Hecke *L***-functions of certain subextensions in an extraspecial extension**

Yuta Katayama

(Received November 30, 2022)

Abstract. In 1925, Hecke found two different quadratic fields having the same *L*-functions attached to certain ray class groups. In this paper, we show that if *K/*Q is a Galois extension whose Galois group is isoclinic to an extraspecial group, then there are many elementary abelian extensions inside *K* whose *L*functions coincide.

AMS 2020 *Mathematics Subject Classification.* 11R42, 11R32, 11R20.

Key words and phrases. Artin *L*-function, Hecke *L*-functions, isoclinism, extraspecial *p*-group, elementary abelian *p*-extensions.

§**1. Introduction**

Let F be a number field and K an abelian extension over F . By class field theory, a quotient group H of a ray class group is isomorphic to the Galois group Gal(K/F). Then a complex linear character $\chi: H \longrightarrow \mathbb{C}$ is called a ray class character. For a ray class character χ of the ray class group mod f, the Hecke *L*-function is defined by

$$
L(s,\chi)=\prod \frac{1}{1-\chi(\mathfrak{p})N(\mathfrak{p})^{-s}},
$$

where $\mathfrak p$ runs over all prime ideals of F not dividing $\mathfrak f$. Hecke observed a phenomenon where there exist distinct quadratic fields F_1, F_2 and ray class characters χ_1, χ_2 of F_1, F_2 , respectively, satisfying the equality between Hecke *L*-functions

$$
L(s, \chi_1) = L(s, \chi_2)
$$

up to a finite number of Euler factors. We call such a phenomenon the coincidence of *L*-functions. Hecke observed such a coincidence for a real quadratic field F_1 and an imaginary quadratic field F_2 .

Ishii [8] studied the coincidence of cyclic Galois extensions over Q. He showed that if the projective image of the representation is abelian, then the coincidence of *L*-functions of cyclic extensions occurs.

Kida and Namura [11] proved that if the Galois group $Gal(K/\mathbb{Q})$ is isoclinic to the dihedral group *D*⁴ of order 8, then *L*-functions of three distinct quadratic fields coincide. This is exactly the case Hecke previously studied.

In our previous paper [10], we studied the coincidence in a more general setting where the Galois group $Gal(K/\mathbb{Q})$ is isoclinic to the Heisenberg group He_p of order p^3 with prime p and showed that the $p+1$ L-functions of $p+1$ distinct cyclic Galois extensions F_i/\mathbb{Q} of degree p coincide. If $p = 2$, then there is an isomorphism $He_2 \cong D_4$, and thus the result is a natural extension of [11].

The aim of this paper is to generalize these results further. The main theorem of this paper is the following.

Theorem 1.1. *Let p be a prime and n a positive integer. Let K/*Q *be a Galois extension with Galois group G isoclinic to an extraspecial group* ES(*n, p*)*. For an irreducible character* ψ *of G of degree* p^n *, there exist* $N = \prod_{i=1}^n (p^i + 1)$ *subfields* F_1, \ldots, F_N *of* K *which are elementary abelian extensions over* $\mathbb Q$ *of degree* p^n *and a ray class character* χ_i *of a certain ray class field of each* F_i *such that the equalities of the Hecke L-functions and the Artin L-function*

$$
L(s, \chi_1) = L(s, \chi_2) = \dots = L(s, \chi_N) = L(s, \psi)
$$

hold up to a finite number of Euler factors.

For the definitions of isoclinism and extraspecial p -groups $ES(n, p)$, see Section 2.

Since the groups D_4 and He_p are extraspecial groups, therefore Theorem 1.1 is a generalization of the previous results in [10] and [11].

Throughout this paper, we use the following notation. The cyclic group of order *n* is denoted by C_n , and by D_n the dihedral group of order $2n$. For a finite group G , we denote by $Z(G)$ the center of G and by G' the commutator subgroup of *G*. A *G*-extension is a Galois extension over the rational field $\mathbb Q$ with Galois group isomorphic to *G*. All representations in this paper are complex linear representations. We denote by $\mathrm{Irr}(G)$ the set of all the irreducible characters of *G* and $\text{Irr}(G)_i = \{ \chi \in \text{Irr}(G) \mid \chi(1) = i \}.$ Let *H* be a subgroup of *G*. For $\psi \in \text{Irr}(G)$, we denote by ψ_H the restriction of ψ to *H* and for $\chi \in \text{Irr}(H)$, we denote by χ^G the induction of χ to *G*.

The paper is organized as follows. In Section 2, we give some grouptheoretic preliminaries. In Section 3, we prove the main theorem and construct Galois extensions over Q with Galois groups isomorphic to extraspecial groups.

§**2. Preliminaries**

2.1. Isoclinism

In [4], P. Hall introduced the notion of isoclinism on finite groups, which is a weaker equivalence than isomorphism. The definition is given as follows.

Definition 2.1. Let G_1 and G_2 be finite groups. The groups G_1 and G_2 are *isoclinic* if there exist isomorphisms φ : $G_1/Z(G_1) \cong G_2/Z(G_2)$ and ψ : $G'_1 \cong$ G'_{2} such that the following diagram is commutative:

$$
G_1/Z(G_1) \times G_1/Z(G_1) \xrightarrow{k_{G_1}} G_1'
$$

\n
$$
\varphi \times \varphi \downarrow \qquad \qquad \downarrow \psi
$$

\n
$$
G_2/Z(G_2) \times G_2/Z(G_2) \xrightarrow{k_{G_2}} G_2',
$$

where k_{G_1} and k_{G_2} are the commutator maps. If G_1 and G_2 are isoclinic, then we write $G_1 \sim G_2$, and we call the pair (φ, ψ) an *isoclinism*.

Clearly, the orders of G' and $G/Z(G)$ are invariants of the isoclinism class. We need the following properties of irreducible representations under isoclinism in Section 3.

Proposition 2.2 ([1, III 5.7 Corollary])**.** *Let G*¹ *and G*² *be isoclinic groups with isoclinism* (φ, ψ) *. We assume that* G_1 *is a stem group, which is by definition a group satisfying* $Z(G_1) \subset G'_1$, and that there exists an injection $Z(G_1) \rightarrow Z(G_2)$ *. Let G be the fiber product* $\{(g_1, g_2) \in G_1 \times G_2 \mid \varphi(g_1 Z(G_1)) =$ $g_2Z(G_2)$ *} of* G_1 *and* G_2 *. Then each irreducible representation* $\tilde{\rho}$ *of* G_2 *has the form* $\tilde{\rho}(g_2) = \mu^*(g_1, g_2) \tau(g_2) \rho(g_1)$ *, where* $\mu^* \in \text{Irr}(G_1)$ *,* $\tau \in \text{Irr}(G_2)$ ₁ and $\rho \in \text{Irr}(G_1)$ *.*

The following corollary is obtained immediately by Proposition 2.2.

Corollary 2.3. *Let the notation and assumptions be as in Proposition 2.2. Let H*_i be a subgroup of G_i containing $Z(G_i)$ such that $H_1/Z(G_1)$ and $H_2/Z(G_2)$ *are isomorphic via φ. Then the following are equivalent:*

- *(i)* ρ *is induced from an irreducible representation of* H_1 ;
- *(ii)* $\tilde{\rho}$ *is induced from an irreducible representation of* H_2 .

2.2. Extraspecial groups

Let p be a prime. A p-group *G* is called an extraspecial p-group if $Z(G)$ and *G*^{\prime} are isomorphic to C_p and $G/Z(G)$ is an elementary abelian *p*-group. From

definition, all the extraspecial *p*-groups are nilpotent of class 2 and hence are monomial by $[7, Corollary (6.14)].$ To state some properties of extraspecial groups, we recall the definition of a central product of finite groups.

Definition 2.4 ([5, I, 9.10 Satz]). Let G_1 and G_2 be finite groups. If there exist subgroups H_1 of $Z(G_1)$ and H_2 of $Z(G_2)$ and an isomorphism $\sigma: H_1 \rightarrow$ *H*₂, then the central product $G_1 \circ G_2$ is defined by

$$
G_1 \circ G_2 = (G_1 \times G_2)/Z,
$$

where $Z = \{(g_1, g_2) \in H_1 \times H_2 \mid \sigma(g_1) = g_2^{-1}\}.$

In this paper, we only consider the case $H_1 = Z(G_1)$ and $H_2 = Z(G_2)$.

The center of $G_1 \circ G_2$ is isomorphic to $Z(G_1)$ and the quotient $(G_1 \circ G_2)$ G_2 / $Z(G_1 \circ G_2)$ is isomorphic to $G_1/Z(G_1) \times G_2/Z(G_2)$. Hence if G_1 and G_2 are extraspecial *p*-groups, then $G_1 \circ G_2$ is also an extraspecial *p*-group. For a positive integer *n*, we define the central product $G_1 \circ \cdots \circ G_n$ inductively.

Proposition 2.5 ([5, III, 13.7 Satz])**.** *An extraspecial p-group G has the following properties:*

- *(i)* The commutator map k_G *is a non-degenerate alternative bilinear form over the finite field* \mathbb{F}_p *of p-elements.*
- *(ii) The order of* $G/Z(G)$ *is a square.*
- *(iii) G is a central product of extraspecial p-groups of order* p^3 *.*
- *(iv)* If the order of $G/Z(G)$ is p^{2n} , then the orders of all maximal abelian *normal subgroups of* G *are* p^{n+1} *.*

By Proposition 2.5 (ii), the order of each extraspecial group is p^{2n+1} with a prime *p* and a positive integer *n*.

From [10, Section 2.2], non-abelian *p*-groups of order p^3 are mutually isoclinic extraspecial groups. If *p* is odd, then the groups are He_{*p*} and $C_{p^2} \rtimes C_p$ ([3, Section 5.5^[]), where He_p is the Heisenberg group, which is the unitriangular matrix group over \mathbb{F}_p of degree 3

$$
\mathrm{He}_p = \left\{ \begin{pmatrix} 1 & a & b \\ 0 & 1 & c \\ 0 & 0 & 1 \end{pmatrix} \ \middle| \ a, b, c \in \mathbb{F}_p \right\}.
$$

If $p = 2$, then extraspecial 2-groups of order 8 are D_4 and the quaternion group Q_8 , and we can show $D_4 \cong \text{He}_2$. Hence all the extraspecial *p*-groups of orders p^{2n+1} are isoclinic for a fixed pair (p, n) . Since we can show that $\text{He}_p \circ \text{He}_p \cong (C_{p^2} \rtimes C_p) \circ (C_{p^2} \rtimes C_p)$ for odd prime p and $D_4 \circ D_4 \cong Q_8 \circ Q_8$, there are exactly two isomorphism classes of extraspecial *p*-groups of orders p^{2n+1} by Proposition 2.5 (iii). We denote the central product of *n* Heisenberg groups He_p by $ES^{+}(n, p)$ and the other by $ES^{-}(n, p)$. If we do not have to distinguish two groups, then we denote an extraspecial p -group of order p^{2n+1} by $ES(n, p)$.

We need some facts on the irreducible characters of $ES(n, p)$. From [6, Examples. 7.6 b), the character degrees of $ES(n, p)$ are 1 and p^n and the irreducible characters of $ES(n, p)$ of degree p^n vanish outside $Z(ES(n, p))$. For an irreducible character χ of degree p^n , since the kernel of χ is contained in $Z(ES(n, p))$ and not containing $(ES(n, p))'$, the kernel is trivial and hence χ is faithful. Since the maximal abelian quotient of $ES(n, p)$ is isomorphic to C_p^{2n} , we have $|\text{Irr}(\text{ES}(n, p))_1| = p^{2n}$ and hence $|\text{Irr}(\text{ES}(n, p))_{p^n}| = p - 1$.

§**3. Coincidence of Hecke** *L***-functions**

In this section, we shall prove Theorem 1.1. By the well-known results of Artin *L*-functions on induced character, Theorem 1.1 follows from the theorem below.

Theorem 3.1. *Let p be a prime and n a positive integer. Let G be a finite group isoclinic to an extraspecial* p *-group* $ES(n, p)$ *of order* p^{2n+1} *. Then for an irreducible character* ψ *of G of degree* p^n *, there exist exactly* $N = \prod_{i=1}^n (p^i + 1)$ *abelian normal subgroups* H_j *of G containing* $Z(G)$ *and linear characters* χ_j *of* H_j *such that* $\chi_1^G = \cdots = \chi_N^G = \psi$ *.*

In fact, for every irreducible character χ of $ES(n, p)$ of degree p^n and every maximal abelian subgroup *H* of $ES(n, p)$, χ is induced from an irreducible character of *H*. The following lemma gives the number of the maximal abelian subgroups of *G*.

Lemma 3.2. *The group* $ES(n, p)$ *has* $\prod_{i=1}^{n} (p^{i} + 1)$ *abelian subgroups of index p n containing its center.*

Proof of Lemma 3.2. Since $G/Z(G)$ and G' are elementary abelian *p*-groups, we consider them as \mathbb{F}_p -vector spaces. From Proposition 2.5 (i), the commutator map k_G is a non-degenerate alternative bilinear form over \mathbb{F}_p . Hence we can consider *G/Z*(*G*) as a hyperbolic space of dimension 2*n*. Here we note that a subgroup *H* of *G* containing $Z(G)$ is abelian if and only if $H/Z(G)$ is an isotropic space with respect to the bilinear form *kG*. From Proposition 2.5 (iv), the dimension of a maximal isotropic subspace of $G/Z(G)$ is *n*. Then by [12] the number of isotropic subspaces of $G/Z(G)$ is $\prod_{i=1}^{n} (p^{i} + 1)$, which equals the number of abelian subgroups of index p^n containing $Z(G)$. \Box

We are now ready to prove Theorem 3.1.

Proof of Theorem 3.1. First, we give several remarks. From the definition of the extraspecial group, $ES(n, p)$ is a stem group. If *G* is isoclinic to $ES(n, p)$, then *G* is a nilpotent group of nilpotency class 2 and hence we have $G' \subset$ *Z*(*G*). From the definition of isoclinism, there is an isomorphism $(ES(n, p))' \cong$ *G*^{\prime}. This isomorphism induces the injection $Z(ES(n, p)) \rightarrow Z(G)$ and hence Corollary 2.3 is valid for $ES(n, p)$ and *G*. We therefore conclude that an irreducible character of *G* is induced from a subgroup of *G* containing $Z(G)$ if and only if the corresponding character of $ES(n, p)$ is induced form the corresponding subgroup of $ES(n, p)$ via the isoclinism. Hence we have only to consider the case $G = ES(n, p)$.

We shall show that for a subgroup *H* of *G*, there exists an irreducible character φ of *H* such that $\varphi^G = \chi$ if and only if *H* is a maximal abelian subgroup of *G*.

If there exists a subgroup *H* of *G* and $\varphi \in \text{Irr}(H)_1$ such that $\varphi^G = \chi$, then, because χ is faithful, it follows from [7, Problem (2.8)] that *H* is an abelian subgroup. From [7, Lemma (2.27)], it follows that *H* contains $Z(G)$. Since $G/Z(G)$ is an abelian group, every subgroup of *G* containing $Z(G)$ is a normal subgroup. Thus, we have shown that if χ is induced by a linear character of *H*, then *H* is an abelian normal subgroup containing $Z(G)$.

Conversely, let *H* be an abelian normal subgroup of *G* of index p^n containing *Z*(*G*). Recall that $χ_{Z(G)}$ has a unique irreducible constituent. Let $λ$ be the unique irreducible constituent of $\chi_{Z(G)}$ and φ an irreducible character of *H* such that $\varphi_{Z(G)} = \lambda$. If φ^G is reducible, then, since the character degrees of *G* are 1 and p^n , every irreducible constituent of φ^G is a linear character and hence the kernel of φ^G contains G' . On the other hand, since χ is a faithful character and $({\varphi}^G)_{Z(G)} = p^n \lambda = \chi_{Z(G)}$, the kernel of ${\varphi}^G$ does not contain $Z(G)$ and this is a contradiction. Hence φ^G is an irreducible character. Since every irreducible character of *G* vanishes outside $Z(G)$, so does φ . Hence we have $\varphi^G = \chi$. We therefore conclude that the number of subgroups *H* of *G* such that $\varphi \in \text{Irr}(H)_1$ satisfying $\varphi^G = \chi$ is equal to the number of the abelian subgroups of G of index p^n , which is N by Lemma 3.2. \Box

Before giving an example, some remarks are in order. Since there exists a surjection $(\text{He}_p)^n \to \text{ES}^+(n, p)$, we have if L/\mathbb{Q} is a $(\text{He}_p)^n$ -extension, then there exists a subfield *K* of *L* which is an $ES^+(n, p)$ -extension over Q. From [9, Corollary 6.6.6.], there exist infinitely many He*p*-extensions over Q. Hence there also exist infinitely many $ES^+(n, p)$ -extensions. For the constructions of special cases of He_p-extensions, see [11, Lemma 7.1] (for the case $p = 2$) and [10, Proposition 3.3] (for the case where *p* is odd).

Here we give a numerical example for the case $p = 2$ and $n > 1$ using Magma [2]. In this case, since the automorphism group $Aut(Z(D_4))$ is trivial, every $(D_4)^n$ -extension has a unique $ES^+(n, 2)$ -subextension *K* over Q. The field *K* is constructed as follows.

Proposition 3.3. Let L_1, \ldots, L_n be linearly disjoint D_4 -extensions over \mathbb{Q} . *If we set* $F_i = L_i^{Z(\text{Gal}(L_i/\mathbb{Q}))}$ $Z(\text{Gal}(L_i/\mathbb{Q}))$ and we choose $\alpha_i \in F_i$ such that $F_i(\sqrt{\alpha_i}) = L_i$, *then the extension* $F_1 \cdots F_n(\sqrt{\alpha_1 \cdots \alpha_n})$ *is an* $\text{ES}^+(n, 2)$ *-extension over* Q.

Proof. Let *L* be the composite field of L_1, \ldots, L_n and *F* be that of F_1, \ldots, F_n . We let *K* be the unique subextension of *L* such that $Gal(K/\mathbb{Q})$ is isomorphic to $ES^+(n, 2)$. Since the natural surjection $Gal(L/\mathbb{Q}) \rightarrow Gal(K/\mathbb{Q})$ induces an isomorphism $(D_4)^n/Z((D_4)^n) \cong ES^+(n,2)/Z(ES^+(n,2)),$ we have $K^{Z(\text{Gal}(K/\mathbb{Q}))} = L^{Z(\text{Gal}(L/\mathbb{Q}))}$. In particular, *F* is a subfield of *K*. We define $g_i \in \text{Gal}(L/F)$ by

$$
g_i \colon \sqrt{\alpha_i} \mapsto -\sqrt{\alpha_i}, \ \sqrt{\alpha_j} \mapsto \sqrt{\alpha_j}, \ (i \neq j).
$$

From the definition of central product, Gal(L/K) is generated by $g_i g_j$ (1 \leq $i, j \leq n$). Since $\sqrt{\alpha_1 \cdots \alpha_n}$ *g*_ig_j = $\sqrt{\alpha_1 \cdots \alpha_n}$ for any *i* and *j*, the field *M* = $F(\sqrt{\alpha_1 \cdots \alpha_n})$ contains *K*. Because $\alpha_1, \ldots, \alpha_n$ are linearly independent in $F^{\times}/(F^{\times})^2$, we have $\sqrt{\alpha_1 \cdots \alpha_n} \notin F$. Hence we have $[M : F] = 2 = [K : F]$. We therefore conclude $K = M$ and complete the proof. П

Example 3.4. Let $n \in \mathbb{N}$. Let q_i, l_i ($1 \leq i \leq n$) be distinct odd primes such that $q_i \equiv 1 \pmod{4}$ and $\left(\frac{q_i}{l_i}\right)$ $\left(\frac{q_i}{l_i}\right) = 1$. Set $l_i^* = (-1)^{(l_i-1)/2} l_i$. Then the Diophantine equation $x^2 - q_i y^2 - l_i^* z^2 = 0$ has integer solutions. Let x_i, y_i, z_i be primitive solutions. Since x_i is odd, then y_i and z_i have different parities. Let w_i be equal to either y_i or z_i which is even. We define integers $s_i, r_i \in \mathbb{Z}$ by

$$
s_i = \begin{cases} 1, & z_i \text{ is even,} \\ 2, & y_i \text{ is even,} \end{cases}
$$
\n
$$
r_i = \begin{cases} s_i, & x_i - w_i \equiv 1 \pmod{4}, \\ -q_i^* s_i, & x_i - w_i \equiv 3 \pmod{4}. \end{cases}
$$

Then from [11, Lemma 7.1], the extension

$$
\mathbb{Q}\left(\sqrt{r_i\left(x_i+z_i\sqrt{l_i^*}\right)},\sqrt{q_i}\right)/\mathbb{Q}
$$

is a *D*₄-extension ramified only at q_i and l_i . We set $\alpha_i = \sqrt{r_i(x_i + z_i\sqrt{l_i^*})}$. From Proposition 3.3, the extension

$$
K=\mathbb{Q}(\sqrt{q_1},\ldots,\sqrt{q_n},\sqrt{\alpha_1\cdots\alpha_n})/\mathbb{Q}
$$

is an ES⁺(*n*, 2)-extension unramified outside q_i, l_i (1 $\leq i \leq n$).

Let us consider the case $n = 2$ and $(q_1, q_2, l_1, l_2) = (5, 13, 11, 3)$. Then we compute

$$
K = \mathbb{Q}\left(\sqrt{5}, \sqrt{13}, \sqrt{33(1+2\sqrt{-3})(1+2\sqrt{-11})}\right).
$$

From Lemma 3.2, there exist 15 biquadratic fields F_1, \ldots, F_{15} such that the Galois groups $Gal(K/F_i)$ are abelian groups. The following table contains the fields F_i , the conductors f_i of K/F_i , and the abelian invariants of the ray class groups $\text{Cl}_{F_i}(\mathfrak{f}_i)$ of F_i modulo \mathfrak{f}_i .

Let $Ar_i: Cl_{F_i}(\mathfrak{f}_i) \longrightarrow Gal(K/F_i)$ be the surjections induced from the Artin maps and Ker*ⁱ* the kernel of each Ar*ⁱ* . From Section 2.2, there exists a unique irreducible character ψ of Gal(K/\mathbb{Q}) of degree 4. Since ψ is a faithful character and vanishes outside $Z(\text{Gal}(K/\mathbb{Q})) = \text{Gal}(K/F_1F_5) \cong C_2$, we have $\psi(\sigma) = -1$ for the non-trivial element $\sigma \in Z(\text{Gal}(K/\mathbb{Q}))$. Let $c_i = \text{Ar}_i^{-1}(\sigma)$ and χ_i : Cl_{F_{*i*}}(f_{*i*})/Ker_{*i*} \longrightarrow C ray class characters such that $\chi_i(c_i) = -1$. We compute

$$
c_1 = \left[\left(\frac{-37 + 13\sqrt{-3} + 123\sqrt{5} - 39\sqrt{-15}}{4} \right) \right],
$$

\n
$$
c_2 = \left[\left(\frac{-45 - 23\sqrt{-3} + 7\sqrt{-11} - 9\sqrt{33}}{4} \right) \right], c_3 = \left[\left(-174 - \sqrt{-55} \right) \right],
$$

$$
c_4 = \left[\left(\frac{179 - 13\sqrt{-195}}{2} \right) \right], c_5 = \left[\left(\frac{6 + 5\sqrt{-11} + 3\sqrt{13}}{2} \right) \right],
$$

\n
$$
c_6 = \left[\left(-46 - 50\sqrt{-11} + 8\sqrt{-39} \right) \right],
$$

\n
$$
c_7 = \left[\left(2704, \frac{5045 + 96\sqrt{13} + 41\sqrt{-55} - 16\sqrt{-715}}{2} \right) \right],
$$

\n
$$
c_8 = \left[\left(2, \frac{-82 - 4\sqrt{-15} + \sqrt{-143} + \sqrt{2145}}{2} \right) \right],
$$

\n
$$
c_9 = \left[\left(25, \frac{609 + 9\sqrt{-15} - 18\sqrt{429} - 4\sqrt{-715}}{2} \right) \right],
$$

\n
$$
c_{10} = \left[\left(1156, \frac{-32257 + 5633\sqrt{33} + 193\sqrt{-195} + 429\sqrt{-715}}{4} \right) \right],
$$

\n
$$
c_{11} = \left[\left(80, \frac{62 + 38\sqrt{-39} - 39\sqrt{-55} - \sqrt{2145}}{2} \right) \right],
$$

\n
$$
c_{12} = \left[\left(49, \frac{-147 - 30\sqrt{-143} + 46\sqrt{165} + 19\sqrt{-195}}{2} \right) \right],
$$

\n
$$
c_{13} = \left[\left(8, \frac{2939 - 13728\sqrt{5} - 7128\sqrt{13} + 561\sqrt{65}}{2} \right) \right],
$$

\n
$$
c_{14} = \left[\left(\frac{-1797 - 199\sqrt{33} - 141\sqrt{65} + 39\sqrt{2145}}{4} \right) \right],
$$

\n
$$
c_{15} = \left[\left(25, \frac{201 + 13\
$$

Since any such χ_i induces the irreducible character ψ , we have a coincidence of the Hecke *L*-functions of the 15 biquadratic fields and the Artin *L*-function

$$
L(s, \chi_1) = L(s, \chi_2) = \dots = L(s, \chi_{15}) = L(s, \psi)
$$

by Theorem 1.1. The Artin *L*-function $L(s, \psi)$ is given by

$$
L(s,\psi) = \frac{1}{1^s} + \frac{2}{4^s} + \frac{1}{9^s} + \frac{3}{16^s} + \frac{-1}{25^s} + \frac{2}{36^s} + \frac{-2}{49^s} + \frac{4}{64^s} + \frac{1}{81^s} + \cdots
$$

$$
\cdots + \frac{4}{751^s} + \frac{-6}{784^s} + \frac{-8}{796^s} + \frac{4}{829^s} + \frac{2}{841^s} + \frac{4}{859^s} + \cdots
$$

Acknowledgements

The author would like to express his gratitude to M. Kida for helpful advices and useful comments.

References

- [1] F. R. Beyl and J. Tappe, *Group extensions, representations, and the Schur multiplicator*, Lecture Notes in Mathematics, vol. 958, Springer-Verlag, Berlin-New York, 1982.
- [2] W. Bosma, J. Cannon, and C. Playoust, *The Magma algebra system. I. The user language*, vol. 24, 1997, Computational algebra and number theory (London, 1993), pp. 235–265.
- [3] D. S. Dummit and R. M. Foote, *Abstract algebra*, third ed., John Wiley & Sons, Inc., Hoboken, NJ, 2004.
- [4] P. Hall, *The classification of prime-power groups*, J. Reine Angew. Math. **182** (1940), 130–141.
- [5] B. Huppert, *Endliche Gruppen. I*, Die Grundlehren der mathematischen Wissenschaften, Band 134, Springer-Verlag, Berlin-New York, 1967.
- [6] B. Huppert, *Character theory of finite groups*, De Gruyter Expositions in Mathematics, vol. 25, Walter de Gruyter & Co., Berlin, 1998.
- [7] I. M. Isaacs, *Character theory of finite groups*, Academic Press, New York-London, 1976, Pure and Applied Mathematics, No. 69.
- [8] H. Ishii, *On the coincidence of L-functions*, Japan. J. Math. (N.S.) **12** (1986), no. 1, 37–44.
- [9] C. U. Jensen, A. Ledet, and N. Yui, *Generic polynomials*, Mathematical Sciences Research Institute Publications, vol. 45, Cambridge University Press, Cambridge, 2002.
- [10] Y. Katayama and M. Kida, *Coincidence of L-functions*, Acta Arith. **204** (2022), no. 4, 369–385.
- [11] M. Kida and N. Namura, *On Artin L-functions of certain central extensions*, J. Number Theory **173** (2017), 147–169.
- [12] V. Pless, *The number of isotropic subspaces in a finite geometry*, Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Nat. (8) **39** (1965), 418–421.

Yuta Katayama Department of Mathematics, Tokyo University of Science 1-3 Kagurazaka Shinjuku Tokyo 162-8601 Japan *E-mail*: 1120701@ed.tus.ac.jp