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Abstract. Tate-Hochschild cohomology of an algebra is a generalization of or-
dinary Hochschild cohomology, which is defined on positive and negative degrees
and has a ring structure. Our purpose of this paper is to study the eventual
periodicity of an algebra by using the Tate-Hochschild cohomology ring. First,
we deal with eventually periodic algebras and show that they are not necessar-
ily Gorenstein algebras. Secondly, we characterize the eventual periodicity of
a Gorenstein algebra as the existence of an invertible homogeneous element of
the Tate-Hochschild cohomology ring of the algebra, which is our main result.
Finally, we use tensor algebras to establish a way of constructing eventually
periodic Gorenstein algebras.
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§1. Introduction

The Tate-Hochschild cohomology of an algebra was introduced by Wang [20]
based on the notion of Tate cohomology defined by Buchweitz [7]. It was
proved in [20] that the Tate-Hochschild cohomology carries a structure of a
graded commutative algebra. There are studies on the ring structure of the
Tate-Hochschild cohomology, such as [10, 17, 18, 19]. Recently, Dotsenko,
G é linas and Tamaroff proved in [10, Corollary 6.4] that, for a monomial

Gorenstein algebra Λ, the Tate-Hochschild cohomology ring ĤH
•
(Λ) is iso-

morphic to ĤH
≥0

(Λ)[χ−1], where ĤH
≥0

(Λ) stands for the subring consisting

of the non-negative part of ĤH
•
(Λ) and χ is an invertible homogeneous ele-

ment of positive degree. Moreover, the author also showed in [18, Corollary
3.4] that the same isomorphism holds for a periodic algebra. In both cases, the
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invertible element χ was obtained from the fact that any minimal projective
resolution of the given algebra eventually becomes periodic.

In this paper, we first deal with eventually periodic algebras (i.e., algebras
Λ with the n-th syzygy Ωn

Λe(Λ) periodic for some n ≥ 0). It will be revealed
that eventually periodic algebras are not necessarily Gorenstein (see Example
3.2), although it is known that periodic algebras are all Gorenstein. Secondly,
we will study the relationship between the eventual periodicity of a Gorenstein
algebra and the Tate-Hochschild cohomology ring of the algebra. The following
is the main result of this paper:

Main Result (see Theorem 3.5). Let Λ be a Gorenstein algebra. Then the
following are equivalent.

(1) Λ is an eventually periodic algebra.

(2) The Tate-Hochschild cohomology ring ĤH
•
(Λ) has an invertible homo-

geneous element of positive degree.

In this case, there exists an isomorphism ĤH
•
(Λ) ∼= ĤH

≥0
(Λ)[χ−1] of graded

algebras, where the degree of an invertible homogeneous element χ equals the
period of the periodic syzygy Ωn

Λe(Λ) of Λ for some n ≥ 0.

Our main result requires only the eventual periodicity of a minimal pro-
jective resolution of a given Gorenstein algebra. Hence it turns out that [10,
Corollary 6.4] and [18, Corollary 3.4] can be obtained from our main result,
because monomial Gorenstein algebras and periodic algebras are both even-
tually periodic Gorenstein algebras. Finally, using tensor algebras, we will
provide one of the constructions of eventually periodic Gorenstein algebras.

This paper is organized as follows. In Section 2, we recall basic facts on
Tate cohomology and Gorenstein algebras. In Section 3, we give examples
of eventually periodic algebras and prove our main result. In Section 4, we
establish a way to construct eventually periodic Gorenstein algebras.

§2. Preliminaries

Throughout this paper, let k be an algebraically closed field. We write ⊗k as
⊗. By an algebra Λ, we mean a finite dimensional associative unital k-algebra.
All modules are assumed to be finitely generated left modules. For an algebra
Λ, we denote by Λ-mod the category of Λ-modules, by Λ-proj the category of
projective Λ-modules, by gl.dimΛ the global dimension of Λ and by Λe the
enveloping algebra Λ⊗Λop. Remark that we can identify Λe-modules with Λ-
bimodules. For a Λ-module M , we denote by inj.dimΛM (resp. proj.dimΛM)
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the injective (resp. projective) dimension of M . By a complex X•, we mean a
chain complex

X• = · · · → Xi+1

dXi+1−−−→ Xi → · · · .
For a complex X• and an integer i, we denote by Ωi(X•) the cokernel Cok d

X
i+1

of the differential dXi+1 and by X•[i] the complex given by (X•[i])j = Xj−i and

dX[i] = (−1)idX .

2.1. Tate cohomology rings

In this subsection, we recall some facts on Tate cohomology rings and Tate-
Hochschild cohomology rings. Let Λ be an algebra. Recall that the singularity
category Dsg(Λ) of Λ is defined to be the Verdier quotient of the bounded
derived category Db(Λ-mod) of Λ-mod by the bounded homotopy category
Kb(Λ-proj) of Λ-proj. Let M and N be Λ-modules and i an integer. Following
[7], we define the i-th Tate cohomology group of M with coefficients in N by

Êxt
i

Λ(M,N) := HomDsg(Λ)(M,N [i]),

where M and N are viewed as complexes concentrated in degree 0. We call

Êxt
i

Λe(Λ,Λ) the i-th Tate-Hochschild cohomology group of Λ and denote it by

ĤH
i
(Λ).

Let T be a triangulated category with shift functor [1]. For an object X
of T , one can endow End•T (X) :=

⊕
i∈ZHomT (X,X[i]) with a structure of a

graded ring. The multiplication is given by the Yoneda product

⌣: HomT (X,X[i])⊗HomT (X,X[j]) → HomT (X,X[i+ j])

sending α⊗β to α[j]◦β. If T = Dsg(Λ) and X = M ∈ Λ-mod, then we obtain a

graded algebra Êxt
•
Λ(M,M) := End•Dsg(Λ)

(M) and call it the Tate cohomology
ring of M , which is called the stabilized Yoneda Ext algebra of M by Buchweitz
[7]. It was proved by Wang [20] that the Tate-Hochschild cohomology ring

ĤH
•
(Λ) := Êxt

•
Λe(Λ,Λ) of any algebra Λ is a graded commutative algebra.

2.2. Singularity categories of Gorenstein algebras

The aim of this subsection is to recall facts on the singularity category of
a Gorenstein algebra from [7]. Let Λ be an algebra. Recall that the stable
category Λ-mod of Λ-modules is the category whose objects are the same as
Λ-mod and morphisms are given by

HomΛ(M,N) := HomΛ(M,N)/P(M,N),
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where P(M,N) is the space of morphisms factoring through a projective mod-
ule. We denote by [f ] the element of HomΛ(M,N) represented by a morphism
f : M → N . There exists a canonical functor F : Λ-mod → Dsg(Λ) making
the following square commute:

Λ-mod //

��

Db(Λ-mod)

��
Λ-mod

F // Dsg(Λ)

where the two vertical functors are the canonical ones, and the upper horizon-
tal functor is the one sending a module M to the complex M concentrated in
degree 0. Further, the functor F satisfies F ◦ ΩΛ

∼= [−1] ◦ F , where ΩΛ is the
syzygy functor on Λ-mod (i.e., the functor sending a module M to the kernel
of a projective cover of M). On the other hand, let APC(Λ) be the homo-
topy category of acyclic complexes of projective Λ-modules. Then taking the
cokernel Ω0(X•) = Cok dX1 of the differential dX1 for a complex X• defines a
functor Ω0 : APC(Λ) → Λ-mod satisfying Ω0 ◦ [−1] ∼= ΩΛ ◦ Ω0.

Recall that an algebra Λ is Gorenstein if inj.dimΛΛ < ∞ and inj.dimΛopΛ <
∞. Since the two dimensions coincide (see [21, Lemma A]), we call a Goren-
stein algebra Λ with inj.dimΛΛ = d a d-Gorenstein algebra. In the rest of this
subsection, let Λ denote a Gorenstein algebra. We call a Λ-module M Cohen-
Macaulay if ExtiΛ(M,Λ) = 0 for all i > 0. It is clear that projective Λ-modules
are Cohen-Macaulay. We denote by CM(Λ) the category of Cohen-Macaulay
Λ-modules. It is well known that CM(Λ) is a Frobenius exact category whose
projective objects are precisely projective Λ-modules, so that the stable cat-
egory CM(Λ), the full subcategory of Λ-mod consisting of Cohen-Macaulay
Λ-modules, carries a structure of a triangulated category (see [7, 13]). In par-
ticular, the syzygy functor ΩΛ on Λ-mod gives rise to the inverse of the shift
functor Σ on CM(Λ). We end this subsection with the following result due to
Buchweitz.

Theorem 2.1 ([7, Theorem 4.4.1]). Let Λ be a Gorenstein algebra. Then
there exist equivalences of triangulated categories

APC(Λ)
Ω0 // CM(Λ)

ιΛ // Dsg(Λ),

where the equivalence ιΛ is given by the restriction of F : Λ-mod → Dsg(Λ) to
CM(Λ).

2.3. Tate cohomology over Gorenstein algebras

This subsection is devoted to recalling another description of Tate cohomology
over a Gorenstein algebra. Throughout, let Λ denote a d-Gorenstein algebra
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unless otherwise stated. Thanks to Theorem 2.1, we can associate to any Λ-
module M an object T• = TM

• in APC(Λ), uniquely determined up to isomor-
phism, satisfying that Ω0(T•) ∼= M in Dsg(Λ). Thus the triangle equivalence
ιΛ : CM(Λ) → Dsg(Λ) induces an isomorphism

Êxt
i

Λ(M,M) ∼= HomΛ(Ω0(T•),Σ
iΩ0(T•))

for all i ∈ Z. We identify Êxt
•
Λ(M,M) with End•CM(Λ)(Ω0(T•)) via this iso-

morphism.
Recall that, for an algebra Λ, the Gorenstein dimension G-dimΛM of a

Λ-module M is defined by the shortest length of a resolution of M by Λ-
modules X with X ∼= X∗∗ and ExtiΛ(X,Λ) = 0 = ExtiΛop(X∗,Λ) for all i > 0,
where we set (−)∗ := HomΛ(−,Λ) (see [1] for its original definition). The
next proposition is easily obtained from the results in [3] applied to the case
of Gorenstein algebras: (1), (2) and (3) follow from [3, Theorems 3.1 and 3.2],
[3, Lemma 2.4 and Theorem 3.1] and [3, Theorem 5.2], respectively.

Proposition 2.2. The following hold for a module M over a d-Gorenstein
algebra Λ.

(1) The Gorenstein dimension G-dimΛM of M satisfies G-dimΛM ≤ d
and is equal to the smallest integer r ≥ 0 for which Ωr

Λ(M) is Cohen-
Macaulay.

(2) There exists a diagram T•
θ−→ P•

ε−→ M satisfying the following conditions:

(i) T• ∈ APC(Λ) and P•
ε−→ M is a projective resolution of M .

(ii) θ : T• → P• is a chain map with θi an isomorphism for any i ≫ 0.

(3) We have that ExtiΛ(M,M) ∼= Êxt
i

Λ(M,M) for all i > G-dimΛM .

We call such a diagram as in Proposition 2.2 (2) a complete resolution of M
(see [3] for its definition in a general setting). A complete resolution is unique
in the sense of [3, Lemma 5.3] (when it exists).

Finally, we explain how we find the corresponding object TM
• in APC(Λ)

for any Λ-module M . Let T• → P• → M be a complete resolution of M . Then
the complex T• in APC(Λ) is the object corresponding to M via the triangle
equivalence ι ◦ Ω0 : APC(Λ) → Dsg(Λ). Indeed, the morphism Ω0(T•) → M
induced by the chain map θ≥0 : T≥0 → P• is an isomorphism in Dsg(Λ). Here,
T≥0 stands for the following truncated complex of T•:

T≥0 = · · · → T2
dT2−→ T1

dT1−→ T0 → 0 → 0 → · · · .

Thus we conclude that constructing a complete resolution of M is equivalent
to finding the corresponding object TM

• of APC(Λ).
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§3. Tate-Hochschild cohomology for eventually periodic
Gorenstein algebras

In this section, we first define eventually periodic algebras and provide exam-
ples of them. We then prove our main result.

3.1. Eventually periodic algebras

As mentioned above, let us first define the eventual periodicity of algebras and
provide examples of eventually periodic algebras.

Definition 3.1. Let Λ be an algebra. A Λ-module M is called periodic if
Ωp
Λ(M) ∼= M in Λ-mod for some p > 0. The smallest such p is said to be

the period of M . We say that M ∈ Λ-mod is eventually periodic if Ωn
Λ(M)

is periodic for some n ≥ 0. An algebra Λ is called periodic (resp. eventually
periodic) if Λ ∈ Λe-mod is periodic (resp. eventually periodic).

From the definition, periodic algebras are eventually periodic algebras. Pe-
riodic algebras have been studied for a long time (see [11]). We know from [12,
Lemma 1.5] that periodic algebras are self-injective algebras (i.e., 0-Gorenstein
algebras). On the other hand, it follows from the proof of [10, Corollary 6.4]
that monomial Gorenstein algebras are eventually periodic algebras. It also
follows from the formula gl.dimΛ = proj.dimΛeΛ (see [14, Section 1.5]) that
algebras of finite global dimension are eventually periodic algebras. As will be
seen in Example 3.2 below, not all eventually periodic algebras are Gorenstein
algebras.

Example 3.2. (1) Let Λ1 be the algebra given by a quiver with relation

1 2
α

β
αβα = 0.

Then Λ1 is a monomial algebra that is not Gorenstein (since inj.dimΛΛe1
= ∞, where e1 is the primitive idempotent corresponding to the vertex
1). Using Bardzell’s minimal projective resolution of a monomial alge-
bra (see [4]), we have that Λ1 is an eventually periodic algebra having
Ω2
Λe
1
(Λ1) as its first periodic syzygy.

(2) Let Λ2 be the algebra given by a quiver with relation

1 2α
β

α2 = 0.
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Then the algebra Λ2 is monomial 1-Gorenstein and hence eventually
periodic. Bardzell’s minimal projective resolution allows us to see that
Ω2
Λe
2
(Λ2) is the first periodic syzygy of Λ2.

Moreover, one can see that the algebras in [8, Example 4.3] are eventually
periodic algebras.

3.2. Main result

This subsection is devoted to showing our main result. We prove it after two
propositions below. Before the first one, we prepare some terminology. Recall
that we write Ωi(X•) = Cok dXi+1 for a complex X• and i ∈ Z. For a module M
over a Gorenstein algebra Λ, its complete resolution T• → P• → M is called
periodic if there exists an integer p > 0 such that Ωi(T•) ∼= Ωi+p(T•) in Λ-mod
for all i ∈ Z. We call the least such p the period of the complete resolution.

Proposition 3.3. Let Λ be a Gorenstein algebra and M a Λ-module. If there
exists an integer n ≥ 0 such that Ωn

Λ(M) is periodic of period p, then M admits
a periodic complete resolution of period p. Further, the period of the periodic
complete resolution is independent of the choice of periodic syzygies.

Proof. Assume that there exists a minimal projective resolution P• → M
satisfying that Ωn

Λ(M) is periodic of period p. Then, by using the periodicity
of Ωn

Λ(M), we can extend the truncated complex P≥n to an (unbounded)
complex T• in APC(Λ) having the following properties:

(i) T≥n = P≥n.

(ii) For each i ∈ Z, there exists an integer 0 ≤ j < p such that Ωi(T•) ∼=
Ωn+j
Λ (M).

In particular, one sees that Ωi(T•) ∼= Ωi+p(T•) for all i ∈ Z. Note that one
may take T• = 0 if proj.dimΛM < ∞. It follows from Theorem 2.1 that
Ωi(T•) = Σ−iΩ0(T•) is Cohen-Macaulay for each i ∈ Z, where Σ denotes the
shift functor on CM(Λ). Then it is easily checked that HomK(Λ)(T•,Λ[i]) = 0
for all i ∈ Z, where K(Λ) is the homotopy category of Λ-modules. Hence,
as in [9, Lemma 2.4], the family {idTj}j≥n can be extended uniquely up to
homotopy to a chain map θ : T• → P• with θj the identity for all j ≥ n.
Therefore, the chain map θ gives rise to the desired complete resolution. We
remark that the period of the resulting complete resolution does not depend
on the choice of n. Indeed, if we take the smallest integer r ≥ 0 such that
Ωr
Λ(M) is periodic, then, for each i ≥ n, the module Ωi

Λ(M) is periodic and
has the same period as Ωr

Λ(M).
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Recall that the Yoneda product of the Tate cohomology ring Êxt
•
Λ(M,M)

is denoted by ⌣.

Proposition 3.4. Let Λ be a Gorenstein algebra and M a Λ-module. Then
the following are equivalent.

(1) M is eventually periodic.

(2) The Tate cohomology ring Êxt
•
Λ(M,M) has an invertible homogeneous

element of positive degree.

Proof. It suffices to prove the statement for M ∈ Λ-mod with proj.dimΛM =
∞. First, we assume that a Λ-module M satisfies that Ωn

Λ(M) is periodic of
period p for some n ≥ 0. By Proposition 3.3, there exists a complete resolution
T• → P• → M such that Ω0(T•) is periodic of period p, where p is the period of
Ωn
Λ(M). We fix this complete resolution. Then the shift functor Σ on CM(Λ)

satisfies ΣiΩ0(T•) = Ω−i(T•) for all i ∈ Z. Let f ∈ HomΛ(Ωp(T•),Ω0(T•)) be
an isomorphism and consider two homogeneous elements

x := Σp[f ] ∈ Êxt
p

Λ(M,M) and y := [f−1] ∈ Êxt
−p

Λ (M,M).

Then we have x ⌣ y = (Σ−px) ◦ y = [f ] ◦ [f−1] = 1 and similarly y ⌣ x = 1,
where we set 1 := [idΩ0(T•)].

Conversely, we let T• → P• → M be a complete resolution ofM and assume
that there exists an isomorphism

x ∈ HomΛ(Ω0(T•),Σ
pΩ0(T•)) = Êxt

p

Λ(M,M)

of degree p > 0. From the definition of complete resolutions, we have

HomΛ(Ω0(T•),Σ
pΩ0(T•)) ∼= HomΛ(Σ

−m−pΩ0(T•),Σ
−mΩ0(T•))

∼= HomΛ(Ω
m+p
Λ (M),Ωp

Λ(M))

for some sufficiently large m > 0. Hence we get Ωm+p
Λ (M) ∼= Ωm

Λ (M) in Λ-

mod. This implies that Ωm+p
Λ (M) ⊕ P ∼= Ωm

Λ (M) ⊕ Q in Λ-mod for some P
and Q ∈ Λ-proj. By applying the syzygy functor ΩΛ to this isomorphism, we
obtain an isomorphism Ωm+p+1

Λ (M) ∼= Ωm+1
Λ (M) in Λ-mod. This completes

the proof.

Using Proposition 3.4, we obtain our main result.

Theorem 3.5. Let Λ be a Gorenstein algebra. Then the following are equiv-
alent.

(1) Λ is an eventually periodic algebra.
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(2) The Tate-Hochschild cohomology ring ĤH
•
(Λ) has an invertible homo-

geneous element of positive degree.

In this case, there exists an isomorphism ĤH
•
(Λ) ∼= ĤH

≥0
(Λ)[χ−1] of graded

algebras, where the degree of an invertible homogeneous element χ equals the
period of the periodic syzygy Ωn

Λe(Λ) of Λ for some n ≥ 0.

Proof. We know from [2, Proposition 2.2] that if Λ is a Gorenstein algebra,
then so is the enveloping algebra Λe. Hence the former statement follows from
Proposition 3.4 applied to Λ ∈ Λe-mod. On the other hand, suppose that the
Gorenstein algebra Λ satisfies that Ωn

Λe(Λ) is periodic for some n ≥ 0. By
the proof of Proposition 3.4, there exists an invertible homogeneous element
χ ∈ ĤH

•
(Λ) whose degree equals the period of the periodic Λe-module Ωn

Λe(Λ).

Then the fact that ĤH
•
(Λ) is a graded commutative algebra yields the desired

isomorphism of graded algebras (cf. the proof of [18, Corollary 3.4]).

We end this subsection with the following three remarks.

Remark 3.6. From the definition of singularity categories, an algebra Λ has
finite projective dimension as a Λe-module if and only if its Tate-Hochschild
cohomology ring is the zero ring (cf. [7, Section 1]). Thus Theorem 3.5 provides
a new result if and only if the projective dimension of a given Gorenstein
algebra Λ over Λe is infinite.

Remark 3.7. Applying Theorem 3.5 to monomial Gorenstein algebras and
to periodic algebras, one obtains [10, Corollary 6.4] and [18, Corollary 3.4],
respectively.

Remark 3.8. For an eventually periodic Gorenstein algebra Λ, one can obtain

all of dimk ĤH
∗
(Λ) by using Theorem 3.5 and the Hochschild cohomology

HH•(Λ) :=
⊕

i≥0 Ext
i
Λe(Λ,Λ) of Λ (see Example 4.7). However, it is still open

how we compute the ring structure of ĤH
≥0

(Λ) (cf. [18, Proposition 3.7]).

§4. Construction of eventually periodic Gorenstein algebras

In this section, we aim at establishing a way of constructing eventually periodic
Gorenstein algebras. First, we show two propositions which will be used latter.
Let us start with the following.

Proposition 4.1. Any periodic Λ-module M over a d-Gorenstein algebra Λ
is Cohen-Macaulay.

Proof. Assume that M is a periodic Λ-module of period p. Since Ωi
Λ(M) ∈

CM(Λ) for i ≥ d by [7, Lemma 4.2.2], we have that M ∼= Ωjp
Λ (M) ∈ CM(Λ)

for some j ≫ 0.



142 S. USUI

We now show that, for an eventually periodic Gorenstein algebra Λ, the
smallest integer n ≥ 0 satisfying that Ωn

Λe(Λ) is periodic has a lower bound.

Proposition 4.2. Let Λ be a d-Gorenstein algebra. Assume that there exists
an integer n ≥ 0 such that Ωn

Λe(Λ) is periodic. Then the least such integer n
satisfies n ≥ d. In particular, the equality holds if and only if there exists a
simple Λ-module S such that ExtnΛ(S,Λ) ̸= 0.

Proof. Let Λ be an eventually periodic Gorenstein algebra and P• → Λ a
minimal projective resolution of Λ over Λe satisfying that Ωn

Λe(Λ) is the first
periodic syzygy of period p. For any M ∈ Λ-mod, an exact sequence P• ⊗Λ

M → Λ⊗Λ M = M is a projective resolution of M and has the property that
Ωn(P• ⊗Λ M) = Ωn

Λe(Λ) ⊗Λ M ∼= Ωn+ip
Λe (Λ) ⊗Λ M = Ωn+ip(P• ⊗Λ M) for all

i ≥ 0. In particular, as in Proposition 4.1, one concludes that Ωn(P• ⊗Λ M)
is Cohen-Macaulay. This implies that n ≥ inj.dimΛΛ = d. Indeed, for any
Λ-module M , we have Extn+1

Λ (M,Λ) ∼= Ext1Λ(Ωn(P• ⊗Λ M),Λ) = 0.
For the latter statement, we first suppose that n = d. Then it follows

from [10, Proposition 2.4] that we have n = G-dimΛ(Λ/r), where r denotes
the Jacobson radical of Λ. This shows that ExtnΛ(Λ/r,Λ) ̸= 0, so that one
obtains the desired simple Λ-module. Conversely, assume that ExtnΛ(S,Λ) ̸= 0
for some simple Λ-module S. Then one concludes that Ωn−1

Λ (S) ̸∈ CM(Λ).
However, since we know that Ωn

Λ(S) is Cohen-Macaulay, we have n = G-dimΛS
and hence n ≤ d. Then the proof is completed since n ≥ d by the former
statement.

Now, we recall some facts on projective resolutions for tensor algebras. Let
Λ and Γ be algebras and P•

εΛ−→ Λ and Q•
εΓ−→ Γ projective resolutions as

bimodules. Then the tensor product P• ⊗ Q•
εΛ⊗ εΓ−−−−→ Λ ⊗ Γ is a projective

resolution of the tensor algebra Λ ⊗ Γ over (Λ ⊗ Γ)e (see [16, Section X.7]).
Here, we identify (Λ ⊗ Γ)e with Λe ⊗ Γe. It also follows from [6, Lemma 6.2]
that if both P• → Λ and Q• → Γ are minimal, then so is P• ⊗Q• → Λ⊗ Γ.

From now on, we assume that Λ is a periodic algebra of period p and that
Γ is an algebra of finite global dimension n. Set A := Λ ⊗ Γ. Since periodic
algebras are self-injective algebras, it follows from [6, Lemma 6.1] that we have

inj.dimA = inj.dimΛ + inj.dimΓ = 0 + n = n

as one-sided modules. Thus A is an n-Gorenstein algebra. Note that the
same lemma also implies that the enveloping algebra Ae is a (2n)-Gorenstein
algebra. We now show that the algebra A has an eventually periodic minimal
projective resolution.

Proposition 4.3. Let Λ and Γ be as above. Then A = Λ⊗Γ is an eventually
periodic n-Gorenstein algebra having Ωn

Ae(A) as its first periodic syzygy.
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Proof. Let P• → Λ and Q• → Γ be minimal projective resolutions as bimod-
ules. Recall that the r-th component of the total complex P• ⊗Q• with r ≥ 0
is given by

(P• ⊗Q•)r =
r⊕

i=0

Pr−i ⊗Qi.

Since Qi = 0 for i > n = gl.dimΓ = proj.dimΓeΓ, we have

(P• ⊗Q•)r =

n⊕
i=0

Pr−i ⊗Qi

for all r ≥ n. Moreover, the (r + 1)-th differential

dP⊗Q
r+1 : (P• ⊗Q•)r+1 → (P• ⊗Q•)r (r ≥ n)

can be written as the square matrix (∂ij
r+1)ij of degree n + 1 whose (i, j)-th

entry

∂ij
r+1 : Pr+1−(j−1) ⊗Qj−1 → Pr−(i−1) ⊗Qi−1 (1 ≤ i, j ≤ n+ 1)

is given by

∂ij
r+1 =


dPr−i+2 ⊗ idQi−1 if i = j;

(−1)r−i+1 idPr−i+1 ⊗ dQi if j = i+ 1;

0 otherwise.

We claim that Cok dP⊗Q
n+p+1

∼= Cok dP⊗Q
n+1 . First, suppose that p is even. Since

∂ij
n+p+1 = ∂ij

n+1 for all 1 ≤ i, j ≤ n + 1 because p is even and dPl = dPl+p

for any l ≥ 0, we conclude that dP⊗Q
n+p+1 = dP⊗Q

n+1 , which implies the claim.
Now, assume that p is odd. Consider the isomorphism of Ae-modules between
(P• ⊗Q•)r and (P• ⊗Q•)r+p with r ≥ n induced by the diagonal matrix D of
degree n+1 whose (i, i)-th entry is (−1)n+i. Together with the fact that p+1
is even, a direct calculation shows that there exists a commutative diagram of
Ae-modules with exact rows

(P• ⊗Q•)n+p+1

dP⊗Q
n+p+1//

D∼=
��

(P• ⊗Q•)n+p
//

D∼=
��

Cok dP⊗Q
n+p+1

// 0

(P• ⊗Q•)n+1

dP⊗Q
n+1 // (P• ⊗Q•)n // Cok dP⊗Q

n+1
// 0

This implies the claim. Since the projective resolution P• ⊗ Q• → A is min-
imal, we have that Ωn+p

Ae (A) = Cok dP⊗Q
n+p+1

∼= Cok dP⊗Q
n+1 = Ωn

Ae(A). From
Proposition 4.2 and this isomorphism, we see that the n-th syzygy Ωn

Ae(A) is
the first periodic syzygy of A.
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Remark 4.4. Proposition 2.2 allows us to get G-dimAeA ≤ 2n = inj.dimAeAe

and hence HHi(A) ∼= ĤH
i
(A) for all i > 2n. On the other hand, the i-th syzygy

Ωi
Ae(A) of A is Cohen-Macaulay for any i ≥ n by Propositions 4.1 and 4.3.

Again, Proposition 2.2 yields that G-dimAeA ≤ n. One of the advantages of

this observation is that there exists an isomorphism HHi(A) ∼= ĤH
i
(A) for all

i > n.

Remark 4.5. It follows from Theorem 3.5 and the proof of Proposition
4.3 that the Tate-Hochschild cohomology ring ĤH

•
(A) of A is of the form

ĤH
≥0

(A)[χ−1], where the degree of χ divides the period p of Λ. We hope to
address the degree of χ in a future paper.

We end this section with the following two examples. Note that the tensor
algebra A in Example 4.7 can be found in [6, Example 6.3].

Example 4.6. For an integer n ≥ 0, let Γn be the algebra given by a quiver
with relations

0 1 · · · n− 1 n
α0 αn−1

αi+1αi = 0 for i = 0, . . . , n− 2.

Then we have gl.dimΓn = n. By Proposition 4.3, any periodic algebra Λ gives
us an eventually periodic n-Gorenstein algebra A = Λ ⊗ Γn with Ωn

Ae(A) the
first periodic syzygy of A.

Example 4.7. Let Λ = k[x]/(x2) and let Γ be the algebra Γ1 defined in
Example 4.6. Thanks to Bardzell’s minimal projective resolution, we see that
Λ is a periodic algebra whose period is equal to 1 if char k = 2 and to 2
otherwise. On the other hand, the tensor algebra A = Λ ⊗ Γ is given by the
following quiver with relations

1 2α
β

γ α2 = 0 = γ2 and βα = γβ.

Thus we see that A is a (non-monomial) eventually periodic Gorenstein algebra

whose first periodic syzygy is Ω1
Ae(A). Now, we compute dimk ĤH

i
(A) for all

i ∈ Z. It follows from [14, Section 1.6] that the Hochschild cohomology ring
HH•(Γ) is of the form

HH•(Γ) = k.

According to [5, Section 5], the Hochschild cohomology ring HH•(Λ) is as
follows:

HH•(Λ) =

k[a0, a1]/(a
2
0) if char k = 2;

k[a0, a1, a2]/(a
2
0, a

2
1, a0a1, a0a2) if char k ̸= 2,
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where the index i of a homogeneous element ai denotes the degree of ai. On
the other hand, by [15, Lemma 3.1], there exists an isomorphism of graded
algebras

HH•(A) ∼= HH•(Λ)⊗HH•(Γ) = HH•(Λ).

It follows from Remark 4.4 that HHi(A) ∼= ĤH
i
(A) for all i > 1. Hence, the

fact that ĤH
∗
(A) ∼= ĤH

∗+p
(A) with the period p of Λ (see Remark 4.5) implies

that, for any integer i, we have

dimk ĤH
i
(A) =

{
2 if char k = 2;

1 if char k ̸= 2.
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