DEMAZURE OPERATORS FOR COMPLEX REFLECTION GROUPS $G(e, e, n)$

Konstantinos Rampetas

(Received November 11, 1998)

Abstract This paper is a continuation of the work in [RS], where we studied Demazure operators for the imprimitive complex reflection group \widetilde{W} = $G(v, \Delta, \nu)$ and completely a homogeneous basis of the confidence algebra Δ $S_{\widetilde{W}}$. In this paper, we study a similar problem for the reflection subgroup $W = G(e, e, n)$ of W we prove, by assuming certain conjectures, that the \sim portions we way when \sim are linearly independent over the symmetric algebra \sim SV We dene a graded space HW in terms of Demazure operators and we show that the coinvariant algebra S_W is naturally isomorphic to H_W . Then we can define a homogeneous basis of S_W parametrized by $w \in W$.

AMS Mathematics Subject Classication- Primary H Secondary 20F55, 51F15.

Key words and phrases- Complex reection groups Demazure operators

λ introduction of the second second

Let $W_0 = \alpha$ to improve the imprimitive complex reflection group isomorphic. to $S_n \ltimes (\mathbb{Z}/e\mathbb{Z})^n$, regarded as a subgroup of $GL(V)$ with $V \cong \mathbb{C}^n$. (Here S_n denotes the symmetric group of degree n. Let $S_{\widetilde{W}}$ be the coinvariant algebra of w , i.e. the quotient of the symmetric algebra $D(V)$ by the ideal generated by the non-constant homogeneous \widetilde{W} -invariant polynomials. In [BM1], IV. DICHING and G. Malle constructed a length function $w \rightarrow w$ - We satisfying the property $\sum_{w\in \widetilde W}t^{n(w)}=P_{\widetilde W}(t),$ where $P_{\widetilde W}(t)$ is the Poincaré polynomial associated algebra \mathbb{R} in \mathbb{R} in \mathbb{R} in \mathbb{R} in \mathbb{R} in \mathbb{R} erator Δw for each $w \in W$, which is an endomorphism on $\mathcal{D}(V)$ reducing the

^{*}The author gratefully acknowledges financial support by the Japanese Ministry of Education

grading by $n(w)$, and constructed a basis of $S_{\tilde{W}}$ parametrized by $w \in W$ by making use of $\{\Delta_w | w \in W\}$.

In this paper, we consider the group $W = \{0, 0, 0, 0\}$ which is a subgroup of W of index e, isomorphic to $S_n \ltimes (\mathbb{Z}/e\mathbb{Z})^n$ -. The length function $\ell : W \to \mathbb{N}$, satisfying the property $\sum_{w \in W} t^{\ell(w)} = P_W(t)$, was constructed by [BM2], where \sim W (\sim) cm the Poincare polynomial associated with the coincil associated with \sim W $_{\rm W}$ of W. We recall the definition of Demazure operators. For each $\alpha \in V$, let s-complex reection with eigenvector Ω . The complex relation with eigenvector Γ Δ_{α} . β (ν) \rightarrow β (ν) is defined by

$$
\Delta_{\alpha}(f) = \frac{f - s_{\alpha}(f)}{\alpha}, \quad \text{ for } f \in S(V).
$$

We define an operator Δ_w for each $w \in W$ as follows. It is known by [BM2] that there exists a system of representatives N or the left cosets W/ω_n satistying the property that $\ell(w | w) = \ell(w) + \ell(w)$ for $w \in \mathcal{N}, w \in \mathcal{S}_n$. We define $\Delta_{w'}$ for $w \in N$ as a certain product of various Δ_{α} for $s_{\alpha} \in W$. On the other hand, the operator $\Delta_{w''}$ for $w_{-} \in S_n$ is already defined by the theory of Demands operators for military vectors Δ , where the moment is the set $w = w w \in W$ ($w \in W$, $w \in S_n$) the operator Δ_w by $\Delta_w = \Delta_{w'} \Delta_{w''}$. In the ure operators for finite Coxeter groups. Then we $w' \in \mathcal{N}$, $w'' \in S_n$) the operator Δ_w by $\Delta_w = \Delta_{w'} \Delta_n$ case of \widetilde{W} , the crucial step for the proof of the main result is to show that the operators $\Delta w \sim w$ f are linearly independent over $S(V)$. In our situation, we can prove (Theorem 5.10) that the operators $\sum_{w'} w$ W). In our situation,
 $w' \in \mathcal{N}$ } are linearly independent over S-^V It is also known by the general theory that the op erators $\{\Delta_{w''}\}\ w\ \in\ \mathcal{S}_n\}$ are imearly independent over $S(V)$. We expect that $\sum_{i=1}^{\infty} w_i \in W$ are initially independent over $S(V)$. In our paper, we prove this by assuming certain conjectures - and - concerning the prop erty of $\Delta_{w'}$ (w \in JV). Our main result asserts that a similar theorem as in the case of \overline{W} holds for W , assuming the above conjectures. More precisely, For D_W be the subspace of the dual space of $D(V)$ generated by $\varepsilon \Delta_W$ ($w \in W$), where ε , $\mathcal{O}(V) \rightarrow \mathbb{C}$ is the evaluation at 0. Then we can show (Theorem 0.20) $\lim_{\omega \to \infty} \omega \in W$ is naturally isomorphic to the dual space of ν_W .

The conjecture - (\cdots) is related to the evaluation of $\equiv w_\parallel$ (\sim 1 or can configure element in W with respect to ℓ) at certain polynomial, and is verified to be μ are μ and μ and μ are assumption that $e \times n$. This theorem reads to the following interesting characterization of $-w_1$. Here \circ are the operator on $S(V)$ defined by $J = \sum_{w \in W} \varepsilon_W(w)w$, where $\varepsilon_W : W \to {\{\pm 1\}}$ is the wsign character of W . Let Q be the product of all eigenvectors of reflections contained in W. Assume that $\epsilon \geq n$. Then Δ_{w_1} is expressed (Troposition 3.18) as $\Delta_{w_1} = dQ^{-1}J$ for some non-zero constant $d \in \mathbb{C}$.

$\S2.$ Preliminaries

4.1. Let *V* be the unitary space \mathbb{C}^n with standard basis x_1, x_2, \ldots, x_n . Let $W = Q(c, 1, n)$ be the imprimitive complex reflection group contained in GL(V). The group W is generated by $\{v, s_2, \dots, s_n\}$, where s_i is a reflection permuting x_i and x_{i-1} , and t is a complex reflection of order e, which sends x to x and leaves all the other xi unchanged -Here is a xed primitive e -th root of unity).

Let $W = G(e, e, u)$ be the subgroup of W of index e generated by reflections $S = \{s_1, s_2, \cdots, s_n\}$ of order 2, where $s_1 = ts_2 t^{-1}$ sends x_1 to $\zeta^{-1} x_2$ and x_2 to ζx_1 . Note that W is the Weyl group of type D_n if $e = 2$, and W is the dihedral group of order 2e if $n = 2$.

Let $S(V) = \bigoplus_{i>0} S'(V)$ be the symmetric algebra on V, where $S'(V)$ denotes the ith homogeneous part of S-^V The group ^W acts naturally on S-^V and we denote by IW the ideal of S-^V generated by the Winvariant homogeneous elements of S-^V of strictly positive degree The coinvariant algebra associated with W is determined with W $_{\rm V}$, which $_{\rm V}$ is determined as a natural metric. grading $\mathfrak{H}_W \equiv \oplus_{i \geq 0} S_W$ inherited from that of $S(V)$. The Poincare polynomial PW () for determined by the formulation

$$
P_W(t) = \sum_{i>0} \dim_{\mathbb{C}} (S_W^i) t^i.
$$

The group W acts on $S(V)$, and the comvariant algebra S_W^W and the Poincare polynomial $F_W(t)$ associated with W are defined similarly.

In Allen and Malle construction and Malle construction and Malle construction and α $W \rightarrow W$ by making use of a certain root system, and showed that the sum $\sum_{w \in \widetilde{W}} t^{n(w)}$ coincides with $P_{\widetilde{W}}(t)$. In [BM2], they defined a different type of $$ refigure function ℓ , $W \rightarrow \infty$, (the function ℓ_2 in the notation of $|{\rm D}W_2|$), in terms of an alternative root system and showed that the restriction of ℓ on W satisfies the formula $\sum_{w \in W} t^{\ell(w)} = P_W(t)$. Note that the subgroup of W generated by $S' = \{s_2, \dots, s_n\}$ is identified with S_n . The restriction of ℓ on S_n coincides with the usual length function of S_n with respect to S' .

They found a system of left coset representatives N of W/\mathcal{Q}_n having fifte properties with respect to the length function ℓ on W as follows. For $0 < a \leq e$, $1 \leq i \leq n$ we define an element of W by

(2.2.1)
$$
w(a, i) = \begin{cases} s_i \cdots s_2 t^a & \text{if } 0 < a \le e/2, \\ s_i \cdots s_2 t^a s_2 \cdots s_i & \text{if } e/2 < a \le e. \end{cases}
$$

It is moved by Lemma 1:10 in D_1 , the end to length of the element ω (ω_i υ_j is given as

(2.2.2)
$$
\ell(w(a, i)) = \begin{cases} (i - 1)(2a - 1) & \text{if } 0 < a \le e/2, \\ (i - 1)(2e - 2a) & \text{if } e/2 < a \le e. \end{cases}
$$

Put

$$
\mathcal{N} = \{w(a_1, 1) \cdots w(a_n, n)| 1 \le a_i \le e, \sum_{i=1}^n a_i \equiv 0 \pmod{e}\}
$$

They proved the following fact

I LOPOSITION $\boldsymbol{\mu}$ as $\boldsymbol{\mu}$ ($\boldsymbol{\mu}$ priorition $\boldsymbol{\mu}$ in $\boldsymbol{\mu}$ and $\boldsymbol{\mu}$ is a system of representatives for the left cosets W-Sn satisfying the fol lowing

 (i) For $w' \in \mathcal{N}$, $w'' \in S_n$, we have

$$
\ell(w'w'')=\ell(w')+\ell(w'').
$$

 (u, u) if $u \in \mathcal{N}$ is given as $w = w(a_1, 1) \cdots w(a_n, n)$, then $\varepsilon(w) =$ $i=2$ $\ell(w(a_i, i))$.

 \mathbf{v} - w-c- \mathbf{v} - \mathbf{v}

Let s_{α} be the reflection in W with eigenvector $\alpha \in V$. There we assume that the eigenvalue attached to α is not equal to 1). We define an operator Δ_{α} . β (v) \rightarrow β (v) by the formula

$$
\Delta_{\alpha}(f) = \frac{f - s_{\alpha}(f)}{\alpha}, \quad (f \in S(V)).
$$

we call - a Demazure operator on S-V of the Sfor complex reflection groups in general. In the case of finite Coxeter groups. there exists a well established theory for Demazure operators by \mathbb{R}^n (DBC) \mathbb{R}^n nite case of a procedure complex reection groups and Δ - which is the complex reection Δ In R , we studied Demazure operators for the group W , and showed that the structure of the coinvariant algebra $S_{\widetilde{W}}$ is described in terms of Demazure operators as in the case of Coxeter groups by constructing a certain -non canonical) basis of $S_{\widetilde{W}}$. Here we take up a similar problem for the group W .
We give some properties of Demazure operators. We have the following.

$$
\Delta_{\alpha}^2 = 0,
$$

 \blacksquare . The set of the $f(x, y, y, z) = f(x, y, y, z, z)$ for $f, n \in S(V)$. If $f \in S(V)$ is s_{α} -invariant, then $\Delta_{\alpha}(f) = 0$. Now let $S(V)$ be the subalgebra of S-^V consisting of the Winvariant elements Then it follows from the contract of t

$$
(2.4.3) \qquad \Delta_{\alpha}(fh) = f \Delta_{\alpha}(h) \qquad \text{for } f \in S(V)^{W}.
$$

In particular, we have $\Delta_{\alpha}(IV) \subseteq IV$ and Δ_{α} muttes an operation on βW .

2.5. Let S_n be the subgroup of W as in 2.2. Then (S_n, S) is a Coxeter system, with associated religion function ι , $\omega_n \to \infty$. Treflice, by the general theory of Demazure operators for finite Coxeter groups, we have the following facts. Let $w = s_{i_1} s_{i_2} \cdots s_{i_k}$ ($s_i \in S$) be a reduced expression of $w \in S_n$. Then we de
ne

$$
(\textbf{2.5.1}) \qquad \qquad \Delta_w = \Delta_{i_1} \cdots \Delta_{i_k},
$$

where $\Delta_i - \Delta_{\alpha_i}$ with $\alpha_i - x_i - x_{i-1}$. It is known that the operator Δ_w is independent of the choice of the choice of the reduced experimental of the reduced expression of the reduced e Property in the contract of th

Let w_0 be the longest element in S_n . We define a polynomial Q_0 by $Q_0 =$ $\overline{}$ and $\overline{}$ a $i>j(u_i - x_j)$. The following facts are known.

 $P = \{ \mathbf{P} \mid \mathbf{P} \}$. $P = \{ \mathbf{P} \mid \mathbf{P} \}$. $P = \{ \mathbf{P} \}$. $P = \{ \mathbf{P} \}$. $P = \mathbf{P} \{ \mathbf{P} \}$. $P = \mathbf{P} \{ \mathbf{P} \}$

Proposition 2.1 (In, IV, Cor. 2.5). For any $w, w \in W$ such that $\ell(w) \setminus$ $u(w)$, we have $\Delta_{w'}\Delta_{w^{-1}w_0}=o_{w,w'}\Delta_{w_0}$.

Note that the condition $\ell(w) \leq \ell(w)$ is dropped in the statement of Corollary 2.3 in $[H]$.

$\S3.$ \sim encodered operators for $G_{\rm CO}$, $G_{\rm CO}$, $G_{\rm CO}$

 From now on we identify S-^V with the polynomial algebra $\mathcal{L}[\alpha_1, \ldots, \alpha_n]$ with indeterminates α_i . The group \mathcal{U} of α_i , α_i , α_i acts on $\sum_{i=1}^{\infty}$ $\sum_{i=1}^{\infty}$ $\sum_{i=1}^{\infty}$ $\sum_{i=1}^{\infty}$ $\sum_{i=1}^{\infty}$ $\sum_{i=1}^{\infty}$

For $i = 2, 3, \ldots, n$ we define inductively the element s_i as follows; Let $s_2 = s_1$ and $s_i = s_{i-1}s_is_{i-1}s_is_{i-1}$. Then s_i is the complex reliection of order z_i which sends x_i to ζx_{i-1} , and x_{i-1} to $\zeta^{-1}x_i$. We note that if we put $y_i = \zeta^{-1/2}x_i$ and $y_{i-1} = \zeta^{-1} x_{i-1}$, then we can regard s_i as a permutation of y_i, y_{i-1} . We define the operators $\equiv s_i$, $\equiv s_i$ on \approx (i) sy the formulas

$$
(3.1.1)
$$

$$
\Delta_{s_i}(f) = \frac{f - s_i(f)}{x_i - x_{i-1}}, \qquad \Delta_{s'_i}(f) = \frac{f - s'_i(f)}{\zeta^{-1/2}x_i - \zeta^{1/2}x_{i-1}}, \qquad (f \in S(V)).
$$

Then the following two formulas hold:

(3.1.2)
$$
\Delta_{s_i}(x_i^a x_{i-1}^b) = \varepsilon \sum x_i^j x_{i-1}^{a+b-1-j},
$$

$$
\Delta_{s'_i}(x_i^a x_{i-1}^b) = \varepsilon \zeta^{(2a-1)/2} \sum \zeta^{-j} x_i^j x_{i-1}^{a+b-1-j},
$$

where in both formulas the sum is taken over j such that $\min\{a,b\} \leq j \leq j$ $\max_{\alpha} a_1 a_2 a_3$ and $\varepsilon = 1$ (resp. $\varepsilon = -1$) if $a > b$, (resp. $a \leq b$). The model formula is contained in the second contained from the second one is obtained from the second the second μ changing the variables $x_i \rightarrow y_i, x_{i-1} \rightarrow y_{i-1}$.

For $i=2,\cdots,n,$ we define operators Δ_i^{\cdots} , $\Delta_{i'}^{\cdots}$ in the \mathbf{v} in the following way of \mathbf{v}

(3.1.3)
$$
\Delta_i^{(a)} = \underbrace{\cdots \Delta_{s_i} \Delta_{s_i}}_{a-\text{factors}}, \qquad \Delta_{i'}^{(a)} = \underbrace{\cdots \Delta_{s_i} \Delta_{s_i'}}_{a-\text{factors}}.
$$

-- In order to study the above operators in a more detailed way we need to evaluate them at various polynomials For this we prepare some notation Let a, b be two positive integers such that $1 \le a \le b$. We put

$$
c(a,b) = (-1)^{[a+1/2]} \prod_{j=1}^{a-1} (\zeta^{(b-j)/2} - \zeta^{-(b-j)/2}),
$$

where a denotes the smallest integer which does not exceed a we have the most c $c(u, v) = -1$ if $u = 1$. The following two lemmas will be used in our later discussion.

Lemma 0.0. Let u, v be integers such that $1 \le u \le v$.

-i Assume that ab Then we have

$$
\Delta_i^{(a)}(x_{i-1}^b) = \begin{cases} c(a,b)(x_i^{b-a} + x_{i-1}^{b-a}) + f, & \text{if } a \text{ is odd,} \\ c(a,b)(y_i^{b-a} + y_{i-1}^{b-a}) + f, & \text{if } a \text{ is even,} \end{cases}
$$

$$
\Delta_{i'}^{(a)}(x_{i-1}^b) = \begin{cases} (-1)^{a-1} \zeta^{-b/2} c(a,b)(y_i^{b-a} + y_{i-1}^{b-a}) + f, & \text{if } a \text{ is odd,} \\ (-1)^{a-1} \zeta^{-b/2} c(a,b)(x_i^{b-a} + x_{i-1}^{b-a}) + f, & \text{if } a \text{ is even,} \end{cases}
$$

where in each case, f denotes a polynomial divisible by $x_i x_{i-1} = y_i y_{i-1}$.

ii assume that a bigger we have the second weeks and we have a bigger of the second term of the second term of

$$
\Delta_i^{(a)}(x_{i-1}^a) = c(a, a),
$$

\n
$$
\Delta_{i'}^{(a)}(x_{i-1}^a) = (-1)^{a-1} \zeta^{-a/2} c(a, a).
$$

Proof We prove only the formula -i The proof of -ii is similar and simpler it formula in the case of the case where where α is straightforward. from - The following two formulas are obtained by using the de
nition of $\Delta_{s_i}, \Delta_{s'_i}$ and the fact that $y_i = \zeta^{-\gamma - x_i}$ and $y_{i-1} = \zeta^{-\gamma - x_{i-1}}$.

$$
\Delta_{s'_i}(x_i^{b-a+1} + x_{i-1}^{b-a+1}) = (\zeta^{(b-a+1)/2} - \zeta^{-(b-a+1)/2})(y_i^{b-a} + y_{i-1}^{b-a}) + f_1,
$$

$$
\Delta_{s_i}(y_i^{b-a+1} + y_{i-1}^{b-a+1}) = (\zeta^{-(b-a+1)/2} - \zeta^{(b-a+1)/2})(x_i^{b-a} + x_{i-1}^{b-a}) + f_1,
$$

where f_1 is a polynomial divisible by $x_i x_{i-1} = y_i y_{i-1}$. We also notice that since $x_i x_{i-1} = y_i y_{i-1}$ is stable by the reflections s_i and s_i , if a polynomial f is divisible by $x_i x_{i-1}$ $y_i y_{i-1}$, and so are $-s_i (f)$ and $-s_i (f)$. The first formula in -i follows from the above formulas by induction on a Next we show the second formula in (i). If we note that $x_{i-1} = \zeta^{-1} y_{i-1}$, it is easy to see that $\Delta_{i'}^{(0)}(y_{i-1}^{\prime\prime})$ coincides with the polynomial which is obtained from $\Delta_i^{(a)}(x_{i-1}^b)$ by replacing x_i, x_{i-1} by y_i, y_{i-1} , by replacing ζ by ζ^{-1} , and then by multiplying by $\zeta^{-\gamma}$. Hence the second formula follows immediately from the first one. П

Next we compute the values $\Delta_i^{(z)}(x_i^0)$ and $\Delta_{i'}^{(z)}(x_i^0)$. By (3.1.2) we see that

$$
\Delta_{s_i}(x_i^b) = -\Delta_{s_i}(x_{i-1}^b), \qquad \Delta_{s'_i}(y_i^b) = -\Delta_{s'_i}(y_{i-1}^b).
$$

Therefore we have

$$
\Delta_{s'_i}(x_i^b) = \zeta^{b/2} \Delta_{s'_i}(y_i^b) \n= -\zeta^{b/2} \Delta_{s'_i}(y_{i-1}^b) \n= -\zeta^b \Delta_{s'_i}(x_{i-1}^b).
$$

This implies that the value $\Delta_i^{(m)}(x_i^o)$ (resp. $\Delta_{i'}^{(m)}(x_i^o)$) coincides with $-\Delta_i^{(1)}(x_{i-1}^o)$ (resp. $-\zeta^o\Delta_{i'}^{(1)}(x_{i-1}^o)$). Therefore as a corollary to Lemma 3.3 in the company of the company of the we obtain the following results of \mathbb{R}^n results for \mathbb{R}^n

Lemma -- Let a b as in Lemma

-i Assume that ab Then we have

$$
\Delta_i^{(a)}(x_i^b) = \begin{cases}\n-c(a,b)(x_i^{b-a} + x_{i-1}^{b-a}) + f & \text{if a is odd,} \\
-c(a,b)(y_i^{b-a} + y_{i-1}^{b-a}) + f & \text{if a is even,} \\
\Delta_{i'}^{(a)}(x_i^b) = \begin{cases}\n(-1)^a \zeta^{b/2} c(a,b)(y_i^{b-a} + y_{i-1}^{b-a}) + f & \text{if a is odd,} \\
(-1)^a \zeta^{b/2} c(a,b)(x_i^{b-a} + x_{i-1}^{b-a}) + f & \text{if a is even.}\n\end{cases}\n\end{cases}
$$

iif a b Then we have the well as the second weeks and we have a bound of the second weeks a bound of the second weeks and the second we have a second weeks and we have a second we have a second we have a second we have a s

$$
\Delta_i^{(a)}(x_i^a) = -c(a,a),\\ \Delta_{i'}^{(a)}(x_i^a) = (-1)^a \zeta^{a/2} c(a,a).
$$

5.5. We fix an integer $a \geq 0$. We define, for $a \leq b \leq n$, an operator $\Delta_i |a|$ on $S(V)$ by the formula

$$
\Delta_i[a]=\begin{cases} \Delta^{(a)}_{2'}\cdots\Delta^{(a)}_{i'}& \text{if }a\geq 1,\\ 1& \text{if }a=0. \end{cases}
$$

The operator $\Delta_i |a|$ reduces the grading by $(i - 1)a$. For each $a \ge 0$, we define a polynomial $g_{i,a}(x)$ of degree $(i-1)a$ by $g_{i,a}(x) = (x_1 \cdots x_{i-1})$. Then the following lemma holds

Demma 5.0. Assume that $a \geq 1$. Let $\Delta_i |a|$, $g_{i,a}(x)$ be actined as above. Then

$$
\Delta_i[a](g_{i,a}) = \{(-1)^{a-1}\zeta^{-a/2}c(a,a)\}^{i-1}.
$$

 $In particular, \Delta_i[a](g_{i,a}) \neq 0 \text{ for } 1 \leq a \leq e-1.$

Proof. First we note that the operator Δ_{ii}^{ss} affect i and variables i a x_{i-1} and leaves all the others unchanged. Therefore we have

$$
(3.6.1) \qquad \Delta_i[a](g_{i,a}) = (x_1 \cdots x_{i-2})^a \Delta_{i'}^{(a)}(x_{i-1}^a).
$$

But we have $\Delta_i^{r'}(x_{i-1}^a) = (-1)^{a-1} \zeta^{-a/2} c(a,a)$ by Lemma 3.3 (11). \mathbf{H} is the right hand side of \mathbf{H} with a with \mathbf{H} as given as given as given as given as given as given as \mathbf{H} and \mathbf{H} and \mathbf{H} are given by \mathbf{H} and \mathbf{H} and \mathbf{H} and \mathbf{H} and γ = (-1) (ℓ $c(a,a)$). Repeating this procedure for the operators Δ \mathbb{Z}^{\prime} and \cdots $\langle \zeta_{i-1}^{\cdots}, \cdots, \Delta_{2^{\prime}}^{\cdots} \rangle$ we obtain the result.

3.7. Let $\mathcal{M} = [0, e-1]^{n-1}$ $(n-1)$ copies of the interval $[0, e-1]$. For each $\lambda = (\lambda_2, \dots, \lambda_n) \in \mathcal{M}$, we define an operator Δ_{λ} on $S(V)$ by each $\lambda = (\lambda_2, \dots, \lambda_n) \in \mathcal{M}$, we define an operator Δ_{λ} on $S(V)$ by

$$
\Delta_\lambda = \Delta_n[\lambda_n]\cdots \Delta_2[\lambda_2].
$$

Also for $\lambda \in \mathcal{M}$ we define a polynomial $P_{\lambda}(x)$ by $P_{\lambda} = \prod_{i=2}^{n} g_{i,\lambda_i}$. Let $\lambda =$ $(\lambda_2, \dots, \lambda_n)$, $\mu = (\mu_2, \dots, \mu_n) \in \mathcal{M}$. We define a total order $\lambda > \mu$ on M by $\Delta_2 = \mu_2, \ldots, \Delta_{i-1} = \mu_{i-1}$ and $\Delta_i > \mu_i$ for some $i \geq 1$. Then we have the following proposition

Proposition 3.8. Let $\lambda, \mu \in \mathcal{M}$. Then there exists a non-zero element $c_{\lambda} \in \mathbb{C}$ such that

$$
\Delta_\lambda(P_\mu) = \begin{cases} c_\lambda & \text{if } \lambda = \mu, \\ 0 & \text{if } \lambda > \mu. \end{cases}
$$

Proof. Plest we note that $\Delta_i[\lambda_i]$ leaves $g_{i,\mu_i} = (x_1 \cdots x_{i-1})^{n_i}$ invariant for j is the constant of various products of the operators of the $\Delta_{s_2}, \cdots, \Delta_{s_j}, \Delta_{s'_2}, \cdots, \Delta_{s'_j}$ and these operators leave g_{i,μ_i} invariant, since s_j and s_j stabilize $x_{j-1}x_j=y_{j-1}y_j$ (in the notation of 5.1).

First assume that if Γ is a nonzero γ is a nonzero of γ if η if η is a nonzero of γ constant for each i . Combining with the above remark, we see that

$$
\Delta_\lambda(P_\lambda)=\prod_{i=2}^n\Delta_i[\lambda_i](g_{i,\lambda_i}),
$$

and the right hand side is a non-zero constant, which we write as c_{λ} . Next assume that $\lambda > \mu$. Then there exists i such that $\lambda_2 = \mu_2, \dots, \lambda_{i-1} =$ μ_{i-1} and $\lambda_i > \mu_i$. Then we have

$$
\Delta_\lambda(P_\mu)=c\Delta_n[\lambda_n]\cdots\Delta_i[\lambda_i](\prod_{j=i}^ng_{j,\mu_j}),
$$

with some $c \in \mathbb{C} - \{0\}$ by a similar argument as in the previous case. But then

$$
\Delta_i[\lambda_i](\prod_{j=i}^n g_{j,\mu_j})=(\prod_{j=i+1}^n g_{j,\mu_j})\Delta_i[\lambda_i](g_{i,\mu_i}),
$$

and $\Delta_i[\lambda_i](y_{i,\mu_i}) = 0$, since $\Delta_i[\lambda_i]$ reduces the degree by $(i-1)\lambda_i$, which is \Box α bigger than the degree of gi_thic first $-\lambda$ (α) of

5.5. Let ν_W be the subalgebra of End_C ν_V / generated by Δ_s ($s \in \mathcal{S}$) and α ($\alpha \in V$), where $\alpha \in S(V) \rightarrow S(V)$ denotes the multiplication by the vector α . Then \mathcal{D}_W becomes a left $S(V)$ -module. We also note that for any $w \in W$
the endomorphism w on $S(V)$ is contained in \mathcal{D}_W , since $s_\alpha = 1 - \alpha^* \Delta_\alpha \in \mathcal{D}_W$ the endomorphism w on $S(V)$ is contained in \mathcal{D}_W , since $s_\alpha = 1 - \alpha^* \Delta_\alpha \in \mathcal{D}_W$ for any $s_{\alpha} \in S$. Since $\Delta_{s_i'} = w \Delta_{s_2'} w$ for some $w \in S_n$, we see that $\Delta_{s_i'}$ $\alpha \leq i \leq n$ are also contained in ν_W . Therefore $\Delta \chi \in \Omega$ $w \in S_n$, we see that $\Delta_{s_i'}$
 $\lambda \in \mathcal{D}_W$ for any $\lambda \in \mathcal{M}$. As a corollary to Proposition 3.8 we have the following theorem. The proof is immediate from Proposition 3.8.

Theorem 3.10. The set $\{\Delta_{\lambda} | \lambda \in \mathcal{M}\}$ of operators in \mathcal{D}_W is linearly independent over $S(V)$.

In the case of $W = G(\varepsilon, 1, n)$, the operator Δ_w was constructed in [RS] for each $w \in \widetilde{W}$ by making use of a particular reduced expression of which is an operator which reduces the grading by non-property α is α in our case the grading by α w. Here Δ_w is an operator which reduces the grading by $n(w)$. In our case, the operators Δ_{λ} with $\lambda \in \mathcal{M}$ are not directly related to the elements of W. However, one gets a bijection between the set $\{\Delta_{\lambda} | \lambda \in \mathcal{M}\}\$ and the set N in lated to the elements of W.
 $_{\lambda}$ | $\lambda \in \mathcal{M}$ } and the set \mathcal{N} in W as follows. For each $0 < a \leq e$, we set

$$
\varphi(a) = \begin{cases} 2a - 1 & \text{if } 0 < a \le e/2, \\ 2e - 2a & \text{if } e/2 < a \le e. \end{cases}
$$

Then the map φ gives rise to a bijection from the set μ , ε_{\parallel} to the set σ , $\varepsilon = \tau$, and one can denne a bijection φ . $\mathcal{N} \to \mathcal{N}$ by $\varphi(w) = (\varphi(u_2), \dots, \varphi(u_n))$. Hence the set $\{\Delta_{\lambda} | \lambda \in \mathcal{M}\}$ is in bijection with the set \mathcal{N} . It is easily chow using (2.2.2), that if $\lambda \in \mathcal{M}$ corresponds to $w \in \mathcal{N}$, then Δ_{λ} reduction ne a bijection $\widetilde{\varphi}: \mathcal{N} \to \mathcal{M}$ by $\widetilde{\varphi}(w) = (\varphi(a_2), \dots, \varphi(a_n)).$
 $\lambda | \lambda \in \mathcal{M} \}$ is in bijection with the set \mathcal{N} . It is easily checked, by using the contract the contract of the contract of α and α and α and α and α degree by $\ell(w)$.

In the case of W, it was shown in [RS, 1 fop. 2.14] that $\nu_{\overline{W}}$ is a free $S(y)$ -module with basis $\Delta w \mid w \in W$. In order to obtain a similar result for W , we try to construct operators Δ_w for any $w \in W$. In view of Proposition 2.3, any element $w \in W$ can be expressed uniquely as $w = w'w''$,
with $w' \in \mathcal{N}$, $w'' \in \mathcal{S}$, with $\ell(w) = \ell(w') + \ell(w'')$. We now define Δ , $(w \in W)$ with $w' \in \mathcal{N}$, $w'' \in S_n$ with $\ell(w) = \ell(w') + \ell(w'')$. We now define Δ_w $(w \in W)$
by $\Delta_w = \Delta_{\lambda} \Delta_{w''}$, where $\lambda \in \mathcal{M}$ is given by $\lambda = \widetilde{\varphi}(w')$. (Note that the operator by $\Delta_w = \Delta_\lambda \Delta_{w''}$, where $\lambda \in \mathcal{M}$ is given by $\lambda = \varphi(w)$. (Note that the operator $\Delta_{w''}$ corresponding to $w_{\perp} \in S_n$ is defined without ambiguity, see 2.5).

We know, by Theorem 5.10, that the set $\Delta \lambda$ $\Lambda \in$ *I*VI is initially independent over $S(V)$. It is also known that the set $\{\Delta_w u \mid w \in S_n\}$ is inearly independent over $S(Y)$. We expect that the set $\Delta w \sim w$ we gives rise to a basis of \mathcal{D}_W . In what follows, we show that this conjecture is reduced to some properties of Λ -some properties of Γ -formation Γ -formation Γ $\lambda \in \mathcal{N}$ we define the length $\ell(\lambda)$ by $\ell(\lambda) = \ell(w)$ whenever λ corresponds to $w' \in \mathcal{N}$. Hence $\ell(w) = \ell(\lambda) + \ell(w'')$ if $w \in W$ corresponds to the pair $(\lambda, w'') \in \mathcal{M} \times S_n$. For each integer $c \geq 1$, we put $\mathcal{M}_c = {\lambda \in \mathcal{M} | \ell(\lambda) = c}$. $(\lambda, w'') \in \mathcal{M} \times S_n$. For each integer $c \geq 1$, we put $\mathcal{M}_c = {\lambda \in \mathcal{M} | \ell(\lambda) = c}$.
For each polynomial P_{λ} $(\lambda \in \mathcal{M})$ given in 3.7, we define its average \widetilde{P}_{λ} over For each polynomial P_{λ} ($\lambda \in \mathcal{M}$) given in 3.7, we define its average P_{λ} over S_n by $\widetilde{P}_\lambda = \sum_{\sigma \in S_n} \sigma(P_\lambda)$. Note that $\Delta_\lambda(\widetilde{P}_\mu)$ is a constant if $\lambda, \mu \in \mathcal{M}_c$ for some c. Let $\lambda_0 = (e-1, \dots, e-1) \in \mathcal{M}$. Then λ_0 is the longest element in The with $\epsilon(A_0) = \kappa(\kappa - 1)(\epsilon - 1)/2$. We consider the following two statements.

 $(0.12.1)$ $\Delta\lambda_0$ (1 λ_0) is a non-zero constant. --

(0.12.2) For any integer $c \leq 1$, the matrix $(\Delta \lambda) (L\mu)/\lambda$, $\mu \in M_c$ is non-singular.

We don't know whether these two statements hold in a full generality for W. It is vermed that $(0.12.1)$ holds whenever $\varepsilon > n$, which will be discussed in Theorem In the case where n is checked that is checked that

for small e. Typic that $(0.12.1)$ is a special case of $(0.12.2)$, since the set $\mathcal{W}l_{\mathcal{C}}$ consists of a single element λ_0 if $c = \ell(\lambda_0)$.

 σ . In order to look at $T\lambda$ more precisely, we shall extend the parameter set M to \mathbb{N} . For each $\lambda = (\lambda_2, \cdots, \lambda_n) \in \mathbb{N}$, we define a polynomial set $\mathcal M$ to \mathbb{N}^{n-1} . For each $\lambda = (\lambda_2, \dots, \lambda_n) \in \mathbb{N}^{n-1}$, we define a polynomial $F_n(\lambda)$ by $F_n(\lambda) = \prod_{i=2}^n g_{i,\lambda_i}$. Hence if $\lambda \in \mathcal M$, $F_n(\lambda)$ coincides with P_λ . We put $F_n(\lambda) = \sum_{\sigma \in S_n} \sigma(F_n(\lambda)).$ For each i $(1 \leq i \leq n)$, let

$$
\sigma_i=\begin{pmatrix}1&2&\cdots&i&i+1&i+2&\cdots&n\\1&2&\cdots&n&i&i+1&\cdots&n-1\end{pmatrix}\in S_n.
$$

 Tr a complete set of representatives of the right cosets $S_{n-1} \setminus S_n$. For each $\mu = (\mu_2, \cdots, \mu_n)$ \in \mathbb{N}^n , we define $\mu^{\otimes n}$ \in \mathbb{N}^n , $a \times b \times b = 1$ by

$$
\mu^{(i)} = (\mu_2, \cdots, \mu_{i-1}, \mu_i + \mu_{i+1}, \mu_{i+2}, \cdots, \mu_n).
$$

Also we put $\mu^{(1)} = (\mu_3, \cdots, \mu_n) \in \mathbb{N}$ and $\mu^{(2)} = (\mu_2, \cdots, \mu_{n-1}) \in \mathbb{N}$. Then it is easy to see that

$$
(3.13.1) \qquad \sigma_i(F_n(\mu)) = \begin{cases} F_{n-1}(\mu^{(i)}) \cdot x_n^{b_i(\mu)} & \text{if } 1 \le i \le n-1, \\ F_{n-1}(\mu^{(n)}) \cdot (x_1 \cdots x_{n-1})^{\mu_n} & \text{if } i = n, \end{cases}
$$

where $b_i(\mu) = \mu_{i+1} + \cdots + \mu_n$ for $i = 1, \dots, n-1$. It follows from (3.13.1) that

$$
\sum_{\sigma \in S_{n-1}} \sigma \sigma_i F_n(\mu) = \begin{cases} \widetilde{F}_{n-1}(\mu^{(i)}) \cdot x_n^{b_i(\mu)} & \text{if } 1 \leq i \leq n-1, \\ \widetilde{F}_{n-1}(\mu^{(n)}) \cdot (x_1 \cdots x_{n-1})^{\mu_n} & \text{if } i = n. \end{cases}
$$

Hence we have a recursive formula

$$
(3.13.2) \t\widetilde{F}_n(\mu) = \sum_{i=1}^{n-1} \widetilde{F}_{n-1}(\mu^{(i)}) x_n^{b_i(\mu)} + \widetilde{F}_{n-1}(\mu^{(n)}) (x_1 \cdots x_{n-1})^{\mu_n}.
$$

Let $\mathcal{M} = [0, e-1]^{\top}$ - be the set corresponding to the situation in $G(e, e, n-1)$. Then for $\lambda = (\lambda_2, \dots, \lambda_n) \in \mathcal{N}$, the operator $\Delta \lambda$ can be written as $\Delta \lambda$ = $\Delta_n |\Delta_\lambda|$ with $\lambda = (\lambda_2, \cdots, \lambda_{n-1}) \in \mathcal{M}$. By applying Δ_λ to the formula $\sqrt{2}$. $\sqrt{2}$, $\sqrt{2}$,

$$
(3.13.3) \qquad \Delta_{\lambda}(\widetilde{F}_n(\mu)) = \sum_{i=1}^{n-1} \Delta_n[\lambda_n] (\Delta_{\lambda'}(\widetilde{F}_{n-1}(\mu^{(i)})) \cdot x_n^{b_i(\mu)}) + \Delta_n[\lambda_n] (\Delta_{\lambda'}(\widetilde{F}_{n-1}(\mu^{(n)})) \cdot (x_1 \cdots x_{n-1})^{\mu_n}).
$$

By making use of the formula $(3.13.3)$, we can compute the value $\Delta\lambda_0 (T\lambda_0)$ under a certain condition \mathcal{W} and \mathcal{W} are conjectures a partial answer to the conjecture to the conjecture \mathcal{W}

Theorem 5.14. Assume that $e \leq n$. Then $\Delta_{\lambda_0}(I|\lambda_0) = c_{\lambda_0}$, where c_{λ_0} is given as in Proposition

Frout Since $\lambda_0 = (e - 1, \dots, e - 1) \in \mathcal{M}, \ \Delta_{\lambda_0}$ can be written as Δ_{λ_0} - $\Delta_{n-1}[e-1] \Delta_{\lambda'_0},$ where $\lambda_0 = (e-1, \cdots, e-1) \in \mathcal{M}$. First we note the following

(5.14.1) Let $\mu = (\mu_2, \cdots, \mu_n) \in \mathbb{N}^+$. Assume that $\mu_i = 0$ (mode -1) for all *i*, and that $e - 1 < \sum_i \mu_i < e(e - 1)$. Then we have $\Delta_{\lambda_0}(F_n(\mu)) = 0$.

We prove $(3.14.1)$ by induction on n. We apply the formula $(3.13.3)$ with $\lambda = \lambda_0$. Note that if μ satisfies the assumption of (3.14.1), then μ^{\vee} (2 \le $i \leq n - 1$ above also satisfies the same condition. Hence (3.13.3) implies, by induction hypothesis, that

$$
\Delta_{\lambda_0}(\widetilde{F}_n(\mu)) = \Delta_n[e-1](\Delta_{\lambda'_0}(\widetilde{F}_{n-1}(\mu^{(1)})) \cdot x_n^{b_1(\mu)}) + \Delta_n[e-1](\Delta_{\lambda'_0}(\widetilde{F}_{n-1}(\mu^{(n)})) \cdot (x_1 \cdots x_{n-1})^{\mu}).
$$

Here we may assume that $\mu^{(0)} = \lambda_0$ or $\mu^{(0)} = \lambda_0$, since both of $\Delta \lambda_0' (r_{n-1}(\mu^{(0)})$ and $\Delta_{\lambda'_0}(r_{n-1}(\mu^{\vee}))$ are zero, otherwise. But if $\mu^{\vee} = \lambda_0$, then $F_1(\mu^{\vee}) =$ $P_{\lambda'_0}$, and $\Delta_{\lambda'_0}(P_{\lambda'_0})$ is a constant. The same argument holds for the case $\mu^{(\cdot)} =$ λ_0 . Therefore, in order to prove $(3.14.1)$, we have only to show that

$$
(3.14.2) \ \Delta_n[e-1]x_n^{b_1(\mu)} = 0,
$$

(3.14.3) $\Delta_n |e = 1 | (x_1 \cdots x_{n-1})^{n} = 0.$

 \sim . The left hand side of the formula by making use of the formula \sim . The formula \sim in Lemma 3.4. In particular, it is divisible by $c(e - 1, b_1(\mu))$. We claim that $c(e - 1, b_1(\mu)) = 0$. In fact, by our assumption, $b_1(\mu) = \mu_2 + \cdots + \mu_n$ can be written as $b_1(\mu) = d(e-1)$ for some d such that $1 < d < e$. Then there exists $j \in \mathbb{R}$ $j \leq \epsilon - 2j$ such that $\sigma(\mu) - j = 0$ (mode). This implies that $c(e = 1, o_1(\mu)) = 0,$ and (5.14.2) noius. (5.14.5) can be proved in a similar way, by replacing $b_1(\mu)$ by μ_n , and by using Lemma 3.3. Hence (3.14.1) is proved.

we now prove the theorem. We compute $\Delta\lambda_0(I|\lambda_0)$ by applying (5.15.5) with $\lambda_0 = \mu$. Then $\lambda_0^{\gamma_1}$ ($2 \leq i \leq n-1$) satisfies the condition in (3.14.1), since 0 \ $n = 1$ $\alpha = 1$ β β is the α our assumption. Hence, by applying β . I. Fig. b. terms corresponding to μ_{γ} ($z \leq i \leq n-1$) vanish. It follows that

$$
\Delta_{\lambda_0}(\widetilde{P}_{\lambda_0}) = \Delta_n[e-1]x_n^{(n-1)(e-1)} \cdot \Delta_{\lambda'_0}(\widetilde{P}_{\lambda'_0})
$$

+
$$
\Delta_n[e-1](x_1 \cdots x_{n-1})^{e-1} \cdot \Delta_{\lambda'_0}(\widetilde{P}_{\lambda'_0}).
$$

 \mathcal{L} and the sum of the sum goes to by applying the sum \mathcal{L} with \mathcal{L}

 by Since $(x_1 \cdots x_{n-1})$ = $g_{n,e-1}$, the second term coincides with c_{λ_0} , by Proposition 3.8. This proves the theorem. \Box

3.15. Let $w_0 \in S_n$ be as in 2.5, and let $w_1 \in W$ be the element in W corresponding to $(\lambda_0, w_0) \in M \times S_n$. Then w_1 is the longest element in W when $\varepsilon(w_1) = \varepsilon u(u - 1)/2 = N$, where N is the number of reflections in W. Let Q_0 be as in 2.0. Then $I_{\lambda_0} Q_0$ is a polynomial of degree N. Since I_{λ} is \mathcal{S} , we write \mathcal{S} , we have \mathcal{S} and \mathcal{S} . The contract of \mathcal{S}

(3.15.1)
$$
\Delta_{\lambda_0} \Delta_{w_0}(\widetilde{P}_{\lambda_0} Q_0) = \Delta_{\lambda_0}(\widetilde{P}_{\lambda_0}) = c_{\lambda_0}.
$$

Before stating the next result, we prepare a simple lemma.

Demma 5.10. Let ε . $\mathcal{Y}(V) \rightarrow \mathbb{C}$ denotes the evaluation at 0. Let I_W be the ideal of $S(V)$ defined in 2.3. Then for any $w \in W$ we have

$$
\varepsilon \Delta_w(I_W)=0
$$

Proof. Let f be an element of I_W . Then f can be written as

$$
f = \sum_i u_i f_i,
$$

with $u_i \in S(V)$, $f_i \in S(V)^W$, where f_i is homogeneous of positive degree. T . Then apply T and T and ω obtain y is the function of ω we obtain

$$
\Delta_w(f) = \sum \Delta_w(u_i) f_i,
$$

since finite finite finite fields ω is ω and ω and ω and ω are constants and ω constants of ω \Box the first operator $\mathbf{v} = w \cdot \mathbf{v}$, where the follows follows the lemma follows \mathbf{v}

9.11. Here $W \sim 11$ for the sign character of W . Here Q be the polynomial in $\mathbb{C}[x_1 \cdots, x_n]$ defined by $Q = \prod_{i > j} (x_i^e - x_j^e)$. Then $\deg Q = N$, and up to scalar, Q coincides with the product of the eigenvectors attached to all the reflections in W . It is easy to see that Q generates a one-dimensional representation of W affording ε_W . We define an operator $J : S(V) \to S(V)$ by

$$
J=\sum_{w\in W}\varepsilon_W(w)w.
$$

Then *J* is a projection on the ε_W -isotypic subspace of $S(V)$. We have the following remarkable result, although it is not used in the later discussion. Note that it is an analogue of $[H, IV, Prop. 1.6].$

r reposition **o.ro.** Assume mate $>$ n. Then mere exists a non-zero constant a such that $\Delta_{w_1} = aQ \quad J.$

Proof. It is known that \mathcal{S}_W is a regular W-module, and \mathcal{S}_W anords the sign representation of W . Hence we have

$$
S^N(V) = (I_W)^N + \mathbb{C}Q,
$$

where $\left(I_W\right)^{T} = I_W \cup S^{T}(V)$. Now $P_{\lambda_0} Q_0 \in S^{T}(V)$, and λ_0 λ_0 λ_1 and λ_2 λ_3 implies the set of λ_1 and λ_2 implies the set of λ_1 in view of Lemma 5.10, that $P_{\lambda_0} Q_0 \nsubseteq P_W$. Thence there exists a non-zero constant $c \in \mathbb{C}$ such that $Q = c \, r_{\lambda_0} Q_0$ (mod I_W). In particular, we have $\Delta_{w_1}(Q) = c$ with $c = c_{\lambda_0}$, by Theorem 3.14. Since Δ_{w_1} and Q J are $S(V)^W$ -endomorphisms of $S(V)$, both of them are determined by the restriction to $S^{\sim}(V)$. Hence, by comparing the value at Q, we see that $\Delta_{w_1}=aQ^{-1}J$ with $d = c/|W|$. This proves the proposition.

-- We now return to the condition We deduce several prop erties of the operators -^w by assuming this condition Note that for any erties of the operators Δ_w by assuming this condition. N
 $\lambda, \mu \in \mathcal{M}_c$, the polynomial $\Delta_{\lambda} \Delta_{w_0}(\widetilde{P}_{\mu} Q_0)$ is a constant.

we denote by A_c the matrix $(\Delta \lambda \Delta w_0) (I \mu Q_0) / \lambda_{,\mu} \in M_c$, under a suitable order, for a given integer $c \geq 0$. Then since $\Delta \lambda \Delta w_0 (I \mu Q_0) = \Delta \lambda (I \mu)$ by a similar argument as in $(3.15.1)$, we see that

, and the matrix α the matrix α then the matrix α is non-then the matrix α is non-then the matrix α singular

We have the following lemma.

Lemma - - Assume that -Then the operators **Lemma 3.20.** Assume that (3.12.2) holds for W. Then the o_i
 $\{\Delta_\lambda \Delta_w | \lambda \in \mathcal{M}, w \in S_n\}$ are linearly independent over $S(V)$.

Proof. We consider the dependence relation

(3.20.1)
$$
\sum_{\lambda, w} a(\lambda, w) \Delta_{\lambda} \Delta_{w} = 0
$$

on $S(V)$, where $a(\lambda, w) \in S(V)$. By induction on the length $\ell(w)$ of $w \in S_n$, we may assume that $a(x, w) = 0$ for any $w \in S_n$ such that $\ell(w) \leq \ell(w)$ we may assume that $a(\lambda, w')$ =
and for $\lambda \in \mathcal{M}$. Multiplying Δ we to the equation of the right of \mathbf{u}_0 is the right of the right of \mathbf{u}_1 and by making use of Proposition α , α and α with induction α , β and α we have α obtain

(3.20.2)
$$
\sum_{\lambda \in \mathcal{M}} a(\lambda, w) \Delta_{\lambda} \Delta_{w_0} = 0.
$$

We show that $a(\lambda, w) = 0$ by induction on the length of M. Assume that $a(\mu, w) = 0$ for any $\mu \in \mathcal{N}$ such that $\ell(\mu) < c$. We evaluate the equation (5.20.2) at $P_{\mu}Q_0$ for $\mu \in \mathcal{M}_c$. Fore that $\Delta_{\lambda}\Delta_{w_0}(P_{\mu}Q_0) = 0$ if $\epsilon(\lambda) > c$.

Hence the non-zero contribution only comes from the terms corresponding to $\lambda \in \mathcal{M}_c$. We consider such equations for all $\mu \in \mathcal{M}_c$. Then it is regarded as a Hence the non-zero contribution only comes from the terms corresponding to $\lambda \in \mathcal{M}_c$. We consider such equations for all $\mu \in \mathcal{M}_c$. Then it is regarded as a linear equation with variables $a(\lambda, w)$ ($\lambda \in \mathcal{M}_c$), and with coefficient matrix A_c . Since the matrix A_c is non-singular by (
for any $\lambda \in \mathcal{M}_c$. This proves the lemma. Act Since the matrix \mathbf{A} is non-singular by \mathbf{A} we see that a we see th \Box

We can now prove the following proposition, which is analogous to proposition in RS i

reposition 0.21. Assume that $(0.12.2)$ holds. Then the algebra D_W is a fied $S(V)$ -module with basis $\sum_{w} w \subset W$ (.

Proof Let K be the quotient eld of SV The operator - on SV can be extended to an operator on $\boldsymbol{\Lambda}$. We consider the subalgebra $\nu_W^{\boldsymbol{\Psi}}$ of End \mathbb{C} $\boldsymbol{\Lambda}$ extended to an operator on K. We consider the subalgebra \mathcal{D}_W^K of $\text{End}_{\mathbb{C}} K$
defined by $\mathcal{D}_W^K = K \otimes_{S(V)} \mathcal{D}_W$. Since $\dim_K \mathcal{D}_W^K \leq |W|$, Lemma 3.20 implies that

(5.21.1) The set $\{\Delta_w\,|\, w \in W\}$ gives a basis of $\nu_W^{\mathbb{T}}$ as a K-vector space.

 B similar argument as in the proof of Lemma \mathbb{R} the proof of Lemma \mathbb{R} the proof of Lemma and \mathbb{R} the proposition is reduced to showing the following lemma

Definition \mathbf{J} , \mathbf{J} and \mathbf{J} be a d-product of $\Delta_{\mathbf{S}}$ ($\mathbf{S} \subset \mathcal{D}$). Then Δ can be written as

$$
\Delta = \sum_{w \in W} a_w \Delta_w,
$$

where $a(w)$ are elements in $S(V)$ satisfying the following conditions.

$$
\begin{cases}\n(a_w = 0 & \text{if } \ell(w) < d, \\
a_w \in S^{\ell(w)-d}(V) & \text{if } \ell(w) \ge d.\n\end{cases}
$$

We prove Lemma 5.22. Here we recall that any $\Delta_{w'}$ ($w \in W$) can be We prove Lemma 3.22. Here we recall that any $\Delta_{w'}$ $(w' \in W)$ can be written as $\Delta_{w'} = \Delta_{\lambda} \Delta_w$ with $\lambda \in \mathcal{M}$, $w \in S_n$. Hence by (3.21.1) Δ can be expressed as

(3.22.2)
$$
\Delta = \sum_{\substack{\lambda \in \mathcal{M} \\ w \in S_n}} a(\lambda, w) \Delta_{\lambda} \Delta_w,
$$

with $a(x, w) \in \mathbb{R}$. We write $a(x, w) = a_{w'}$ if $w \in W$ corresponds to (x, w) . , i.e. that a whole that a was satisfied that the condition of the condition on the condition on the condition of \mathcal{D} length $\ell(\lambda)$ of M, and on the length $\ell(w)$ of S_n . We fix $w \in S_n$ and assume
that $(3.22.1)$ is verified for any $g(\lambda' w')$ such that $\lambda' \in M$ and that $w' \in S$ that (5.22.1) is verified for any $a(\lambda, w)$ such that $\lambda \in \mathcal{N}$ and that $w \in S_n$ with $\ell(w) \leq \ell(w)$. Also we assume that it is verified for any $a(\mu, w)$ such

that $\ell(\mu) < c$ for an integer $c > 0$. We show that $a(\lambda, w)$ satisfies (5.22.1) for that $\ell(\mu') < c$ for an integer $c \ge \text{any } \lambda \in \mathcal{M}_c$. By multiplying Δ w-w- on both sides of from the right we have

$$
(3.22.3) \qquad \Delta \Delta_{w^{-1}w_0} = \sum_{\lambda \in \mathcal{M}} a(\lambda, w) \Delta_{\lambda} \Delta_{w_0} + \sum_{\lambda', w'} a(\lambda', w') \Delta_{\lambda'} \Delta_{w''},
$$

where in the second sum, λ runs over an the elements in \mathcal{M} , and w in \mathcal{S}_n such that $\ell(w)$ \lt $\ell(w)$. Here w \lt S_n is given by $w = w w w w_0$ with $\ell(w) = \ell(w) - \ell(w) + \ell(w_0)$. We evaluate the equation (5.22.5) at $\Gamma_{\mu} Q_0$, $\ell(w'') = \ell(w') - \ell(w) + \ell(w_0)$. We evaluate the equation (3.22.3) at $\widetilde{P}_{\mu}Q_0$, with $\mu \in \mathcal{M}_c$, which is a polynomial of degree $c + \ell(w_0)$. Then the non-zero with $\mu \in \mathcal{M}_c$, which is a polynomial of degree $c + \ell(w_0)$. Then the non-zero contribution in the first sum comes from the terms corresponding to $\lambda \in \mathcal{M}_1$, where

$$
\mathcal{M}_1 = \{ \lambda \in \mathcal{M} | \ell(\lambda) \leq c \}.
$$

First assume that $c + \ell(w) < d$. Then for any $\lambda \in \mathcal{M}_1$, we have $\ell(\lambda)$ + $\ell(w) < d$. Hence by induction hypothesis, we have $a(\lambda, w) = 0$ for $\lambda \in$ \mathcal{M}_1 such that $\ell(\lambda) < c$. On the other hand, again by induction hypothesis, $a(\lambda, w) \Delta_{\lambda'} \Delta_{w''}(r_u Q_0)$ is a homogeneous polynomial of degree $c+\ell(w)-a < 0.$ This means that there are no contributions from the terms in the second sum and we have

$$
\Delta \Delta_{w^{-1}w_0}(\widetilde{P}_{\mu}Q_0)=\sum_{\lambda \in \mathcal{M}_c}a(\lambda,w)\Delta_{\lambda}\Delta_{w_0}(\tilde{P}_{\mu}Q_0).
$$

Since $d + \ell(w^{-1}w_0) > \ell(\mu) + \ell(w_0)$, we have $\Delta \Delta_{w^{-1}w_0}(\widetilde{P}_{\mu}Q_0) = 0$. This implies that $a(\lambda, w) = 0$ for any $\lambda \in \mathcal{M}_c$, since the matrix A_c is non-singular Since $a + \ell(w - w_0) > \ell(\mu) + \ell(w_0)$, we have $\Delta \Delta_{w^{-1}w_0}(F_{\mu}Q_0) = 0$. This implies that $a(\lambda, w) = 0$ for any $\lambda \in \mathcal{M}_c$, since the matrix A_c is non-singular by (3.19.1). Next assume that $c + \ell(w) \geq d$. Take $\lambda \in \mathcal{M}$ such that $\ell(\lambda) < c$. Then by induction hypothesis, $a(\lambda, w)$ is a homogeneous polynomial of degree $\ell(\lambda)+\ell(w)-d$ for such λ , if it is positive, and $a(\lambda,w)=0$ if $\ell(\lambda)+\ell(w)-d<0$. Hence $u(x, w) \Delta \chi \Delta w_0$ (1 μQ_0) is a homogeneous polynomial of degree $c + \epsilon(w)$ d, if it is non-zero. On the other hand, by a similar argument as before we see that the term in the second sum $a(\lambda\, , w\,)\Delta\chi'\Delta w''(P_uQ_0)$ is also a homogeneous polynomial of degree $c + \epsilon(w) - a$, if it is non-zero. Moreover, $\Delta \Delta_{w^{-1}w_0}(\Gamma \mu \vee 0)$ is a homogeneous polynomial of the same degree. Since the matrix A_c is a nonsingular C-matrix, we see that $a(\lambda, w)$ is a homogeneous polynomial of degree $c + \ell(w) - d$ for any $\lambda \in \mathcal{M}_c$. This shows that $a(\lambda, w)$ satisfies the condition \Box in The lemma is now proved and the proposition follows

The following lemma can be proved in a similar way as Lemma can similar way \mathbb{R}^n in view of RS Remarks and RS Remarks

Lemma - - Let P be a homogeneous polynomial of degree N Let I be a graded ideal of $S(V)$ containing I_W , but not containing P. Then $I = I_W$.

 $\bf 4$ Let $\bf 5(V)$ be the graded vector space defined by $\bf 5(V)$ = \biguplus_i >0 S (V), where S (V) denotes the dual space of S (V) over \mathbb{C} . We have a natural pairing $\langle \cdot, \cdot \rangle : S(V) \times S(V) \to \mathbb{C}, \langle u, \cdot \rangle \geq 0$ (*u*). Let $\varepsilon : S(V) \to \mathbb{C}$ denote the evaluation at σ . Then for each $\Delta \in \nu_W$ we can regard $\epsilon \Delta$ as an element in $S(V)$. Let ν_W be the subspace of $S(V)$ generated by $\epsilon \Delta$ with $\Delta \in \nu_W$. Let H_W be the dual space of ν_W . Then we have a natural $\lim_{\omega \to 0} \nu \to \infty$ and ω is ω in the restriction to ω of the restriction to ω map $\langle u, \cdot \rangle : S(V) \to \mathbb{C}$. We can now state the main theorem, which is an analogue of RS Th 

Theorem - - Assume that the conjectures - and - hold for W. Then there exists a unique graded \mathbb{C} -algebra structure on H_W such that c induces an isomorphism $S_W \cong H_W$. The set $\{\varepsilon \Delta_w | w \in W\}$ gives a basis of the C-vector space D_W . In particular, if we denote by $\{X_w | w \in W\}$ the dual vasis v $y_j \in \Delta_w \, w \subset w_j$, the map c can be described, for $u \in S(V)$, as

$$
c(u) = \sum_{w \in W} \varepsilon \Delta_w(u) X_w.
$$

I roof. It follows from proposition $\sigma.21$ that $\gamma \varepsilon \Delta w \, w \subset V$ (gives rise to a basis of ν_W . Since dim $\partial_W = |W|$, in order to prove the theorem it is enough to prove that $Ker c = I_W$. Since \mathcal{D}_W has a structure of a right $S(V)$ -module, we see that Ker c is a graded ideal of $S(V)$. It also follows from Lemma 3.16 that $I_W \subseteq \text{Re}(G, \text{Now } (0.12.1) \text{ as } \text{sees that } \Delta_{\lambda_0} \Delta_{w_0} (I_{\lambda_0} Q_0) \neq 0 \text{ (see } (0.10.1)).$ Hence $P_{\lambda_0} Q_0$ is a polynomial with deg $P_{\lambda_0} Q_0 = N$, which is not contained in 1. Then one can apply Demma 0.20 with $P = I \lambda_0 Q_0$ and we conclude that $I = I_W$. This proves the theorem. \Box

References

- $[BGG]$ I.N. Bernstein, I.M. Gelfand and S.I. Gelfand; Schubert cells and cohomology of the space GP Russian Math Surveys - 
 Also in Repre sentation theory", London Math. Soc. Lecture Note Series 69 , pp. 115–140, Cambridge Univ. Press, Cambridge 1982.
- $[BM1]$ \mathbf{R} . Diellike and \mathbf{G} , iviane, neuwed words and a length function for $\mathbf{G}(\epsilon, 1, n)$, Indag Math -
- $[BM2]$ K. Bremke and G. Malle, Root systems and length functions, Geometriae Dedicata
- $[D]$ M. Demazure, *Invariants symétriques des groupes de Weyl et torsion*, Inv. Math

KONSTANTINOS RAMPETAS

- $[H]$ H.L. Hiller, Geometry of Coxeter groups, Research Notes in Mathematics, no na no bandan Boston Boom.
- $[RS]$ K. Rampetas and T. Shoji, Length functions and Demazure operators for $G(e, 1, n)$, I and II, to appear in Indag. Math.

Konstantinos Rampetas Department of Mathematics, Scinecne University of Tokyo noda Chiba a C er man address. Repeabellational bacines. p