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Abstract. In this paper, by utilising the Riesz functional calculus in a Banach
algebra B, we provide some norm inequalities for the generalized commutator

f(y)z − zf(x)

where x, y, z ∈ B and f is an analytic function for which the elements f(y) and
f(x) exist. Some examples for the resolvent and exponential functions are also
given.
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§1. Introduction

Let B be an algebra over C. An algebra norm on B is a map ∥·∥ : B→[0,∞)
such that (B, ∥·∥) is a normed space, and, further:

∥ab∥ ≤ ∥a∥ ∥b∥

for any a, b ∈ B. The normed algebra (B, ∥·∥) is a Banach algebra if ∥·∥ is a
complete norm. We assume that the Banach algebra is unital, this means that
B has an identity 1 and that ∥1∥ = 1.

Let B be a unital algebra. An element a ∈ B is invertible if there exists
an element b ∈ B with ab = ba = 1. The element b is unique; it is called
the inverse of a and written a−1 or 1

a . The set of invertible elements of B is
denoted by Inv(B). If a, b ∈ Inv(B), then ab ∈ Inv(B) and (ab)−1 = b−1a−1.

For a unital Banach algebra we also have:

(i) If a ∈ B and limn→∞ ∥an∥1/n < 1, then 1− a ∈ Inv(B);
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(ii) {b ∈ B: ∥1− b∥ < 1} ⊂ Inv(B);

(iii) Inv(B) is an open subset of B;

(iv) The map Inv(B) ∋ a 7−→ a−1 ∈ Inv(B) is continuous.

For simplicity, we denote λ1, where λ ∈ C and 1 is the identity of B, by λ.
The resolvent set of a ∈ B is defined by

ρ(a) := {λ ∈ C : λ− a ∈ Inv(B)} ;

the spectrum of a is σ(a), the complement of ρ(a) in C, and the resolvent
function of a is Ra : ρ(a) → Inv(B),

Ra(λ) := (λ− a)−1.

For each λ, µ ∈ ρ(a) we have the identity

Ra(µ)−Ra(λ) = (λ− µ)Ra(λ)Ra(µ).

We also have that
σ(a) ⊂ {λ ∈ C : |λ| ≤ ∥a∥} .

The spectral radius of a is defined as

r(a) = sup {|λ| : λ ∈ σ(a)} .

Let B be a unital Banach algebra and a ∈ B. Then

(i) The resolvent set ρ(a) is open in C;

(ii) For any bounded linear functional λ : B →C, the function λ ◦ Ra is
analytic on ρ(a);

(iii) The spectrum σ(a) is compact and nonempty in C;

(iv) We have

r(a) = lim
n→∞

∥an∥1/n .

Let f be an analytic functions on the open disk D(0, R) given by the power
series

f(λ) :=
∞∑
j=0

αjλ
j (|λ| < R).

If ν(a) < R, then the series
∑∞

j=0 αja
j converges in the Banach algebra B

because
∑∞

j=0 |αj |
∥∥aj∥∥ < ∞, and we can define f(a) to be its sum. Clearly
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f(a) is well defined and there are many examples of important functions on
a Banach algebra B that can be constructed in this way. For instance, the
exponential map on B denoted by exp is defined as

exp a :=

∞∑
j=0

1

j!
aj for each a ∈ B.

If B is not commutative, then many of the familiar properties of the expo-
nential function from the scalar case do not hold. The following key formula
is valid, however with the additional hypothesis of commutativity for a and b
from B

exp(a+ b) = exp(a) exp(b).

Concerning other basic definitions and facts in the theory of Banach alge-
bras, the reader can consult the classical books [12] and [13].

Let B be a unital Banach algebra, a ∈ B and G be a domain of C with
σ(a) ⊂ G. If f : G → C is analytic on G, we define an element f(a) in B by

(1.1) f(a) :=
1

2πi

∫
γ
f(ξ)(ξ − a)−1dξ,

where γ ⊂ G is taken to be a closed rectifiable curve in G and such that
σ(a) ⊂ ins(γ), the inside of γ.

It is well known (see for instance [4, pp. 201-204]) that f(a) does not
depend on the choice of γ and the Spectral Mapping Theorem (SMT)

(1.2) σ(f(a)) = f(σ(a))

holds.

Let Hol(a) be the set of all the functions that are analytic in a neighborhood
of σ(a). Note that Hol(a) is an algebra where if f, g ∈ Hol(a) and f and g
have domains D(f) and D(g), then fg and f + g have domain D(f) ∩D(g).
Hol(a) is not, however a Banach algebra.

The following result is known as the Riesz functional calculus Theorem [4,
p. 201-204]:

Theorem 1.1. Let B a unital Banach algebra and a ∈ B.

(a) The map f 7→ f(a) of Hol(a) → B is an algebra homomorphism.

(b) If f(z) =
∑∞

k=0 αkz
k has radius of convergence r > ν(a), then f ∈ Hol(a)

and f(a) =
∑∞

k=0 αka
k.

(c) If f(z) ≡ 1, then f(a) = 1.
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(d) If f(z) = z for all z, then f(a) = a.

(e) If f , f1, ..., fn... are analytic on G, σ(a) ⊂ G and fn(z) → f(z) uniformly
on compact subsets of G, then ∥fn(a)− f(a)∥ → 0 as n → ∞.

(f) The Riesz functional calculus is unique and if a, b are commuting ele-
ments in B and f ∈ Hol(a), then f(a)b = bf(a).

For some recent norm inequalities for functions on Banach algebras, see
[2]-[3] and [5]-[11].

In this paper, by utilising the Riesz functional calculus in Banach algebra
B, we provide some norm inequalities for the generalized commutator

f(y)z − zf(x)

where x, y, z ∈ B and f is an analytic function for which the elements f(y)
and f(x) exist. Some examples for the resolvent and exponential functions are
also given.

§2. Main results

We have:

Lemma 2.1. For any elements a, b, c in the Banach algebra B and for any
n ≥ 1 we have

(2.1) anc− cbn =
n−1∑
i=0

an−i−1(ac− cb)bi.

In particular, for b = a we have

(2.2) anc− can =
n−1∑
i=0

an−i−1(ac− ca)ai.

Proof. We prove it by induction over n. For n = 1 we obtain in both sides of
(2.1) the same quantity ac− cb. Assume that for k ≥ 2 we have that

akc− cbk =

k−1∑
i=0

ak−i−1(ac− cb)bi

and let us prove that

ak+1c− cbk+1 =

k∑
i=0

ak−i(ac− cb)bi.
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We have

k∑
i=0

ak−i(ac− cb)bi =
k−1∑
i=0

ak−i(ac− cb)bi + ak−k(ac− cb)bk

= a

k−1∑
i=0

ak−i−1(ac− cb)bi + (ac− cb)bk

= a(akc− cbk) + (ac− cb)bk (by induction hypothesis)

= ak+1c− acbk + acbk − cbk+1 = ak+1c− cbk+1

and the proof is completed.

Remark. For c = 1, we have from (2.1) that

(2.3) an − bn =
n−1∑
i=0

an−i−1(a− b)bi

for all a, b in the Banach algebra B, see [2] for details.

Corollary 2.2. With the assumptions of Lemma 2.1 we have the inequality

(2.4) ∥anc− cbn∥ ≤ ∥ac− cb∥ ×


∥a∥n−∥b∥n
∥a∥−∥b∥ , if ∥b∥ ̸= ∥a∥ ,

n ∥a∥n−1 , if ∥b∥ = ∥a∥ .

In particular, for b = a, we have

(2.5) ∥anc− can∥ ≤ n ∥a∥n−1 ∥ac− ca∥ .

Proof. By taking the norm and using its properties we have

∥anc− cbn∥ ≤
n−1∑
i=0

∥∥an−i−1(ac− cb)bi
∥∥ ≤

n−1∑
i=0

∥∥an−i−1
∥∥ ∥ac− cb∥

∥∥bi∥∥
≤ ∥ac− cb∥

n−1∑
i=0

∥a∥n−i−1 ∥b∥
i

= ∥ac− cb∥ ×


∥a∥n−∥b∥n
∥a∥−∥b∥ , if ∥b∥ ̸= ∥a∥

n ∥a∥n−1 , if ∥b∥ = ∥a∥ ,

which proves (2.4).



190 S. S. DRAGOMIR

Now, by the help of power series f(z) =
∑∞

n=0 αnz
n we can naturally

construct another power series which will have, as coefficients, the absolute
values of the coefficients of the original series, namely, fA(z) :=

∑∞
n=0 |αn| zn.

It is obvious that this new power series will have the same radius of convergence
as the original series. We also notice that if all coefficients αn ≥ 0, then fA = f.

As some natural examples that are useful for applications, we can point
out that, if

f(λ) =

∞∑
n=1

(−1)n

n
λn = ln

1

1 + λ
, λ ∈ D(0, 1);(2.6)

g(λ) =

∞∑
n=0

(−1)n

(2n)!
λ2n = cosλ, λ ∈ C;

h(λ) =

∞∑
n=0

(−1)n

(2n+ 1)!
λ2n+1 = sinλ, λ ∈ C;

l(λ) =
∞∑
n=0

(−1)nλn =
1

1 + λ
, λ ∈ D(0, 1);

then the corresponding functions constructed by the use of the absolute values
of the coefficients are

fA(λ) =
∞∑
n=1

1

n
λn = ln

1

1− λ
, λ ∈ D(0, 1);(2.7)

gA(λ) =

∞∑
n=0

1

(2n)!
λ2n = coshλ, λ ∈ C;

hA(λ) =
∞∑
n=0

1

(2n+ 1)!
λ2n+1 = sinhλ, λ ∈ C;

lA(λ) =
∞∑
n=0

λn =
1

1− λ
, λ ∈ D(0, 1).

Other important examples of functions as power series representations with
nonnegative coefficients are:

exp(λ) =

∞∑
n=0

1

n!
λn λ ∈ C,(2.8)

1

2
ln(

1 + λ

1− λ
) =

∞∑
n=1

1

2n− 1
λ2n−1, λ ∈ D(0, 1);
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sin−1(λ) =
∞∑
n=0

Γ(n+ 1
2)√

π(2n+ 1)n!
λ2n+1, λ ∈ D(0, 1);

tanh−1(λ) =

∞∑
n=1

1

2n− 1
λ2n−1, λ ∈ D(0, 1)

2F1(α, β, γ, λ) =
∞∑
n=0

Γ(n+ α)Γ(n+ β)Γ(γ)

n!Γ(α)Γ(β)Γ(n+ γ)
λn, α, β, γ > 0,

λ ∈ D(0, 1);

where Γ is the gamma function.
We have:

Theorem 2.3. Let f(z) =
∑∞

n=0 αnλ
n be a function defined by power series

with complex coefficients and convergent on the open disk D(0, R) ⊂ C, R > 0.
For any x, y, z ∈ B with ∥x∥ , ∥y∥ < R we have

(2.9) ∥f(y)z − zf(x)∥ ≤ ∥yz − zx∥ ×


fA(∥y∥)−fA(∥x∥)

∥y∥−∥x∥ , if ∥y∥ ̸= ∥x∥ ,

f ′
A(∥x∥), if ∥y∥ = ∥x∥ .

In particular

(2.10) ∥f(x)z − zf(x)∥ ≤ ∥xz − zx∥ f ′
A(∥x∥)

and, see also [5] for details,

(2.11) ∥f(y)− f(x)∥ ≤ ∥y − x∥ ×


fA(∥y∥)−fA(∥x∥)

∥y∥−∥x∥ , if ∥y∥ ̸= ∥x∥ ,

f ′
A(∥x∥), if ∥y∥ = ∥x∥ .

Proof. We have, for any m ≥ 1, by making use of the inequality (2.4), that∥∥∥∥∥(
m∑

n=0

αny
n)z − z(

m∑
n=0

αnx
n)

∥∥∥∥∥(2.12)

=

∥∥∥∥∥
m∑

n=1

αn(y
nz − zxn)

∥∥∥∥∥ ≤
m∑

n=1

|αn| ∥ynz − zxn∥

≤ ∥yz − zx∥ ×


∑m

n=1 |αn| ∥y∥
n−∥x∥n

∥y∥−∥x∥ , if ∥y∥ ̸= ∥x∥ ,

∑m
n=1 n |αn| ∥x∥n−1 , if ∥y∥ = ∥x∥

= ∥yz − zx∥ ×


1

∥y∥−∥x∥(
∑m

n=0 |αn| ∥y∥n −
∑m

n=0 |αn| ∥x∥n),
if ∥y∥ ̸= ∥x∥ ,∑m
n=1 n |αn| ∥x∥n−1 , if ∥y∥ = ∥x∥ .
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Moreover, since ∥x∥ , ∥y∥ < R, then the series
∑∞

n=0 αny
n and

∑∞
n=0 αnx

n

are convergent in B and

∞∑
n=0

αny
n = f(y),

∞∑
n=0

αnx
n = f(x).

Also, the scalar series

∞∑
n=0

|αn| ∥y∥n ,
∞∑
n=0

|αn| ∥x∥n and

∞∑
n=1

n |αn| ∥x∥n−1

are convergent

∞∑
n=0

|αn| ∥y∥n = fA(∥y∥),
∞∑
n=0

|αn| ∥x∥n = fA(∥x∥)

and
∞∑
n=1

n |αn| ∥x∥n−1 = f ′
A(∥x∥).

Therefore, by taking m → ∞ in the inequality (2.12) we get the desired result
(2.9).

Corollary 2.4. Let f(z) =
∑∞

n=0 αnλ
n, g(z) =

∑∞
n=0 βnλ

n be two functions
defined by power series with complex coefficients and convergent on the open
disk D(0, R) ⊂ C, R > 0. For any x, y ∈ B with ∥x∥ , ∥y∥ < R we have

(2.13) ∥f(x)g(y)− g(y)f(x)∥ ≤ ∥xy − yx∥ f ′
A(∥x∥)g′A(∥y∥).

Proof. From (2.10) we get

∥f(x)z − zf(x)∥ ≤ ∥xg(y)− g(y)x∥ f ′
A(∥x∥)

and
∥xg(y)− g(y)x∥ ≤ ∥xy − yx∥ g′A(∥y∥),

which provide the desired result (2.13).

Remark. If we write the inequality (2.9) for the function f(λ) = (1 ± λ)−1

defined on the open disk D(0, 1) we get for all x, y, z ∈ B with ∥x∥ , ∥y∥ < 1
that

(2.14)
∥∥(1± y)−1z − z(1± x)−1

∥∥ ≤ ∥yz − zx∥ (1− ∥y∥)−1(1− ∥x∥)−1.

In particular,

(2.15)
∥∥(1± x)−1z − z(1± x)−1

∥∥ ≤ ∥xz − zx∥ (1− ∥x∥)−2

and, see [5] for details,

(2.16)
∥∥(1± y)−1 − (1± x)−1

∥∥ ≤ ∥y − x∥ (1− ∥y∥)−1(1− ∥x∥)−1.
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We also have:

Theorem 2.5. Let f : D ⊂ C → C be an analytic function on the domain D
and x, y, z ∈ B with σ(x), σ(y) ⊂ D and γ a closed rectifiable path in D and
such that σ(x), σ(y) ⊂ ins(γ). Then we have

(2.17) ∥f(y)z − zf(x)∥ ≤ 1

2π
∥yz − zx∥

∫
γ

|f(ξ)|
(|ξ| − ∥y∥)(|ξ| − ∥x∥)

|dξ| .

In particular,

(2.18) ∥f(x)z − zf(x)∥ ≤ 1

2π
∥xz − zx∥

∫
γ

|f(ξ)|
(|ξ| − ∥x∥)2

|dξ|

and

(2.19) ∥f (y)− f (x)∥ ≤ 1

2π
∥y − x∥

∫
γ

|f (ξ)|
(|ξ| − ∥y∥) (|ξ| − ∥x∥)

|dξ| ,

see also [7] for details.

Proof. Let λ ∈ C, λ ̸= 0 and a, b ∈ B such that λ ∈ ρ(a) ∩ ρ(b), then we have
the following inequality for the resolvent function that is of interest in itself:

(2.20) ∥Rb(λ)z − zRa(λ)∥ ≤ ∥bz − za∥ (|λ| − ∥b∥)−1(|λ| − ∥a∥)−1.

Indeed, by (2.14) we get for λ ∈ ρ(a) ∩ ρ(b), λ ̸= 0 that∥∥(λ− b)−1z − z(λ− a)−1
∥∥

=

∥∥∥∥λ−1(1− b

λ
)−1z − λ−1z(1− a

λ
)−1

∥∥∥∥
=

1

|λ|

∥∥∥∥(1− b

λ
)−1z − z(1− a

λ
)−1

∥∥∥∥
≤ 1

|λ|

∥∥∥∥ bλz − z
a

λ

∥∥∥∥ (1− ∥∥∥∥ bλ
∥∥∥∥)−1(1−

∥∥∥a
λ

∥∥∥)−1

=
1

|λ|2
∥bz − za∥ |λ|2 (|λ| − ∥b∥)−1(|λ| − ∥a∥)−1

= ∥bz − za∥ (|λ| − ∥b∥)−1(|λ| − ∥a∥)−1

and the inequality (2.20) is proved.
Let x, y, z ∈ B with σ(x), σ(y) ⊂ D and γ a closed rectifiable path in D

and such that σ(x), σ(y) ⊂ ins(γ). Using the Riesz functional calculus we have

f(y)z − zf(x) =
1

2πi

∫
γ
f(ξ)(ξ − y)−1zdξ −

∫
γ
f(ξ)z(ξ − x)−1dξ

=
1

2πi

∫
γ
f(ξ)

[
(ξ − y)−1z − z(ξ − x)−1

]
dξ

=
1

2πi

∫
γ
f(ξ) [Ry(ξ)z − zRx(ξ)] dξ.
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By taking the norm in this equality and using the properties of integral, we
get

(2.21) ∥f(y)z − zf(x)∥ ≤ 1

2π

∫
γ
|f(ξ)| ∥Ry(ξ)z − zRx(ξ)∥ |dξ| .

Using inequality (2.20) we have

1

2π

∫
γ
|f(ξ)| ∥Ry(ξ)z − zRx(ξ)∥ |dξ|(2.22)

≤ ∥yz − zx∥ 1

2π

∫
γ
|f(ξ)| (|ξ| − ∥y∥)−1(|ξ| − ∥x∥)−1 |dξ| .

By making use of (2.21) and (2.22) we get the desired result (2.17).

Corollary 2.6. With the assumptions of Theorem 2.5 and if

∥f∥γ,∞ := sup
ξ∈γ

|f(ξ)| < ∞,

then

(2.23) ∥f(y)z − zf(x)∥ ≤ 1

2π
∥yz − zx∥ ∥f∥γ,∞

∫
γ

|dξ|
(|ξ| − ∥y∥)(|ξ| − ∥x∥)

.

In particular,

(2.24) ∥f(x)z − zf(x)∥ ≤ 1

2π
∥xz − zx∥ ∥f∥γ,∞

∫
γ

|dξ|
(|ξ| − ∥x∥)2

and

(2.25) ∥f(y)− f(x)∥ ≤ 1

2π
∥y − x∥ ∥f∥γ,∞

∫
γ

|dξ|
(|ξ| − ∥y∥)(|ξ| − ∥x∥)

,

see [7] for details.

Remark. If we assume that f : D ⊂ C → C is an analytic function on the
domain D and x, y ∈ B with σ(x), σ(y) ⊂ D(0, R) ⊂ D, then by taking
γ parametrized by ξ(t) = Re2πit where t ∈ [0, 1] , then dξ(t) = 2πiRe2πitdt,
|dξ(t)| = 2πRdt, |ξ| = R and by (2.17) we get

(2.26) ∥f(y)z − zf(x)∥ ≤ R ∥yz − zx∥
(R− ∥y∥)(R− ∥x∥)

∫ 1

0

∣∣f(Re2πit)
∣∣ dt.

In particular, we have

(2.27) ∥f(x)z − zf(x)∥ ≤ R ∥xz − zx∥
(R− ∥x∥)2

∫ 1

0

∣∣f(Re2πit)
∣∣ dt
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and

(2.28) ∥f (y)− f (x)∥ ≤ R ∥y − x∥
(R− ∥y∥) (R− ∥x∥)

∫ 1

0

∣∣f (
Re2πit

)∣∣ dt,
see also [7] for details.

Moreover, if ∥f∥R,∞ := supt∈[0,1]
∣∣f(Re2πit)

∣∣ < ∞, then we have the simpler
inequality

(2.29) ∥f(y)z − zf(x)∥ ≤
R ∥yz − zx∥ ∥f∥R,∞
(R− ∥y∥)(R− ∥x∥)

and, in particular,

(2.30) ∥f(x)z − zf(x)∥ ≤
R ∥xz − zx∥ ∥f∥R,∞

(R− ∥x∥)2

and

(2.31) ∥f(y)− f(x)∥ ≤
R ∥y − x∥ ∥f∥R,∞
(R− ∥y∥)(R− ∥x∥)

.

Corollary 2.7. Let f, g : D ⊂ C → C be analytic functions on the domain
D and x, y ∈ B with σ(x), σ(y) ⊂ D and γ a closed rectifiable path in D and
such that σ(x), σ(y) ⊂ ins(γ). Then we have

∥f(x)g(y)− g(y)f(x)∥(2.32)

≤ 1

4π2
∥xy − yx∥

∫
γ

|f(ξ)|
(|ξ| − ∥x∥)2

|dξ|
∫
γ

|g(ξ)|
(|ξ| − ∥y∥)2

|dξ|

and if
∥f∥γ,∞ := sup

ξ∈γ
|f(ξ)| < ∞, ∥g∥γ,∞ := sup

ξ∈γ
|g(ξ)| < ∞

then

∥f(x)g(y)− g(y)f(x)∥(2.33)

≤ 1

4π2
∥xy − yx∥ ∥f∥γ,∞ ∥g∥γ,∞

∫
γ

|dξ|
(|ξ| − ∥x∥)2

∫
γ

|dξ|
(|ξ| − ∥y∥)2

.

Applying the inequality (2.18), the result follows and we omit the details.

Remark. If we assume that f, g : D ⊂ C → C are analytic functions on the
domain D and x, y ∈ B with σ(x), σ(y) ⊂ D(0, R) ⊂ D, then

∥f(x)g(y)− g(y)f(x)∥(2.34)

≤ R2 ∥xy − yx∥
(R− ∥x∥)2(R− ∥y∥)2

∫ 1

0

∣∣f(Re2πit)
∣∣ dt ∫ 1

0

∣∣g(Re2πit)
∣∣ dt.
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Moreover, if

∥f∥R,∞ := sup
t∈[0,1]

∣∣f(Re2πit)
∣∣ < ∞, ∥g∥R,∞ := sup

t∈[0,1]

∣∣g(Re2πit)
∣∣ < ∞,

then

(2.35) ∥f(x)g(y)− g(y)f(x)∥ ≤
R2 ∥xy − yx∥ ∥f∥R,∞ ∥g∥R,∞

(R− ∥x∥)2(R− ∥y∥)2
.

§3. Some Examples for Exponential Function

Consider the exponential function f(a) = exp a, a ∈ B. By using Theorem 2.3
for the exponential function, we get the inequalities
(3.1)

∥(exp y)z − z(expx)∥ ≤ ∥yz − zx∥ ×


exp(∥y∥)−exp(∥x∥)

∥y∥−∥x∥ , if ∥y∥ ̸= ∥x∥ ,

exp(∥x∥), if ∥y∥ = ∥x∥ .

In particular

(3.2) ∥(expx)z − z(expx)∥ ≤ ∥xz − zx∥ exp(∥x∥)

and, see also [5] for details,

(3.3) ∥exp y − expx∥ ≤ ∥y − x∥ ×


exp(∥y∥)−exp(∥x∥)

∥y∥−∥x∥ , if ∥y∥ ̸= ∥x∥ ,

exp(∥x∥), if ∥y∥ = ∥x∥ .

Now, assume that x, y ∈ B and ∥x∥ , ∥y∥ < R for some R > 0. Observe
that ∣∣exp(Re2πit)

∣∣ = |exp [R(cos(2πt) + i sin(2πt))]| = exp [R cos(2πt)]

and then by (2.26) we get

(3.4) ∥(exp y)z − z(expx)∥ ≤ R ∥yz − zx∥
(R− ∥y∥)(R− ∥x∥)

∫ 1

0
exp [R cos(2πt)] dt.

In particular, we have

(3.5) ∥(expx)z − z(expx)∥ ≤ R ∥xz − zx∥
(R− ∥x∥)2

∫ 1

0
exp [R cos(2πt)] dt
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and

(3.6) ∥exp y − expx∥ ≤ R ∥y − x∥
(R− ∥y∥) (R− ∥x∥)

∫ 1

0
exp [R cos (2πt)] dt,

see also [7] for details.
The modified Bessel function of the first kind Iν(z) for real number ν can

be defined by the power series as, see [1, p. 376] for details,

Iν(z) = (
1

2
z)ν

∞∑
k=0

(14z
2)k

k!Γ(ν + k + 1)
,

where Γ is the gamma function. For n = 0 we have I0(z) given by

I0(z) =

∞∑
k=0

(14z
2)k

(k!)2
.

An integral formula for real number ν is

Iν(z) =
1

π

∫ π

0
ez cos θ cos(νθ)dθ − sin(νπ)

π

∫ ∞

0
e−z cosh t−νtdt,

which simplifies for ν an integer n to

In(z) =
1

π

∫ π

0
ez cos θ cos(nθ)dθ.

For n = 0 we have

I0(z) =
1

π

∫ π

0
ez cos θdθ.

If we change the variable θ = 2πt, then dt = 1
2πdθ and∫ 1

0
exp [R cos(2πt)] dt =

1

2π

∫ 2π

0
exp [R cos θ] dθ

=
1

2
(
1

π

∫ π

0
exp [R cos θ] dθ +

1

π

∫ 2π

π
exp [R cos θ] dθ)

=
1

2
(I0(R) + I0(−R)) = I0(R).

From (3.4) we then get

(3.7) ∥(exp y)z − z(expx)∥ ≤ R ∥yz − zx∥ I0(R)

(R− ∥y∥)(R− ∥x∥)
,

for x, y, z ∈ B with ∥x∥ , ∥y∥ < R.
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In particular, we have

(3.8) ∥(expx)z − z(expx)∥ ≤ R ∥xz − zx∥
(R− ∥x∥)2

I0(R).

and

(3.9) ∥exp y − expx∥ ≤ R ∥y − x∥
(R− ∥y∥) (R− ∥x∥)

I0(R),

for x, y, z ∈ B with ∥x∥ , ∥y∥ < R. For more details, see [7].
Since, in general expu does not commute with exp v, then from (3.2) we

get

(3.10) ∥expu exp v − exp v expu∥ ≤ ∥uv − vu∥ exp(∥u∥+ ∥v∥)

for all u, v ∈ B.
From (3.8) we also have

(3.11) ∥expu exp v − exp v expu∥ ≤ R2 ∥uv − vu∥
(R− ∥u∥)2(R− ∥v∥)2

I20 (R)

for u, v ∈ B with ∥u∥ , ∥v∥ < R.
By utilising the examples from (2.6), (2.7) and (2.8), the interested reader

may obtain other similar inequalities for functions defined on the Banach al-
gebra B. We omit the details.
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