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Abstract. Ishioka-Kunugi [9] gives an equivalent condition for Scott modules
to be Brauer indecomposable. This paper generalizes the equivalent condition
to that for Brauer-friendly modules to be slash indecomposable.
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§1. Introduction

Let p be a prime number and O a complete discrete valuation ring with al-
gebraically closed residue field k of characteristic p. In the modular represen-
tation theory of finite groups, the following Broué’s conjecture is one of the
most important problems and has been studied by many researchers.

Conjecture (Broué’s conjecture). Let G be a finite group, b a block of OG
with a defect group P , and c the Brauer correspondent of b in ONG(P ). If P
is abelian, then the block algebras OGb and ONG(P )c are derived equivalent.

It is known that the conjecture holds in many groups and constructing a sta-
ble equivalence of Morita type between the block algebras OGb and ONG(P )c
can be used to prove the correctnesses. In Theorem 1.1 and Theorem 1.4, we
review the gluing principle of constructing stable equivalences of Morita type
for principal blocks and general blocks.

First, we consider the case where b is the principal block ofOG. In this case,
M. Broué introduced the following method which is useful for constructing a
stable equivalence of Morita type.

Theorem 1.1 (Broué’s gluing principle [6, 6.3. Theorem]). Let G and H
be finite groups having a common Sylow p-subgroup P such that FP (G) =
FP (H) and b and c the principal blocks of OG and OH, respectively. For any

35



36 N. WATANABE

subgroup Q of P , let bQ and cQ be the principal blocks of kCG(Q) and kCH(Q),
respectively, and M = S(G×H,∆P ) the Scott O(G×H)-module with vertex
∆P . Then the following are equivalent.

(i) The bimodule M and its dual M∗ induce a stable equivalence of Morita
type between OGb and OHc.

(ii) The bimodule BrQ(M) and its dual BrQ(M)∗ induce a Morita equiva-
lence between kCG(Q)bQ and kCH(Q)cQ, for each non-trivial subgroup
Q of P .

In [11], R. Kessar, N. Kunugi, and N. Mitsuhashi introduced the Brauer
indecomposability, which plays a key role when we apply the principle to
principal blocks..

Definition 1.2 ([11]). Let M be an indecomposable OG-module. We say that

M is Brauer indecomposable if Res
NG(Q)/Q
QCG(Q)/Q(BrQ(M)) is indecomposable or 0,

for any p-subgroup Q of G.

In [9], H. Ishioka and N. Kunugi gave an equivalent condition for Scott
modules to be Brauer indecomposable as follows.

Theorem 1.3 ([9, Theorem 1.3]). Let G be a finite group and P a p-subgroup
of G. Let M = S(G,P ) and suppose that F = FP (G) is saturated. Then the
following conditions are equivalent.

(i) M is Brauer indecomposable.

(ii) Res
NG(Q)
QCG(Q)(S(NG(Q), NP (Q))) is indecomposable, for each fully F-norm-

alized subgroup Q of P .

If these conditions are satisfied, then BrQ(M) ∼= S(NG(Q), NP (Q)) for each
fully F-normalized subgroup Q of P .

Next, we consider the case where b is a general block of OG. M. Linckel-
mann has generalized Broué’s gluing principle to general blocks as follows.

Theorem 1.4 (Linckelmann’s gluing principle [12, Theorem 1.2]). Let G and
H be finite groups and b and c blocks of OG and OH, respectively, with a
common defect group P . Let i ∈ (OGb)∆P and j ∈ (OHc)∆P be almost
source idempotents. For any subgroup Q of P , denote by eQ and fQ the
unique blocks of kCG(Q) and kCH(Q), respectively, satisfying Br∆Q(i)eQ ̸= 0

and Br∆Q(j)fQ ̸= 0. Denote by êQ and f̂Q the unique blocks of OCG(Q)
and OCH(Q) lifting eQ and fQ, respectively. Suppose that F(P,êP )(G, b) =
F(P,f̂P )(H, c), and write F = F(P,êP )(G, b). Let V be an F-stable indecompos-
able endo-permutation OP -module with vertex P , viewed as an O∆P -module
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through the canonical isomorphism ∆P ∼= P . Let M be an indecomposable
direct summand of the OGb-OHc-bimodule

OGi⊗OP IndP×P
∆P (V )⊗OP jOH.

Suppose that M has ∆P as a vertex as an O[G×H]-module. Then for any non-
trivial subgroup Q of P , there is a canonical kCG(Q)eQ-kCH(Q)fQ-module

MQ satisfying Endk(MQ) ∼= Br∆Q(EndO(êQMf̂Q)). Moreover, if for all non-
trivial subgroups Q of P the bimodule MQ induces a Morita equivalence between
kCG(Q)eQ and kCH(Q)fQ, then M and its dual M∗ induce a stable equivalence
of Morita type between OGb and OHc.

In [3], E. Biland defined Brauer-friendly modules and generalized slash
functors. Brauer-friendly modules are generalizations of (endo-)p-permutation
modules. The module M which appears in the theorem above is a Brauer-
friendly module, and the module MQ which appears in the theorem can

be represented as Sl(∆Q,êQ⊗f̂Q)(M) by using a (∆Q, êQ ⊗ f̂Q)-slash functor

Sl(∆Q,êQ⊗f̂Q). For Brauer-friendly modules, slash indecomposability can be

defined in the similar way as Brauer indecomposability. For the same reason
as in Broué’s gluing principle, slash indecomposability plays an important role
in Linckelmann’s gluing principle.

In this study we generalize Ishioka-Kunugi’s equivalent condition to an
equivalent condition for Brauer-friendly modules to be slash indecomposable.

In Section 2 and 3, we review the definitions of subpairs, fusion systems, and
Brauer functors and we review the theory of Brauer-friendly modules and slash
functors that E. Biland defined in [3]. In Section 4, we prove a generalization of
lemmas of [9, Section 2] for p-permutation modules, Scott modules to Brauer-
friendly modules, Brauer-friendly Scott modules. In Section 5, we give an
equivalent condition for Brauer-friendly modules to be slash indecomposable,
which generalizes the equivalent condition for Scott modules to be Brauer
indecomposable.

§2. Notation

Throughout this paper, we use the following notation and terminology. Basi-
cally, we use the same notation and terminology as in [3].

Let p be a prime number, O a complete discrete valuation ring with alge-
braically closed residue field k of characteristic p. We fix a finite group G and
a block b of OG. Throughout this paper, RG-modules mean finitely gener-
ated RG-lattices, for R ∈ {O, k}. For any x ∈ OG, we denote by x its image
by the natural map OG ↠ kG. We denote by OGMod the category of all
OG-modules. We set ∆G = {(g, g) | g ∈ G}. We write NG(H) = NG(H)/H
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for a subgroup H of G. For any G-set X and any subgroup H of G, we set
XH = {x ∈ X | h · x = x, h ∈ H}. For any indecomposable OG-module M ,
we denote by vtx(M) a vertex of M and s(M) a source of M . For any two
OG-modules M and N , we write M | N if M is isomorphic to a direct sum-
mand of N . For any OG-module M and any subgroup H of G, the relative
trace map TrGH : MH → MG is defined by TrGH(m) =

∑
x∈G/H x ·m. For any

OG-module M and any p-subgroup P of G, the Brauer construction of M
with respect to P is the kNG(P )-module defined by

BrP (M) = MP /(
∑
Q<P

TrPQ(M
Q) + J(O)MP ).

We denote by brMP : MP ↠ BrP (M) the natural map. In particular, we
write brP = brOG

P . For any f ∈ HomOG(L,M), kNG(P )-homomorphism
BrP (f) ∈ HomkNG(P )(BrP (L),BrP (M)) is naturally determined. Hence, BrP
induces a functor

BrP : OGMod → kNG(P )Mod.

We recall the definition of subpairs. A subpair of G is a pair (P, bP ) con-
sisting of a p-subgroup P of G and a block bP of OCG(P ). We call the subpair
(P, bP ) a (G, b)-subpair if bPbrP (b) ̸= 0. For (G, b)-subpair (P, bP ), the block
bP is also a block of OH for a subgroup H such that CG(P ) ≤ H ≤ NG(P, bP ).
The set of (G, b)-subpairs is a poset, and the group G acts on the set by con-
jugation.

We recall the definition of the Brauer functor with respect to (G, b)-subpair.
Let (P, bP ) be a (G, b)-subpair, M an OGb-module. The Brauer construction
of M with respect to the subpair (P, bP ) is the kNG(P, bP )bP -module defined
by Br(P,bP )(M) = BrP (bPM), here we identify the block bP of kNG(P, bP )

with an idempotent of kNG(P, bP ). The kNG(P, bP )-epimorphism

brM(P,bP ) : M
P ↠ Br(P,bP )(M)

is defined by m 7→ brbPM
P (bPm). For any f ∈ HomOGb(L,M), we define

Br(P,bP )(f) = BrP (bP fbP ) ∈ HomkNG(P,bP )bP
(Br(P,bP )(L),Br(P,bP )(M)).

So Br(P,bP ) induces a functor

Br(P,bP ) : OGbMod → kNG(P,bP )bP
Mod.

We recall the definitions of Brauer categories and fusion systems. The
Brauer category Br(G, b) is defined as follows: the objects of Br(G, b) are the
(G, b)-subpairs, and for any two objects (P, bP ), (Q, bQ), the morphism set
HomBr(G,b)((P, bP ), (Q, bQ)) is the set of all group homomorphisms ϕ : P → Q
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such that there exists g ∈ G satisfying g(P, bP ) ≤ (Q, bQ) and ϕ(x) = gx for
any x ∈ P . Let (P, bP ) be a (G, b)-subpair. The fusion system F(P,bP )(G, b) is
defined as follows: the objects of F(P,bP )(G, b) are the subgroups of P , and for
any two objects Q and R, the morphism set HomF(P,bP )(G,b)(Q,R) is the set of

all group homomorphisms ϕ : Q → R such that there exists g ∈ G satisfying
g(Q, bQ) ≤ (R, bR) for (Q, bQ), (R, bR) ≤ (P, bP ) and ϕ(x) = gx for any x ∈ Q.

We review the definitions of vertex subpairs and source triples from [3].
Let M be an indecomposable OGb-module. A (G, b)-subpair (P, bP ) is called
a vertex subpair of M if M | bOGbP ⊗OP V and P ≤G vtx(M) for some
indecomposable OP -module V . For such V , it is called a source of M with
respect to the vertex subpair (P, bP ). A triple (P, bP , V ) is called a source
triple of M if V is a source of M with respect to the vertex subpair (P, bP ).
If M has a source triple (P, bP , V ), then a vertex of M is P and a source of
M is V from [3, Lemma 1]. We can consider the Green correspondence with
respect to a source triple as follows.

Theorem 2.1 ([3, Lemma 1, Definition 2]). Let (P, bP ) be a (G, b)-subpair. If
M is an indecomposable OGb-module with source triple (P, bP , V ), then there
exists a unique indecomposable ONG(P, bP )-direct summand f b

bP
(M) of bPM

with source triple (P, bP , V ). Then f b
bP

induces a one-to-one correspondence
between the isomorphism classes of indecomposable OGb-modules with source
triple (P, bP , V ) and the isomorphism classes of indecomposable ONG(P, bP )-
modules with source triple (P, bP , V ). The f b

bP
is called the Green correspon-

dence with respect to (P, bP ).

Brauer-friendly modules defined in the next section have fusion-stable endo-
permutation moudules as sources. We recall the definition of fusion-stable
endo-permutation modules. We call an OG-module M an endo-permutation
OG-module if EndO(M) is a permutation OG-module.

Definition 2.2 ([13, Definition 9.9.1]). Let (P, bP ) be a (G, b)-subpair, V an
endo-permutation OP -module, and set F = F(P,bP )(G, b). We say that V is
F-stable if for any subgroup Q of P and any ϕg−1 ∈ HomF (Q,P ), the endo-

permutation OQ-module ResPQ(V ) and Resϕg−1 (V ) = Res
gP
Q (gV ) are compati-

ble. We call the triple (P, bP , V ) a fusion-stable endo-permutation source triple
if V is a F-stable capped indecomposable endo-permutation OP -module.

In [7], E. C. Dade introduced slash constructions for endo-permutation
modules over p-groups. For any endo-permutation OP -module V and Q⊴ P ,
we denote by V [Q] the slashed module of V with respect to Q.
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§3. Brauer-friendly modules and slash functors

In this section, we review the definitions of Brauer-friendly modules and slash
functors that were defined in [3].

Definition 3.1 ([3, Definition 6]). Let (P1, b1, V1) and (P2, b2, V2) be fusion-
stable endo-permutation source triples in (G, b). We say that (P1, b1, V1) and
(P2, b2, V2) are compatible if the endo-permutation OQ-modules Resϕ1(V1) and
Resϕ2(V2) are compatible for any (G, b)-subpair (Q, bQ) and any morphism
ϕi ∈ HomBr(G,b)((Q, bQ), (Pi, bPi)) for i ∈ {1, 2}.

Definition 3.2 ([3, Definition 8]). Let M be an OGb-module which admits
the decomposition M =

⊕
1≤i≤nMi of M , where each Mi is indecomposable

OGb-module with source triple (Pi, bPi , Vi). We say that OGb-module M is
Brauer-friendly if (Pi, bPi , Vi) is a fusion-stable endo-permutation source triple
for any i ∈ {1, . . . , n}, and, (Pi, bPi , Vi) and (Pj , bPj , Vj) are compatible for
every i, j ∈ {1, . . . , n}.

Definition 3.3 ([3, Definition 8]). Let L and M be Brauer-friendly OGb-
modules. We say that the L and M are compatible if L⊕M is a Brauer-friendly
OGb-module.

Definition 3.4 ([3, Definition 15]). Let OGbM be a subcategory of the category

OGbMod. We say that OGbM is Brauer-friendly if any object of OGbM is a
Brauer-friendly OGb-module, and any two objects of OGbM are compatible.

Definition 3.5. Let (P, bP , V ) be a fusion-stable endo-permutation source
triples in (G, b). We say that a Brauer-friendly category is big enough with
respect to (P, bP , V ) if any finite direct sum of indecomposable OGb-modules
with source triple (P, bP , V ) belongs to the Brauer-friendly category. Let S be
a set of compatible source triples of G. Also we define that big enough with
respect to S.

Definition 3.6 ([3, Definition 14]). Let G be a finite group, b a block of OG,
and OGbM a subcategory of the category OGbMod of all OGb-modules. Let
(P, bP ) be a (G, b)-subpair, and H a subgroup of G such that PCG(P ) ≤ H ≤
NG(P, bP ). We write H = H/P . An additive functor Sl : OGbM →kHbP

Mod
is called a (P, bP )-slash functor if which is defined by the following data:

• for each L,M ∈ OGbM, there exists a map

SlL,M : HomOP (L,M) −→ Homk(Sl(L), Sl(M))

satisfying the following conditions.

– SlM,M (1EndO(M)) = 1Endk(Sl(M)), for any M ∈ OGbM;
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– SlL,N (g ◦ f) = SlM,N (g) ◦SlL,M (f), for any L,M,N ∈ OGbM, and
any f ∈ HomOP (L,M), any g ∈ HomOP (M,N);

– for any L,M ∈ OGbM, there exists a k(CG(P ) × CG(P ))∆H-
isomorphism

fL,M : Br∆P (HomO(bPL, bPM))) −̃→ Homk(Sl(L), Sl(M))

such that the following diagram is commutative.

HomOP (L,M)
SlL,M

//

br
HomO(L,M)

(∆P,bP⊗bP )
**UUU

UUUU
UUUU

UUUU
U

Homk(Sl(L), Sl(M))

Br∆P (HomO(bPL, bPM)))

fL,M

44hhhhhhhhhhhhhhhhhh

Biland has proven that there exists a slash functor for Brauer-friendly cat-
egories in [3].

Theorem 3.7 ([3, Theorem 18]). Let b be a block of OG and OGbM a Brauer-
friendly category of OGb-modules. Let (P, bP ) be a (G, b)-subpair, H a sub-
group of G such that PCG(P ) ≤ H ≤ NG(P, bP ), and we write CG(P ) =
PCG(P )/P . Then the following statements hold.

(i) There exists a (P, bP )-slash functor Sl(P,bP ) : OGbM → kHbP
Mod.

(ii) If Sl′(P,bP ) : OGbM → kHbP
Mod is another (P, bP )-slash functor, then

there exists a linear character χ : H/CG(P ) → k× such that there exists
an isomorphism of functors χ∗Sl(P,bP )

∼= Sl′(P,bP ).

Example 3.8. We denote by OGbPerm the category of all p-permutation
OGb-modules. Then OGbPerm is a Brauer-friendly category, and the slash
functor on OGbPerm is the Brauer functor which is unique up to twisting by
a linear character.

For Brauer-friendly modules, slash indecomposability can be defined as well
as the Brauer indecomposability as follows (For Frobenius-friendly modules
(i.e. endo-p-permutation modules), slash indecomposability was defined in [8,
Definition 5.1]).

Definition 3.9. Let OGbM be a Brauer-friendly category of OGb-modules,
Sl(Q,bQ) : OGbM → kNG(Q,bQ)bQ

Mod a (Q, bQ)-slash functor for each (G, b)-

subpair (Q, bQ), and M ∈ OGbM. We say that M is slash indecomposable if for

every (G, b)-subpair (Q, bQ), Res
NG(Q,bQ)/Q

QCG(Q)/Q (Sl(Q,bQ)(M)) is indecomposable or
zero.
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Remark 3.10. The definition of the slash indecomposability is independent of
the choice of Brauer-friendly categories and slash functors.

The following theorem is a generalization of [5, (3.2) THEOREM. (3)].

Theorem 3.11 ([3, Theorem 23]). Let b be a block of OG, (P, bP , V ) a fusion-
stable endo-permutation source triple, OGbM a Brauer-friendly category of
OGb-modules that is big enough with respect to (P, bP , V ), and Sl(P,bP ) :

OGbM → k[NG(P,bP )]bP
Mod a (P, bP )-slash functor. Then Sl(P,bP ) induces

a one-to-one correspondence between the isomorphism classes of indecompos-
able OGb-modules with source triple (P, bP , V ) and the isomorphism classes of
projective indecomposable k[NG(P, bP )]bP -modules.

By this theorem, Brauer-friendly modules can be presented as follows.

Definition 3.12. With the same notation as in Theorem 3.11, let M ∈ OGbM
be an indecomposable OGb-module with source triple (P, bP , V ). Then, by
Theorem 3.11, there is up to isomorphism a unique simple k[NG(P, bP )]bP -
module S such that Sl(P,bP )(M) ∼= P (S). We denote the module M by
B(b, (P, bP , V ), Sl(P,bP ), S). In particular, if S ∼= kNG(P,bP )bP

, then we de-

note the module M by BS(b, (P, bP , V ), Sl(P,bP )). We call this module the
Brauer-friendly Scott OGb-module with respect to (P, bP , V ).

Remark 3.13. (i) The above presentation of Brauer-friendly modules is a
unique up to twisted by a linear character.

(ii) The Scott OG-module S(G,P ) is presented by

S(G,P ) = BS(b, (P, bP ,OP ), Sl(P,bP ))

for b is the principal block of OG.

§4. Lemmas

In this section, we give lemmas for Brauer-friendly modules, Brauer-friendly
Scott modules, and slash functors, which are analogies of lemmas for p-permut-
ation modules, Scott modules, and Brauer functors respectively, which are
used to prove the main theorem in [9].

NOTATION. Let M be a Brauer-friendly module and SM be the set of
source triples of any indecomposable summand of M . Hereinafter, we assume
that M belongs to some Brauer-friendly categories that is big enough with
respect to SM . Moreover, when we apply a slash functor to the Brauer-friendly
module M , we assume that the domain of the slash functor is big enough with
respect to SM .
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Lemma 4.1. Let (P, bP ) be a (G, b)-subpair, H a subgroup of G such that
PCG(P ) ≤ H ≤ NG(P, bP ), M a Brauer-friendly OGb-module, and Sl(P,bP ) a
(P, bP )-slash functor. By [3, Lemma 10 (i)], we get a decomposition bPM =
L ⊕ L′, where L is a Brauer-friendly OHbP -module and L′ is a direct sum
of indecomposable OHbP -modules with vertices that do not contain P . Then
there exists an isomorphism of kHbP -modules

Res
NG(P,bP )

H
(Sl(P,bP )(M)) ∼= Sl′(P,bP )(L)

for some (P, bP )-slash functor Sl′(P,bP ). In particular, if H = NG(P, bP ) and

M has the source triple (P, bP , V ), then there exists an isomorphism of kHbP -
modules

Sl(P,bP )(M) ∼= Sl′(P,bP )(f
b
bP
(M)),

where f b
bP

is the Green correspondence with respect to (P, bP ).

Proof. Write NG = NG(P, bP ). We have an isomorphism of CH(P )-interior
H-algebras

Endk(Res
NG
H (Sl(P,bP )(M))) ∼= ResNG

H (Br△P (EndO(bPM)))

∼= Br△P (EndO(bPRes
G
H(M)))

∼= Br△P (EndO(L))
∼= Endk(Sl

′′
(P,bP )(L)),

where Res is a restriction to H as algebras and Sl′′(P,bP ) is a (P, bP )-slash func-

tor. By [4, Lemma 3 (ii)], there exists a linear character χ : H/PCH(P ) −→ k×

such that bPRes
NG
H (Sl(P,bP )(M)) ∼= χ∗Sl

′′
(P,bP )(L). Hence, setting Sl′(P,bP ) =

χ∗Sl
′′
(P,bP ), we obtain

bPRes
NG
H (Sl(P,bP )(M)) ∼= Sl′(P,bP )(L).

The rest follows from bPM = f b
bP
(M) ⊕ Z, where Z is a direct sum of inde-

composable ONGbP -modules with vertices that do not contain P .

The following lemma is an analogy of [5, (3.2) THEOREM. (1)].

Lemma 4.2 ([2, Corollary 3.17]). Let (Q, bQ) be a (G, b)-subpair, Sl(Q,bQ) a
(Q, bQ)-slash functor, and M an indecomposable Brauer-friendly OGb-module
with source triple (P, bP , V ). Then the following conditions are equivalent.

(i) Sl(Q,bQ)(M) ̸= 0.

(ii) (Q, bQ) ≤G (P, bP ).
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We define the conjugation of slash functors by an element of a group.

Definition 4.3. Let (P, bP ) be a (G, b)-subpair and Sl(P,bP ) : OGbM →
kNG(P,bP )bP

Mod a (P, bP )-slash functor. For each g ∈ G, we denote by g(−)

the conjugation functor by g, also we denote the functor g(−) ◦ Sl(P,bP ) :

OGbM → kNG(gP ,gbP )gbP
Mod by g⋆Sl(P,bP ). Then, by [3, Lemma 22 (ii)],

the functor g⋆Sl(P,bP ) is a g(P, bP )-slash functor.

Lemma 4.4. Let (P, bP ) be a (G, b)-subpair. For each g ∈ G, we have an
isomorphism of OG-modules

B(b, (P, bP , V ), Sl(P,bP ), S) ∼= B(b, (gP , gbP ,
gV ), g⋆Sl(P,bP ),

gS).

Proof. Set X = B(b, (gP , gbP ,
gV ), g⋆Sl(P,bP ),

gS). Then X also has the source
triple (P, bP , V ) and we have g(Sl(P,bP )(X)) = g⋆Sl(P,bP )(X) = gP (S). Thus
Sl(P,bP )(X) = P (S). Hence we obtain

B(b, (P, bP , V ), Sl(P,bP ), S) ∼= B(b, (gP , gbP ,
gV ), g⋆Sl(P,bP ),

gS).

Lemma 4.5. Let (P, bP ) be a (G, b)-subpair and f b
bP

the Green correspondence
with respect to (P, bP ). Then there exists a (P, bP )-slash functor Sl′(P,bP ) such

that there exists an isomorphism of ONG(P, bP )bP -modules

f b
bP
(B(b, (P, bP , V ), Sl(P,bP ), S)) ∼= B(bP , (P, bP , V ), Sl′(P,bP ), S).

In particular, we have an isomorphism

f b
bP
(BS(b, (P, bP , V ), Sl(P,bP ))) ∼= BS(bP , (P, bP , V ), Sl′(P,bP )).

Proof. Set M = B(b, (P, bP , V ), Sl(P,bP ), S). Then, by Lemma 4.1, there ex-
ists a (P, bP )-slash functor Sl′(P,bP ) such that there exists an isomorphism of

kNG(P, bP )bP -modules

Sl′(P,bP )(f
b
bP
(M)) ∼= Sl(P,bP )(M) ∼= P (S).

The following lemma is an analogy of [14, Chapter 4, Theorem 8.6 (ii)] for
Brauer-friendly modules.

Lemma 4.6. Let P be a p-subgroup of G, H a subgroup of G such that
PCG(P ) ≤ H, b′ a block of OH, and (P, bP ) a (G, b)-subpair. We assume that
(P, bP ) is an (H, b′)-subpair, and (P, bP , V ) is a fusion-stable endo-permutation
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source triple. Then there exist t ∈ NG(P, bP ), a (P, bP )-slash functor Sl′′(P,bP ),

and a simple k[NH(P, bP )]bP -module S′ such that

B(b′, (P, bP ,
tV ), Sl′′(P,bP ), S

′) | ResGH(B(b, (P, bP , V ), Sl(P,bP ), S)).

In particular, we have

BS(b′, (P, bP ,
tV ), Sl′′(P,bP )) | Res

G
H(BS(b, (P, bP , V ), Sl(P,bP ))).

To prove Lemma 4.6, we need the following lemma.

Lemma 4.7 (Burry [14, Chapter 4, Theorem 4.8 (i)]). Let H be a subgroup
of G containing PCG(P ), b′ a block of OH, and (P, bP ) a (G, b)-subpair. We
assume that (P, bP ) is an (H, b′)-subpair. Let f b

bP
and f b′

bP
be the Green corre-

spondences with respect to (P, bP ). Then, for any indecomposable OGb-module
V with vertex subpair (P, bP ) and any indecomposable OHb′-module W with
vertex subpair (P, bP ), the following conditions are equivalent.

(i) W | ResGH(V ).

(ii) f b′
bP
(W ) | ResNG(P,bP )

NH(P,bP )(f
b
bP
(V )).

Proof. (Proof of Lemma 4.6) We prove Lemma 4.6 in a similar way as the
proof of [14, Chapter 4, Theorem 8.6 (ii)]. Set NG = NG(P, bP ) and NH =
NH(P, bP ). By Lemma 4.7, it is sufficient to show the following:

f b′
bP
(B(b′, (P, bP ,

tV ), Sl′′(P,bP ), S
′)) | ResNG

NH
(f b

bP
(B(b, (P, bP , V ), Sl(P,bP ), S))).

Also, by Lemma 4.5, this statement is equivalent to the following:

B(bP , (P, bP ,
tV ), Sl′′′(P,bP ), S

′) | ResNG
NH

(B(bP , (P, bP , V ), Sl′(P,bP ), S)).

Set BG = B(b, (P, bP , V ), Sl(P,bP ), S). It is equivalent to show that there

exist t ∈ NG, a (P, bP )-slash functor Sl′′′(P,bP ), a simple kNHbP -module S′,

and an indecomposable direct summand X of bPRes
NG
NH

(f b
bP
(BG)) such that

X has a source triple (P, bP ,
tV ) and Sl′(P,bP )(X) ∼= P (S′). By [3, Lemma

10 (i)], we get a decomposition bPRes
NG
NH

(f b
bP
(BG)) = L ⊕ L′, where L is a

Brauer-friendly ONHbP -module and L′ is a direct sum of indecomposable
ONHbP -modules with vertices that do not contain P . Since f b

bP
(BG) =

B(bP , (P, bP , V ), Sl′(P,bP ), S), we obtain f b
bP
(BG) | IndNG

P (V ). The Mackey
formula gives the relation

L | ResNG
NH

(f b
bP
(BG)) |

⊕
t∈NH\NG/P

IndNH
P (tV ).
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Let L = ⊕i∈ILi be a decomposition of L as a direct sum of indecomposable
ONHbP -modules. Then each Li has the vertex subpair (P, bP ). Hence for each
i ∈ I, there exists ti ∈ NG such that s(Li) =

tiV . By Lemma 4.1, there exists
a (P, bP )-slash functor Sl′′′(P,bP ) such that

ResNG
NH

(Sl′(P,bP )(f
b
bP
(BG))) ∼= Sl′′′(P,bP )(L).

There exists a simple kNHbP -module S′
i such that Sl′′′(P,bP )(Li) ∼= P (S′

i), by
the above argument and Theorem 3.11. This shows

Li = B(bP , (P, bP ,
tV ), Sl′′′(P,bP ), S

′).

In particular, if S = kNGbP
, then P (kNHbP

) | ResNG
NH

(Sl′(P,bP )(f
b
bP
(BG))). Thus

there exists i ∈ I such that Sl′′′(P,bP )(Li) ∼= P (kNHbP
). This shows Li =

BS(bP , (P, bP ,
tV ), Sl′′′(P,bP )).

Lemma 4.8 (Burry-Carlson, Puig). Let (P, bP ) be a (G, b)-subpair, H :=
NG(P, bP ), f

b
bP

the Green correspondence with respect to (P, bP ), V an inde-

composable OGb-module, and W an indecomposable summand of bPRes
G
H(V ).

Then the following condition (i) implies (ii) and f b
bP
(V ) = W .

(i) W has a vartex subpair (P, bP ).

(ii) V has a vartex subpair (P, bP ).

The following lemma is a generalization of H. Kawai [10, Theorem 1.7] for
Brauer-friendly modules. We prove the lemma with the similar argument as
[10, Theorem 1.7].

Lemma 4.9. Let (P, bP ) be a (G, b)-subpair, (Q, bQ) ≤G (P, bP ), and set
H = NG(Q, bQ) and BG = B(b, (P, bP , V ), Sl(P,bP ), S). If R = gP ∩ H is a
maximal element of {iP ∩H | i ∈ G, (Q, bQ) ≤ i(P, bP )}, then there exist an
(R, bR)-slash functor Sl(R,bR), a z ∈ G, and a simple k[NH(R, bR)]bR-module
S′ such that

B(bQ, (R, bR,Cap(Res
zP
R (zV ))), Sl(R,bR), S

′) | ResGH(BG),

where bR is the unique block satisfying (R, bR) ≤ g(P, bP ).

Proof. We prove this by induction on |P |/|R|.
If |P |/|R| = 1, i.e. gP = R, then g(P, bP ) is a (G, b)-subpair. By (Q, bQ) ≤

(R, bR), (R, bR) =
g(P, bP ) is an (H, bQ)-subpair. Hence, by Lemma 4.4 and

Lemma 4.6, there exist an (R, bR)-slash functor Sl(R,bR) and z ∈ NG(R, bR)
such that

B(bQ, (R, bR,
zV ), Sl(R,bR), S

′) | ResGH(B(b, (gP , gbP , V ), g⋆Sl(P,bP ),
gS),
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and
ResGH(B(b, (gP , gbP , V ), g⋆Sl(P,bP ),

gS) ∼= ResGH(BG).

In this case, the statement follows.
Now suppose that |P |/|R| ⪈ 1, i.e. R ⪇G P . We set H1 = NG(R, bR) and

Ω = {iP ∩ H1|i ∈ G, (R, bR) ≤ i(P, bP )}. From (R, bR) ≤ g(P, bP ), we see
Ω ̸= ∅. Let R1 be a maximal element of Ω. Then H1 and (R1, bR1) satisfy the
condition of the lemma. Therefore, by induction hypothesis, there exist an
(R1, bR1)-slash functor Sl(R1,bR1

), an x ∈ G, and a simple k[NH1(R1, bR1)]bR1-
module SR1 such that

B(bR, (R1, bR1 ,Cap(Res
xP
R1

(xV ))), Sl(R1,bR1
), SR1) | ResGH1

(BG).

Set N = B(bR, (R1, bR1 ,Cap(Res
xP
R1

(xV ))), Sl(R1,bR1
), SR1), T = NH(R, bR).

By [3, Lemma 10 (i)], we get a decomposition bRRes
H1
T (N) = L⊕L′, where L

is a Brauer-friendly OTbR-module and L′ is a direct sum of indecomposable
OTbR-modules with vertices that do not contain R. Let L = ⊕i∈ILi be a
decomposition of L as a direct sum of indecomposable OTbR-modules. Then,
for any i ∈ I, there exist a vertex of Li which contains R. Here, the Mackey
formula gives the relation⊕

i∈I
Li |ResH1

T (IndH1
R1

(Cap(Res
xP
R1

(xV ))))

∼=
⊕

h∈T\H1/R1

IndThR1∩T (Res
hR1
hR1∩T

(h(Cap(Res
xP
R1

(xV )))))

∼=
⊕

h∈T\H1/R1

IndTR(Res
hR1
R (h(Cap(Res

xP
R1

(xV ))))),

where R = hR1∩T , for any h ∈ H1. Hence, for any i ∈ I, we have vtx(Li) = R.
Therefore, for any i ∈ I, we can take a vertex subpair of Li as (R, bR). We
may assume that

Li | IndHR (Res
hiR1
R (hi(Cap(Res

xP
R1

(xV ))))),

for some hi ∈ H1. Let Res
hiR1
R (hi(Cap(Res

xP
R1

(xV )))) =
⊕

j∈J Zj be a decom-
position as a direct sum of indecomposable OR-modules. Then, there exists
j ∈ J such that s(Li) = Zj . Since we can take a vertex of Zj as R, therefore

we have Zj
∼= Cap(Res

hiR1
R (hi(Cap(Res

xP
R1

(xV ))))). Moreover, we see that

Cap(Res
hiR1
R (hi(Cap(Res

xP
R1

(xV ))))) = Cap(Res
hixP
R (hixV )).

From the above, for any i ∈ I, there exist an (R, bR)-slash functor Sl(R,bR)

and a simple k[NT (R, bR)]bR-module S′
i such that

Li = B(bR, (R, bR,Cap(Res
hxP
R (hxV ))), Sl(R,bR), S

′).
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We choose i ∈ I and set h = hi, S
′ = S′

i, z = hx ∈ G. Then we have

B(bR, (R, bR,Cap(Res
zP
R (zV ))), Sl(R,bR), S

′) | ResHT (ResGH(BG)).

Therefore there exists a direct summand U of ResGH(BG) such that

B(bR, (R, bR,Cap(Res
zP
R (zV ))), Sl(R,bR), S

′) | ResHT (U).

By Lemma 4.8 and [3, Theorem 4], the module U has a vertex subpair (R, bR)
and lies in the block bR of OH and

f
bQ
bR

(U) = B(bR, (R, bR,Cap(Res
zP
R (zV ))), Sl(R,bR), S

′).

Hence, by Lemma 4.5, we have

U ∼= B(bQ, (R, bR,Cap(Res
zP
R (zV ))), Sl(R,bR), S

′).

From the above, it follows that

B(bQ, (R, bR,Cap(Res
zP
R (zV ))), Sl(R,bR), S

′) | ResGH(BG).

The following lemma is a generalization of J. Thévenaz [15, Exercises (27.4)]
for Brauer-friendly modules.

Lemma 4.10. Let (P, bP ) be a (G, b)-subpair and Q ≤G P , and set M =
B(b, (P, bP , V ), Sl(P,bP ), S) and H = NG(Q, bQ). By [3, Lemma 10 (i)], we get

a decomposition bQRes
G
H(M) = L ⊕ L′, where L is a Brauer-friendly OHbQ-

module and L′ is a direct sum of indecomposable OHbQ-modules with vertices
that do not contain Q. Let L = ⊕i∈ILi be a decomposition of L as a direct
sum of indecomposable OHbQ-modules and we set Zi = vtx(Li). Then, for
each 1 ≤ i ≤ n and any (Q, bQ)-slash functor Sl(Q,bQ), there exist a gi ∈ G

and a simple k[NH(Zi, bZi)]bZi-module Si such that

Sl(Q,bQ)(Li) ∼= B(bQ, (Zi, bZi ,Cap(Res
giP
Zi

(giV ))[Q]), Sl(Zi,bZi
), Si)⊕ (

⊕
j

Xi,j),

where Xi,j is indecomposable Brauer-friendly kHbQ-module with source triple
(vtx(Xi,j), bvtx(Xi,j), s(Xi,j)) such that

(Q, bQ) ≤ (vtx(Xi,j), bvtx(Xi,j)) ≤ (Zi, bZi)

and
s(Xi,j) | ResZi

vtx(Xi,j)
(Cap(Res

giP
Zi

(giV )))[Q].

Therefore, we have

Sl(Q,bQ)(M) ∼= Sl(Q,bQ)(L)

∼=
⊕

1≤i≤n

(
B(bQ, (Zi, bZi ,Cap(Res

giP
Zi

(giV ))[Q]), Sl(Zi,bZi
), Si)⊕ (

⊕
j

Xi,j)
)
.
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Remark 4.11. If Sl(Q,bQ)(Li) is indecomposable, then we have

Sl(Q,bQ)(Li) ∼= B(bQ, (Zi, bZi ,Cap(Res
giP
Zi

(giV ))[Q]), Sl(Zi,bZi
), Si).

Proof. By Lemma 4.1, we have

Sl(Q,bQ)(M) ∼= Sl(Q,bQ)(L) ∼=
⊕

1≤i≤n

Sl(Q,bQ)(Li).

First, we determine the structure of each Li. By [3, Theorem 4], we see that
there exists gi ∈ G such that (Q, bQ) ⊴ (Zi, bZi) ≤ gi(P, bP ) and s(Li) =
Cap(Res

giP
Zi

(giV )). Therefore, there exist a gi ∈ G, a (Zi, bZi)-slash functor

Sl(HbQ,Zi,bZi
), and a simple k[NH(Zi, bZi)]bZi-module Si such that

Li
∼= B(bQ, (Zi, bZi ,Cap(Res

giP
Zi

(giV ))), Sl(Zi,bZi
), Si).

Next, we determine the structure of Sl(Q,bQ)(Li). Since we have (Q, bQ) ⊴
(Zi, bZi) by [2, Lemma 3.16 (i)], we see

P (Si) ∼= Sl(Zi,bZi
)(Li) ∼= Sl(Zi,bZi

) ◦ Sl(Q,bQ)(Li).

Thus, there exists the unique direct summand Xi of Sl(Q,bQ)(Li) such that
Sl(Zi,bZi

)(Xi) ∼= P (Si). From [4, Lemma 3 (iii)] and Lemma 4.2, we see

vtx(Xi) = vtx(Li) and s(X) = Cap(Res
giP
Zi

(giV ))[Q]. Hence, we get

Xi = B(bQ, (Zi, bZi ,Cap(Res
giP
Zi

(giV ))[Q]), Sl(Zi,bZi
), Si).

Let Sl(Q,bQ)(Li) = Xi ⊕ (
⊕

j Xi,j) be a decomposition of Sl(Q,bQ)(Li) as a
direct sum of indecomposable OHbQ-modules. By [4, Lemma 3 (iii)], we have
(Q, bQ) ≤ (vtx(Xi,j), bvtx(Xi,j)) ≤ (Zi, bZi) and

s(Xi,j) | ResZi

vtx(Xi,j)
(Cap(Res

giP
Zi

(giV )))[Q].

From the above, we have

Sl(Q,bQ)(M) ∼= Sl(Q,bQ)(L)

∼=
⊕

1≤i≤n

(
B(bQ, (Zi, bZi ,Cap(Res

giP
Zi

(giV ))[Q]), Sl(Zi,bZi
), Si)⊕ (

⊕
j

Xi,j)
)
.

The following lemma is the subpair version of [9, Lemma 3.1]. It can be
proved in a similar way as the proof of [9, Lemma 3.1].
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Lemma 4.12. Let (P, bP ) be a (G, b)-subpair and Q a fully F(P,bP )(G, b)-
normalized subgroup of G. Assume that (Q, bQ) ≤ (P, bP ). Then, NP (Q) is a
maximal element of

{gP ∩NG(Q, bQ) | g ∈ G, (Q, bQ) ≤ g(P, bP )}.

The following lemma is the subpair version of [9, Lemma 3.2].

Lemma 4.13. Let (P, bP ) be a (G, b)-subpair and set F = F(P,bP )(G, b).
If Q is a fully F-automized and F-receptive subgroup of P , then we have
NgP (Q) ≤NG(Q,bQ) NP (Q), for any g ∈ G such that (Q, bQ) ≤ (gP , gbP ).

Proof. Assume that (Q, bQ) ≤ (gP , gbP ) for some g ∈ G. Then g−1
Q and

Q are F-conjugate. Therefore, by [1, I, Lemma 2.6 (c)], there exists φx ∈
HomF (NP (

g−1
Q), NP (Q)) such that φx|g−1Q

∈ IsoF (
g−1

Q,Q). Thus xg−1 ∈
NG(Q, bQ) and

NgP (Q) = gNP (
g−1

Q) =NG(Q,bQ)
(xg−1)gNP (

g−1
Q) = xNP (

g−1
Q) ≤ NP (Q).

§5. Main theorem

NOTATION. Let (P, bP ) be a (G, b)-subpair, set F = F(P,bP )(G, b), Q be
a fully F-normalized subgroup of P , and M = B(b, (P, bP , V ), Sl(P,bP ), S) a
Brauer-friendly OGb-module. Then, from Lemma 4.12, the subgroup NP (Q)
is a maximal element of

{gP ∩NG(Q, bQ) | g ∈ G, (Q, bQ) ≤ g(P, bP )}.

Therefore, by Lemma 4.9, there exist an n ∈ G, an (NP (Q), bNP (Q))-slash func-

tor Sl(NP (Q),bNP (Q)), and a simple k[NNG(Q,bQ)(NP (Q), bNP (Q))]bNP (Q)-module

SQ such that

B(bQ, (NP (Q), bNP (Q),WQ), Sl(NP (Q),bNP (Q)), SQ) | ResGNG(Q,bQ)(M),

where WQ = Cap(Res
nP
NP (Q)(

nV )). Also, by Lemma 4.10, for any (Q, bQ)-slash
functor Sl(Q,bQ), we have

B(bQ, (NP (Q), bNP (Q), VQ), Sl(NP (Q),bNP (Q)), SQ) | Sl(Q,bQ)(M),

where VQ = WQ[Q]. In this section, we set

BQ = B(bQ, (NP (Q), bNP (Q), VQ), Sl(NP (Q),bNP (Q)), SQ).
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The following theorem is a generalization of [9, Theorem 1.3].

Theorem 5.1. Let G be a finite group, b a block of OG, and (P, bP ) a (G, b)-
subpair. We set M = B(b, (P, bP , V ), Sl(P,bP ), S), F = F(P,bP )(G, b), NQ =
NG(Q, bQ), and HQ = NP (Q) for Q ≤ P . Suppose that F is saturated and

ResNP

PCG(P )(S) is a simple OPCG(P )-module. The following conditions are
equivalent.

(i) M is slash indecomposable.

(ii) Res
NQ

QCG(Q)(BQ) is indecomposable for each fully F-normalized subgroup
Q of P .

If these conditions are satisfied, then for each fully F-normalized subgroup Q
of P and any (Q, bQ)-slash functor Sl(Q,bQ), we have

Sl(Q,bQ)(M) ∼= BQ.

Proof. If (i) holds, i.e. Res
NQ

QCG(Q)(Sl(Q,bQ)(M)) is indecomposable, for each

fully F-normalized subgroup Q of P and any (Q, bQ)-slash functor Sl(Q,bQ),
then by the definition of BQ, we have

Res
NQ

QCG(Q)(BQ) ∼= Res
NQ

QCG(Q)(Sl(Q,bQ)(M)).

Hence, Res
NQ

QCG(Q)(BQ) is indecomposable. This shows (ii). Moreover, since

Res
NQ

QCG(Q)(Sl(Q,bQ)(M)) is indecomposable, the module Sl(Q,bQ)(M) is also
indecomposable. Therefore, we get

Sl(Q,bQ)(M) ∼= BQ.

Conversely, suppose that (ii) holds. It is sufficient to prove that for each

Q ≤ P , Res
NQ

QCG(Q)(Sl(Q,bQ)(M)) is indecomposable. We prove this by induc-

tion on |P : Q|.
If |P : Q| = 1, then this case is similar to the proof of [11, Lemma 4.3 (ii)],

by the assumption of the theorem.
Now consider the case that |P : Q| ⪈ 1. For some g ∈ G, gQ ≤ P and gQ

is fully F-normalized. We see that for any (gQ, bgQ)-slash functor Sl(gQ,bgQ),

g(Res
NQ

QCG(Q)(Sl(Q,bQ)(M))) ∼= Res
NgQ
gQCG(gQ)(Sl(gQ,bgQ)(M)).

Therefore, it is sufficient to prove that Res
NgQ
gQCG(gQ)(Sl(gQ,bgQ)(M)) is inde-

composable. Hence, without loss of generality, we may assume that Q is fully
F-normalized.
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We set N1 = BQ. Let Sl(Q,bQ)(M) = ⊕
1≤i≤r

Ni be a decomposition of

Sl(Q,bQ)(M) as a direct sum of indecomposable kNQbQ-modules. Then, by

Lemma 4.10 and its proof, for Ni, there exist Lj | ResGNQ
(M) and gi ∈ G such

that
(Q, bQ) ≤ (R, bR) ≤ (vtx(Lj), bvtx(Lj)) ≤

gi(P, bP ).

where R = vtx(Ni). By Lemma 4.2, Sl(R,bR)(Ni) ̸= 0. Since Q is fully F-
normalized, Q is fully F-automized and F-receptive, and hence NgiP (Q) ≤NQ

HQ, from Lemma 4.13. Thus

R ≤ giP ∩NQ = NgiP (Q) ≤NQ
HQ

and Sl(R,bR)(N1) ̸= 0. Now we have

Sl(R,bR)(N1)⊕Sl(R,bR)(Ni) | Sl(R,bR)(Sl(Q,bQ)(M)) ∼= ResNR
NR∩NQ

(Sl(R,bR)(M)).

Thus ResNR
NR∩NQ

(Sl(R,bR)(M)) is decomposable and ResNR

RCG(R)(Sl(R,bR)(M)) is

decomposable, by RCG(R) ≤ NR ∩ NQ. If Q = R, then we see P = Q from
[4, Lemma 5] and Lemma 4.8. This is a contradiction. Hence Q .▷R holds
and we have that |P : Q| ⪈ |P : R|. By the induction hypothesis, the module
ResNR

NR∩NQ
(Sl(R,bR)(M)) is indecomposable. Hence r = 1, and we have that

Sl(Q,bQ)(M) ∼= N1 = BQ.

Hence, Res
NQ

QCG(Q)(N1) is indecomposable, and Res
NQ

QCG(Q)(Sl(Q,bQ)(M)) is also
indecomposable, by our hypothesis, .

The following lemma can be proved in a similar way as [9, Lemma 4.3].

Lemma 5.2. Let (P, bP ) be a (G, b)-subpair, F := F(P,bP )(G, b), and Q a fully
F-automized subgroup of P . If there exists NP (Q) ≤ HQ ≤ NG(Q, bQ) such
that |NG(Q, bQ) : HQ| = pa (a ≥ 0), then NG(Q, bQ) = CG(Q)HQ.

The following proposition is a special analogy of [9, Theorem 1.4].

Proposition 5.3. Let (P, bP ) be a (G, b)-subpair and Q a fully F(P,bP )(G, b)-
normalized subgroup of P . Suppose that F = F(P,bP )(G, b) is saturated. More-
over, we assume that the following two conditions:

(i) |NG(Q, bQ) : NP (Q)| = pa (a ≥ 0).

(ii) Res
NP (Q)
QCG(Q)∩NP (Q)(VQ) is indecomposable.

Then Res
NG(Q,bQ)

QCG(Q) (BQ) is indecomposable.
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Proof. We setNG = NG(Q, bQ). Since F is saturated, Q is a fully F-automized
subgroup of P . From the Mackey formula, Lemma 5.2, and the condition (i),
we have

ResNG

QCG(Q)(Ind
NG

NP (Q)(VQ)) ∼= Ind
QCG(Q)
QCG(Q)∩NP (Q)(Res

NP (Q)
QCG(Q)∩NP (Q)(VQ)).

Hence, ResNG

QCG(Q)(Ind
NG

NP (Q)(VQ)) is indecomposable, by the condition (ii) and
Green’s indecomposability theorem, so

ResNG

QCG(Q)(BQ) ∼= ResNG

QCG(Q)(Ind
NG

NP (Q)(VQ))

is indecomposable.

The following corollary is a consequence of Theorem 5.1 and Proposition
5.3.

Corollary 5.4. Let (P, bP ) be a (G, b)-subpair, B(b, (P, bP , V ), Sl(P,bP ), S) a
Brauer-friendly OGb-module, and suppose that F(P,bP )(G, b) is saturated. If
for every fully F(P,bP )(G, b)-normalized subgroup Q of P , the subgroup NP (Q)
and the module VQ satisfy the conditions of Proposition 5.3, then the module
B(b, (P, bP , V ), Sl(P,bP ), S) is slash indecomposable.

The following example is a generalization of [16, Lemma 2.2] to Brauer-
friendly modules.

Example 5.5. Let G be a p-group, (P, 1CG(P )) a (G, 1G)-subpair, and sup-
pose that F = FP (G) is saturated. Set M = BS(1G, (P, bP , V ), Sl(P,1CG(P ))).

Moreover, we assume that Res
NP (Q)
QCG(Q)∩NP (Q)(VQ) is indecomposable, for any

fully F-normalized subgroup Q of P . From Corollary 5.4, M is slash inde-
composable.
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