KILLING VECTOR FIELDS OF A SPACETIME

Tominosuke Otsuki

(Received December 14, 1998)

Abstract. We studied the geodesics of a spacetime with the pseudo-Riemannian metric:

\[ds^2 = \frac{1}{x_4 x_4} \left\{ \sum_{b,c=1}^{3} \left(\delta_{bc} - \frac{ax_b x_c}{1 + ar^2} \right) dx_b dx_c - \frac{1}{1 + ax_4 x_4} dx_4 dx_4 \right\} \]

on \(\mathbb{R}^3 \times \mathbb{R}_+ \), where \(r^2 = \sum_{b=1}^{3} x_b x_b \) and \(a \) = constant, which are plane quadratic curves (in [12]). In this paper, we shall determine all the Killing vector fields of this spacetime and choose special pairs out of them with interesting properties for the case \(a > 0 \).

AMS 1991 Mathematics Subject Classification. Primary 53B30, 53B50.

Key words and phrases. Killing Vector Fields, Einstein Condition.

§0. Introduction

We investigated the pseudo-Riemannian metric on \(\mathbb{R}_+^n = \mathbb{R}^{n-1} \times \mathbb{R}_+ \) with the canonical coordinates \((x_1, \ldots, x_{n-1}, x_n) \):

\[ds^2 = \frac{1}{x_n^2} \left(\frac{1}{Q} dr \, dr + r^2 \sum_{\alpha, \beta=1}^{n-2} h_{\alpha \beta} du^\alpha du^\beta - P \, dx_n dx_n \right). \]

where \(Q \) and \(P \) are functions on \(\mathbb{R}_+^n - \{0\} \), \(r^2 = x_1^2 + \cdots + x_{n-1}^2 \) and

\[ds^2 = \sum_{\alpha, \beta=1}^{n-2} h_{\alpha \beta} du^\alpha du^\beta \]

is the standard metric on the unit sphere \(S^{n-2} \); \(r^2 = 1 \) in \(\mathbb{R}^{n-1} \), satisfying the Einstein condition in [9], [10] and [11]. Especially for the metric with
\[Q = Q(x, t) \text{ and } P = P(x, t), \quad x = r/x_n, \quad t = x_n, \] as a system of partial differential equations of order 2 on the components of the metric tensor the Einstein condition is reduced to the partial differential equation on \(Q \) as

\[
(2Q - \varphi)x^2 \frac{\partial^2 Q}{\partial x^2} - (3Q - 2\varphi)x^t \frac{\partial^2 Q}{\partial x \partial t} + (Q - \varphi)t^2 \frac{\partial^2 Q}{\partial t^2} \\
+ \left((2n - 4)Q - n\varphi\right)x^2 \frac{\partial Q}{\partial x} - \left((n - 4)Q - (n - 2)\varphi\right)t \frac{\partial Q}{\partial t} \\
- \frac{1}{Q} \left(x \frac{\partial Q}{\partial x} - t \frac{\partial Q}{\partial t}\right) \left(2(Q - \varphi)x^2 \frac{\partial Q}{\partial x} - (Q - 2\varphi)t \frac{\partial Q}{\partial t}\right) \\
+ 2(n - 3)Q(1 - \varphi) = 0,
\]

and \(P = x^2/(Q - \varphi) \), where \(\varphi(x) \) is an auxiliary free integral function of \(x \) derived from the original Einstein condition (Theorem 1 in [10]) which is correspond to the first integrals for the ordinary differential equations. This function \(\varphi \) becomes \(1 - x^2 \) for the Minkowski metric

\[
ds^2 = \frac{1}{x_n^2} \left(\sum_{a=1}^{n-1} dx_a dx_a - dx_n dx_n \right).
\]

For \(n = 4 \) and \(\varphi = 1 - x^2 \), we obtain \(Q = 1 + ax^2 \) and \(P = 1 + a\ell^2 \) as the solution of the above partial differential equation ([11]) and the first metric is written as the one in Abstract in the coordinates \((x_1, x_2, x_3, x_4)\). If we change the coordinates as \(x_i \rightarrow \tilde{x}_i = \sqrt[4]{ax_i} \), we may consider as \(a = 1 \), but we do not use this device in order to avoid miscalculations and for the study of the interesting case: \(a < 0 \), for which the metric becomes Riemannian in some place in the coming work. Since this metric has constant curvature 1 by (1.4), it will be classified as one of de Sitter spacetimes in the theory of general relativity.

§1. Killing vector fields

Now, we call the above metric \(\text{Ot-metric} \) in this paper which satisfies the Einstein condition and denote it as

\[
ds^2 = \sum_{i,j=1}^{4} g_{ij} dx_i dx_j, \quad g_{ij} = g_{ji},
\]

where

\[
g_{bc} = \frac{1}{x_4 x_4} \left(\delta_{bc} - \frac{ax_b x_c}{1 + ax_4 x_4} \right), \quad g_{b4} = 0, \quad g_{44} = -\frac{1}{x_4 x_4(1 + ax_4 x_4)},
\]

\(b, c = 1, 2, 3 \),
from which \((g^{ij}) = (g_{ij})^{-1}\) is given by
\[
g^{bc} = x_A x_A (\delta^{bc} + ax_b x_c), \quad g^{b4} = 0, \quad g^{A4} = -x_A x_A (1 + ax_A x_A).
\]

We obtain easily the Christoffel symbols \(\{j^i_h\}\) of (1.2):
\[
\{j^i_h\} = \frac{1}{2} \sum_k g^{ik} \left(\frac{\partial g_{jk}}{\partial x_h} + \frac{\partial g_{kh}}{\partial x_j} - \frac{\partial g_{jh}}{\partial x_k} \right)
\]
as
\[
\{e^i_c\} = -ax_c \left(\delta_{bc} - \frac{ax_b x_c}{1 + ar^2} \right), \quad \{e^4_c\} = -\frac{1 + ax_A x_A}{x_A} \left(\delta_{bc} - \frac{ax_b x_c}{1 + ar^2} \right),
\]
\[
\{b^i 4\} = -\frac{1}{x_A^2} \delta^i_b, \quad \{b^4 4\} = 0,
\]
\[
\{4^i 4\} = 0, \quad \{4^4 4\} = -\frac{1 + 2ax_A x_A}{x_A(1 + ax_A x_A)}.
\]

The components \(R_{j_h k}^i\) of the curvature tensor:
\[
R_{j_h k}^i = \frac{\partial \{j^i_h\}}{\partial x_k} - \frac{\partial \{j^i_k\}}{\partial x_h} + \sum_l \{j^i_h\} \{l^k_j\} - \sum_l \{j^i_k\} \{l^h_j\}
\]
are computed by (1.3) as
\[
R_{a bc}^e = \delta_{b}^e g_{ac} - \delta_{c}^e g_{ab}, \quad R_{a bc}^4 = 0,
\]
\[
R_{A bc}^e = 0, \quad R_{A bc}^4 = 0, \quad R_{b^i 4c}^e = 0, \quad R_{b^4 4c} = g_{ce},
\]
\[
R_{i 4c}^e = -g_{i4} \delta^e_c, \quad R_{i 4c}^4 = 0,
\]
which are written simply as
\[
R_{j_h k}^i = \delta^i_{h} g_{jk} - \delta^i_{k} g_{jh}.
\]

We obtain the Ricci curvature \(R_{jk} = \sum_l R_{l}^j l k\) and the scalar curvature \(R = \sum_{j,k} g^{jk} R_{jk}\) as
\[
R_{jk} = 3g_{jk} \quad \text{and} \quad R = 12,
\]
which shows that the metric (1.1) satisfies the Einstein condition:
\[
R_{ij} = \frac{R}{4} g_{ij},
\]
Now, let $V = \sum v^i \frac{\partial}{\partial x^i}$ be a Killing field which satisfies the condition:

$$v_{i,j} + v_{j,i} = \frac{\partial v_i}{\partial x_j} + \frac{\partial v_j}{\partial x_i} - 2 \sum_k \{^i_j\} v_k = 0.$$

By means of (1.2) and (1.3) this condition can be written as

(1.6) $$\frac{\partial v_b}{\partial x_c} + \frac{\partial v_c}{\partial x_b} + 2a \left(\delta_{bc} - \frac{ax_b x_c}{1 + ax^2} \right) \sum_e x_e v_e \delta_{bc} - \frac{ax_b x_c}{1 + ax^2} \right) v_4 = 0,$$

(1.7) $$\frac{\partial v_b}{\partial x_4} + \frac{\partial v_4}{\partial x_b} + \frac{2}{x_4} v_b = 0,$$

and

(1.8) $$\frac{\partial v_4}{\partial x_4} + \frac{1 + 2ax_4}{x_4(1 + ax_4 x_4)} v_4 = 0.$$

Integrating (1.8), we obtain easily

(1.9) $$v_4 = \frac{f}{x_4 \sqrt{1 + ax_4 x_4}}, \quad f = f(x_1, x_2, x_3).$$

Substituting this relation into (1.7) we obtain

$$\frac{\partial v_b}{\partial x_4} + \frac{2}{x_4} v_b + \frac{1}{x_4 \sqrt{1 + ax_4 x_4}} \frac{\partial f}{\partial x_b} = 0,$$

from which we obtain

$$\frac{\partial}{\partial x_4} (x_4 v_b) = -\frac{x_4}{\sqrt{1 + ax_4 x_4}} \frac{\partial f}{\partial x_b}$$

and integrating this relation we obtain

$$x_4 v_b = -\frac{\sqrt{1 + ax_4 x_4}}{a} \frac{\partial f}{\partial x_b} + f_b, \quad f_b = f_b(x_1, x_2, x_3),$$

i.e.

(1.10) $$v_b = -\frac{\sqrt{1 + ax_4 x_4}}{ax_4 x_4} \frac{\partial f}{\partial x_b} + \frac{f_b}{x_4 x_4}.$$

From (1.10) we obtain

$$\frac{\partial v_b}{\partial x_c} = -\frac{\sqrt{1 + ax_4 x_4}}{ax_4 x_4} \frac{\partial^2 f}{\partial x_b \partial x_c} + \frac{1}{x_4 x_4} \frac{\partial f_b}{\partial x_c}.$$
and substituting these relations into (1.6) we obtain the following conditions regarding integral free functions \(f(x_1, x_2, x_3) \) and \(f_b(x_1, x_2, x_3) \):

\[
(1.11) \quad -2\sqrt{1 + ax_4x_1} \frac{\partial^2 f}{\partial x_b \partial x_c} + \frac{\partial f_b}{\partial x_c} + \frac{\partial f_e}{\partial x_b} \\
+ 2 \left(\delta_{bc} - \frac{ax_bx_c}{1 + ar^2} \right) \left\{ \sqrt{1 + ax_4x_1} \left(f - \sum_e \frac{\partial f}{\partial x_e} x_e \right) + a \sum_e f_e x_e \right\} = 0,
\]

\(b, c = 1, 2, 3. \)

If we can find \(f, f_b \) satisfying (1.11), then we obtain the solution \(v_i \) satisfying (1.6)-(1.8). Noticing the indendency of variables, (1.11) can be replaced by

\[
(1.12) \quad \frac{\partial^2 f}{\partial x_b \partial x_c} = a \left(\delta_{bc} - \frac{ax_bx_c}{1 + ar^2} \right) \left(f - \sum_e \frac{\partial f}{\partial x_e} x_e \right),
\]

\[
(1.13) \quad \frac{\partial f_b}{\partial x_c} + \frac{\partial f_e}{\partial x_b} + 2a \left(\delta_{bc} - \frac{ax_bx_c}{1 + ar^2} \right) \sum_e f_e x_e = 0.
\]

We see that \(f \) and \(f_b, b = 1, 2, 3, \) can be treated separately.

§2. Solutions of the differential equations (1.12) and (1.13)

Supposing \(f(x_1, x_2, x_3) \) is analytic on \(x_1, x_2, x_3 \), we put

\[
f = \sum_{m=0}^{\infty} P_m(x_1, x_2, x_3),
\]

where \(P_m \) is a homogeneous polynomial of order \(m \) in \(x_1, x_2, x_3 \). Substituting this expression into (1.12), we obtain

\[
(1 + ar^2) \sum_{m=2}^{\infty} \frac{\partial^2 P_m}{\partial x_b \partial x_c} = a \left(1 + ar^2 \right) \delta_{bc} - ax_bx_c \left(P_0 - \sum_{m=2}^{\infty} (m - 1)P_m \right),
\]

which we rewrite in considering the arrangement as

\[
(2.2) \quad \sum_{m=2}^{\infty} \frac{\partial^2 P_m}{\partial x_b \partial x_c} + ar^2 \sum_{m=2}^{\infty} \frac{\partial^2 P_m}{\partial x_b \partial x_c} = a \delta_{bc} \left(P_0 - \sum_{m=2}^{\infty} (m - 1)P_m \right)
\]

\[
+ a^2 \left(r^2 \delta_{bc} - x_bx_c \right) \left(P_0 - \sum_{m=2}^{\infty} (m - 1)P_m \right).
\]

Using the equalities

\[
(2.3) \quad \frac{\partial^2 P_m}{\partial x_b \partial x_c} = 2mr^{2m-4} \left(r^2 \delta_{bc} + 2(m - 1)x_bx_c \right), \quad m = 1, 2, 3, \ldots,
\]
we obtain \(P_m \) in turn up to \(m = 10 \) as follows:

\[
P_2 = \frac{a}{2} r^2, \quad P_3 = 0, \quad P_4 = -\frac{a^2}{8} r^4, \quad P_5 = 0, \quad P_6 = \frac{a^3}{16} r^6, \quad P_7 = 0, \quad P_8 = -\frac{5a^4}{128} r^8, \quad P_9 = 0, \quad P_{10} = \frac{7a^5}{256} r^{10}.
\]

Through the arguments determining these \(P_m \), we see that we can put

\[
P_{2m+1} = 0, \quad m = 1, 2, 3, \ldots
\]

and

\[
f = P_1 + \varphi(X), \quad X = r^2.
\]

Denoting the derivative of \(\varphi \) with respect to \(X \) by "\(\varphi' \)", we have

\[
\frac{\partial f}{\partial x_c} = \frac{\partial P_1}{\partial x_c} + 2\varphi' x_c,
\]

\[
\frac{\partial^2 f}{\partial x_b \partial x_c} = 2\varphi' \delta_{bc} + 4\varphi'' x_b x_c,
\]

and

\[
f - \sum_{e} \frac{\partial f}{\partial x_e} x_e = \varphi - 2\varphi' r^2.
\]

Substituting these into (1.12), we obtain

\[
(2\varphi' - a\varphi + 2a\varphi' X) \delta_{bc} + \left(4\varphi'' + \frac{a^2}{1 + aX} (\varphi - 2\varphi' X) \right) x_b x_c = 0.
\]

Contracting this equality with \(c \) by multiplying with \(x_c \), we obtain

\[
(2\varphi' - a\varphi + 2a\varphi' X) x_b + (4\varphi'' + \frac{a^2}{1 + aX} (\varphi - 2\varphi' X)) r^2 x_b = 0,
\]

and hence

\[
2\varphi' - a\varphi + 2a\varphi' X + X \left(4\varphi'' + \frac{a^2}{1 + aX} (\varphi - 2\varphi' X) \right) = 0.
\]

Substituting this expression into (2.4), we obtain

\[
\left\{ 4\varphi'' + \frac{a^2}{1 + aX} (\varphi - 2\varphi' X) \right\} (X \delta_{bc} - x_b x_c) = 0.
\]
Hence it must hold

\begin{equation}
4\varphi'' + \frac{a^2}{1 + aX} (\varphi - 2\varphi' X) = 0,
\end{equation}

\begin{equation}
2\varphi' - a\varphi + 2a\varphi' X = 0.
\end{equation}

From (2.6) we obtain by integration

\begin{equation}
\varphi = P_0 \sqrt{1 + aX} = P_0 \sqrt{1 + ar^2}.
\end{equation}

We can easily see that this \(\varphi \) satisfies (2.5). Thus we see that the general solution of (1.12) is given by

\begin{equation}
f(x_1, x_2, x_3) = \lambda_1 x_1 + \lambda_2 x_2 + \lambda_3 x_3 + P_0 \sqrt{1 + ar^2},
\end{equation}

where \(\lambda_1, \lambda_2, \lambda_3 \) and \(P_0 \) are integral constants.

Next, we shall treat (1.13). First, we put

\begin{equation}
f_b = \sum_{m=0}^{\infty} P_{bm},
\end{equation}

where \(P_{bm} \) is a homogeneous polynomial of order \(m \) in \(x_1, x_2, x_3 \). Substituting this expression into (1.13) and using the notation

\begin{equation}
Q_{m+1} = \sum_{e} P_{em} x_e
\end{equation}

for simplicity, we obtain

\[
\sum_{m=0}^{\infty} \left(\frac{\partial P_{bm}}{\partial x_c} + \frac{\partial P_{cm}}{\partial x_b} \right) + 2a \left(\delta_{bc} - \frac{ax_c x_e}{1 + ar^2} \right) \sum_{m=0}^{\infty} Q_{m+1} = 0,
\]

which we rewrite as, considering the arrangement,

\begin{equation}
\sum_{m=1}^{\infty} \left(\frac{\partial P_{bm}}{\partial x_c} + \frac{\partial P_{cm}}{\partial x_b} \right) + ar^2 \sum_{m=1}^{\infty} \left(\frac{\partial P_{bm}}{\partial x_c} + \frac{\partial P_{cm}}{\partial x_b} \right)
+ 2a \delta_{bc} \sum_{m=1}^{\infty} Q_m + 2a^2 \left(r^2 \delta_{bc} - x_b x_e \right) \sum_{m=1}^{\infty} Q_m = 0.
\end{equation}

From the terms of \(O^1 \)-order, we obtain

\begin{equation}
\frac{\partial P_{b1}}{\partial x_c} + \frac{\partial P_{c1}}{\partial x_b} = 0.
\end{equation}
From the terms of order 1 we obtain the relation:

\[
\frac{\partial P_{b2}}{\partial x_c} + \frac{\partial P_{b2}}{\partial x_b} + 2a_0 \delta_{bc} Q_1 = 0
\]

and, multiplying by \(x_c\) and contracting with respect to \(c\),

\[
P_{b2} + \frac{\partial Q_3}{\partial x_b} + 2ax_b Q_1 = 0
\]

and using the same way for \(b\)

\[
Q_3 = \frac{a}{2} r^2 Q_1.
\]

Going back to the previous equality we obtain

\[
P_{b2} = \frac{a}{2} (r^2 P_{b0} - 2x_b Q_1).
\]

We see easily that the above expression satisfies the first one.

Next, from the terms of order 2 we obtain the relation:

\[
\frac{\partial P_{b3}}{\partial x_c} + \frac{\partial P_{c3}}{\partial x_b} = \frac{a}{2} r^2 \left(\frac{\partial P_{b1}}{\partial x_c} + \frac{\partial P_{c1}}{\partial x_b} \right) + 2a \delta_{bc} Q_2 = 0,
\]

which becomes

\[
\frac{\partial P_{b3}}{\partial x_c} + \frac{\partial P_{c3}}{\partial x_b} = 0
\]

by means of (2.12) and \(Q_2 = \sum_b P_{b1} x_b = 0\). We obtain easily from these relations

\[
P_{b3} = 0 \quad \text{and} \quad Q_4 = 0.
\]

We obtain \(P_{b_m}\) in turn up to \(m = 8\) by analogous arguments as follows:

\[
P_{b4} = \frac{1}{8} a^2 r^2 (r^2 P_{b0} - 4x_b Q_1), \quad P_{b5} = 0,
\]

\[
P_{b6} = \frac{1}{16} a^3 r^4 (r^2 P_{b0} - 6x_b Q_1), \quad P_{b7} = 0,
\]

\[
P_{b8} = -\frac{5}{128} a^4 r^6 (r^2 P_{b0} - 8x_b Q_1).
\]

Through the arguments determining these \(P_m\), for any positive integer \(m\) we suppose that

\[
(2.13) \quad P_{b3} = P_{b5} = \cdots = P_{b(2m+1)} = 0, \\
P_{b(2n)} = (-1)^{n-1} k_n a^n r^{2n-2} (r^2 P_{b0} - 2nx_b Q_1), \quad n = 1, 2, 3, \ldots, m.
\]
From the terms of order $2m + 2$ of (2.11), we obtain
\[
\frac{\partial P_{b[2m+3]}^{}}{\partial x_c} + \frac{\partial P_{c[2m+3]}^{}}{\partial x_b} + a r^2 \left(\frac{\partial P_{b[2m+1]}^{}}{\partial x_c} + \frac{\partial P_{c[2m+1]}^{}}{\partial x_b} \right) + 2a \delta_{bc} Q_{2m+2} + 2a^2 (r^2 \delta_{bc} - x_b x_c) Q_{2m} = 0,
\]
which become by (2.13)
\[
\frac{\partial P_{b[2m+3]}^{}}{\partial x_c} + \frac{\partial P_{c[2m+3]}^{}}{\partial x_b} = 0.
\]
Multiplying this expression by x_c and contracting with respect to c, we obtain
\[
(2m + 2) P_{b[2m+3]}^{(2m+4)} + \frac{\partial Q_{2m+4}^{}}{\partial x_b} = 0,
\]
which implies $Q_{2m+4} = 0$ and $P_{b[2m+3]} = 0$. Next, from the terms of order $2m + 1$, we obtain
\[
\frac{\partial P_{b[2m+2]}^{}}{\partial x_c} + \frac{\partial P_{c[2m+2]}^{}}{\partial x_b} + a r^2 \left(\frac{\partial P_{b[2m]}^{}}{\partial x_c} + \frac{\partial P_{c[2m]}^{}}{\partial x_b} \right) + 2a \delta_{bc} Q_{2m+1} + 2a^2 (r^2 \delta_{bc} - x_b x_c) Q_{2m-1} = 0.
\]
By means of (2.13) we obtain
\[
\frac{\partial P_{b[2m]}^{}}{\partial x_c} = (-1)^{m-1} k_m a^m r^{2m-4} 2 m \left\{ r^2 (P_{b0} x_c - P_{d0} x_b) - (r^2 \delta_{bc} + 2(m-1) x_b x_c) Q_1 \right\}
\]
and
\[
Q_{2m+1} = (-1)^m (2m - 1) k_m a^m r^{2m} Q_1,
Q_{2m-1} = (-1)^{m-1} (2m - 3) k_m^{m-1} a^{m-1} r^{2m-2} Q_1.
\]
Substituting these into the above expression, we obtain
\[
\frac{\partial P_{b[2m+2]}^{}}{\partial x_c} + \frac{\partial P_{c[2m+2]}^{}}{\partial x_b} + (-1)^{m+1} a^m r^{2m-2} \left\{ \left((4m - 1) k_m - (2m - 3) k_{m-1} \right) x_b x_c \right\} Q_1 = 0.
\]
Multiplying this expression by x_c and contracting with respect to c, we obtain
\[
(2m + 1) P_{b[2m+2]}^{(2m+3)} + \frac{\partial Q_{2m+3}^{}}{\partial x_b} + (-1)^m 2a^{m+1} r^{2m} (4m^2 - 1) k_m x_b Q_1 = 0,
\]
from which we obtain by the same way
\[Q_{2m+3} = (-1)^{m+1} \frac{4m^2 - 1}{2(m+1)} k_m a^{m+1} r^{2m+2} Q_1 \]
and
\[\frac{\partial Q_{2m+3}}{\partial x_b} = (-1)^{m+1} \frac{4m^2 - 1}{2(m+1)} k_m a^{m+1} r^{2m} (r^2 P_{b0} + 2(m+1)x_b Q_1). \]
Using these equalities, we obtain finally
\[P_{b(2m+2)} = (-1)^m k_m \frac{2m-1}{2(m+1)} a^{m+1} r^{2m} (r^2 P_{b0} - 2(m+1)x_b Q_1) \]
and so we can put
\[k_{m+1} = \frac{2m-1}{2(m+1)} k_m. \]
Thus, we have verified that (2.13) holds for all integers \(m > 0 \) and
\[k_m = \frac{(2m-3)(2m-5)\cdots 1}{2m \cdot 2(m-1) \cdots 4} k_1 = \frac{(2m-3)!!}{2^m m!} \]
for \(m > 1 \), since \(k_1 = \frac{1}{2} \). Thus, we obtain the formulas:

\[P_{b(2m)} = (-1)^{m-1} \frac{(2m-3)!!}{2^m m!} a^{m+2} r^{2m-2} (r^2 P_{b0} - 2mx_b Q_1), \quad m = 2, 3, \ldots \]

and
\[P_{b2} = \frac{a}{2} (r^2 P_{b0} - 2x_b Q_1), \quad Q_1 = \sum e P_{e0} x_e. \]

Arranging the results in this section, we have the following theorem.

Theorem 1. For the spacetime on \(R^4_+ = R^3 \times R_+ \) with the metric (1.1) and (1.2) with \(a > 0 \), any Killing field \(V = \sum_i v^i \partial / \partial x_i \) is given by the formula:

\[(v_b) = \frac{1}{x_4 x_4} \left\{ -\sqrt{1 + ax_4 x_4} \frac{\lambda + \sqrt{1 + ar^2}}{a} p - (\mu \times \bar{x}) \right. \\
- \frac{1}{\sqrt{1 + ar^2}} \left(p_0 \sqrt{1 + ax_4 x_4} + a (p \cdot \bar{x}) \right) \bar{x} \left\}, \quad v_4 = \frac{1}{x_4 \sqrt{1 + ax_4 x_4}} \left((\lambda \cdot \bar{x}) + p_0 \sqrt{1 + ar^2} \right), \quad r^2 = (\bar{x} \cdot \bar{x}), \right. \]
where \(v_i = \sum_{j=1}^{4} g_{ij} v^j \) and \(\lambda = \begin{pmatrix} \lambda_1 \\ \lambda_2 \\ \lambda_3 \end{pmatrix} \), \(p = \begin{pmatrix} p_1 \\ p_2 \\ p_3 \end{pmatrix} \), \(\mu = \begin{pmatrix} \mu_1 \\ \mu_2 \\ \mu_3 \end{pmatrix} \), \(\vec{x} = \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} \), considered as vectors in \(\mathbb{R}^3 \) with the standard Euclidean metric: \(ds^2 = \sum_b dx_b dx_b \). \(\cdot \) and \(\times \) denote the inner product and the outer product of two vectors. Therefore \(V \) depends on 10 real constants \(p_0, \lambda_b, p_b, \mu_b, b = 1, 2, 3 \).

Proof. We have from (2.14)

\[
f_b = P_{b0} + P_{b1} + \frac{a}{2}(r^2 P_{b0} - 2x_b Q_1) + \sum_{m=2}^{\infty} (-1)^{m-1} \frac{(2m-3)!!}{2^m m!} \alpha^m r^{2m-2}(r^2 P_{b0} - 2mx_b Q_1) \]

\[
= P_{b1} + \left(1 + \frac{a}{2} r^2 + \sum_{m=2}^{\infty} (-1)^{m-1} \frac{(2m-3)!!}{2^m m!} \alpha^m r^{2m-2} \right) P_{b0} - \left(a + \sum_{m=2}^{\infty} (-1)^{m-1} \frac{(2m-3)!!}{2^m m! (m-1)!} \alpha^m r^{2m-2} \right) x_b Q_1.
\]

Since we have

\[
(1 + t)^{\frac{1}{2}} = 1 + \frac{1}{2} t + \sum_{m=2}^{\infty} (-1)^{m-1} \frac{(2m-3)!!}{m! 2^m} t^m
\]

and

\[
(1 + t)^{-\frac{1}{2}} = 1 + \sum_{m=2}^{\infty} (-1)^{m-1} \frac{(2m-3)!!}{(m-1)! 2^{m-1}} t^{m-1},
\]

we obtain

\[
f_b = P_{b1} + (1 + ar^2)^{\frac{1}{2}} P_{b0} - a(1 + ar^2)^{-\frac{1}{2}} \left(\sum_e P_{e0} x_e \right) x_b.
\]

The \(3 \times 3 \)-matrix \(\frac{\partial P_{b1}}{\partial x_c} \) is skew by (2.12), we denote it as

\[
\left(\frac{\partial P_{b1}}{\partial x_c} \right) = \begin{pmatrix} 0 & \mu_3 & -\mu_2 \\ -\mu_3 & 0 & \mu_1 \\ \mu_2 & -\mu_1 & 0 \end{pmatrix},
\]
then we have \((P_{b1}) = -(\mu \times \tilde{x})\). Setting \(P_{b0} = p_0\), we obtain

\[
(f_b) = -(\mu \times \tilde{x}) + \sqrt{1 + ar^2} p - \frac{a}{\sqrt{1 + ar^2}} (p \cdot \tilde{x}) \tilde{x}
\]

and

\[
f = \lambda \cdot \tilde{x} + p_0 \sqrt{1 + ar^2}, \quad p_0 = P_0.
\]

Finally from (1.10) and the above equalities we obtain

\[
(v_b) = -\sqrt{1 + ax_4x_4} \left(\frac{\lambda}{a} + \frac{ap_0}{\sqrt{1 + ar^2}} \tilde{x} \right)
\]

\[
+ \frac{1}{x_4^{x_4}} \left\{ -(\mu \times \tilde{x}) + \sqrt{1 + ar^2} p - \frac{a}{\sqrt{1 + ar^2}} (p \cdot \tilde{x}) \tilde{x} \right\}
\]

\[
= \frac{1}{x_4 \sqrt{1 + ax_4x_4}} \left\{ \sqrt{1 + ax_4x_4} \lambda + \sqrt{1 + ar^2} p - (\mu \times \tilde{x}) \right.
\]

\[
- \frac{1}{\sqrt{1 + ar^2}} (p_0 \sqrt{1 + ax_4x_4} + a(p \cdot \tilde{x}) \tilde{x}) \right\}
\]

and

\[
v_4 = \frac{1}{x_4 \sqrt{1 + ax_4x_4}} \left((\lambda \cdot \tilde{x}) + p_0 \sqrt{1 + ar^2} \right).
\]

Q.E.D.

Now we compute the norm of Killing field \(V\) given by (2.15):

\[(2.16) \quad N(V) = \sum_{i,j=1}^{4} g_{ij} v^i v^j = \sum_{i,j=1}^{4} g^{ij} v^i v^j.\]

Using the notations in Theorem 1 and setting \(\bar{v} = (v_b)\), we have

\[
N(V) = x_4 x_4 \sum_{b,c=1}^{3} (\bar{g}^{bc} + ax_b x_c) \bar{v}_b \bar{v}_c - x_4 x_4 (1 + ax_4 x_4) \bar{v}_4 \bar{v}_4
\]

and so

\[
N(V) = x_4 x_4 \left\{ (\bar{v} \cdot \bar{v}) + a(\bar{v} \cdot \tilde{x})^2 \right\} - \left((\lambda \cdot \tilde{x}) + p_0 \sqrt{1 + ar^2} \right)^2
\]
\[
= \frac{1}{x_4 x_4} \left\{ \frac{1 + ax_4 x_4}{a^2} (\lambda \cdot \lambda) + (1 + ar^2)(p \cdot p) \\
+ \left((\mu \times \tilde{x}) \cdot (\mu \times \tilde{x}) \right) + \frac{r^2}{1 + ar^2} \left(p_0 \sqrt{1 + ax_4 x_4} + a(p \cdot \tilde{x}) \right)^2 \\
- \frac{2\sqrt{1 + ax_4 x_4} \sqrt{1 + ar^2}}{a} (\lambda \cdot p) + \frac{2\sqrt{1 + ax_4 x_4}}{2} \left((\lambda \times \mu) \cdot \tilde{x} \right) \\
+ \frac{2\sqrt{1 + ax_4 x_4}}{a \sqrt{1 + ar^2}} \left(p_0 \sqrt{1 + ax_4 x_4} + a(p \cdot \tilde{x}) \right) (\lambda \cdot \tilde{x}) \\
- \frac{2\sqrt{1 + ar^2}}{a} \left(p \times \mu \right) \cdot \tilde{x} - 2 \left(p_0 \sqrt{1 + ax_4 x_4} + a(p \cdot \tilde{x}) \right) (p \cdot \tilde{x}) \right\} \\
+ \frac{2\sqrt{1 + ax_4 x_4}}{a} \left(p_0 \sqrt{1 + ax_4 x_4} + a(p \cdot \tilde{x}) \right) \left(\frac{1}{a} (\lambda \cdot \tilde{x}) + \sqrt{1 + ar^2} (p \cdot \tilde{x}) \right)^2 \\
- \left((\lambda \cdot \tilde{x}) + p_0 \sqrt{1 + ar^2} \right)^2 \\
\right\}
\]

which is arranged as follows

(2.17)

\[
x_4 x_4 N(v) = \frac{1 + ax_4 x_4}{a^2} (\lambda \cdot \lambda) + (1 + ar^2)(p \cdot p) + r^2(\mu \cdot \mu) \\
- (\mu \cdot \tilde{x})^2 + \frac{1}{a} (\lambda \cdot \tilde{x})^2 - a(p \cdot \tilde{x})^2 + \frac{2p_0 \sqrt{1 + ar^2}}{a} (\lambda \cdot \tilde{x}) \\
- 2p_0 \sqrt{1 + ax_4 x_4} (p \cdot \tilde{x}) + \frac{2\sqrt{1 + ax_4 x_4}}{a} ((\lambda \times \mu) \cdot \tilde{x}) \\
- 2\sqrt{1 + ar^2} \left(p \times \mu \right) \cdot \tilde{x} - 2\sqrt{1 + ar^2} \sqrt{1 + ax_4 x_4} (\lambda \cdot p) \\
+ p_0^2 (r^2 - x_4 x_4).
\]

Example 1. Case \(p_0 = 0, p = 0 \).

\[
\tilde{v} = (v_b) = \frac{1}{x_4 x_4} \left\{ - \frac{\sqrt{1 + ax_4 x_4}}{a} \lambda - (\mu \times \tilde{x}) \right\},
\]

\[
v_4 = \frac{1}{x_4 \sqrt{1 + ax_4 x_4}} (\lambda \cdot \tilde{x}),
\]

\[
N(V) = \frac{1}{x_4 x_4} \left\{ \frac{1 + ax_4 x_4}{a^2} (\lambda \cdot \lambda) + r^2(\mu \cdot \mu) - (\mu \cdot \tilde{x})^2 \\
+ \frac{1}{a} (\lambda \cdot \tilde{x})^2 + \frac{2\sqrt{1 + ax_4 x_4}}{a} ((\lambda \times \mu) \cdot \tilde{x}) \right\} \\
= \frac{1}{x_4 x_4} \left\{ \frac{\sqrt{1 + ax_4 x_4}}{a} \lambda + (\mu \times \tilde{x}) \right\}^2 + \frac{1}{a} (\lambda \cdot \tilde{x})^2 \right\},
\]
which implies that \(N(V) \geq 0 \) and \(N(V) = 0 \) is equivalent to
\[
\mu \times \bar{x} = -\frac{\sqrt{1 + \alpha x_4 x_4}}{a} \lambda
\]
and this relation implies \((\lambda \cdot \mu) = 0\). Hence, if \((\lambda \cdot \mu) \neq 0\), everywhere \(N(V) > 0 \), and so \(V \) is spacelike.

Example 2. Case \(p_0 \neq 0 \), \(\lambda = p = 0 \).
\[
\ddot{v} = (v_b) = \frac{1}{x_4 x_4} \left\{ -\left(\mu \times \bar{x} \right) - \frac{\sqrt{1 + \alpha x_4 x_4}}{\sqrt{1 + a r^2}} p_0 \bar{x} \right\},
\]
\[
v_4 = \frac{p_0 \sqrt{1 + a r^2}}{x_4 \sqrt{1 + \alpha x_4 x_4}},
\]
\[
N(V) = (\mu \times \bar{x})^2 + p_0^2 (r^2 - x_4 x_4),
\]
which shows that if \(r > x_4 \), \(V \) is spacelike.

Example 3. Case \(p_0 \neq 0 \), \(\lambda = p = \mu = 0 \).
\[
v_b = -\frac{p_0 \sqrt{1 + \alpha x_4 x_4}}{x_4 x_4 \sqrt{1 + a r^2}} \bar{x}_b, \quad v_4 = \frac{p_0 \sqrt{1 + a r^2}}{x_4 \sqrt{1 + \alpha x_4 x_4}}
\]
and
\[
v^i = -p_0 \sqrt{1 + a r^2} \sqrt{1 + \alpha x_4 x_4} x_i, \quad i = 1, \ldots, 4,
\]
\[
N(V) = \frac{p_0^2}{x_4 x_4} (r^2 - x_4 x_4).
\]

In the following sections, we shall investigate Killing fields of the spacetime with the Ot-metric (1.1) and (1.2), mainly noticing the Killing fields of the above examples and special pairs of two ones which construct a Lie algebra of dimension 2.

§3. Special Killing fields

We say a Killing field \(V \) given by (2.15) is *static*, if the Pfaff equation
\[
\sum_i v_i dx_i = 0
\]
is complete, that is, it admits locally a hypersurface satisfying this equation. As is well known, it is necessary and sufficient that the following equality holds
\[
\sum_{i=1}^4 v_i dx_i \wedge d \left(\sum_{j=1}^4 v_j dx_j \right) = 0.
\]
KILLING VECTOR FIELDS

Now, we denote the Killing field \(V \) of Example 3 in \(\S 2 \) with \(p_0 = -1 \) by \(\xi \) that is
\[
(3.1) \quad \xi^i = \sqrt{1 + ar^2} \sqrt{1 + ax_4 x_4}.
\]

Theorem 2. Killing field \(\xi \) is static.

Proof. We have
\[
\xi := \sum_{i=1}^{4} \xi_i dx_i = \frac{\sqrt{1 + ax_4 x_4}}{x_4 \sqrt{1 + ar^2}} \sum_{b=1}^{3} x_b dx_b - \frac{\sqrt{1 + ar^2}}{x_4 \sqrt{1 + ax_4 x_4}} dx_4,
\]
which is expressed only by \(r \) and \(x_4 \), since \(\sum x_b dx_b = r \, dr \). Hence, \(d\xi \) can be written as
\[
d\xi = \phi(r, x_4) \, dr \wedge dx_4,
\]
which implies the equality \(\xi \wedge d\xi = 0 \). Q.E.D.

Then, we take another Killing field \(V \) given by (2.15) and put
\[
\theta := \sum_{b} v_b dx_b + v_4 dx_4.
\]

We search for the condition that the system of Pfaff equations:
\[
\xi = 0 \quad \text{and} \quad \theta = 0
\]
is complete, that is, it admits locally a surface satisfying both equations. As is well known, it is necessary and sufficient that the following equalities hold:
\[
\xi \wedge \theta \wedge d\xi = 0 \quad \text{and} \quad \xi \wedge \theta \wedge d\theta = 0.
\]

From Theorem 2, the first equality holds. Regarding the second, we shall compute the three-form \(\theta \wedge d\theta \). For simplicity we use the notations
\[
L := 1 + ar^2, \quad M := 1 + ax_4 x_4 \quad \text{and} \quad d_2 \tilde{x} := \begin{pmatrix} dx_2 \wedge dx_3 \\ dx_3 \wedge dx_1 \\ dx_1 \wedge dx_2 \end{pmatrix},
\]
then \(\theta \) can be written as
\[
(3.2) \quad \theta = \frac{1}{x_4 x_4} \left[-\frac{\sqrt{M}}{a} (\lambda \cdot d\tilde{x}) + \sqrt{L} (p \cdot d\tilde{x}) - ((\mu \times \tilde{x}) \cdot d\tilde{x}) - \frac{1}{\sqrt{L}} (p_0 \sqrt{M} + a (p \cdot \tilde{x})) r \, dr \right] + \frac{1}{x_4 \sqrt{M}} ((\lambda \cdot \tilde{x}) + p_0 \sqrt{L}) dx_4.
\]
from which we have

\[
d\theta = \frac{1}{a} \frac{\partial}{\partial d_4} \left(\frac{\sqrt{\mathcal{M}}}{x_4 x_4} (\lambda \cdot d_\mathbf{x}) \wedge dx_4 + d \frac{\sqrt{\mathcal{L}}}{x_4 x_4} \wedge (p \cdot d_\mathbf{x}) \right) \\
+ \frac{2}{(x_4)^3} dx_4 \wedge ((\mu \times \mathbf{x}) \cdot d_\mathbf{x}) - \frac{r}{\sqrt{\mathcal{L}}} d \frac{p_0 \sqrt{\mathcal{M}} + a(p \cdot \mathbf{x})}{x_4 x_4} \wedge dr \\
+ \frac{1}{x_4 \sqrt{\mathcal{M}}} \left((\lambda \cdot d_\mathbf{x}) + \frac{ap_0 r}{\sqrt{\mathcal{L}}} dr \right) \wedge dx_4 - \frac{2}{x_4 x_4} (\mu \cdot d_2 \mathbf{x}) \\
= \left\{ \left(-\frac{2 \sqrt{\mathcal{M}}}{a(x_4)^3} + \frac{1}{x_4 \sqrt{\mathcal{M}}} \right) (\lambda \cdot d_\mathbf{x}) + \frac{2 \sqrt{\mathcal{L}}}{(x_4)^3} (p \cdot d_\mathbf{x}) - \frac{2}{(x_4)^3} ((\mu \times \mathbf{x}) \cdot d_\mathbf{x}) \right\} \\
+ \frac{r}{\sqrt{\mathcal{L}}} \left(\frac{ap_0}{x_4 \sqrt{\mathcal{M}}} - \frac{2p_0 \sqrt{\mathcal{M}}}{(x_4)^3} - \frac{2a(p \cdot \mathbf{x})}{(x_4)^3} \right) dr \\
+ \frac{1}{x_4 \sqrt{\mathcal{M}}} \left((\lambda \cdot d_\mathbf{x}) + \frac{ap_0 r}{\sqrt{\mathcal{L}}} dr \right) \wedge dx_4 + \frac{2ar}{x_4 x_4 \sqrt{\mathcal{L}}} dr \wedge (p \cdot d_\mathbf{x}) \\
- \frac{2}{x_4 x_4} (\mu \cdot d_2 \mathbf{x}),
\]

and since we have

\[
d((\mu \times \mathbf{x}) \cdot d_\mathbf{x}) = 2(\mu \cdot d_2 \mathbf{x})
\]

which is arranged as

\[
(3.3) \quad \frac{x_4 x_4}{2} d\theta = \left\{ -\frac{1}{a x_4 \sqrt{\mathcal{M}}} (\lambda \cdot d_\mathbf{x}) + \frac{\sqrt{\mathcal{L}}}{x_4} (p \cdot d_\mathbf{x}) - \frac{1}{x_4} ((\mu \times \mathbf{x}) \cdot d_\mathbf{x}) \right\} \\
- \frac{r}{x_4 \sqrt{\mathcal{M}}} \left(\frac{p_0}{\sqrt{\mathcal{M}}} + a(p \cdot \mathbf{x}) \right) dr \wedge dx_4 + \frac{ar}{\sqrt{\mathcal{L}}} dr \wedge (p \cdot d_\mathbf{x}) - (\mu \cdot d_2 \mathbf{x}).
\]

Then, we obtain from (3.2) and (3.3)

\[
\frac{(x_4)^5}{2} \theta \wedge d\theta = \left[-\frac{\sqrt{\mathcal{M}}}{a} (\lambda \cdot d_\mathbf{x}) + \sqrt{\mathcal{L}} (p \cdot d_\mathbf{x}) - ((\mu \times \mathbf{x}) \cdot d_\mathbf{x}) \right] \\
- \frac{r}{\sqrt{\mathcal{L}}} \left((p_0 \sqrt{\mathcal{M}} + a(p \cdot \mathbf{x}) dr + \frac{x_4}{\sqrt{\mathcal{M}}} ((\lambda \cdot \mathbf{x}) + p_0 \sqrt{\mathcal{L}}) dx_4 \right) \\
\wedge \left[\left\{ -\frac{1}{a \sqrt{\mathcal{M}}} (\lambda \cdot d_\mathbf{x}) + \sqrt{\mathcal{L}} (p \cdot d_\mathbf{x}) - ((\mu \times \mathbf{x}) \cdot d_\mathbf{x}) \right\} \wedge dx_4 + \frac{ar x_4}{\sqrt{\mathcal{L}}} dr \wedge (p \cdot d_\mathbf{x}) \\
- (x_4)^3 \theta \wedge (\mu \cdot d_2 \mathbf{x}),
\]

\[
\frac{(x_4)^5}{2} \theta \wedge d\theta = \left[-\frac{\sqrt{\mathcal{M}}}{a} (\lambda \cdot d_\mathbf{x}) + \sqrt{\mathcal{L}} (p \cdot d_\mathbf{x}) - ((\mu \times \mathbf{x}) \cdot d_\mathbf{x}) \right] \\
- \frac{r}{\sqrt{\mathcal{L}}} \left((p_0 \sqrt{\mathcal{M}} + a(p \cdot \mathbf{x}) dr + \frac{x_4}{\sqrt{\mathcal{M}}} ((\lambda \cdot \mathbf{x}) + p_0 \sqrt{\mathcal{L}}) dx_4 \right) \\
\wedge \left[\left\{ -\frac{1}{a \sqrt{\mathcal{M}}} (\lambda \cdot d_\mathbf{x}) + \sqrt{\mathcal{L}} (p \cdot d_\mathbf{x}) - ((\mu \times \mathbf{x}) \cdot d_\mathbf{x}) \right\} \wedge dx_4 + \frac{ar x_4}{\sqrt{\mathcal{L}}} dr \wedge (p \cdot d_\mathbf{x}) \\
- (x_4)^3 \theta \wedge (\mu \cdot d_2 \mathbf{x}),
\]
which is arranged by using the relations:

\[(\mu \times \bar{x}) \cdot d\bar{x} \wedge (\mu \cdot d_2 \bar{x}) = 0, \quad (\lambda \cdot d\bar{x}) \wedge (\mu \cdot d_2 \bar{x}) = (\lambda \cdot \mu)dx_1 \wedge dx_2 \wedge dx_3,\]

\[(p \cdot d\bar{x}) \wedge (\mu \cdot d_2 \bar{x}) = (p \cdot \mu)dx_1 \wedge dx_2 \wedge dx_3, \quad r \, dr \wedge (\mu \cdot d_2 \bar{x}) =
\]

\[(\mu \cdot \bar{x})dx_1 \wedge dx_2 \wedge dx_3, \quad (\lambda \cdot d\bar{x}) \wedge (\mu \cdot d\bar{x}) = ((\lambda \times \mu) \cdot d_2 \bar{x})\]

after a little cumbersome computation as follows.

\[
\frac{(x_4)^3}{2} \theta \wedge d\theta = \left\{ -\frac{\sqrt{L}}{\sqrt{M}}(\lambda \cdot d\bar{x}) \wedge (p \cdot d\bar{x}) + \frac{1}{\sqrt{M}} (\lambda \cdot d\bar{x}) \wedge ((\mu \times \bar{x}) \cdot d\bar{x}) \right. \\
+ \frac{ar}{\sqrt{L} \sqrt{M}} ((p \cdot \bar{x})(\lambda \cdot d\bar{x}) - (\lambda \cdot \bar{x})(p \cdot d\bar{x}) - p_0(\mu \times \bar{x}) \cdot d\bar{x}) \wedge dr \\
+ \frac{r}{x_4 \sqrt{L}} \left\{ \sqrt{M} (\lambda \cdot d\bar{x}) \wedge (p \cdot d\bar{x}) - a(p \cdot d\bar{x}) \wedge ((\mu \times \bar{x}) \cdot d\bar{x}) \right\} \wedge dr \\
+ \frac{1}{x_4} \left\{ \frac{\sqrt{M}}{a} \lambda \cdot \mu \cdot d\bar{x}^2 + \frac{1}{\sqrt{L}} \left(p_0 \sqrt{M} + a(p \cdot \bar{x}) \right) (\mu \cdot \bar{x}) \right\} dx_1 \wedge dx_2 \wedge dx_3 \\
- \frac{1}{\sqrt{M}} ((\lambda \cdot \bar{x}) + p_0 \sqrt{L}) (\mu \cdot d_2 \bar{x}) \wedge dx_4.
\]

Next, since we have

\[\xi = \frac{\sqrt{M}}{x_4 x_4 \sqrt{L}} r \, dr - \frac{\sqrt{L}}{x_4 \sqrt{M}} dx_4 \]

by Theorem 1, we obtain from (3.4) the equality

\[\frac{1}{2} (x_4)^2 \xi \wedge \theta \wedge d\theta = \frac{\sqrt{M}}{\sqrt{L}} r \, dr \wedge \left\{ -\frac{\sqrt{L}}{\sqrt{M}} (\lambda \cdot d\bar{x}) \wedge (p \cdot d\bar{x}) \\
+ \frac{1}{\sqrt{M}} (\lambda \cdot d\bar{x}) \wedge ((\mu \times \bar{x}) \cdot d\bar{x}) \right\} \wedge dx_4 - \frac{x_4 \sqrt{L}}{\sqrt{M}} dx_4 \wedge \frac{r}{x_4 \sqrt{L}} \\
\left\{ \sqrt{M} (\lambda \cdot d\bar{x}) \wedge (p \cdot d\bar{x}) - a(p \cdot d\bar{x}) \wedge ((\mu \times \bar{x}) \cdot d\bar{x}) \right\} \wedge dr \\
- \frac{\sqrt{M}}{\sqrt{L}} (\bar{x} \cdot d\bar{x}) \wedge \frac{1}{\sqrt{M}} \left((\lambda \cdot \bar{x}) + p_0 \sqrt{L} \right) (\mu \cdot d_2 \bar{x}) \wedge dx_4 \\
+ \frac{\sqrt{L}}{\sqrt{M}} \left\{ \frac{\sqrt{M}}{a} \lambda \cdot \mu \cdot d\bar{x}^2 + \frac{1}{\sqrt{L}} \left(p_0 \sqrt{M} + a(p \cdot \bar{x}) \right) (\mu \cdot \bar{x}) \right\} \right\} dx_1 \wedge \cdots \wedge dx_4 \]
\[
\begin{aligned}
&= \left\{ \frac{r}{\sqrt{L}} (\lambda \cdot d\tilde{x}) \land \left((\mu \times \tilde{x}) \cdot d\tilde{x} \right) - \frac{ar}{\sqrt{M}} (p \cdot d\tilde{x}) \land \left((\mu \times \tilde{x}) \cdot d\tilde{x} \right) \right\} \land dr \land dx_4 \\
&\quad + \left\{ \frac{\sqrt{L}}{a} (\lambda \cdot \mu) - \frac{L}{\sqrt{M}} (p \cdot \mu) + (\mu \cdot \tilde{x}) \left(\frac{a}{\sqrt{M}} (p \cdot \tilde{x}) - \frac{1}{\sqrt{L}} (\lambda \cdot \tilde{x}) \right) \right\} \\
&\quad dx_1 \land \cdots \land dx_4,
\end{aligned}
\]
which is reduced to
\begin{equation}
(3.5)
\xi \land \theta \land d\theta = \frac{2}{(x_4)^5} \left\{ \frac{(\lambda \cdot \mu)}{a\sqrt{1 + ar^2}} - \frac{(p \cdot \mu)}{\sqrt{1 + a^2x_4x_4}} \right\} dx_1 \land dx_2 \land dx_3 \land dx_4.
\end{equation}

From this equality, we obtain the following theorem.

Theorem 3. For the Killing field \(\theta \) given by (3.2), Pfaffian equation \(\theta = 0 \) forms a complete system with \(\xi = 0 \), if its constants \(\lambda, p, \mu \) and \(p_0 \) satisfy the following conditions: \(p_0 \neq 0 \) and

(i) \(\mu = 0 \), or

(ii) \(\mu \neq 0 \) and \((\lambda \cdot \mu) = (p \cdot \mu) = 0 \),

different from \(\lambda = \mu = p = 0 \) which gives \(\theta = \xi \).

In the following we consider \(\xi \) and \(\theta \) with \(p_0 \neq 0 \) and \(\mu = 0 \). Here we denote \(\xi, \theta \) as contravariant vector fields by \(X = \sum X^i \partial / \partial x_i, Y = \sum Y^i \partial / \partial x_i \) respectively. By Example 3 and (2.15) we have

\[
X^i = \xi^i = \sqrt{L} \sqrt{M} x_i
\]
and

\[
Y^b = \sum_c g^{bc} v_c = x_4 x_4 \sum_c (\delta^{bc} + a x_b x_c) v_c
\]

\[
= \sum_c (\delta^{bc} + a x_b x_c) \left\{ -\frac{\sqrt{M}}{a} \lambda_c + \sqrt{L} p_c - \frac{1}{\sqrt{L}} (p_0 \sqrt{M} + a (p \cdot \tilde{x})) x_c \right\}
\]

\[
= -\frac{\sqrt{M}}{a} \lambda_b + \sqrt{L} p_b - \frac{1}{\sqrt{L}} (p_0 \sqrt{M} + a (p \cdot \tilde{x})) x_b
\]

\[
+ \left\{ -\sqrt{M} (\lambda \cdot \tilde{x}) + a \sqrt{L} (p \cdot \tilde{x}) - \frac{a r^2}{\sqrt{L}} (p_0 \sqrt{M} + a (p \cdot \tilde{x})) \right\} x_b
\]

\[
= -\frac{\sqrt{M}}{a} \lambda_b + \sqrt{L} p_b - \sqrt{M} (p_0 \sqrt{L} + (\lambda \cdot \tilde{x})) x_b,
\]

\[
Y^4 = g^{44} v_4 = -x_4 x_4 M \frac{1}{x_4 \sqrt{M}} (p_0 \sqrt{L} + (\lambda \cdot \tilde{x})) = -\sqrt{M} (p_0 \sqrt{L} + (\lambda \cdot \tilde{x})) x_4.
\]
From these expressions we compute the components of $[X, Y]$:

$$[X, Y]^i = \sum_j \left(X^j \frac{\partial Y^i}{\partial x^j} - Y^j \frac{\partial X^i}{\partial x^j} \right).$$

First we have

$$[X, Y]^b = \sqrt{L} \sqrt{M} \sum_c x_c \left\{ \frac{a x_c}{\sqrt{L}} p_b - \sqrt{M} \left(\frac{a p_0 x_c}{\sqrt{L}} + \lambda_c \right) x_b - \sqrt{M} \left(p_0 \sqrt{L} + (\lambda \cdot \tilde{x}) \right) \delta_{bc} \right\}$$

$$- \sum_c \left\{ - \frac{\sqrt{M}}{a} \lambda_c + \sqrt{L} p_c - \sqrt{M} \left(p_0 \sqrt{L} + (\lambda \cdot \tilde{x}) x_c \right) \right\} \sqrt{M} \left(\frac{a x_c}{\sqrt{L}} + \sqrt{L} \delta_{bc} \right)$$

$$+ \sqrt{L} \sqrt{M} x_4 \left\{ - \frac{x_4}{\sqrt{M}} \lambda_b - \frac{a x_4}{\sqrt{M}} \left(p_0 \sqrt{L} + (\lambda \cdot \tilde{x}) \right) x_b \right\}$$

$$+ \sqrt{M} \left(p_0 \sqrt{L} + (\lambda \cdot \tilde{x}) \right) x_4 \sqrt{L} \left(\frac{a x_4}{\sqrt{M}} x_b, \right)$$

which is arranged as follows:

$$[X, Y]^b = \frac{\sqrt{L}}{a} \lambda_0 - \sqrt{M} \left(p_b + a (p \cdot \tilde{x}) x_b \right).$$

Next, we have

$$[X, Y]^4 = - \sqrt{L} \sqrt{M} \sum_c x_c \sqrt{M} \left(\frac{a p_0 x_c}{\sqrt{L}} + \lambda_c \right) x_4$$

$$- \sum_c \left\{ - \frac{\sqrt{M}}{a} \lambda_c + \sqrt{L} p_c - \sqrt{M} \left(p_0 \sqrt{L} + (\lambda \cdot \tilde{x}) x_c \right) \right\} \sqrt{M} \left(\frac{a x_4}{\sqrt{L}} x_4 \right)$$

$$- \sqrt{L} \sqrt{M} x_4 \left(p_0 \sqrt{L} + (\lambda \cdot \tilde{x}) \right) \left(\sqrt{M} + \frac{a x_4}{\sqrt{M}} \right)$$

$$+ \sqrt{M} \left(p_0 \sqrt{L} + (\lambda \cdot \tilde{x}) \right) x_4 \sqrt{L} \left(\sqrt{M} + \frac{a x_4}{\sqrt{M}} \right),$$

which is arranged as follows:

$$[X, Y]^4 = -a \sqrt{M} (p \cdot \tilde{x}) x_4.$$

From these expressions we obtain the relations

$$[X, Y]^b - Y^b - p_0 X^b = \frac{\sqrt{L} + \sqrt{M}}{a} \left(\lambda_0 - a p_0 \right) + \sqrt{M} \left((\lambda - a p) \cdot \tilde{x} \right) x_b,$$

$$[X, Y]^4 - Y^4 - p_0 X^4 = \sqrt{M} \left((\lambda - a p) \cdot \tilde{x} \right) x_4.$$
Theorem 4. For the Killing fields $X = \sum_i \sqrt{L} \sqrt{M} x_i \partial / \partial x_i$ and $Y = \sum_i Y^i \partial / \partial x_i$ as

$$Y^b = (\sqrt{M} - \sqrt{L}) p_b + a \sqrt{M} (p \cdot \vec{x}) x_b, \quad Y^i = a \sqrt{M} (p \cdot \vec{x}) x_i$$

we have the equality: $[X, Y] = Y$.

Proof. If we put $\lambda = ap$ in (3.6) and replace $Y + p_0 X$ by $-Y$, then we obtain $[X, Y] = Y$. Since p_0 is constant, $-Y - p_0 X$ is also a Killing field and its components become above. Q.E.D.

From Theorem 4 two vectors X and Y generate a Lie group of motion of dimension 2. We denote this new Killing field Y by η in the following.

§4. Integral submanifolds related with ξ and η

By the definition of ξ and η in §3, we have

$$\xi_b = \frac{\sqrt{M}}{x_4 x_4 \sqrt{L}} x_b, \quad \xi_4 = - \frac{\sqrt{L}}{x_4 \sqrt{M}}, \quad \xi^i = \sqrt{L} \sqrt{M} x_i$$

and

$$\eta_b = \frac{1}{x_4 x_4} \left\{ (\sqrt{M} - \sqrt{L}) p_b + \frac{a}{\sqrt{L}} (p \cdot \vec{x}) x_b \right\}, \quad \eta_4 = - \frac{a}{x_4 \sqrt{M}} (p \cdot \vec{x}),$$

$$\eta^b = (\sqrt{M} - \sqrt{L}) p_b + a \sqrt{M} (p \cdot \vec{x}) x_b, \quad \eta^4 = a \sqrt{M} (p \cdot \vec{x}) x_4.$$

First, regarding Theorem 2, we integrate the Pfaff equation:

$$\sum_i \xi_i dx_i = \frac{\sqrt{M}}{x_4 x_4 \sqrt{L}} \sum_b x_b dx_b - \frac{\sqrt{L}}{x_4 \sqrt{M}} dx_4 = 0,$$

which is written as

$$\frac{\sqrt{1 + ax x_4}}{x_4 x_4 \sqrt{1 + ar^2}} r dr - \frac{\sqrt{1 + ar^2}}{x_4 \sqrt{1 + ax x_4}} dx_4 = 0.$$

From the above equality, we get

$$d \log(1 + ar^2) = d \log(1 + ax x_4)$$

and hence

$$1 + ax x_4 = c^2 (1 + ar^2)$$
where \(c > 0 \) is an integral constant. We denote this hypersurface by \(\Sigma_c \).

Second, regarding Theorem 3, we integrate the Pfaff equations:

\[
\sum_i \xi_i dx_i = 0 \quad \text{and} \quad \sum_i \eta_i dx_i = 0.
\]

From the first one we have (4.1) and \(c^2 r dr = x_4 dx_4 \). Using this we obtain

\[
\sum_i \eta_i dx_i = \frac{1}{x_4 x_4} \left\{ \left(\sqrt{M} - \sqrt{\mathcal{L}} \right) (p \cdot d\tilde{x}) + \frac{a}{\sqrt{\mathcal{L}}} (p \cdot \tilde{x}) r \, dr \right\} - \frac{a}{x_4 \sqrt{M}} (p \cdot \tilde{x}) dx_4
\]

\[
= \frac{1}{x_4 x_4} \left[\left((c - 1) \sqrt{L} (p \cdot d\tilde{x}) + \frac{a}{\sqrt{L}} (p \cdot \tilde{x}) r \, dr \right) - \frac{ac}{\sqrt{L}} (p \cdot \tilde{x}) r \, dr \right]
\]

\[
= \frac{(c - 1)}{x_4 x_4} \left[\sqrt{L} (p \cdot d\tilde{x}) - \frac{a}{\sqrt{L}} (p \cdot \tilde{x}) r \, dr \right] = 0,
\]

from which we obtain \(c = 1 \) or

\[
\sqrt{L} (p \cdot d\tilde{x}) - \frac{a}{\sqrt{L}} (p \cdot \tilde{x}) r \, dr = 0.
\]

Integrating the above equation, we obtain \((p \cdot \tilde{x})^2 = (1 + ar^2) \times \text{const.} \) Setting

\[
\tilde{p} = p/\sqrt{(p \cdot p)},
\]

we write the above equality as

\[
1 + ar^2 = c_1^2 (p \cdot \tilde{x})^2,
\]

where \(c_1 \) is an integral constant such that \(c_1 > \sqrt{a} \), since this equality can be written as

\[
(c_1^2 - a)u^2 - ar^2 = 1, \quad u = (p \cdot \tilde{x}), \quad r^2 = u^2 + v^2,
\]

and which is the equation of a rotating hyperbolic surface of order 2 with its center at the origin of \(R^3 \) and its axis is the line on \(p \). We denote this surface in \(R^3 \) by \(\Pi_{c_1} \). Hence, the solution of the Pfaff equation (4.2) is the intersection surface:

\[
\Gamma(c, c_1) = \Sigma_c \cap (\Pi_{c_1} \times R).
\]

For any point \(\tilde{x} \in \Pi_{c_1}, \{ \tilde{x} \} \times R \cap \Sigma_c \) is given by

\[
c^2 c_1^2 (\tilde{p} \cdot \tilde{x})^2 = 1 + ar_4 x_4.
\]

In order to get the value \(x_4 \), it is necessary and sufficient

\[
|\tilde{p} \cdot \tilde{x}| > \frac{1}{cc_1}
\]
which means that \bar{x} lies outside of the closed domain between the two planes:

$$(\bar{p} \cdot \bar{x}) = \pm \frac{1}{\alpha_1}.$$

Third, regarding Theorem 4, we shall set up the surface generated by the tangent vector fields $X = \sum_i \xi^i \partial / \partial x_i$ and $Y = \sum_i \eta^i \partial / \partial x_i$. We see easily that the integral curves of X are straight half lines starting the origin of $R^3 \times R_+$. Since Y is written as

$$Y = a\sqrt{M} (p \cdot \bar{x}) x + \left(\sqrt{M} - \sqrt{L} \right) \begin{pmatrix} p \\ 0 \end{pmatrix},$$

we see that the integral surface through x is the upper half plane E_x^2 through the half straight line joining the point x and the origin and including the vector p.

Theorem 5. The integral curve of the vector field $Y = \sum_i \eta^i \partial / \partial x_i$ is an algebraic plane curve of order 4 on the plane E_y^2.

Proof. On the plane E_y^2 through a fixed point y we denote any point $x \in E_y^2$ as

$$x = \lambda_1 p + \lambda_2 y$$

and consider (λ_1, λ_2) as Descartes coordinate on E_y^2. Then we have

$$1 + ar^2 = 1 + a(\lambda_1 \lambda_1 |p|^2 + 2\lambda_1 \lambda_2 (p \cdot \bar{y}) + \lambda_2 \lambda_2 (\bar{y} \cdot \bar{y})) = L(\lambda_1, \lambda_2),$$

$$1 + ar^2 = 1 + a\lambda_2 \lambda_2 y_4 y_4 = M(\lambda_2),$$

$$(p \cdot \bar{x}) = \lambda_1 |p|^2 + \lambda_2 (p \cdot \bar{y}) = \frac{1}{2a} \frac{\partial L}{\partial \lambda_1}$$

and

$$\eta = (\sqrt{M} - \sqrt{L}) p + a\sqrt{M} (p \cdot \bar{x}) x = (\sqrt{M} - \sqrt{L}) \begin{pmatrix} 1 \\ 0 \end{pmatrix} + \frac{\sqrt{M}}{2} \frac{\partial L}{\partial \lambda_1} \begin{pmatrix} \lambda_1 \\ \lambda_2 \end{pmatrix}.$$

Hence the differential equation

$$\frac{dx}{dt} = \eta$$

becomes

$$\frac{d\lambda_1}{dt} = \sqrt{M} - \sqrt{L} + \frac{1}{2} \lambda_1 \sqrt{M} \frac{\partial L}{\partial \lambda_1}, \quad \frac{d\lambda_2}{dt} = \frac{1}{2} \lambda_2 \sqrt{M} \frac{\partial L}{\partial \lambda_1}.$$
form which we obtain
\[
\frac{d}{dt}(\sqrt{M} - \sqrt{L}) = -\frac{1}{2\sqrt{M}} \frac{\partial M}{\partial \lambda_2} \frac{d\lambda_2}{dt} - \frac{1}{2\sqrt{L}} \left(\frac{\partial L}{\partial \lambda_1} \frac{d\lambda_1}{dt} + \frac{\partial L}{\partial \lambda_2} \frac{d\lambda_2}{dt} \right)
\]
\[
= -\frac{1}{2\sqrt{L}} \frac{\partial L}{\partial \lambda_1} \left(\sqrt{M} - \sqrt{L} + \frac{1}{2} \lambda_1 \sqrt{M} \frac{\partial L}{\partial \lambda_1} \right) + \frac{1}{4} \left(\frac{1}{\sqrt{M}} \frac{\partial M}{\partial \lambda_2} - \frac{1}{\sqrt{L}} \frac{\partial L}{\partial \lambda_2} \right) \lambda_2 \sqrt{M} \frac{\partial L}{\partial \lambda_1}
\]
\[
= -\frac{1}{4\sqrt{L}} \left(\lambda_1 \frac{\partial L}{\partial \lambda_1} + \lambda_2 \frac{\partial L}{\partial \lambda_2} \right) \sqrt{M} \frac{\partial L}{\partial \lambda_1} + \frac{1}{2} (M - 1) \frac{\partial L}{\partial \lambda_1} - \frac{1}{2\sqrt{L}} \frac{\partial L}{\partial \lambda_1} (\sqrt{M} - \sqrt{L})
\]
\[
= (\sqrt{M} - \sqrt{L}) \frac{1}{2\sqrt{M}} \frac{\partial L}{\partial \lambda_1}
\]
and hence
\[
\frac{d}{dt} \log(\sqrt{M} - \sqrt{L}) = \frac{1}{2} \sqrt{M} \frac{\partial L}{\partial \lambda_1} = \frac{d}{dt} \log \lambda_2.
\]
Integrating the above equation, we obtain
\[
\sqrt{L} - \sqrt{M} = c_2 \lambda_2,
\]
where \(c_2\) is an integral constant. Then, we have
\[
\sqrt{L} + \sqrt{M} = \frac{L - M}{\sqrt{L} - \sqrt{M}} = \frac{L - M}{c_2 \lambda_2}
\]
and
\[
2\sqrt{M} = \frac{L - M}{c_2 \lambda_2} - c_2 \lambda_2 = \frac{L - M - (c_2 \lambda_2)^2}{c_2 \lambda_2},
\]
from which we obtain
\[
4M(c_2 \lambda_2)^2 = (L - M)^2 - 2(L - M)(c_2 \lambda_2)^2 + (c_2 \lambda_2)^4,
\]
which is also written as
\[
(L - M)^2 - 2(L + M)(c_2 \lambda_2)^2 + (c_2 \lambda_2)^4 = 0
\]
that is
\[
(4.5) \quad a^2 \left(\lambda_1 \lambda_1 \left| p \right|^2 + 2\lambda_1 \lambda_2 (p \cdot \hat{y}) + \lambda_2 \lambda_2 (y \cdot y) \right)^2 + (c_2 \lambda_2)^4
\]
\[
- 2a \left(\lambda_1 \lambda_1 \left| p \right|^2 + 2\lambda_1 \lambda_2 (p \cdot \hat{y}) + \lambda_2 \lambda_2 (y \cdot y) \right) (c_2 \lambda_2)^2 - 4(c_2 \lambda_2)^2 = 0,
\]
where we used the notations
\[
(y \mid y) = \sum_b y_b y_b - y_4 y_4, \quad (y \cdot y) = \sum_b y_b y_b + y_4 y_4.
\]

This expression shows the integral curve of the Killing field \(\eta \) is an algebraic plane curve of order 4 on \(E^2_y \).

Q.E.D.

Note. If we put \(\lambda_1 = 0, \lambda_2 = 1 \) in (4.5), we obtain
\[
(\circ_2)^4 - 2(a(y \cdot y) + 2)(\circ_2)^2 + a^2(y \mid y)^2 = 0.
\]

As a quadratic equation of \((\circ_2)^2\), its discriminant becomes
\[
4(a(y \cdot y) + 2)^2 - 4a^2(y \mid y)^2 = 4a^2 \{ (y \cdot y)^2 - (y \mid y)^2 \} + 16a(y \cdot y) + 16
\]
\[
= 16\{a^2(y \cdot y) + 1\} > 0.
\]

Hence, (4.6) gives two positive roots \((\circ_2)^2\). We see that there exist four solution curves through the point \(y \).

§5. **Another pair of Killing fields**

Now, we consider the second case in Theorem 3, the \(\theta \) given by (3.2) satisfies
\[
p_0 \neq 0, \quad \mu \neq 0 \quad \text{and} \quad (\lambda \cdot \mu) = (p \cdot \mu) = 0.
\]

Then, by (3.5) we have
\[
\xi \wedge \theta \wedge d\theta = 0
\]
and hence the pair of Pfaff equations:
\[
\xi = 0 \quad \text{and} \quad \theta = 0
\]
is completely integrable.

We consider the contravariant vector fields \(X \) and \(Y \) corresponding to \(\xi \) and \(\theta \), respectively. By (3.1) we have
\[
X^i = \sqrt{L} \sqrt{M} x_i
\]
and by (3.2) we have
\[
\theta_b = \frac{1}{x_4 x_4} \left[-\frac{\sqrt{M}}{a} \lambda_b + \sqrt{L} p_b - (\mu \times \bar{x})_b - \frac{1}{\sqrt{L}} (p_0 \sqrt{M} + a(p \cdot \bar{x})) x_b \right],
\]
\[
\theta_4 = \frac{1}{x_4 \sqrt{M}} ((\lambda \cdot \bar{x}) + p_0 \sqrt{L}),
\]
and
\[Y^b = \sum_c g^{bc} \theta_c = x_4 x_4 \sum_c (\delta^{bc} + ax_b x_c) \theta_c \]
\[= -\frac{\sqrt{M}}{a} \lambda_b + \sqrt{L} p_b - (\mu \times \bar{x})_b - \frac{1}{\sqrt{L}} (p_0 \sqrt{M} + a(p \cdot \bar{x})) x_b \]
\[+ ax_b \left\{ -\frac{\sqrt{M}}{a} (\lambda \cdot \bar{x}) + \sqrt{L} (p \cdot \bar{x}) - \frac{r^2}{\sqrt{L}} (p_0 \sqrt{M} + a(p \cdot \bar{x})) \right\} \]
\[= -\frac{\sqrt{M}}{a} \lambda_b + \sqrt{L} p_b - (\mu \times \bar{x})_b - \sqrt{M} (p_0 \sqrt{L} + (\lambda \cdot \bar{x})) x_b, \]
\[Y^4 = -\sqrt{M} (p_0 \sqrt{L} + (\lambda \cdot \bar{x})) x_4. \]

If we use the notations
\[\dot{\lambda} = \begin{pmatrix} \lambda_1 \\ 0 \end{pmatrix}, \quad \dot{p} = \begin{pmatrix} p_1 \\ 0 \end{pmatrix}, \quad (\mu \times \bar{x})^* = \begin{pmatrix} (\mu \times \bar{x})_1 \\ 0 \end{pmatrix} \]
then we have
\[(5.3) \]
\[X = \sqrt{L} \sqrt{M} x, \quad Y = -\frac{\sqrt{M}}{a} \dot{\lambda} + \sqrt{L} \dot{p} - \sqrt{M} (p_0 \sqrt{L} + (\lambda \cdot \bar{x})) x - (\mu \times \bar{x})^*. \]

We shall compute \([X, Y]\) as follows. Since we have the equalities:
\[[x, \dot{\lambda}] = -\dot{\lambda}, \quad (x \cdot \nabla L) = 2ar^2, \quad (x \cdot \nabla M) = 2ax_4 x_4, \]
\[[x, (\mu \times \bar{x})] = 0, \]
we obtain
\[[X, Y] \]
\[= -\frac{1}{a} \left[\sqrt{L} \sqrt{M} x, \sqrt{M} \dot{\lambda} \right] + \left[\sqrt{L} \sqrt{M} x, \sqrt{L} \dot{p} \right] - \left[\sqrt{L} \sqrt{M} x, \sqrt{M} (\lambda \cdot \bar{x}) x \right] \]
\[- \left[\sqrt{L} \sqrt{M} x, (\mu \times \bar{x}) \right] \]
\[= \frac{\sqrt{L} \sqrt{M}}{a} \dot{\lambda} + \frac{\sqrt{M}}{a} \left(\dot{\lambda} \cdot \nabla (\sqrt{L} \sqrt{M}) x - \frac{\sqrt{L} \sqrt{M}}{a} (x \cdot \nabla \sqrt{M}) \dot{\lambda} - L \sqrt{M} \dot{p} \right) \]
\[- \sqrt{L} \left(\dot{p} \cdot \nabla (\sqrt{L} \sqrt{M}) \right) x + \sqrt{L} \sqrt{M} (x \cdot \nabla \sqrt{L}) \dot{p} \]
\[+ \left\{ \left(\sqrt{M} (\lambda \cdot \bar{x}) x \cdot \nabla (\sqrt{L} \sqrt{M}) \right) - \left(\sqrt{L} \sqrt{M} x \cdot \nabla (\sqrt{M} (\lambda \cdot \bar{x})) \right) \right\} x \]
\[+ \left((\mu \times \bar{x})^* \cdot \nabla (\sqrt{L} \sqrt{M}) \right) x \]
\[
\begin{align*}
&= \left\{ \frac{\sqrt{L}M}{a} - \frac{\sqrt{L}}{2a} \left(x \cdot \nabla M \right) \right\} \dot{\lambda} - \left\{ L\sqrt{M} - \frac{\sqrt{M}}{2} \left(x \cdot \nabla L \right) \right\} \dot{\rho} \\
&+ \left\{ \frac{\sqrt{M}}{a} \left(\dot{\lambda} \cdot \nabla \left(\sqrt{L} \sqrt{M} \right) \right) - \sqrt{L} \left(\dot{\rho} \cdot \nabla \left(\sqrt{L} \sqrt{M} \right) \right) \\
&+ \sqrt{M} (\lambda \cdot \ddot{x}) \left(x \cdot \nabla \left(\sqrt{L} \sqrt{M} \right) \right) - \sqrt{L} \sqrt{M} \left(x \cdot \nabla \left(\sqrt{M} (\lambda \cdot \ddot{x}) \right) \right) \\
&+ \left((\mu \times \ddot{x}) \cdot \nabla \left(\sqrt{L} \sqrt{M} \right) \right) \right\} x \\
&= \frac{\sqrt{L}}{a} \dot{\lambda} - \sqrt{M} \dot{\rho} \\
&+ \left\{ \frac{M}{\sqrt{L}} (\lambda \cdot \ddot{x}) - a \sqrt{M} (p \cdot \ddot{x}) + \frac{aMr^2}{\sqrt{L}} (\lambda \cdot \ddot{x}) - \sqrt{L} M (\lambda \cdot \ddot{x}) \right\} x \\
&= \frac{\sqrt{L}}{a} \dot{\lambda} - \sqrt{M} \dot{\rho} - a \sqrt{M} (p \cdot \ddot{x}) x,
\end{align*}
\]

that is

\[(5.4) \quad [X,Y] = \frac{\sqrt{L}}{a} \dot{\lambda} - \sqrt{M} \dot{\rho} - a \sqrt{M} (p \cdot \ddot{x}) x.
\]

This expression shows that even though if we suppose that \(\lambda = ap \), \(X \) and \(Y \) could not generate a Lie algebra, then in fact we have

\[
Y = \left(\sqrt{L} - \sqrt{M} \right) \dot{\rho} - \sqrt{M} (p_0 \sqrt{L} + a(p \cdot \ddot{x})) x - (\mu \times \ddot{x}),
\]

\[[X,Y] = \left(\sqrt{L} - \sqrt{M} \right) \dot{\rho} - a \sqrt{M} (p \cdot \ddot{x}) x, \]

from which we obtain the identity

\[(5.4^*) \quad [X,Y] - Y - p_0 X = (\mu \times \ddot{x}) \quad \text{with} \quad \lambda = ap.\]

Now, we shall solve the Pfaff equations (5.2). We already knew that the solution of \(\xi = 0 \) is given by

\[(5.5) \quad 1 + ax_4 x_4 = c^2 (1 + ar^2) \quad \text{or} \quad M = c^2 L,
\]

where \(c (> 0) \) is an integral constant. Using this relation, the equation

\[
\theta = \sum_b \theta_b dx_b + \theta_4 dx_4 = \frac{1}{x_4 x_4} \left[-\frac{\sqrt{M}}{a} (\lambda \cdot d\ddot{x}) + \sqrt{L} (p \cdot d\ddot{x}) \\
- \frac{1}{\sqrt{L}} (p_0 \sqrt{M} + a(p \cdot \ddot{x}))r dr - ((\mu \times \ddot{x}) \cdot d\ddot{x}) \right] \\
+ \frac{1}{x_4 \sqrt{M}} (\lambda \cdot \ddot{x}) + p_0 \sqrt{L}) dx_4 = 0
\]
can be replaced by
\[
- \frac{c}{a} \sqrt{L} (\lambda \cdot d\tilde{x}) + \sqrt{L} (p \cdot d\tilde{x}) - \frac{1}{\sqrt{L}} \left(p_0 c \sqrt{L} + a (p \cdot \tilde{x}) \right) r \, dr \\
- \left((\mu \times \tilde{x}) \cdot d\tilde{x} \right) + \frac{1}{c \sqrt{L}} \left((\lambda \cdot \tilde{x}) + p_0 \sqrt{L} \right) x_4 dx_4 = 0.
\]

We suppose here that \(\lambda \) and \(p \) are independent as vectors of \(\mathbb{R}^3 \), that is \(\lambda \times p \neq 0 \). Then, by (5.1) we can put
\[
(5.6) \quad \mu = \mu_0 (\lambda \times p), \quad \mu_0 \neq 0,
\]
and so we have
\[
(\mu \times \tilde{x}) = \mu_0 \left((\lambda \times p) \times \tilde{x} \right) = \mu_0 \left\{ (\lambda \cdot \tilde{x}) p - (p \cdot \tilde{x}) \lambda \right\} \\
\left((\mu \times \tilde{x}) \cdot d\tilde{x} \right) = \mu_0 \left\{ (\lambda \cdot \tilde{x}) (p \cdot d\tilde{x}) - (p \cdot \tilde{x}) (\lambda \cdot d\tilde{x}) \right\}
\]

Then, the above equation becomes
\[
\sqrt{L} \left((p \cdot d\tilde{x}) - \frac{c}{a} (\lambda \cdot d\tilde{x}) \right) - \frac{1}{\sqrt{L}} \left(p_0 c \sqrt{L} + a (p \cdot \tilde{x}) \right) r \, dr \\
- \mu_0 \left\{ (\lambda \cdot \tilde{x}) (p \cdot d\tilde{x}) - (p \cdot \tilde{x}) (\lambda \cdot d\tilde{x}) \right\} + \frac{c}{\sqrt{L}} \left((\lambda \cdot \tilde{x}) + p_0 \sqrt{L} \right) r \, dr = 0,
\]
which is written as
\[
\sqrt{L} \left(\frac{\lambda \cdot d\tilde{x}}{a} - \frac{p \cdot d\tilde{x}}{c} \right) - \left(\frac{\lambda \cdot \tilde{x}}{a} - \frac{p \cdot \tilde{x}}{c} \right) d\sqrt{L} \\
- \frac{\mu_0}{c} (\lambda \cdot \tilde{x}) (p \cdot \tilde{x}) \left(\frac{\lambda \cdot d\tilde{x}}{\lambda \cdot \tilde{x}} - \frac{p \cdot d\tilde{x}}{p \cdot \tilde{x}} \right) = 0.
\]

For simplicity we set
\[
\frac{\lambda \cdot \tilde{x}}{a} = u, \quad \frac{p \cdot \tilde{x}}{c} = v,
\]
then the above equality becomes
\[
(5.7) \quad \omega := \sqrt{L} (du - dv) - (u - v) d\sqrt{L} - a \mu_0 (v du - u dv) = 0.
\]

Since the Pfaff equation (5.2) is completely integrable, we take an integral multiplier \(\Phi \), that is \(\Phi \omega \) is exact. Considering \(\Phi \) as function of \(u, v \) and
\[z = \sqrt{L}, \text{ then we have} \]
\[d(\Phi \omega) = d\Phi \wedge \omega + \Phi d\omega = \left(\frac{\partial \Phi}{\partial u} du + \frac{\partial \Phi}{\partial v} dv + \frac{\partial \Phi}{\partial z} d\sqrt{L} \right) \wedge \omega + \Phi d\omega \]
\[= \left\{ -\left(\sqrt{L} - \alpha \mu_0 u \right) \frac{\partial \Phi}{\partial u} - \left(\sqrt{L} - \alpha \mu_0 v \right) \frac{\partial \Phi}{\partial v} + 2\alpha \mu_0 \Phi \right\} du \wedge dv \]
\[+ \left\{ -(u - v) \frac{\partial \Phi}{\partial u} - \left(\sqrt{L} - \alpha \mu_0 v \right) \frac{\partial \Phi}{\partial z} - 2\Phi \right\} du \wedge d\sqrt{L} \]
\[+ \left\{ -(u - v) \frac{\partial \Phi}{\partial v} + \left(\sqrt{L} - \alpha \mu_0 u \right) \frac{\partial \Phi}{\partial z} + 2\Phi \right\} dv \wedge d\sqrt{L}. \]

Hence, \(\Phi(u, v, z) \) must satisfy the following equalities:
\[(z - \alpha \mu_0 u) \frac{\partial \Phi}{\partial u} + (z - \alpha \mu_0 v) \frac{\partial \Phi}{\partial v} - 2\alpha \mu_0 \Phi = 0, \]
\[(u - v) \frac{\partial \Phi}{\partial u} + (z - \alpha \mu_0 v) \frac{\partial \Phi}{\partial z} + 2\Phi = 0, \]
\[-(u - v) \frac{\partial \Phi}{\partial v} + (z - \alpha \mu_0 u) \frac{\partial \Phi}{\partial z} + 2\Phi = 0. \]

In order to solve (5.8) with respect to \(\Phi \), here we take a change of variables \(u, v \) and \(z \) to
\[u^* = \alpha \mu_0 u - z, \quad v^* = \alpha \mu_0 v - z, \quad z^* = z, \]
then we have
\[\frac{\partial \Phi}{\partial u} = \alpha \mu_0 \frac{\partial \Phi}{\partial u^*}, \quad \frac{\partial \Phi}{\partial v} = \alpha \mu_0 \frac{\partial \Phi}{\partial v^*}, \quad \frac{\partial \Phi}{\partial z} = -\frac{\partial \Phi}{\partial u^*} - \frac{\partial \Phi}{\partial v^*} + \frac{\partial \Phi}{\partial z^*} \]
and
\[u - v = \frac{1}{\alpha \mu_0} (u^* - v^*). \]

(5.8) turns into respectively
\[u^* \frac{\partial \Phi}{\partial u^*} + v^* \frac{\partial \Phi}{\partial v^*} + 2\Phi = 0, \]
\[u^* \frac{\partial \Phi}{\partial u^*} + v^* \frac{\partial \Phi}{\partial v^*} + 2\Phi - u^* \frac{\partial \Phi}{\partial z^*} = 0, \]
\[u^* \frac{\partial \Phi}{\partial u^*} + v^* \frac{\partial \Phi}{\partial v^*} + 2\Phi - u^* \frac{\partial \Phi}{\partial z^*} = 0, \]
which are equivalent to
\[\frac{\partial \Phi}{\partial z^*} = 0 \quad \text{and} \quad u^* \frac{\partial \Phi}{\partial u^*} + v^* \frac{\partial \Phi}{\partial v^*} = -2\Phi, \]
Hence, we obtain the general solution of (5.8) given by
\[
\Phi = \frac{c_1}{(u^*)^2} + \frac{c_2}{(v^*)^2} + \frac{c_3}{u^*v^*} = \frac{c_1}{(a\mu_0 u - z)^2} + \frac{c_2}{(a\mu_0 v - z)^2} + \frac{c_3}{(a\mu_0 u - z)(a\mu_0 v - z)},
\]
where \(c_1, c_2, c_3\) and \(c_3\) are integral constants. Since we have
\[
\omega = z(du - dv) - (u - v)dz - a\mu_0 (v du - u dv)
= (z - a\mu_0 v)du - (z - a\mu_0 u)dv - (u - v)dz
= -v^* \frac{du^* + dz^*}{a\mu_0} + u^* \frac{dv^* + dz^*}{a\mu_0} - \frac{u^* - v^*}{a\mu_0} dz^* = -v^* \frac{du^* + u^* dv^*}{a\mu_0},
\]
which implies the relations
\[
\frac{1}{(u^*)^2} \omega = \frac{1}{a\mu_0} \frac{d}{d(u^*)} (\frac{v^*}{u^*}), \quad \frac{1}{(v^*)^2} \omega = -\frac{1}{a\mu_0} \frac{d}{d(v^*)} (\frac{u^*}{v^*}),
\]
\[
\frac{1}{u^* v^*} \omega = \frac{1}{a\mu_0} \frac{d}{d(u^*)} \log u^*.
\]
Thus, we obtain the general solution of (5.7) as follows. Setting \(F = F(x_1, x_2, x_3, c)\) by
\[
F := \frac{v^*}{u^*} = \frac{a\mu_0 v - z}{a\mu_0 u - z} = \frac{a\mu_0 (p \cdot \bar{x})/c - \sqrt{1 + ar^2}}{\mu_0 (\lambda \cdot \bar{x}) - \sqrt{1 + ar^2}},
\]
(5.7) is equivalent to
\[
d(c_1 F - c_2/F + c_3 \log F) = 0.
\]
We reach the following conclusion:

Theorem 6. The solutions of the pair of Pfaff equations
\[
\xi = 0 \quad \text{and} \quad \theta = 0
\]
with \(p_0 \neq 0, \lambda \times p \neq 0\) and \(\mu = \mu_0 (\lambda \times p), \mu_0 \neq 0\) are given by
\[
1 + ax_4 x_4 = c^2 (1 + ar^2),
\]
(5.9)
\[
a\mu_0 (p \cdot \bar{x}) - c\sqrt{1 + ar^2} = c_1 \left(\mu_0 (\lambda \cdot \bar{x}) - \sqrt{1 + ar^2} \right),
\]
where \(c > 0\) and \(c_1\) are integral constants.
Finally, we investigate the rest case: $\lambda \times p = 0$ in the previous argument, that is
\begin{equation}
(5.10) \quad p_0 \neq 0, \mu \neq 0 \quad \text{and} \quad (\lambda \cdot \mu) = (p \cdot \mu) = 0, \ (\lambda \times p) = 0.
\end{equation}
Choosing suitable coordinates (x_1, x_2, x_3) in \mathbb{R}^3, we may put
\[
\lambda = \begin{pmatrix} \lambda \\ 0 \\ 0 \end{pmatrix}, \quad p = \begin{pmatrix} p \\ 0 \\ 0 \end{pmatrix}, \quad \mu = \begin{pmatrix} 0 \\ \mu \\ 0 \end{pmatrix} \quad \text{with} \ \mu \neq 0.
\]
Then, by (3.2) θ is expressed as
\[
\theta = \frac{1}{x_4x_1} \left[-\frac{\sqrt{M}}{a} \lambda dx_1 + \sqrt{L} p dx_1 - \mu(x_3 dx_1 - x_1 dx_3)
- \frac{1}{\sqrt{L}} (p_0 \sqrt{M} + ap x_1) r dr \right] + \frac{1}{x_4 \sqrt{M}} (\lambda x_1 + p_0 \sqrt{L}) dx_4.
\]
In order to solve the Pfaff equations (5.2), we can put
\[
M = c^2 L, \quad L = 1 + ar^2, \quad M = 1 + ax_4 x_1, \quad r^2 = x_1 x_1 + x_2 x_2 + x_3 x_3
\]
and so $\theta = 0$ turns into
\[
\left(-\frac{c \lambda}{a} + p \right) \sqrt{L} dx_1 - \mu(x_3 dx_1 - x_1 dx_3) - \frac{1}{\sqrt{L}} (cp_0 \sqrt{L} + ap x_1) r dr
+ \frac{c}{\sqrt{L}} (\lambda x_1 + p_0 \sqrt{L}) r dr = 0,
\]
that is
\begin{equation}
(5.11) \quad -\frac{1}{a} (c \lambda - ap) \sqrt{L} dx_1 - \mu(x_3 dx_1 - x_1 dx_3) + \frac{1}{\sqrt{L}} (c \lambda - ap) x_1 r dr = 0.
\end{equation}
For simplicity we set
\[
A = c \lambda - ap \quad \text{and}
\]
\[
\omega := -\frac{A}{a} \sqrt{L} dx_1 - \mu(x_3 dx_1 - x_1 dx_3) + \frac{A}{\sqrt{L}} x_1 r dr,
\]
\[
= \left(\frac{A}{\sqrt{L}} x_1^2 - \frac{A}{a} \sqrt{L} - \mu x_3 \right) dx_1 + \frac{A}{\sqrt{L}} x_2 dx_2 + x_1 \left(\mu + \frac{A}{\sqrt{L}} x_3 \right) dx_3
\]
then we obtain
\[
d\omega = -\frac{Ar}{\sqrt{L}} dr \wedge dx_1 - 2 \mu dx_3 \wedge dx_1 + \frac{Ar}{\sqrt{L}} dx_1 \wedge dr
= \frac{2A}{\sqrt{L}} x_2 dx_1 \wedge dx_2 - 2 \left(\mu + \frac{A}{\sqrt{L}} x_3 \right) dx_3 \wedge dx_1.
Now, let $\Phi(x_1, x_2, x_3)$ be an integral multiplier for $\omega = 0$. Then, we obtain from the above expressions

\[
d(\Phi \omega) = \frac{\partial \Phi}{\partial x_1} dx_1 \wedge \omega + \frac{\partial \Phi}{\partial x_2} dx_2 \wedge \omega + \frac{\partial \Phi}{\partial x_3} dx_3 \wedge \omega + \Phi \, d\omega
\]

\[
= \frac{\partial \Phi}{\partial x_1} \left\{ \frac{A}{\sqrt{L}} x_1 x_2 dx_1 \wedge dx_2 - x_1 \left(\mu + \frac{A}{\sqrt{L}} x_3 \right) dx_3 \wedge dx_1 \right\}
+ \frac{\partial \Phi}{\partial x_2} \left\{ -\left(\frac{A}{\sqrt{L}} x_1^2 - \frac{A}{\sqrt{L}} x_2 \right) dx_1 \wedge dx_2
+ x_1 \left(\mu + \frac{A}{\sqrt{L}} x_3 \right) dx_2 \wedge dx_3 \right\}
+ \frac{\partial \Phi}{\partial x_3} \left\{ \left(\frac{A}{\sqrt{L}} x_1^2 - \frac{A}{\sqrt{L}} x_3 \right) dx_3 \wedge dx_1 - \frac{A}{\sqrt{L}} x_1 x_2 dx_2 \wedge dx_3 \right\}
+ \Phi \left\{ \frac{2A}{\sqrt{L}} x_2 dx_1 \wedge dx_2 - 2 \left(\mu + \frac{A}{\sqrt{L}} x_3 \right) dx_3 \wedge dx_1 \right\},
\]

from which we see that Φ must satisfy the following equalities:

\[
x_1 \left(\mu + \frac{A}{\sqrt{L}} x_3 \right) \frac{\partial \Phi}{\partial x_2} - \frac{A}{\sqrt{L}} x_1 x_2 \frac{\partial \Phi}{\partial x_3} = 0,
\]

\[
-x_1 \left(\mu + \frac{A}{\sqrt{L}} x_3 \right) \frac{\partial \Phi}{\partial x_1} + \left(\frac{A}{\sqrt{L}} x_1^2 - \frac{A}{\sqrt{L}} x_2 \right) \frac{\partial \Phi}{\partial x_3}
-2 \left(\mu + \frac{A}{\sqrt{L}} x_3 \right) \Phi = 0,
\]

\[\frac{A}{\sqrt{L}} x_1 x_2 \frac{\partial \Phi}{\partial x_1} - \left(\frac{A}{\sqrt{L}} x_1^2 - \frac{A}{\sqrt{L}} x_3 \right) \frac{\partial \Phi}{\partial x_2} + \frac{2A}{\sqrt{L}} x_2 \Phi = 0.\]

Since we have

\[
\frac{A}{\sqrt{L}} x_1^2 - \frac{A}{\sqrt{L}} x_2 \mu x_3 = \frac{A}{\sqrt{L}} \left(\frac{1}{a} + x_2 x_3 \right) - x_3 \left(\mu + \frac{A}{\sqrt{L}} x_3 \right)
\]

the above equalities turns into respectively

\[\left(\mu + \frac{A}{\sqrt{L}} x_3 \right) \frac{\partial \Phi}{\partial x_2} - \frac{A}{\sqrt{L}} x_2 \frac{\partial \Phi}{\partial x_3} = 0,
\]

\[
\left(\mu + \frac{A}{\sqrt{L}} x_3 \right) \left(x_1 \frac{\partial \Phi}{\partial x_1} + x_3 \frac{\partial \Phi}{\partial x_3} + 2\Phi \right) + \frac{A}{\sqrt{L}} \left(\frac{1}{a} + x_2 x_3 \right) \frac{\partial \Phi}{\partial x_3} = 0,
\]

\[
\frac{A}{\sqrt{L}} x_2 \left(x_1 \frac{\partial \Phi}{\partial x_1} + x_2 \frac{\partial \Phi}{\partial x_2} + 2\Phi \right) + \left(x_3 \left(\mu + \frac{A}{\sqrt{L}} x_3 \right) + \frac{A}{a \sqrt{L}} \right) \frac{\partial \Phi}{\partial x_2} = 0.
\]
Now, using the notations:
\[u = Ax_3 + \mu \sqrt{L}, \quad A = c\lambda - ap, \quad B = a\mu^2 - A^2 \]
we change the variables \((x_1, x_2, x_3)\) to the new ones \((x_1^*, x_2^*, u^*)\) by
\[x_1^* = x_1, \quad x_2^* = x_2x_2 + \frac{u^2}{B}, \quad u^* = x_2x_2 - \frac{u^2}{B}, \]
where we suppose \(B \neq 0\). Then, we have
\[
\frac{\partial u}{\partial x_1} = \frac{a\mu}{\sqrt{L}} x_1, \quad \frac{\partial u}{\partial x_2} = \frac{a\mu}{\sqrt{L}} x_2, \quad \frac{\partial u}{\partial x_3} = A + \frac{a\mu}{\sqrt{L}} x_3
\]
and
\[
\frac{\partial \Phi}{\partial x_1} = \Phi_{x_1^*} + \frac{2u}{B} \frac{a\mu x_1}{\sqrt{L}} \Phi_{x_2^*} - \frac{2u}{B} \frac{a\mu x_1}{\sqrt{L}} \Phi_{u^*} = \Phi_{x_1^*} + \frac{2a\mu}{B\sqrt{L}} x_1 (\Phi_{x_2^*} - \Phi_{u^*}),
\]
\[
\frac{\partial \Phi}{\partial x_2} = 2x_2 \left(1 + \frac{a\mu}{B\sqrt{L}} \right) \Phi_{x_2^*} + 2x_2 \left(1 - \frac{a\mu}{B\sqrt{L}} \right) \Phi_{u^*},
\]
\[
\frac{\partial \Phi}{\partial x_3} = \frac{2u}{B} \left(A + \frac{a\mu}{\sqrt{L}} x_3 \right) (\Phi_{x_2^*} - \Phi_{u^*}),
\]
where we consider \(\Phi\) as a function of \((x_1^*, x_2^*, u^*)\) and denote its partial derivatives with respect to the new variables as \(\Phi_{x_1^*}, \Phi_{x_2^*}, \Phi_{u^*}\). The first equality of (5.12) becomes
\[
u \frac{\partial \Phi}{\partial x_2} - Ax_2 \frac{\partial \Phi}{\partial x_3}
\]
\[
= 2ux_2 \left\{ \left(1 + \frac{a\mu}{B\sqrt{L}} \right) \Phi_{x_2^*} + \left(1 - \frac{a\mu}{B\sqrt{L}} \right) \Phi_{u^*} \right\}
\]
\[
- \frac{2Ax_2u}{B} \left(A + \frac{a\mu}{\sqrt{L}} x_3 \right) (\Phi_{x_2^*} - \Phi_{u^*})
\]
\[
= 2ux_2 \left\{ \left(1 + \frac{a\mu}{B\sqrt{L}} \right) - \frac{A}{B} \left(A + \frac{a\mu}{\sqrt{L}} x_3 \right) \right\} \Phi_{x_2^*}
\]
\[
\quad + \left\{ 1 - \frac{a\mu}{B\sqrt{L}} + \frac{A}{B} \left(A + \frac{a\mu}{\sqrt{L}} x_3 \right) \right\} \Phi_{u^*}
\]
\[
= 2ux_2 \left\{ \left(1 - \frac{A^2}{B} + \frac{a\mu}{B\sqrt{L}} (u - Ax_3) \right) \Phi_{x_2^*}
\quad + \left\{ \frac{B + A^2}{B} + \frac{a\mu}{B\sqrt{L}} (Ax_3 - u) \right\} \Phi_{u^*} \right\}
\]
\[
= 2ux_2 \left\{ \left(1 - \frac{A^2}{B} + \frac{a\mu^2}{B} \right) \Phi_{x_2^*} + \left\{ \frac{a\mu^2}{B} + \frac{a\mu}{B\sqrt{L}} (-\mu \sqrt{L}) \right\} \Phi_{u^*} \right\}
\]
\[
= 4ux_2 \Phi_{x_2^*}, = 0,
\]
which implies

\[(5.13) \quad \Phi_{x^*} = \partial \Phi / \partial x_2^* = 0.\]

Using this equality, we have

\[
\begin{align*}
\frac{\partial \Phi}{\partial x_1} &= \Phi_{x^*_1} - \frac{2a\mu x_1}{B\sqrt{L}}\Phi_{u^*}, \\
\frac{\partial \Phi}{\partial x_2} &= 2x_2 \left(1 - \frac{a\mu u}{B\sqrt{L}} \right) \Phi_{u^*}, \\
\frac{\partial \Phi}{\partial x_3} &= -\frac{2u}{B} \left(A + \frac{a\mu x_3}{\sqrt{L}} \right) \Phi_{u^*}.
\end{align*}
\]

Hence the second equality of (5.12') becomes

\[
u \left(x_1 \frac{\partial \Phi}{\partial x_1} + x_3 \frac{\partial \Phi}{\partial x_3} + 2\Phi \right) + A \left(\frac{1}{a} + x_2 x_2 \right) \frac{\partial \Phi}{\partial x_3}
= u x_1 \left(\Phi_{x^*_1} - \frac{2a\mu u}{B\sqrt{L}} x_1 \Phi_{u^*} \right)
- \left(u x_3 + A \left(\frac{1}{a} + x_2 x_2 \right) \right) 2u \left(A + \frac{a\mu}{\sqrt{L}} x_3 \right) \Phi_{u^*} + 2u \Phi
= \nu x_1 \Phi_{x^*_1}
- \left(\frac{2a\mu u^2}{B\sqrt{L}} x_1 \right) + 2u \left(A + \frac{1}{a} + x_2 x_2 \right) \left(A \mu x_3 + A \sqrt{L} \right) \Phi_{u^*}
+ 2u \Phi
= 0,
\]

which is equivalent to

\[(5.14) \quad x_1^* \Phi_{x^*_1} - 2H_2 \Phi_{u^*} + 2\Phi = 0,\]

where we set

\[H_2 = \frac{1}{B\sqrt{L}} \left\{ a\mu x_1^2 + \left(u x_3 + A \left(\frac{1}{a} + x_2 x_2 \right) \right) (a\mu x_3 + A \sqrt{L}) \right\}.
\]

The third equality of (5.12') becomes

\[
\begin{align*}
A x_2 \left(x_1 \frac{\partial \Phi}{\partial x_1} + x_2 \frac{\partial \Phi}{\partial x_2} + 2\Phi \right) + \left(u x_3 + A \left(\frac{1}{a} + x_2 x_2 \right) \right) \frac{\partial \Phi}{\partial x_3}
= A x_2 \left(\Phi_{x^*_1} - \frac{2a\mu u}{B\sqrt{L}} \Phi_{u^*} \right) + \left(A x_2^2 + u x_3 + A \right) 2x_2 \left(1 - \frac{a\mu u}{B\sqrt{L}} \right) \Phi_{u^*}
+ 2A x_2 \Phi
= A x_2 \Phi_{x^*_1} - 2x_2 \left(\frac{a\mu u x_1^2}{B\sqrt{L}} + \left(A x_2^2 + u x_3 + A \right) \left(\frac{a\mu u}{B\sqrt{L}} - 1 \right) \right) \Phi_{u^*}
+ 2A x_2 \Phi
= 0,
\end{align*}
\]
which is equivalent to
\[(5.15) \quad x_1^* \Phi_{x_1^*} - 2H_3 \Phi_{u^*} + 2 \Phi = 0, \]

where we set
\[H_3 = \frac{1}{B \sqrt{L}} \left\{ a \mu x_1^2 + \left(x_2^2 + \frac{ux_3}{A} + \frac{1}{a} \right) (a \mu u - B \sqrt{L}) \right\}. \]

From (5.14) and (5.15) we obtain the equality
\[(H_2 - H_3) \Phi_{u^*} = 0. \]

Since we have
\[B \sqrt{L} (H_2 - H_3) = \left(ux_3 + A \left(\frac{1}{a} + x_2 x_2 \right) \right) (a \mu x_3 + A \sqrt{L}) \]
\[- \left(x_2^2 + \frac{ux_3}{A} + \frac{1}{a} \right) (a \mu u - B \sqrt{L}) \]

and
\[\left(x_2^2 + \frac{ux_3}{A} + \frac{1}{a} \right) (a \mu u - B \sqrt{L}) = \frac{1}{A} \left(ux_3 + A \left(\frac{1}{a} + x_2 x_2 \right) \right) (a \mu x_3 + A \sqrt{L} - B \sqrt{L}) \]
\[= \left(ux_3 + A \left(\frac{1}{a} + x_2 x_2 \right) \right) (a \mu x_3 + A \sqrt{L}), \]

we obtain \(H_2 = H_3 \). Therefore (5.14) and (5.15) are identical.

Now we shall express \(H_2 \) by \(x_1^*, x_2^* \) and \(u^* \). We have
\[H_2 = \frac{1}{B \sqrt{L}} \left[a \mu x_1^2 + a \mu x_3^2 + (A \mu (1 + ax_2^2) + A u \sqrt{L}) x_3 \right. \]
\[+ \frac{A^2}{a} (1 + ax_2^2) \sqrt{L} \]
\[= \frac{1}{B \sqrt{L}} \left[a \mu x_1^2 + a \mu x_3^2 + (\mu (1 + ax_2^2) + u \sqrt{L}) (u - \mu \sqrt{L}) \right. \]
\[+ \frac{A^2}{a} (1 + ax_2^2) \sqrt{L} \]
\[= \frac{1}{B \sqrt{L}} \left[a \mu x_1^2 + a \mu x_3^2 + \mu u (1 + ax_2^2) - \mu u (1 + ax_1^2 + ax_2^2 + ax_3^2) \right. \]
\[+ \left\{ u^2 - \mu^2 (1 + ax_2^2) + \frac{A^2}{a} (1 + ax_2^2) \right\} \sqrt{L} \]
\[= \frac{1}{B} \left\{ u^2 - \left(\mu^2 - \frac{A^2}{a} \right) (1 + ax_2^2) \right\} = \frac{1}{B} u^2 - \frac{1}{a} (1 + ax_2^2) = -\frac{1}{a} - u^*. \]
Thus, the equality (5.14) turns into

(5.14') \[x_1^* \Phi_{x_1^*} + 2 \left(\frac{1}{a} + u^* \right) \Phi_{u^*} + 2 \Phi = 0. \]

If we take \(v = \sqrt{u^* + \frac{1}{a}} \) in place of \(u^* \), then we have

\[2 \left(\frac{1}{a} + u^* \right) \Phi_{u^*} = 2v^2 \Phi_v, \quad \frac{1}{2 \sqrt{u^* + 1/a}} = v \Phi_v \]

and hence (5.14') can be replaced by

(5.14'') \[x_1^* \Phi_{x_1^*} + v \Phi_v + 2 \Phi = 0, \]

whose solution is given by

\[\Phi = \frac{c_1}{x_1 x_1} + \frac{c_2}{uv} + \frac{c_3}{x_1 v}, \quad v = \sqrt{\frac{1}{a} + x_2 x_2 - \frac{uu}{B}} \]

\[u = Ax_3 + \mu \sqrt{L}, \]

where \(c_1, c_2 \) and \(c_3 \) are integral constants.

Finally we shall integrate the Pfaff equation

\[\omega = 0. \]

Since we have

\[\frac{1}{x_1 x_1} \omega = - \frac{A}{a} \sqrt{L} \frac{dx_1}{x_1^2} - \mu \left(\frac{x_3}{x_1^2} \frac{dx_1}{dx_3} - \frac{1}{x_1} \frac{dx_3}{dx_1} \right) + \frac{A}{a} \sqrt{L} \frac{1}{x_1} dr \]

\[= \frac{A}{a} \sqrt{L} \frac{d}{x_1} + \mu \left(x_3 d \frac{1}{x_1} + \frac{1}{x_1} \frac{dx_3}{dx_1} \right) + \frac{A}{a} \sqrt{L} \frac{1}{x_1} d \left(\frac{A}{a} \frac{\sqrt{L}}{x_1} + \mu \frac{x_3}{x_1} \right), \]

the solution of the above Pfaff equation is given by

\[\frac{A}{a} \sqrt{L} + \mu x_3 = c_1 x_1 \quad \text{or} \quad A^2 (1 + ar^2) = a^2 (c_1 x_1 - \mu x_3)^2, \]

which is given by the original coordinates \(x_i \) by

\[(c |\lambda| - a |p|)^2 (1 + ar^2) = \frac{a^2}{|\lambda|^2} \left\{ c_1 (\lambda \cdot \tilde{x}) - ((\lambda \times \mu) \cdot \tilde{x}) \right\}^2, \]

where \(\lambda \) is supposed \(\lambda \neq 0 \) and \(c_1 \) is an integral constant.

Theorem 7. The solutions of the pair of Pfaff equations

\[\xi = 0 \quad \text{and} \quad \theta = 0 \]

with \(p_0 \neq 0, \mu \neq 0, \lambda \neq 0, \mu \neq 0, (\lambda \times p) = 0, (\lambda \cdot \mu) = (p \cdot \mu) = 0 \) and

\(a |\mu|^2 \neq (c |\lambda| - a |p|)^2 \), are given by

\[1 + ax_4 x_4 = c^2 (1 + ar^2), \]

\[|\lambda|^2 (c |\lambda| - a |p|)^2 (1 + ar^2) = a^2 \left\{ c_1 (\lambda \cdot \tilde{x}) - ((\lambda \times \mu) \cdot \tilde{x}) \right\}^2. \]
References

Tominosuke Otsuki
Kaminomiya 1-32-6, Tsurumi-ku, Yokohama, Japan 230-0075
E-mail: tohtsuki@proton.co.jp