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QUADRATIC CLASS NUMBERS DIVISIBLE BY 3
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Abstract: Let N+(X) denote the number of distinct real quadratic fields Q(
√

d) with d 6 X

for which 3|h(Q(
√

d)) . Define N−(X) similarly for Q(
√−d) . It is shown that N+(X), N−(X) À

X9/10−ε for any ε > 0 . This improves results of Byeon and Koh [2] and of Soundararajan [7],
which had exponent 7/8− ε .
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Let d be a square-free integer, which may be positive or negative, and let h(−d)
be the class number of Q(

√−d). In this paper we investigate the frequency of
values of d for which 3|h(−d). It follows from conjectures of Cohen and Lenstra
[3], that asymptotically a constant proportion of values of d have this property.
The conjectured proportion is different for positive and negative d , being

1−
∞∏

j=1

(1− 3−j)

in the case of imaginary quadratics, for example. It follows from the work of
Davenport and Heilbronn [5] that a positive proportion of d have 3 - h(−d), both
in the case of d positive and d negative. However it remains an open problem
whether or not the same is true for values with 3|h(−d).

Write N−(X) for the number of positive square-free d 6 X for which
3|h(−d), and similarly let N+(X) be the number of positive square-free d 6 X
for which 3|h(d). It was shown by Ankeny and Chowla [1] that N−(X) tends to
infinity with X , and in fact their method yields N−(X)� X1/2 . The best known
result in this direction is that due to Soundararajan [7], who shows that

N−(X)�ε X
7/8−ε,
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for any positive ε . In the case of real quadratic fields it was shown by Byeon and
Koh [2] how Soundararajan’s analysis can be adapted to prove

N+(X)�ε X
7/8−ε.

The purpose of this note is to present a small improvement on these results,
as follows.

Theorem. For large X we have

N−(X)�ε X
9/10−ε

and
N+(X)�ε X

9/10−ε,

for any positive ε .

We should remark that Soundararajan considers more generally imaginary
quadratic fields whose class group contains an element of given order g , say, and
establishes lower bounds for the corresponding counting function. However the
method we describe only appears to improve on his analysis in the case g = 3.

For the proof we begin by considering N−(X), following the argument used
by Soundararajan, but improving on it at one key point. As in [7] we will examine

N(X) := #{d 6 X : µ2(d) = 1, 3|d, 3|h(−d)}

and show that N(X)�ε X
9/10−ε . This will immediately yield

N−(X)�ε X
9/10−ε.

Our result for N+(X) will then be a consequence of that for N−(X), since the
theorem of Scholz [6] yields 3|h(k) for any positive integer for which 3|h(−3k).

As in [7], let T 6 X1/2/64 be a parameter to be chosen later, and set
M = T 2/3X1/3/2 and N = TX1/2/8. For d 6 X let R(d) = 0 if d is not
square-free, and for square-free d let R(d) be the number of solutions m,n, t of
the equation m3 = n2 + t2d , subject to the conditions

t - m, M < m 6 2M, N < n 6 2N, T < t 6 2T, (1)

m ≡ 1 mod 18, n ≡ 2 mod 18, t prime. (2)

These conditions are slightly different from those used by Soundararajan. However
we note that if T is large enough, then any solution m3 = n2 + t2d counted by
R(d) will have (m,n) = 1 and (t, 6) = 1, as required by Soundararajan. The
second of these conditions is trivial, since t is prime. For the first, we note that if
p|(m,n) then p2|t2d . Since d is square-free and t is prime, this can only happen
if p = t , contradicting the assumption that t - m . Clearly our conditions imply
that 3|d whenever R(d) > 0, and Soundararajan demonstrates that we also have
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3|h(−d) for such d . For the proof of our theorem it will therefore suffice to show
that

#{d : R(d) 6= 0} �ε X
9/10−ε (3)

for suitable choice of T . In order to establish this we use Cauchy’s inequality in
the form (∑

d

R(d)
)2

6
(

#{d : R(d) 6= 0}
)(∑

d

R(d)2
)
.

This yields

#{d : R(d) 6= 0} >

(∑
dR(d)

)2

∑
dR(d)2

and hence
#{d : R(d) 6= 0} � min{S1 , S

2
1/S2} (4)

with
S1 =

∑

d

R(d)

and
S2 =

∑

d

R(d)(R(d)− 1).

We begin by considering S1 . We have

S1 = #{(m,n, t) : t2|m3 − n2, (m3 − n2)/t2 square-free},

with m,n, t subject to (1) and (2). A trivial modification of the argument given
by Soundararajan [7, §3] shows that the number of triples (m,n, t) satisfying (1)
and (2), for which t2|m3 − n2 and such that (m3 − n2)/t2 is divisible by p2 for a
prime p > (logX)2 , is o(MN/(T logX)) + o(MX1/3T 2/3). For this it suffices to
replace the conditions on t in (1) and (2) by the weaker constraint (t, 6m) = 1, as
used by Soundararajan, and to replace his range logX < p 6 Z in the definition
of N2 by (logX)2 < p 6 Z . If we define

S(m, t) = #{n : t2|m3 − n2} −
∑

p6(logX)2

#{n : p2t2|m3 − n2}

it follows that
S1 >

∑
m,t

S(m, t) + o(MN/(T logX)), (5)

providing that T 6 X1/4−ε for some fixed ε > 0. Here it is understood that m, t, n
still satisfy the constraints (1) and (2).

We proceed to estimate S(m, t). Unless m is a quadratic residue of t there
will be no corresponding values of n . However if m is a quadratic residue of t
the admissible values for n fall into 2 congruence classes modulo 18t2 . There are
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N/18t2 + O(1) values of n ∈ (N, 2N ] in each such congruence class. We now
observe that if p 6 (logX)2 and (logX)2 6 T < t 6 2T , then p 6= t . Moreover
(2) shows that if p2|m3−n2 then p > 5. Thus the solutions n of p2t2|m3−n2 lie
in at most 4 congruence classes modulo 18p2t2 , whence

#{n : p2t2|m3 − n2} 6 2N
9p2t2

+O(1).

It then follows that

S(m, t) > N

18t2
+O(1)−

∑

56p6(logX)2

( 2N
9p2t2

+O(1)
)

> N

18t2

(
1− 4

∑

p>5

p−2
)

+O((logX)2)

� NT−2

for T 6 X1/4 , since
∑
p>5 p

−2 < 1/4. We insert this bound into (5) and note that
t has � M quadratic residues m ∈ (M, 2M ] , since M � T . This leads to the
bound

S1 � MN

T logX
� T 2/3X5/6(logX)−1, (6)

providing that T 6 X1/4−ε for some fixed ε > 0.
The key to our improvement over the work of Soundararajan is an alternative

treatment of S2 . This is at most the number of solutions (m1, n1, t1) 6= (m2, n2, t2)
to

t22(m3
1 − n2

1) = t21(m3
2 − n2

2), t2i |m3
i − n2

i , (i = 1, 2), (7)

subject to (1) and (2). If t1 = t2 then

n2
1 − n2

2 = m3
1 −m3

2 6= 0.

Thus each pair m1,m2 determines Oε(Mε) pairs n1, n2 , for any ε > 0. Since t1 =
t2|m3

1−n2
1 these values then determine Oε(Mε) values for t1, t2 . The contribution

to S2 arising from solutions with t1 = t2 is therefore

�ε M
2+2ε �ε T

4/3X2/3+2ε. (8)

Henceforth we will confine our attention to the case in which t1 6= t2 .
We shall count solutions according to the values of t1, t2 and k = t2n1+t1n2 .

It follows from (7) that

t22m
3
1 ≡ k2 mod t1, t21m

3
2 ≡ k2 mod t2,

and
t22m

3
1 ≡ t21m3

2 mod k.
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Since t1 and t2 are distinct primes, the first congruence is equivalent to one of at
most 3 conditions

m1 ≡ m10 mod t1, (9)

say. Similarly the second congruence produces at most 3 conditions

m2 ≡ m20 mod t2. (10)

To handle the third congruence we work modulo the maximal square-free factor
of k , given by

v = v(k) =
∏

p|k
p.

We note that t1|k would imply t1|n1 , since t1 and t2 are distinct primes. This
would entail t1|m1 on account of the condition t21|m3

1 − n2
1 . However (1) requires

that t - m , and we therefore conclude that

(t1, k) = 1, and (t2, k) = 1, (11)

the second condition being established in a precisely analogous way. Hence if p|k
and p ≡ 2 mod 3, the congruence

t22m
3
1 ≡ t21m3

2 mod p (12)

is equivalent to a linear condition m1 ≡ cm2 mod p , say. On the other hand, if
p ≡ 1 mod 3, then either we must have p|m1,m2 , or (12) is equivalent to 3 linear
congruences of the form m1 ≡ cm2 mod p . On combining these conditions for
the various primes p|k we see that there is a collection of at most 3ω(v) lattices
Λ(0)
i ⊆ Z2 such that any pair m1,m2 must satisfy

(m1,m2) ∈ Λ(0)
i (13)

for some i . Moreover we will have det(Λ(0)
i ) = vv0 , where v0 is the product of

those primes p for which (12) implies p|m1,m2 .
Since t1, t2 and v are coprime in pairs, by (11), we may combine the con-

ditions (9), (10) and (13), to deduce that (m1,m2) must lie in one of at most
32+ω(v) lattice cosets of the form (a1, a2) + Λ, where det(Λ) = t1t2vv0 . Here we
may choose the coset representative to satisfy M < a1, a2 6 2M , for other-
wise there can be no relevant pairs (m1,m2) satisfying (1). If we now write
(u1, u2) = (m1,m2)− (a1, a2) it follows that

(u1, u2) ∈ Λ, |u1|, |u2| 6 M.

We are now ready to count the number of available pairs (u1, u2). For this we use
Lemma 1 of Davenport [4], which shows that if an n-dimensional lattice Λ has
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successive minima λ1, . . . , λn then the number of lattice points of norm at most
x is

�
n∏

i=1

(1 + x/λi).

Moreover we have the standard Minkowski inequalities det(Λ) � λ1 . . . λn �
det(Λ). Thus, in our case, we find that if the successive minima are λ1 6 λ2 then

λ1 �
√

det(Λ)� √t1t2vv0 � T 2N � T 3X1/2 � X2. (14)

Moreover, there are
� (1 +M/λ1)(1 +M/λ2)

� 1 +M2/det(Λ) +M/λ1

� 1 +M2/t1t2v +M/λ1

possible pairs (m1,m2) for each of at most 32+ω(v) lattices Λ. Since v 6 k �
TN � T 2X1/2 � X2 , we have 32+ω(v) �ε X

ε for any positive ε . Taking into
consideration the contribution (8), it therefore follows that

S2 �ε T
4/3X2/3+2ε +Xε

∑

t1,t2,k

(
1 +

M2

T 2v
+
M

λ1

)
, (15)

where for each triple t1, t2, k we take the smallest value of λ1 from all the corre-
sponding lattices Λ. The first term in the sum produces

�ε X
εT 3N �ε T

4X1/2+ε.

To handle the second term we use the following result, which will be proved at the
end of the paper.

Lemma 1. For any k ∈ N define v(k) =
∏
p|k p . Then for every ε > 0 we have

#{k 6 K : v(k) = v} �ε K
ε

uniformly in v .

Thus the second term in the sum on the right of (15) contributes

�ε X
εM2

∑

v68TN

1
v

#{k 6 8TN : v(k) = v}

�ε X
εM2(TN)ε

∑

v68TN

1
v

�ε T
4/3X2/3+3ε.
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Thus

S2 �ε T
4/3X2/3+3ε + T 4X1/2+ε +Xε

∑

t1,t2,k

M

λ1
. (16)

It remains to handle the contribution from the term M/λ1 . Let (µ1, µ2) be
the shortest non-zero vector in the lattice Λ, so that λ1 is the length of (µ1, µ2).
We shall consider the set of triples (t1, t2, k) for which a given vector (µ1, µ2) can
arise. Thus the contribution to S2 is

�ε X
εM

∑
µ1,µ2

#{t1, t2, v}√
|µ1|2 + |µ2|2

.

In view of (14) we will have µ1, µ2 � X2 . Moreover, according to the construc-
tion of the lattice Λ we must have v0|µ1, µ2 , whence v0 6 h.c.f.(µ1, µ2). The
inequalities

λ1 �
√

det(Λ)� √t1t2vv0 � T 3/2N1/2√v0 � T 2X1/4√v0

therefore imply that

µ1, µ2 � T 2X1/4
√

h.c.f.(µ1, µ2).

Since (µ1, µ2) ∈ Λ, we see from the way that the lattice Λ was constructed
using (9), (10) and (12), that t1|µ1 , t2|µ2 and v|t22µ3

1 − t21µ3
2 . If µ1 and µ2 are

both non-zero they determine Oε(Xε) possible prime divisors t1, t2 . Since t1 and
t2 are distinct, the number t22µ

3
1−t21µ3

2 is non-zero and hence has Oε(Xε) possible
divisors v . This produces a contribution

�ε X
3εM

∑
µ1,µ2

1√
|µ1|2 + |µ2|2

to S2 . We shall consider terms in the dyadic range

B <
√
|µ1|2 + |µ2|2 6 2B,

for which we count pairs µ1, µ2 according to the value of h = h.c.f.(µ1, µ2). Thus
each dyadic range produces

�ε X
3εMB−1

∑

h6B
#{µ1, µ2 � min(B , T 2X1/4h1/2) : h|µ1, µ2}

�ε X
3εMB−1

∑

h6B

(min(B , T 2X1/4h1/2)
h

)2

�ε X
3εMB−1 min(B2 , T 4X1/2 log 2B).
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Summing for values of B running over powers of 2 yields a total

�ε MT 2X1/4+4ε �ε T
8/3X7/12+4ε.

On the other hand, if µ1 vanishes, for example, there are O(T ) choices for
t1 and Oε(X2ε) possible values for t2 and v . This leads to a contribution

�ε X
3εMT

∑

µ2�X2

|µ2|−1 �ε X
4εMT �ε T

5/3X1/3+4ε.

On comparing these bounds with (16) we see that

S2 �ε T
4/3X2/3+3ε + T 4X1/2+ε + T 8/3X7/12+4ε + T 5/3X1/3+4ε.

Clearly the fourth term is redundant, being dominated by the third term.
Finally, inserting this last bound into (4), and using (6), we find that

#{d : R(d) 6= 0} � X−5ε min{T 2/3X5/6 , X , T−8/3X7/6 , T−4/3X13/12}.

The optimal choice for T is thus T = X1/10 , which matches the first and third
terms in the minimum, and leads to the lower bound X9/10−5ε . This establishes
the required bound (3), on re-defining ε .

It remains to prove Lemma 1. Since v(k) 6 v we can clearly suppose that
v 6 K . Then, for any η > 0 we have

#{k 6 K : v(k) = v} 6
∞∑
k=1

v(k)=v

(K
k

)η 6 Kη
∏

p|v

( ∞∑
e=0

p−eη
)
.

However ∞∑
e=0

p−eη 6
∞∑
e=0

2−eη = A(η),

say, whence
#{k 6 K : v(k) = v} 6 KηA(η)ω(v).

Since ω(v) = O((log 3v)/(log log 3v)) and v 6 K we deduce that

#{k 6 K : v(k) = v} �η K
2η

and the result follows, on taking η = ε/2.
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