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Abstract: Let Ny (X) denote the number of distinct real quadratic fields Q(vd) with d < X
for which 3|h(Q(+/d)). Define N_(X) similarly for Q(v/—d). It is shown that N4 (X), N_(X) >
X9/10=¢ for any & > 0. This improves results of Byeon and Koh [2] and of Soundararajan [7],
which had exponent 7/8 —¢.
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Let d be a square-free integer, which may be positive or negative, and let h(—d)
be the class number of Q(v/—d). In this paper we investigate the frequency of
values of d for which 3|h(—d). It follows from conjectures of Cohen and Lenstra
[3], that asymptotically a constant proportion of values of d have this property.
The conjectured proportion is different for positive and negative d, being
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in the case of imaginary quadratics, for example. It follows from the work of
Davenport and Heilbronn [5] that a positive proportion of d have 3 1 h(—d), both
in the case of d positive and d negative. However it remains an open problem
whether or not the same is true for values with 3|h(—d).

Write N_(X) for the number of positive square-free d < X for which
3|h(—d), and similarly let N1 (X) be the number of positive square-free d < X
for which 3|h(d). It was shown by Ankeny and Chowla [1] that N_(X) tends to
infinity with X, and in fact their method yields N_(X) > X'/2. The best known
result in this direction is that due to Soundararajan [7], who shows that

N_(X)>. X7/8¢,
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for any positive €. In the case of real quadratic fields it was shown by Byeon and
Koh [2] how Soundararajan’s analysis can be adapted to prove

Ny (X) > XT/8=,

The purpose of this note is to present a small improvement on these results,
as follows.

Theorem. For large X we have
N_ (X) >>E X9/1076

and
N+ (X) >, X9/10—s,

for any positive €.

We should remark that Soundararajan considers more generally imaginary
quadratic fields whose class group contains an element of given order g, say, and
establishes lower bounds for the corresponding counting function. However the
method we describe only appears to improve on his analysis in the case g = 3.

For the proof we begin by considering N_(X), following the argument used
by Soundararajan, but improving on it at one key point. As in [7] we will examine

N(X) 1= #{d < X : p2(d) = 1, 3|d, 3[h(~d)}
and show that N(X) >. X9/19=¢ This will immediately yield
N_ (X) >>€ X9/107€'

Our result for N4 (X) will then be a consequence of that for N_(X), since the
theorem of Scholz [6] yields 3|h(k) for any positive integer for which 3|h(—3k).

As in [7], let T < X'/2/64 be a parameter to be chosen later, and set
M = T?3X'3/2 and N = TX'/?/8. For d < X let R(d) = 0 if d is not
square-free, and for square-free d let R(d) be the number of solutions m,n,t of
the equation m> = n? + t2d, subject to the conditions

ttm, M<m<2M, N<n<2N, T<t<2T, (1)

m = 1mod18, n=2mod18, ¢ prime. (2)

These conditions are slightly different from those used by Soundararajan. However
we note that if T’ is large enough, then any solution m?® = n? 4 t2d counted by
R(d) will have (m,n) = 1 and (¢,6) = 1, as required by Soundararajan. The
second of these conditions is trivial, since ¢ is prime. For the first, we note that if
p|l(m,n) then p?(t3d. Since d is square-free and t is prime, this can only happen
if p = ¢, contradicting the assumption that ¢ ¥ m. Clearly our conditions imply
that 3|d whenever R(d) > 0, and Soundararajan demonstrates that we also have



Quadratic class numbers divisible by 3 205

3|h(—d) for such d. For the proof of our theorem it will therefore suffice to show
that
#{d : R(d) # 0} >, X*/10~< (3)

for suitable choice of T'. In order to establish this we use Cauchy’s inequality in

the form
(S r@)" < (#ld: R@) #0y) (3 Reay).
d d

This yields

p 2
#{d: R(d) # 0} > M
2q R(d)?

and hence
#{d : R(d) # 0} > min{S, , §7/S,} (4)
with
S1 =Y R(d)
d
and

Sy = R(d)(R(d) —1).
d
We begin by considering S7. We have
Sy = #{(m,n,t) : }|m>® — n?, (m® — n?)/t? square-free},

with m,n,¢ subject to (1) and (2). A trivial modification of the argument given
by Soundararajan [7, §3] shows that the number of triples (m,n,t) satisfying (1)
and (2), for which #?|m3 —n? and such that (m3 —n?)/t? is divisible by p? for a
prime p > (log X)?, is o(MN/(Tlog X)) + o(M X/3T2/3). For this it suffices to
replace the conditions on ¢ in (1) and (2) by the weaker constraint (¢,6m) =1, as
used by Soundararajan, and to replace his range log X < p < Z in the definition
of Ny by (log X)? < p < Z. If we define

S(m,t) = #{n: t*}Im® —n?} — Z #n: p*t2|m® — n2)

p<(log X)2

it follows that
S12 ) S(m,t) + o(MN/(T'log X)), (5)

m,t

providing that 7' < X/4~¢ for some fixed ¢ > 0. Here it is understood that m, t,n
still satisfy the constraints (1) and (2).

We proceed to estimate S(m,t). Unless m is a quadratic residue of ¢ there
will be no corresponding values of n. However if m is a quadratic residue of ¢
the admissible values for n fall into 2 congruence classes modulo 18t2. There are
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N/18t2 + O(1) values of n € (N,2N] in each such congruence class. We now
observe that if p < (log X)? and (log X)? < T <t < 2T, then p # t. Moreover
(2) shows that if p?|m3 —n? then p > 5. Thus the solutions n of p?t2/m? —n? lie
in at most 4 congruence classes modulo 18p?t?, whence

2N
242 3 2

It then follows that

Stm,t) > 4+ 0(1) - 3 (QQ—N+0(1))

12 5<p< (log X)2 i
@( —4zp ?) +0((10g X)?)
> NT 2
for T < X'/*, since Y- _;p~? < 1/4. We insert this bound into (5) and note that

t has > M quadratic residues m € (M,2M], since M > T. This leads to the
bound

> > T?3X5/5(log X )71, (6)

Tlog X

providing that 7' < X/4=¢ for some fixed € > 0.
The key to our improvement over the work of Soundararajan is an alternative
treatment of So. This is at most the number of solutions (mq,ny,t1) # (ma, ne, ta)

to
t%(m?_ni) :t%(mg_n§)7 t?\m?—n?, (i: 172)’ (7)

subject to (1) and (2). If ¢; =t then
n? —n3=mi —mi#0.

Thus each pair my, mo determines O (M¢) pairs ny,ns, for any € > 0. Since ¢; =
ta|m3 —n? these values then determine O.(M?¢) values for t1,ts. The contribution
to Sp arising from solutions with ¢, = o is therefore

<. M2t2e <. T4/3X2/3+2€. (8)
Henceforth we will confine our attention to the case in which t; # t5.
We shall count solutions according to the values of t1,ts and k = toni+t1ns.
It follows from (7) that

tam? = k*modty, tim3 = k?modt,,

and
tam3 = t2mj mod k.
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Since t; and to are distinct primes, the first congruence is equivalent to one of at
most 3 conditions
my1 = myiomodty, 9)

say. Similarly the second congruence produces at most 3 conditions
My = Moo mod tg. (10)

To handle the third congruence we work modulo the maximal square-free factor
of k, given by
v=uv(k) = H .

plk

We note that ¢k would imply ¢;|n, since t; and ¢ are distinct primes. This
would entail ¢;|m; on account of the condition #3|m?$ — n?. However (1) requires
that ¢ {m, and we therefore conclude that

(tl,k) = 1, and (tg,k‘) = 1, (11)

the second condition being established in a precisely analogous way. Hence if p|k
and p = 2 mod 3, the congruence

t2m?3 = t3m3 mod p (12)

is equivalent to a linear condition m; = c¢ms modp, say. On the other hand, if
p =1 mod 3, then either we must have p|mq,ms, or (12) is equivalent to 3 linear
congruences of the form m; = c¢ms modp. On combining these conditions for
the various primes p|k we see that there is a collection of at most 3¢() lattices

AEO) C Z2 such that any pair m,, mg must satisfy
(m1,ma) € AL (13)

for some i. Moreover we will have det(AEO)) = vvgp, where vy is the product of
those primes p for which (12) implies p|mi, ms.

Since t1,t2 and v are coprime in pairs, by (11), we may combine the con-
ditions (9), (10) and (13), to deduce that (mq,m2) must lie in one of at most
32w () lattice cosets of the form (ayi,az) + A, where det(A) = t1tyvvy. Here we
may choose the coset representative to satisfy M < aj,as < 2M, for other-
wise there can be no relevant pairs (mi,ms) satisfying (1). If we now write
(u1,u2) = (my,mg) — (ar,as) it follows that

(U17U2)€A, |U1‘7‘U2‘<M.

We are now ready to count the number of available pairs (uy,us). For this we use
Lemma 1 of Davenport [4], which shows that if an n-dimensional lattice A has
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successive minima Aq,..., A, then the number of lattice points of norm at most

T is
n

< JJ+z/x).

=1

Moreover we have the standard Minkowski inequalities det(A) < A1... A, <
det(A). Thus, in our case, we find that if the successive minima are A; < A2 then

A < V/det(A) < Vituog < T?N < T3X1? < X2 (14)

Moreover, there are
< (T+M/M)(1+ M/Xs)

< 1+ M?/det(A) + M/
< 1+M2/t1t211+M/)\1
possible pairs (my,msg) for each of at most 327«(*) lattices A. Since v < k <

TN <« T?X'Y? « X?, we have 3*t“(") «_ X*¢ for any positive e. Taking into
consideration the contribution (8), it therefore follows that

M? M>7 (15)

T4/3 x2/3+2¢ | xe (1 M= M
So <e X7 (U gt ~

t1,t2,k

where for each triple tq,ts, k we take the smallest value of \; from all the corre-
sponding lattices A. The first term in the sum produces

<. XT3N <. T*xV/?te,
To handle the second term we use the following result, which will be proved at the

end of the paper.
Lemma 1. For any k € N define v(k) =[], p. Then for every ¢ > 0 we have

#{k<K:vk)=v} <. K°

uniformly in v.

Thus the second term in the sum on the right of (15) contributes

1
< X°M? N —#{k <STN : v(k) = v}
v<8TN

1
< XTM*(TN)® > -
u<8TNU

<. T3 x2/3+3
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Thus o
SQ <<E T4/3x2/3+3€ 4 T4X1/2+E 4 XE Z )\7 (16)

t1,t2,k 1
It remains to handle the contribution from the term M/A;. Let (u1,u2) be
the shortest non-zero vector in the lattice A, so that A\; is the length of (u1,u2).
We shall consider the set of triples (t1,%2, k) for which a given vector (u1,u2) can

arise. Thus the contribution to Sy is

#{t1,t2,v}

<. X°M .
Z lpa]? + |p2|?

K102

In view of (14) we will have pq,pu2 < X2. Moreover, according to the construc-
tion of the lattice A we must have wvg|u1, po, whence vy < h.c.f.(u1, p2). The
inequalities

A1 < V/det(A) < Virtavvy < TS/ZNI/Q\/% < T2X1/4\/U>0

therefore imply that

pi1, e << T2X YA e f. (g, po).-

Since (p1,p2) € A, we see from the way that the lattice A was constructed
using (9), (10) and (12), that t|u1, t2|pe and v[t3us — t2u3. If py and po are
both non-zero they determine O.(X¢) possible prime divisors t1,t3. Since ¢; and
to are distinct, the number #3u3 — 243 is non-zero and hence has O.(X¢) possible
divisors v. This produces a contribution

<. X3EM Z

i VP e f?

to S5. We shall consider terms in the dyadic range

B < /[pl? +|pel? < 2B,

for which we count pairs p1, pto according to the value of h = h.c.f.(u1, u2). Thus
each dyadic range produces

<e X¥MB™VY " # {1, pa < min(B, T>X012) : hlpg, po}

h<B

. in(B T2X1/4h1/2 2

<. XJEM371 Z (mln( ) - ))
h<B

<. X*MB 'min(B?, T*X/?10g 2B).
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Summing for values of B running over powers of 2 yields a total
<<5 MT2X1/4+46 <<5 T8/3X7/12+4€.

On the other hand, if p; vanishes, for example, there are O(T) choices for
t1 and O.(X?9) possible values for ¢ and v. This leads to a contribution

<. XSEMT Z |/j/2‘_1 <. X45MT <. T5/3X1/3+4€.
p2KX?
On comparing these bounds with (16) we see that

Sy <. TY/3X2/3+3 L paxl/2+e | 78/3 xT/12+4e | 75/3 x1/3+4e

Clearly the fourth term is redundant, being dominated by the third term.
Finally, inserting this last bound into (4), and using (6), we find that

#{d: R(d) # 0} > X2 min{T?/3X°/6 X T=8/3X7/6 1-4/3x13/12}

The optimal choice for T is thus 7 = X!/19 which matches the first and third
terms in the minimum, and leads to the lower bound X°/19=5¢  This establishes
the required bound (3), on re-defining ¢.

It remains to prove Lemma 1. Since v(k) < v we can clearly suppose that
v < K. Then, for any n > 0 we have

#{k < K :v(k) =v} < Z (%)”éK”H(Zp*e”)
'v(kk)—u plv =0
However . N
D P2 = A,
e=0 e=0

say, whence
K" A(n)“ ™).

#{k<K:vk)=v}<
v < K we deduce that

Since w(v) = O((log 3v)/(loglog 3v)) and
#{k < K :v(k) =v} <, K"

and the result follows, on taking n = ¢/2.
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