αjH
3
j (1

2 )κ
− 3

2
j cos

(
κj log

κj
4eT

)
exp
(
− 1

4

(∆κj
T

)2)
. (2.8)

A lower bound analogous to (2.7) holds also for E2(2T )−E2(T ), and the estimation
of ζ( 1

2 + it) is derived from [3, Lemma 4.1], namely

ζ( 1
2 + iT )� log5/4 T +

(
log T max

t∈[T−1,T+1]
|E2(t)|

)1/4

. (2.9)

The upper bound in (2.3) follows from (2.7)–(2.8) and trivial estimation, namely

(1.6), since the innocuous factors κ
− 3

2
j and exp

(
− 1

4

(∆κj
T

)2)
can be conveniently

removed by partial summation from (2.8). Thus the problem of the estimation of
E2(T ) (and hence also ζ(1

2 + it)) is reduced to the estimation of our sum S(K).
The Lindelöf exponent µ(1

2 ) is therefore seen not to exceed one fourth of the
exponent in the bound for E2(T ) where, as usual, we define the Lindelöf exponent
as

µ(σ) = lim sup
t→∞

log |ζ(σ + it)|
log t

(σ ∈ R). (2.10)
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The famous, yet unsettled, Lindelöf hypothesis is that µ( 1
2 ) = 0, or equivalently

that µ(σ) = 0 for σ > 1
2 .

The prominent feature of (2.1) is that the right-hand side contains no qu-
antities from spectral theory, but only classical exponential sums with the divisor
function d(n) =

∑
δ|n 1. In fact, the sum in question can be considered as an

exponential sum attached to the so-called binary additive divisor problem (the
evaluation and estimation of

∑
m6x d(m)d(m+ f), where f is not fixed). Avera-

ges for E(x; f), the error term in the asymptotic formula for this sum, have been
obtained by Y. Motohashi and the author [13]. The techniques developed in this
work could be applied here, since the problem reduces to the evaluation of the sum
(X ≈ Y means that C1X 6 Y 6 C2X holds for some constants 0 < C1 < C2 )

∑

F<f62F

∫ 2N

N

ei
Tf
x E(x; f) dx

(
F � K, N ≈ TF

K

)
. (2.11)

Also the sum in (2.11) could be, at least in principle, evaluated by Motohashi’s
formula [21] for the sum

∑∞
n=1 d(n)d(n+f)W (n/f), where W is a suitable smooth

function. Unfortunately, it appears that after the application of these procedures
one will eventually wind up with a sum of the same type as S(K) in (1.1), plus
some manageable error terms. The mechanism is technically quite involved, and
for this reason it will not be discussed here in detail. However, it can be seen
heuristically from (4.4)–(4.7) of [13]. Namely the major contribution to E(x; f)
comes from

<e





1
2x

1/2
∑

κj6Q
αjtj(f)H2

j (1
2 )(f/x)iκjv(κj)



 , (2.12)

where v(x)� x−3/2 and Q is a parameter satisfying certain conditions. Inserting
(2.12) expression in (2.11) we obtain exponential integrals with the saddle point
at x0 ≈ TF/κj , hence κj ≈ K is the relevant range for κj . After the evaluation
of the integral by the saddle point method (see e.g., [2, Chapter 2]) we replace
sums of tj(f)f−1/2 with Hj( 1

2 ) plus (small) error, to arrive at sums of the type
S(K) in (1.1), i.e., our original sum.

This type of impasse is well known from the estimation of classical exponen-
tial sums (of the van der Corput type), where the so-called B -process (essentially
Poisson summation), when applied twice, leads to the original exponential sum
plus some (usually manageable) error terms. It vitiates our efforts to attain a
satisfactory estimate via the application of binary additive problem techniques.
Naturally, one may try other methods to obtain from (2.1) a non-trivial bound,
even if conditional estimates such as the Lindelöf hypothesis are assumed. Ho-
wever, at present this seems difficult. One can separate the variables in (2.1) by
setting n = m+ f and letting f lie in intervals of the form [F, 2F ] with F � K .
Then the sum is majorized by O(log T ) subsums of the form∣∣∣∣∣∣

∑

C1TK−1F6m6C2TK−1F

d(m)m−3/2
∑

m+F<n6m+2F

(n−m)1/2d(n)eiTn/m

∣∣∣∣∣∣
.
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The factor (n−m)1/2 can be conveniently removed by partial summation. After
that, one can apply the Voronöı summation formula (see e.g., [2, Chapter 3]) to
the sum over n . The main difficulty is that the sum over n is “short”, in the sense
that F is much smaller than m , and even after the application of the Voronöı
summation formula to both sums, nothing better than the final trivial estimate
�ε T

1/2+εK3/2 seems to come out. This is no surprise, since even the trivial
bound ∑

x<n6x+h

d(n)�ε hx
ε (1� h� x)

cannot be obtained yet by the Voronöı summation formula. Other methods, such
as the use of J.R. Wilton’s approximate functional equation and related trans-
formations (see M. Jutila [14]) can be also applied to the sum over n , but the
problem remains a very difficult one.

Instead of the sum S(K) in (1.1) we may consider the analogous sums when
H3
j (1

2 ) is replaced by Hj( 1
2 ) or H2

j ( 1
2 ). The problem becomes then considerably

less difficult. On the other hand the exponential sums in question do not seem to
have immediate applications such as S(K) does. As we saw, S(K) is crucial in
the estimation of E2(T ) and ζ( 1

2 + it), which is our primary motivation. We shall
prove

Theorem 2. If (1.2) holds, then

∑

K<κj6K′<2K

αjH
2
j ( 1

2 ) cos
(
κj log

(
4eT
κj

))
�ε T 1/2+εK1/2,

∑

K<κj6K′<2K

αjHj( 1
2 ) cos

(
κj log

(
4eT
κj

))
�ε T 1/2+εK1/4.

(2.13)

Therefore we see that the first bound improves the trivial bound (see Y.
Motohashi [23]) O(K2 logK) in the range T 1/3+ε 6 K 6 T 1/2−ε . The trivial
bound for the second sum in (2.13) is O(K2) (see Ivić–Jutila [10]), and it is
improved for K satisfying T 2/7+ε 6 K 6 T 1/2−ε . Clearly the method of proof
of Theorem 1 and Theorem 2 can be used to estimate certain other exponential
sums of a similar nature.

Similarly to the conjecture (1.9), one may conjecture that the sums on the
right-hand side of (2.13) are both �ε K

3/2+ε . This conjecture, like (1.9), is sup-
ported by the following mean square result. This is

Theorem 3. Let, for m ∈ N and 1� K < K ′ 6 2K � T, T 6 t 6 2T ,

Sm(K;K ′, t) :=
∑

K<κj6K′<2K

αjH
m
j ( 1

2 ) cos
(
κj log

(
4et
κj

))
. (2.14)

Then, for m = 1, 2, 3 ,
∫ 2T

T

(
Sm(K;K ′, t)

)2
dt �ε T

1+εK3. (2.15)
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Corollary. We have
∫ T

0
E2

2(t) dt �ε T
2+ε. (2.16)

Note that (2.16) is a slightly weakened form of the second bound in (2.4),
obtained by Ivić–Motohashi [11], and it is essentially best possible (see the author’s
paper [6]). The proof in [11] was based on a large values estimate for E2(T ), whose
derivation employed the spectral large sieve inequality. The new proof of (2.16) is
simpler, being a direct consequence of (2.15) with m = 3.

The plan of the paper is as follows. In Section 3 we make the technical
preparation for the proof. Instead of the “long” sum (1.1), we shall use the trans-
formation formulas involving Hj( 1

2 ) for suitable (smooth) “short” sums. Then we
integrate over the parameter to recover eventually the desired “long” sum. The
necessary tool, which transforms our problem into a problem of the estimation of
the double exponential sum (cf. (2.1)) with two divisor functions, is Motohashi’s
formula. It it presented in Section 4. The principal part of the proof of Theorem 1
is contained in Section 5, and the remaining part will be given in Section 6. Finally
Theorem 2 is proved in Section 7, while Theorem 3 is proved in Section 8.

3. Technical preparation for the proof

The basic idea of the proof of Theorem 1 is, as with the proof of (1.4)-(1.5) in
[7], to use the transformation formula of Y. Motohashi (see [19] and [23, Chapter
Chapter 3]) for bilinear forms of Hecke L-functions. Unfortunately, the shape
(1.1) of the fundamental sum S(K) is not suited for the direct application of the
transformation formula. Before we can apply it, we have to transform S(K) into
a suitable form. Although this is primarily a technical problem, it is not obvious
how one should tackle it, and therefore the details will be given in this section.

We begin by considering, under the condition (1.2), the expression

1√
πG

∫ K′0

K0

∞∑

j=1

αjH
3
j ( 1

2 ) exp
(
iκj log

4eT
κj
− (κj −K)2G−2

)
dK

=
1√
πG

∫ K′0

K0

∑
(K;G) dK,

(3.1)

say, where G = G(K0) is a parameter satisfying

Kε
0 6 G 6 K

1/2−ε
0 , K0 6 K 6 K ′0 6 2K0. (3.2)

Exchanging the order of summation and integration in (3.1) we have, in view of
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(1.1), that

1√
πG
<e

{∫ K′0

K0

∑
(K;G) dK

}

=
1√
πG
<e

{ ∑

K0−G logK06κj6K′0+G logK0

αjH
3
j ( 1

2 ) exp
(
iκj log

4eT
κj

)
×

×
∫ κj+G logK0

κj−G logK0

e−(κj−K)2G−2
dK

}
+Oε(Kε

0)

= <e

{ ∑

K0−G logK06κj6K′0+G logK0

αjH
3
j ( 1

2 ) exp
(
iκj log

4eT
κj

)
×

× 1√
π

∫ logK0

− logK0

e−u
2

du

}
+Oε(Kε

0)

= S(K0;K ′0, T ) +Oε(K1+ε
0 G),

(3.3)

where we used (1.4) to estimate the contribution from κj lying in the intervals
[K0 −G logK0, K0] and [K ′0, K

′
0 +G logK0] . On the other hand we have

1√
πG

K′0∫

K0

∑
(K;G) dK = Oε(Kε

0) + (3.4)

+
1√
πG

K′0∫

K0

∑

|κj−K|6G logK0

αjH
3
j ( 1

2 ) exp
(
iκj log

4eT
κj
− (κj −K)2G−2

)
dK.

Note that, for |κj −K| 6 G logK0 and K0 6 K 6 2K0 , we have

κj log
4eT
κj
−K − κj log

4T
K

= κj −K + κj log
K

κj

= κj −K + κj log
(

1 +
K − κj
κj

)

=
L∑

`=2

(−1)`−1

`
κj

(
K − κj
κj

)`
+O

(
GL+1 logL+1K0

KL
0

)
(3.5)

for any fixed integer L > 2. But as, for ` ∈ N , |κj −K| 6 G logK0 ,

κ−`j = K−`
(

1 +
κj −K
K

)−`
= K−`



1 +

∞∑

j=1

(−`
j

)(
κj −K
K

)`
 ,
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we obtain

exp
(
iκj log

4eT
κj

)
= exp

{
iK + iκj log

4T
K

+ i

L∑

`=2

(−1)`−1

`
κj

(K − κj
κj

)`
+O

(
GL+1 logL+1K0

KL
0

)}

= eiK exp
(
iκj log

4T
K

)
·
{

1 +
L∑

`=2

a`K
1−`(K − κj)`

+O

(
GL+1 logL+1K0

KL
0

)}

(3.6)

with suitable constants a` . In view of (3.2) we can choose L (> 2) so large that
the error term in (3.6), when inserted in (3.4), will make a contribution which is
negligible (i.e., � K−A0 for any given A > 0).

The remaining terms in (3.6) have the property that the summands in the
sum over ` are of decreasing order of magnitude, since for |K − κj | 6 G logK0

and K0 6 K 6 2K0 , we have

|K − κj |K−1 � GK−1
0 logK0 �ε K

−ε−1/2
0 logK0.

Therefore we can write

1√
πG

K′0∫

K0

∑

|κj−K|6G logK0

αjH
3
j ( 1

2 )eiK exp
(
iκj log

4T
K

)
e−(κj−K)2G−2

dK

=
1√
πG

K′0∫

K0

R0(K;T,G)eiK · dK

+
L∑

`=2

a`
1√
πG

K′0∫

K0

R`(K;T,G)eiK · dK +Oε(Kε
0),

(3.7)

say, where for ` = 0, 1, 2, . . . we have set

R`(K;T,G) :=
∞∑

j=1

αjH
3
j (1

2 )h`(κj ;T,K,G), (3.8)

and the function h` is defined as follows. For a fixed N ∈ N we set

qN (r) :=

(
r2 + 1

4

) (
r2 + 9

4

) · · ·
(
r2 + (2N−1)2

4

)

(r2 + 100N2)N
, (3.9)
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and then define

h`(r;T,K,G) := qN (r) (L`(r;T,K,G) + L`(−r;T,K,G)) ,

L`(r;T,K,G) := K1−`(K − r)`
(

4T
K

)ir
e−(r−K)2G−2

,
(3.10)

so that h` is an even function of r . From (3.3) and (3.5)–(3.10) it follows that

S(K0;K ′0, T ) = <e





1√
πG

K′0∫

K0

R0(K;T,G)eiK · dK





+ <e





L∑

`=2

a`
1√
πG

K′0∫

K0

R`(K;T,G)eiK · dK





+Oε(K1+ε
0 G),

(3.11)

and clearly the main contribution to our sum (cf. (1.1)) S(K0;K ′0, T ) comes from
the integral with R0 .

The function h`(r;T,K,G), defined by (3.10), is a modified Gaussian weight
function in r , which is regular in the horizontal strip |=m r| 6 N + 1. Moreover
it is even, satisfies h`(± 1

2 ij;T,K,G) = 0 for j = 1, 3, . . . , 1
2 (N − 1) and every `

and the decay condition

h`(r;T,K,G) �`,T,K,G exp(−c|r|2) (c > 0) (3.12)

in the above strip. Thus it satisfies all the conditions necessary for the application
of Motohashi’s transformation formula, which will be discussed in the next section.
This ends the technical preparation for the proofs.

4. Motohashi’s transformation formula

The basic idea of the transformation formula is to transform the expression, for
a suitable weight function h0(r),

C(K,G) :=
∞∑

j=1

αjH
3
j ( 1

2 )h0(κj) (4.1)

into a sum of terms which do not contain quantities from the spectral theory of the
non-Euclidean Laplacian. In this way the problem of the evaluation or estimation
of C(K,G) is transformed into a problem of classical Analytic Number Theory.
The function C(K,G) will be actually R`(K;T,G) from (3.8). For the function
h0(r), which is regular in a (large) fixed horizontal strip, it is sufficient to assume
that it is even and decays in the strip like

h0(r) � e−c|r|
2

(c > 0). (4.2)
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We set λ = C logK (C > 0) and note that one has (this is Y. Motohashi [23, eq.
(3.4.18)], with the extraneous factor (1− (κj/K)2)ν omitted)

C(K,G) =
∑

f63K

f−
1
2 exp

(
−( f

K

)λ)
H(f ;h0)

−
N1∑
ν=0

∑

f63K

f−
1
2Uν(fK)H(f ;hν) +O(1),

(4.3)

with

hν(r) =h0(r)
(

1−
( r
K

)2
)ν

,

H(f ;h) =
7∑

ν=1

Hν(f ;h),
(4.4)

H1(f ;h) = − 2π−3i
{

(γ − log(2π
√
f))(ĥ)′(1

2 ) + 1
4 (ĥ)′′( 1

2 )
}
d(f)f−

1
2 ,

H2(f ;h) =π−3
∞∑
m=1

m−
1
2 d(m)d(m+ f)Ψ+

(m
f

;h
)
,

H3(f ;h) =π−3
∞∑
m=1

(m+ f)−
1
2 d(m)d(m+ f)Ψ−

(
1 +

m

f
;h
)
, (4.5)

H4(f ;h) =π−3
f−1∑
m=1

m−
1
2 d(m)d(f −m)Ψ−

(m
f

;h
)
,

H5(f ;h) = − (2π3)−1f−
1
2 d(f)Ψ−(1;h),

H6(f ;h) = − 12π−2iσ−1(f)f
1
2h′(− 1

2 i),

H7(f ;h) = − π−1
∫ ∞
−∞

|ζ( 1
2 + ir)|4

|ζ(1 + 2ir)|2σ2ir(f)f−irh(r) dr (σa(f) =
∑

d|f
da),

where

ĥ(s) =
∫ ∞
−∞

rh(r)
Γ(s+ ir)

Γ(1− s+ ir)
dr, (4.6)

Ψ+(x;h) =
∫

(β)
Γ2( 1

2 − s) tan(πs)ĥ(s)xs ds, (4.7)

∫
(β) denotes integration over the line <e s = β ,

Ψ−(x;h) =
∫

(β)
Γ2( 1

2 − s)
ĥ(s)

cos(πs)
xs ds (4.8)

with − 3
2 < β < 1

2 , N1 is a sufficiently large integer,
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Uν(x) =
1

2πiλ

∫

(−λ−1)
(4π2K−2x)wuν(w)Γ(

w

λ
) dw �

( x

K2

)− C
logK

log2K,

where uν(w) is a polynomial in w of degree 6 2N1 , whose coefficients are boun-
ded. As already mentioned, the prominent feature of Motohashi’s explicit expres-
sion for C(K,G) is that it contains series and integrals with the classical divisor
function d(n) only, with no quantities from spectral theory.

5. Proof of Theorem 1

We need, in view of (3.11), to transform and estimate the functions R`(K;T,G)
in (3.8). To this end we shall employ (4.1), where h0(r) equals

h`(r;T,K,G)
(

1−
( r
K

)2
)ν

(ν = 0, 1, 2, . . . ; ` = 0, 1, 2, . . . ). (5.1)

All the functions of the form (5.1) are treated analogously. Therefore it is sufficient
to consider in detail only the case ν = ` = 0, when for simplicity the function
in (5.1) will be again denoted by h(r). It is clearly this case which will furnish
eventually the largest contribution to (2.1).

In the sequel we shall repeatedly use the classical formula
∫ ∞
−∞

eAu−Bu
2

du=

√
π

B
exp

(
A2

4B

)
(<eB > 0). (5.2)

By taking B = 1 and then differentiating (5.2) as the function of A , we also
obtain

∫ ∞
−∞

ujeAu−u
2

du=Pj(A)e
1
4A

2
(j = 0, 1, 2, . . . , P0(A) =

√
π ), (5.3)

where Pj(z) is a polynomial in z of degree j , which may be explicitly evalu-
ated. The basic idea is that the factor (4T/K)±ir (cf. (3.10)) is the dominating
oscillating factor which in most cases, after the use of (5.2) or (5.3), will produce
exponential functions of fast decay which will make a negligible contribution. We
recall that a “negligible contribution” is one which is � K−A0 (or � T−A ) for
any fixed A > 0.

This is precisely what happens with the contribution of H1(f ;h), which we
shall first show to be negligible. Namely from (4.6) we find that

(ĥ)′( 1
2 ) = 2

∫ ∞
−∞

rh(r)
Γ′

Γ
(1

2 + ir) dr. (5.4)

But (see e.g., [18])
Γ′

Γ
(s) = log s− 1

2s
+O

(
1
|s|
)
, (5.5)
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where the O -term admits an asymptotic expansion. The non-negligible contribu-
tion in (5.4) is for the range |r ± K| 6 G logK . We make the change of varia-
ble r ± K = Gu and use Taylor’s formula to simplify the integrand. After this
we may use (5.2) and (5.3), which will produce exponential factors of the form
exp(− 1

4G
2(log 4T

K )2), which will make a negligible contribution. The O -term in
(5.5), by trivial estimation, will make a total contribution of Oε(K3/2+ε). The
contribution of (ĥ)′′( 1

2 ) is estimated analogously, and we see that the total con-

tribution of H1(f ;h) is Oε(K
3/2+ε
0 ).

Next we note that

H6(f ;h) = − 12π−2iσ−1(f)f
1
2h′(− 1

2 i)� σ−1(f)f
1
2 exp(− 1

2K
2G−2),

hence summation over f in (4.3) yields a contribution which is negligible.
The total contribution of

H5(f ;h) = − (2π3)−1f−
1
2 d(f)Ψ−(1;h) (5.6)

is also negligible. This follows from [23, eq. (3.3.44)], in view of the presence of
sinhπr/(coshπr)2 , which decays like exp(−π|r|).

The total contribution of

H3(f ;h) =π−3
∞∑
m=1

(m+ f)−
1
2 d(m)d(m+ f)Ψ−

(
1 +

m

f
;h
)

(5.7)

is also negligible, but this is somewhat more involved than the contribution of
H5(f ;h). We need the representation (this is [23, eq. (3.3.43)])

Ψ−(x;h) = 2πi
∫ 1

0
(y(1− y)(1− y/x))−1/2

∫ ∞
−∞

rh(r)
cosh(πr)

{
y(1− y)
x− y

}ir
dr dy,

(5.8)
which is valid for x > 1. Motohashi derived (5.8) for a somewhat different weight
function h(r), essentially without the factor (4T/K)±ir , but it is clear by following
his proof that (5.8) will hold for the present function h(r) as well. The same remark
holds for other forms of the functions Ψ±(x;h) which will be needed in the sequel.
To deal with the series over m in (5.7) we need to have a good bound in m . This
is achieved, as in [23], by shifting the line of integration (in the integral over r )
in (5.8) to =m r = −1. In this process use is made of the fact that h(− 1

2 i) = 0,
since this zero at − 1

2 i cancels with the zero of coshπr . We then note that, in the
relevant range for r , 1/ cosh(πr)� exp(− 1

2πK). Thus, for x = 1 +m/f > 3, we
obtain by trivial estimation

Ψ−
(

1 +
m

f
;h
)
� fm−1TG exp(− 1

2πK) (m > 2f).
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This is more than sufficient to render the total contribution of m > 2f negligible,
and the same follows for the contribution of the remaining m ’s if we use the trivial
estimate (coming directly from (5.8))

Ψ−
(

1 +
m

f
;h
)
� KG exp(− 1

2πK) (m 6 2f).

To deal with

H7(f ;h) = − π−1
∫ ∞
−∞

|ζ( 1
2 + ir)|4

|ζ(1 + 2ir)|2σ2ir(f)f−irh(r) dr,

note that we have 1/ζ(1 + ir)� log(|r|+ 1) and

∞∑
n=1

σ2ir(n)n−ir−s = ζ(s− ir)ζ(s+ ir) (r ∈ R, <e s > 1).

Consequently by the Perron inversion formula (see e.g., [2, eq. (A.10)])

∑

f63K

σ2ir(f)f−
1
2−ir �ε K2µ( 1

2 )+ε �ε K
1
3 +ε (K � |r| � K), (5.9)

where µ(σ) is given by (2.10), and we used the classical bound µ( 1
2 ) 6 1/6. Since

the relevant range of r in H7(f ;h) is |r±K| 6 G logK0 , it follows by using (5.9)
that

G−1
∫ K′0

K0

∑

f63K

f−1/2H7(f ;h) dK

�ε 1 +K
1/3+ε
0 G−1

∫ K′0

K0

∫ K+G logK0

K−G logK0

|ζ(1
2 + ir)|4 dr dK

�ε K
1/3+ε
0 G−1

∫ K′0+G logK0

K0−G logK0

|ζ( 1
2 + ir)|4

∫ r+G logK0

r−G logK0

dK · dr

�ε K
4/3+ε
0 ,

hence this is the total contribution of H7(f ;h) to the right-hand side of (3.7).
It remains yet to deal with

H2(f ;h) =π−3
∞∑
m=1

m−
1
2 d(m)d(m+ f)Ψ+

(
m

f
;h
)

(5.10)

and H4(f ;h), which will be done in Section 6. The contribution of H2(f ;h) is
the principal one. It is estimated according to the range of m in (5.10).
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We shall show first that the contribution of m > fTKε−1 in (5.10) is negli-
gible. We use the representation (this is [23, eq. (3.3.41)])

Ψ+(x;h) = (5.11)

2π
∫ 1

0
{y(1− y)(1 + y/x)}−1/2

∫ ∞
−∞

rh(r) tanh(πr)
{
y(1− y)
x+ y

}ir
dr dy

with x = m/f > Kε , and shift the line of integration in the inner integral to
=m r = −N . This is permissible, since by (3.9) and (3.10) the function h(r) is
regular for |=m r| 6 N + 1. Then the inner integral in (5.11) becomes

∫ ∞
−∞

(r −Ni)h(r −Ni) tanh(πr)
{
y(1− y)
x+ y

}ir {
y(1− y)
x+ y

}N
dr

� KG(y(1− y))N
(
Tf

mK

)N
.

Since N (= N(ε)) can be taken arbitrarily large, it follows that the total contri-
bution of m/f > TKε−1 in (5.10) is negligible.

We shall show that the contribution of m/f 6 TK−ε−1 is also negligible.
We make the change of variable r = ±K + Gu in the r -integral in (5.11), and
note that

tanh(πr) = sgn(r) + O(e−2π|r|) (r ∈ R). (5.12)

After the application of (5.2) there will appear the exponential factors

exp
(
− 1

4G
2 log2

(
4T
K
· y(1− y)
x+ y

))

and

exp
(
− 1

4G
2 log2

(
4T
K
· x+ y

y(1− y)

))
.

Since, in view of (1.2),

4T
K
· x+ y

y(1− y)
> 4Tx

K
=

4Tm
fK

> 4T
3K2 � T ε/2,

the contribution of the latter is negligible. The contribution of the former is also
negligible if

4T
K
· y(1− y)
x+ y

6 1−G−1 log T or
4T
K
· y(1− y)
x+ y

> 1 +G−1 log T.

If this condition is not satisfied, then

y ∈ [y1, y2], y1 ≈ Kx/T � K−ε, y1 − y2 ≈ Kx log T
TG

.
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In the y -integral in (5.11) over [y1, y2] we integrate by parts the factor yir−
1
2 a

large number of times. Each time the exponent of y will increase by unity, while
the order of the r -integral will remain unchanged. Trivial estimation shows then
that the contribution of m/f 6 TK−ε−1 is indeed negligible.

Thus the critical range in the estimation of H2(f ;h) is (since K0 6 K 6
2K0 )

fTK−1−ε
0 6 m 6 fTK−1+ε

0 . (5.13)

For the range (5.13) we shall use the representation which follows from [23, eq.
(3.3.39)] and the formula after it, with x = m/f →∞ (as K0 →∞), namely

Ψ+(x;h) = (5.14)

2π
∫ ∞
−∞

rh(r) tanh(πr)<e
{

Γ2( 1
2 + ir)

Γ(1 + 2ir)
F

(
1
2 + ir, 1

2 + ir; 1 + 2ir;− 1
x

)
x−ir

}
dr,

where F is the hypergeometric function. We could use the asymptotic formula,
valid for y > y0 > 1 and r →∞ ,

F

(
1
2 + ir, 1

2 + ir; 1 + 2ir;− 1
y2

)
= O(y−4r−2)

+ (2y)2ir(y +
√

1 + y2)−2ir
(

y2

1 + y2

)1/4
(

1− 1
8ir
· 2y2 + 1

2y
√

1 + y2

)
,

(5.15)

which yields directly the main term. This formula is to be found in the work of
N.I. Zavorotnyi [24]. A sketch of proof is given by N.V. Kuznetsov [17], where the
asymptotics are given by means of a solution of a certain second-order differential
equation (see his work [16]). One can avoid the use of (5.15) by appealing to the
classical quadratic transformation formula (see [18, eq. (9.6.12)]) for the hyperge-
ometric function, as was done by the author [7] in his work on sums of αjH3

j (1
2 )

in short intervals. This is

F (α, β; 2β; z) =
(

1 +
√

1− z
2

)−2α

F

(
α, α− β + 1

2 ;β + 1
2 ;
(

1−√1− z
1 +
√

1− z

)2
)
,

and then one can develop the resulting hypergeometric function into a convergent
power series, of which the main contribution will come from the leading term,
namely 1. The main term in (2.1) (the summand with c0 ) will be in both cases the
same, of course, and the latter approach yields the remaining summands with ϕ` .

In (5.14) the relevant ranges of integration are [−K−G logK0,−K+G logK0]
and [K−G logK0,K+G logK0] . We recall that (5.12) holds, and in the first range
of integration we change r to −r . Then we obtain that the critical expression in
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question is

4
√
π

G

∫ K′0

K0

eiK
∑

f63K0

f−1/2
∑

TK−1−ε
0 f6m6TK−1+ε

0 f

m−1/2d(m)d(m+ f)×

∫ K+G logK0

K−G logK0

r

(
4T
K

)ir
e−(r−K)2G−2×

<e
{

Γ2( 1
2 + ir)

Γ(1 + 2ir)
F

(
1
2 + ir, 1

2 + ir; 1 + 2ir;− 1
x

)
x−ir

}
dr dK.

(5.16)

To (5.16) we shall apply (5.15) with y =
√
x =

√
m/f , under (5.13). The

gamma-factors are simplified by Stirling’s formula, namely that for t > t0 > 0

Γ(s) =
√

2π tσ−
1
2 exp

(− 1
2πt+ it log t− it+ 1

2πi(σ − 1
2 )
) · (1 +Oσ

(
t−1)) , (5.17)

with the understanding that the O–term in (5.17) admits an asymptotic expansion
in terms of negative powers of t . Hence using the symbol � (defined after the
formulation of Theorem 1) the expression in (5.16) is (x = m/f)

� 1
G

∫ K′0

K0

eiK
∑

f

∑
m

· · ·
∫ K+G logK0

K−G logK0

r

(
4T
K

)ir
e−(r−K)2G−2×

<e
{
r−1/2e−2ir log 2x−ir22irxir(

√
x+
√

1 + x)−2ir dr
}

dK

� 1
G

∫ K′0

K0

K1/2eiK
∑

f

∑
m

· · · ×

×
∫ K+G logK0

K−G logK0

(
4T
K

)ir
cos(2r log(

√
x+
√

1 + x))e−(r−K)2G−2
dr dK.

(5.18)

The cosine is written as the sum of exponentials, after which the change of variable
r = K+Gu is made in the r -integral. The inner integral in (5.18) thus reduces to

G

∫ logK0

− logK0

e−u
2

exp
{

(iK + iGu)
(

log
4T
K
± log(

√
x+
√

1 + x)2
)}

du, (5.19)

after which we restore the integration to the whole real line, making a negligible
error. Then we apply (5.2), noting that the integral with the +-sign makes a
negligible contribution. The integral with the −-sign equals

√
πG exp

{
iK log

(
4T

K(
√
x+
√

1 + x)2

)
− 1

4
G2 log2

(
4T

K(
√
x+
√

1 + x)2

)}
.

It follows that (5.18) is

�
∑

f

∑
m

· · ·
∫ K′0

K0

K1/2 exp
{
iK log

( 4eT
K(
√
x+
√

1 + x)2

)}

× exp
{
− 1

4G
2 log2

( 4T
K(
√
x+
√

1 + x)2

)}
dK.

(5.20)
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The last exponential factor yields that only the range m/f ≈ T/K0 makes a
non-negligible contribution. More precisely, we have

4T
K(
√
x+
√

1 + x)2
=

T

K

(
x+

∞∑
j=0

bjx−j
) (x = m/f > 1)

with suitable coefficients bj . Therefore the second exponential factor in (5.20) is
negligibly small, unless

K =
T

x+
∞∑
j=0

bjx−j

(
1 +O

(
log T
G

))
. (5.21)

This means that the relevant interval of integration over K in (5.20), for fixed f
and m , has length � Tf log T/(mG).

The integral in (5.20) is an exponential integral of the form

∫ K′0

K0

g(K)eif(K) dK, f(K) := K log
( 4eT
K(
√
x+
√

1 + x)2

)
.

g(K) := K1/2 exp
{
− 1

4G
2 log2

( 4T
K(
√
x+
√

1 + x)2

)}
.

The saddle point K1 (the root of f ′(K) = 0) is given by

K1 =
4T

(
√
x+
√

1 + x)2
. (5.22)

Since f ′′(K) = −1/K , it follows by the saddle point method (see e.g., [2, Chap-
ter 2]) that (5.20) is (0 < C1 < C2 are suitable constants, x = m/f )

� T
∑

f63K0

f−
1
2

∑
C1Tf
K0

6m6C2Tf
K0

m−
1
2
d(m)d(m+ f)

(
√
x+
√

1 + x)2
exp

(
4iT

(
√
x+
√

1 + x)2

)
,

plus an error term which is certainly �ε K
3/2+ε
0 . But since

4iT
(
√
x+
√

1 + x)2
=
iT

x


1 +

∞∑

j=1

cjx
−j


 (5.23)

with suitable constants cj and Tx−2 � K2/T � T−ε in view of (1.2), it follows
that (5.20) is

� T
∑

f63K0

f
1
2

∑
C1Tf
K0

6m6C2Tf
K0

m−
3
2 d(m)d(m+f) exp

(
iTf

m

)
+Oε(K

3/2+ε
0 ). (5.24)
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Therefore the proof of Theorem 1 will be complete after we show that the con-
tribution of H4(f ;h) is negligible, and choose G = K

1/2−ε
0 . Note that trivial

estimation gives that the expression in (5.24) is

�ε T
1/2+εK

3/2
0 ,

which is worse that the trivial estimation of S(K), since (1.2) holds. Likewise the
use of the range of integration (5.21) gives also a poor bound.

We shall conclude with a discussion on the shape of the functions ϕ`(K,T ;
m, f), which appear in (2.1). We note that (see (3.9)) we have

qN (r) = 1 +
L∑

`=1

b`r
−2` +ON,L(r−2L−2) (5.25)

with effectively computable constants b` , where (as before) L is taken so large that
the error term makes, in the appropriate expressions, a negligible contribution.
Each factor r−2` in (5.25) becomes, after change of variable in the integral in
(5.19),

(K +Gu)−2` = K−2`



1 +

L∑

j=1

d`(Gu/K)j +O`,L
(
(Gu/K)L+1)



 ,

which is then evaluated by (5.3), furnishing a sum containing powers of G and K .
In what concerns the factors K1−`(K − r)` in (3.10), note that(K − r)`

introduces the factor (Gu)` in (5.19), and then the corresponding integral is again
evaluated by (5.3), producing eventually a suitable power of G . The factor K1−` ,
after the saddle point method is applied, in view of (5.22) leads to

K1−`
1 = (4T )1−`(

√
x+
√

1 + x)2`−2 (x = m/f),

and we have the power expansion (5.23). When this is all put together, we get terms
of the type ϕ`(K,T ;m, f), which are power functions in each of the variable, all
of which are certainly o(1) (as K →∞ and (2.1) holds).

6. Completion of proof of Theorem 1

To complete the proof of Theorem 1 we shall show that

H4(f ;h) =π−3
f−1∑
m=1

m−
1
2 d(m)d(f −m)Ψ−

(
m

f
;h
)

(6.1)
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makes a negligible contribution to (4.3). We use the representation (this is [23, eq.
(3.3.45)]), valid for x = m/f < 1 and −1 < β < − 1

2 ,

Ψ−(x;h) (6.2)

=

∞∫

0

{∫

(β)

xs(y(1 + y))s−1 Γ2( 1
2 − s) ds

Γ(1− 2s) cos(πs)

} ∞∫

−∞
rh(r)

(
y

1 + y

)ir
dr dy,

where the triple integral converges absolutely. The function (6.2) can be compared
to the representation (5.11) for Ψ+(x;h): the function Ψ−(x;h) is easier to deal
with because of the factor cos(πs) in the denominator, and summation over m in
(6.1) is finite. On the other hand, it has the drawback that the integral over y is
not finite, and there is an additional integration over s . As before, it will suffice to
consider the contribution of |r ±K| 6 G logK . Namely if |r ±K| > G logK we
interchange the order of integration, and in the y integral we integrate by parts the
subintegral over (0, 1] to obtain that the contribution is � xβ exp(− 1

2 log2K).
For |r−K| 6 G logK (the case of the ‘+’ sign is analogous) we make the change
of variable r = K+Gu to obtain that the dominant contribution of the r -integral
will be

GKeiK log y
1+y eiK log 4T

K

logK∫

− logK

exp
(
−u2 ± iGu log

4T
K

+ iGu log
y

1 + y

)
du. (6.3)

Using (5.2) it follows that (6.3) becomes, up to a negligible error, a multiple of

GK exp
(
iK log

(
y

1 + y
· 4T
K

))
exp

(
− 1

4G
2
(

log
( y

1 + y
· 4T
K

))2
)

+GK exp
(
iK log

(
y

1 + y
· K

4T

))
exp

(
− 1

4G
2
(

log
( y

1 + y
· K

4T

))2
)
.

(6.4)

Since (
log
( y

1 + y
· K

4T

))2

> log2
(

4T
K

)
(y > 0),

this means that the contribution of the second exponential factor above will be
negligible, and the same holds for the first exponential factor, if y > 1. In view of
Stirling’s formula (see (5.17)) and

| cos(x+ iy)|=
√

cos2 x+ sinh2 y (x ∈ R, y ∈ R),

it follows that the contribution of |=m s| = |t| > log2K in (6.1) will be negligibly
small. If 0 6 y 6 1 and

y

1 + y
· 4T
K

6 1− log T
G

(6.5)
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or
y

1 + y
· 4T
K

> 1 +
log T
G

, (6.6)

the total contribution is again negligible. If (6.5) and (6.6) both fail, then y lies
in an interval of length ≈ (K log T )/(TG). But then we may integrate by parts
the factor yir in the integral, each time increasing the exponent of y by unity.
If this is done sufficiently many times, then trivial estimation shows that the
total contribution of (6.1) is negligibly small, and Theorem 1 is proved, if we take
G = K

1/2−ε
0 in (3.11) and (5.9) and replace K0 by K .

7. The proof of Theorem 2

The proof of the first bound in (2.13) is straightforward. Namely Motohashi derived
the transformation formula for (4.1) by writing H3

j (1
2 ) = H2

j ( 1
2 ) ·Hj( 1

2 ), and then
by expressing Hj( 1

2 ) as a partial sum of tj(f)f−1/2 (see [23, Lemma 3.9] or (7.7))
to which the transformation formula for the bilinear sum of Hecke series is applied.
Therefore our problem reduces essentially to the evaluation and estimation of
Theorem 1 in the case f = 1. We obtain

∑

K<κj6K′<2K

αjH
2
j ( 1

2 ) cos
(
κj log

(
4eT
κj

))

� T
∑

C1TK−16m6C2TK−1

m−
3
2 d(m)d(m+ 1)ei

T
m +Oε(K3/2+ε)

�ε T
1/2+εK1/2 +K3/2+ε �ε T

1/2+εK1/2,

(7.1)

since (1.2) holds. We remark, similarly as in the discussion concerning Theorem 1,
that the sum over m in (7.1) could be treated by the techniques of [12]–[13]
involving the binary additive divisor problem, but it seems that the result that
would be obtained in this fashion does not improve the above (trivial) bound.

For the proof of the second bound in (2.13) we proceed analogously to the
proof of

∑

κj6T
αjHj( 1

2 ) =
(
T

π

)2

−BT log T +O(T (log T )1/2) (B > 0), (7.2)

given by M. Jutila and the author in [10]. The proof of (7.2) rested on the use of
(see e.g., [23] for a proof)

Lemma 1. (The first Bruggeman-Kuznetsov trace formula) Let f(r) be an even,
regular function for |=m r| 6 1

2 such that f(r) � (1 + |r|)−2−δ for some δ > 0 .
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Then

∞∑

j=1

αjtj(m)tj(n)f(κj) +
1
π

∫ ∞
−∞

σ2ir(m)σ2ir(n)
(mn)ir|ζ(1 + 2ir)|2 f(r) dr

=
1
π2 δm,n

∫ ∞
−∞

r tanh(πr)f(r) dr +
∞∑

`=1

1
`
S(m,n; `)f+

(
4π
√
mn

`

)
,

(7.3)

where δm,n = 1 if m = n and zero otherwise (m,n > 0), σa(d) =
∑
d|n d

a ,
S(m,n; `) is the Kloosterman sum and

f+(x) =
2i
π

∫ ∞
−∞

r

cosh(πr)
J2ir(x)f(r) dr. (7.4)

In this formula one takes n = 1 and f(r) ≡ h`(r;T,K,G), as given by
(3.10), and follows the scheme of proof of Theorem 1. This consists of evaluating

1√
πG

K′0∫

K0

∑

|κj−K|6G logK0

αjHj( 1
2 )eiK exp

(
iκj log

4T
K

)
e−(κj−K)2G−2

dK

=
1√
πG

K′0∫

K0

∑
0
(K;T,G)eiK dK +O(1),

(7.5)

where G satisfies (3.2) and

∑
0
(K;T,G) :=

∞∑

j=1

αjHj( 1
2 )h(κj ;T,K,G). (7.6)

To obtain the expression for (7.6) one multiplies (7.3) by m−1/2 , since (see [10]
for proof) we have

Lemma 2. Let κj = (1 + o(1))K, r = (1 + o(1))K (r ∈ R) as K → ∞, Y =
(1 + δ) K

2

4π2 , with δ > 0 a given constant. Then, for any fixed positive constant
A > 0 , there exists a constant C = C(A, δ) > 0 such that, for h = C logK , we
have

Hj( 1
2 ) =

∑

m6(1+δ)Y

tj(m)m−1/2e−(m/Y )h +O(K−A), (7.7)

and

ζ( 1
2 + ir)ζ( 1

2 − ir) =
∑

m6(1+δ)Y

σ2ir(m)m−
1
2−ire−(m/Y )h +O(K−A). (7.8)
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In the proof of (7.2) the main term came from the integral

∫ ∞
−∞

r tanh(πr)f(r) dr (7.9)

in (7.3). However, now in the function f(r) we shall have the additional oscillating
factor (4T/K)±ir . Because of this, when we make the change of variable r =
±K +Gu , we shall eventually wind up with exponential factors of the form

exp

{
− 1

4G
2
(

log
4T
K

)2
}
,

which make a negligible contribution. The total contribution of the continuous
spectrum (the integral on the left-hand side of (7.3)) is easily seen to be �ε

K1+ε
0 . The only delicate part is the Kloosterman-sum contribution, coming from

the right-hand side of (7.3). However, this presents no major problem, since the
estimation is analogous to the one made in [10] for the proof of (7.2). We shift the
line of integration in the integral defining f+ to =m r = −1 and use the power
series representation

J2+ix(z) =
∞∑

k=0

(−1)k(z/2)2+ix+2k

Γ(k + 1)Γ(k + 2 + ix+ 1)
(z = 4π

√
m/`� K1−B),

which shows that the contribution of ` > KB is � K−A for any fixed A > 0,
provided that B = B(A) is sufficiently large. The only difference from [10] is that,
in making the shift, the factor (4T/K)ir will make now a contribution of O(T/K),
which is harmless if B is sufficiently large. In the remaining sum, we substitute
(see e.g., [18, p. 139])

J2ir(x)− J−2ir(x) =
2i
π

sinh(πr)
∫ ∞
−∞

cos(x coshu) cos(2ru) du.

Integration by parts shows that, for x > 0 and r > 0,

J2ir(x)− J−2ir(x) =
2i
π

sinh(πr)
∫ log2 K

− log2 K

cos(x coshu) cos(2ru) du

+O
(
x−1(r + 1) exp(πr − 1

2 log2K)
)
.

(7.10)

The error term in (7.10) clearly makes a negligible contribution. The main term
in (7.10) will contribute to f+

− 4
π2

∫ log2 K

− log2 K

cos(x coshu)
∫ ∞

0
rf(r,K) tanh(πr) cos(2ru) dr du, (7.11)
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where

x = 4π
√
m

`
6 2(1 + δ)K. (7.12)

In the inner integral we use (5.12) and make the change of variable r = K +Gv .
In the ensuing v -integral the non-negligible contribution will be from the range
|v| 6 logK . Since f(r) contains the factor (4T/K)ir , it follows by (5.2) and (5.3)
that the contribution of f+ is

� <e

{
GK

∫ log2 K

− log2 K

cos(x coshu) exp
(
−G

2

4

(
log

4T
K
± 2u

)2 ± 2iKu)
)

du

}
. (7.13)

The relevant exponential factor will be of the form

exp(ig(u)), g(u) = x coshu± 2Ku, g′(u) = x sinhu± 2K.

The saddle point u1 is (here the solution of g′(u1) = 0 with the plus sign is
treated, since the other case is similar)

u1 = log

(
2K
x

+

√
4K2

x2 + 1

)
,

and we have
g′′(u1) = x cosh(u1)� K.

Since K/x � 1 in view of (7.12), it follows by the saddle point method that the
main contribution to (7.11) is

�
∫ K′0

K0

e±iK+iH(K)K1/2 exp


−G

2

4

(
log

4T/K

2K/x+
√

(2K/x)2 + 1

)2

dK, (7.14)

plus an error term which does not exceed O(T 1/2+εK1/4), where

H(K) := g(u1), |H ′(K)| = log

(
2K
x

+

√
4K2

x2 + 1

)
+O(1),

and the contribution is negligible unless

C1T

K2
0

√
m 6 ` 6 C2T

K2
0

√
m (0 < C1 < C2). (7.15)

Thus by the first derivative test the integral in (7.14) is � K
1/2
0 logK0 . If we

use Weil’s classical bound |S(m,n; `)| 6 (m,n, `)1/2d(`)`1/2 , then we see that the
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total contribution of the Kloosterman sum term in (7.3) is

�ε K
1/2+ε
0

∑

m�K
m−1/2

∑

`≈ T

K2
0

√
m

1
`
|S(m, 1; `)|

�ε K
1/2+ε
0

∑

m�K0

m−1/2
∑

`≈ T

K2
0

√
m

d(`)`−1/2

�ε K
ε−1/2
0 T 1/2

∑

m�K0

m−1/4

�ε T
1/2+εK

1/4
0 .

We take G = Kε
0 , note that K0 � T 1/2K

1/4
0 in view of (1.2) and finally replace

K0 by K . Then the second bound in (2.13) follows and the proof of Theorem 2 is
complete.

8. Proof of Theorem 3

Suppose that the hypotheses of Theorem 3 hold. We start from

∫ 2T

T

(
Sm(K;K ′, t)

)2
dt 6

∫ 5T/2

T/2
ϕ(t)

(
Sm(K;K ′, t)

)2
dt, (8.1)

where ϕ(t) is a non-negative, smooth function supported in [T/2, 5T/2] such that
ϕ(t) = 1 for T 6 t 6 2T . We assume that m = 3, as this is the most interesting
case. The proof of the cases m = 1, 2 is analogous, only instead of (1.4)–(1.5) we
shall need the corresponding bounds with H2

j ( 1
2 ) (see [23, eq. (3.4.4)]) or Hj(1

2 )
(see [10]). If the cosine is written as a sum of exponentials, then for m = 3 the
right-hand side of (8.1) becomes, after integration by parts,

�
5T/2∫

T/2

ϕ(t)
∑

K<κj ,κ`6K′
αjα`H

3
j ( 1

2 )H3
` ( 1

2 )ei(κ` log κ`−κj log κj) (4et)iκj−iκ` dt

= −
∑

K<κj ,κ`6K′
αjα`H

3
j ( 1

2 )H3
` ( 1

2 )ei(κ` log κ`−κj log κj) (8.2)

×
5T/2∫

T/2

ϕ′(t)
iκj − iκ` + 1

(4e)iκj−iκ` tiκj−iκ`+1 dt.

In (8.2) we may continue to integrate by parts, noting that

ϕ(r)(T/2) = ϕ(r)(5T/2) = 0, ϕ(r)(t) �r T−r (r = 0, 1, 2, . . . ). (8.3)
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Therefore taking r = r(A, ε) sufficiently large, it follows from (8.3) that the con-
tribution of κj , κ` such that |κj −κ`| > T ε is � T−A for any given, large A > 0.
The contribution of the remaining pairs κj , κ` is estimated trivially by the use of
(1.3)–(1.5) as

�
5T/2∫

T/2

ϕ(t)
∑

K<κj6K′
αjH

3
j ( 1

2 )
∑

|κj−κ`|6T ε
α`H3

` ( 1
2 ) dt

�ε T
εK

5T/2∫

T/2

ϕ(t)
∑

K<κj6K′
αjH

3
j ( 1

2 ) dt�ε T
1+εK3,

and this is asserted by (2.15). If the conjectural (1.7)–(1.8) holds, then obviously
(2.15) can be improved (for m = 3) to

∫ 2T

T

(
S(K;K ′, t)

)2
dt �ε T

1+εK5/2.

Also by direct integration we have
∫ 2T

T

S(K;K ′, t) dt �ε T
1+εK, (8.4)

while the integral in (8.4) is �ε T
1+εK1/2 if (1.7)–(1.8) holds.

Finally we sketch the proof of (2.16) of the Corollary. We start from
∫ 2T

T

(E2(2t)− E2(t))2 dt 6
∫ 5T/2

T/2
ϕ(t)(E2(2t)− E2(t))2 dt, (8.5)

where ϕ(t) is as in (8.1). Then we use (2.7)–(2.8), truncating the series in (2.8)
at T∆−1 log T with a negligible error. After this, we remove the monotonic co-
efficients κ−3/2

j and exp
(
− 1

4

(∆κj
T

)2)
by partial summation. Then we obtain the

sum Sm(K;K ′, t) with m = 3 and t replaced by 2t + ∆ log T or t − ∆ log T ,
which does not cause any trouble. Hence the integral on the left-hand side of (8.5)
is essentially majorized by �ε T

ε integrals of the type

T

∫ 5T/2

T/2
ϕ(t)

(
K−3/2Sm(K;K ′, t)

)2
dt�ε T

2+ε,

and (2.16) follows on replacing t by t2−j in the integrand in (8.5), and summing
up the corresponding bounds over j = 1, 2, . . . .

It may be remarked that the method of proof of Theorem 3 gives also, for
1� K < K ′ 6 2K � T ,

∫ 2T

T

(
Sm(K;K ′, t)

)4
dt �ε T 1+εK7 (m = 1, 2, 3),

which means that, in the mean fourth sense, the sum Sm(K;K ′, t) is �ε K
7/4+ε .
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[5] A. Ivić, The Mellin transform and the Riemann zeta-function, Proceedings of
the Conference on Elementary and Analytic Number Theory (Vienna, July
18-20, 1996), Universität Wien & Universität für Bodenkultur, Eds. W.G.
Nowak and J. Schoißengeier, Vienna 1996, 112–127.
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[11] A. Ivić and Y. Motohashi, The mean square of the error term for the fo-
urth moment of the zeta-function, Proc. London Math. Soc. (3) 66 (1994),
309–329.
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