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Abstract. In a topological connection theory, we give a general way of con-
structing flat slicing functions in locally trivial principal bundles with a discrete
group as structure group. Slicing functions play a role of connections in smooth
category. By applying this construction to the universal principal bundle over
a classifying space which comes from the Milnor construction, we obtain an
explicit description of the universal flat slicing function. Using this explicit na-
ture, we show that flat slicing functions given to respective contexts are pulled
back from the universal one.
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§1. Introduction and the main results

In various fields of topology and geometry, slicing functions have been studied
or used in various contexts. Slicing function is a continuous map of a bundle
which maps each fiber to a fiber (Definition 3.1). In the theory of fibrations,
slicing functions have been studied as one of the structures of bundles ([1, 6]).
Then Milnor [12] generalized the definition of slicing functions to show the
existence of a slicing function in a locally trivial principal G-bundle over a
polyhedron of a countable simplicial complex in the weak topology. On the
other hand, A. Asada [2, 3, 4] generalized connection theory to topological
fiber bundles using a germ of certainly a slicing function. Recently, J. Kubarski
and N. Teleman [11, 16] showed that the infinitesimal part of a smooth slicing
function, which they call a linear direct connection, yields a linear connection
in smooth vector bundles. Originally, so-called direct connections have been
used without systematic study for several constructions in K-theory and cyclic
homology ([5, 8]).
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In previous papers [9, 10], we showed that slicing functions in topological
principal G-bundles are a generalization of connections in the smooth category
[9], and introduced the notion of flatness for slicing functions as a generaliza-
tion of that for connections [10]. Moreover, we defined parallel displacements
along sequences, which are closely related to slicing functions, and showed
holonomy reduction theorems, the discreteness of strong holonomy groups of
flat ones, and classification theorems of topological principal G-bundles as
topological counterparts of those in the smooth category.

In the smooth category, Narasimhan, M. S. and Ramanan, S [14, 15] showed
the existence of universal connections for connections in bundles with a Lie
group with a finite number of connected components. It is natural to examine
whether or not topological counterparts of universal connections exist. In [10],
we showed the existence of a flat slicing function in a locally trivial principal
bundle with discrete group under a special condition for a bundle atlas. In
this paper, we can get rid of the condition for a bundle atlas to construct a
flat slicing function. By applying the construction to the universal topological
principal bundle πG : EG → BG with a discrete group G, we obtain in flat case
a topological counterpart of Narasimhan and Ramanan’s universal connection
as in Theorems 1.2, 1.3, and 1.4 below.

The purpose of this paper is to construct a flat slicing function in arbitrary
locally trivial principal bundles with a discrete group, and give proofs of The-
orems 1.1, 1.2, 1.3, and 1.4 below. In Subsection 4.1, we will give a map shown
to be a slicing function in a subsequent subsection. In Theorem 1.1, we will
show that under the special condition for a bundle atlas, the domain of flat
slicing functions constructed in this paper coincide with that in [10]. Next, in
Theorem 1.2 we will show the map given in Subsection 4.1 is in fact a flat slic-
ing function, and the uniqueness of a flat slicing function ωG in the universal
principal bundle πG : EG → BG which comes from the Milnor construction
[7, 12]. Then, geometrical properties of ωG will be described in Theorems 1.3
and 1.4: flat slicing functions given to each context are those which are pulled
back from ωG. Finally, compared to the above theorems dealing with discrete
groups, we will show in Proposition 1.5 that even if G is not discrete, local
trivializations are induced from a specific G-morphism consisting of a locally
finite countable partition of unity Λ and a (not necessarily flat) slicing function
related to Λ.

Now, let us state the main theorems. For notations, see Sections 2, 3, and
4. The following theorem shows that the flat slicing function constructed in
this paper is a generalization of that in [10].

Theorem 1.1. Let G be a discrete group and π : E → X a principal G-
bundle with a bundle atlas A. If Uα ∩ Uβ is connected for any α, β ∈ A, then
E2|UA

= (E)♭
A.
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The following theorem shows the existence of flat slicing functions in any
locally trivial principal bundle and the uniqueness of a flat slicing function in
πG over (BG)♭

AG
, where AG is a bundle atlas of πG.

Theorem 1.2. Let G be a discrete group.

(i) Let π : E → X be a locally trivial principal G-bundle. For any bundle
atlas A, there exists a subset (X)♭

A ⊂ X2 with ∆X ⊂ (X)♭
A and a CA-flat

G-compatible slicing function ωA in π over (X)♭
A.

(ii) Let πG : EG → BG be the universal principal G-bundle which comes
from the Milnor construction. Then, ωG := ωAG

is unique for (BG)♭
AG

.

The following two theorems express the geometrical properties of ωG.

Theorem 1.3. Let G be a discrete group and π a principal G-bundle with a
bundle atlas A. If A is numerable, then there exists a G-morphism (hA, fA) :
π → πG preserving (ωA, CA) and (ωG, CG). In other words, ωA is induced from
ωG by fA.

Theorem 1.4. Let G be a discrete group, π a principal G-bundle over X,
and Λ a locally finite countable partition of unity on X. Then for any CΛ-
flat G-compatible slicing function ω in π over UΛ, there exists a G-morphism
(hΛ,ω, fΛ,ω) : π → πG preserving (ω, CΛ) and (ωG, CG), where CΛ and UΛ are
sets given by {λ−1((0, 1]) | λ ∈ Λ} and

∪
λ∈Λ λ−1((0, 1]) × λ−1((0, 1]) respec-

tively. In other words, ω is induced from ωG by fΛ,ω.

Let G be a (not necessarily discrete) topological group. We do not know
whether there exists a universal (not necessarily flat) slicing function for G.
However, for any principal G-bundle π with a locally finite countable partition
of unity Λ and a G-compatible slicing function ω in π over UΛ, we can construct
a G-morphism (hΛ,ω, fΛ,ω) : π → πG by a similar way of Theorem 1.4. Thus,
we have the following proposition:

Proposition 1.5. Let π be a principal G-bundle over X, where G is not
necessarily discrete. If there exists a locally finite countable partition of unity
Λ on X and a G-compatible slicing function ω in π over UΛ, then π is locally
trivial.

§2. Preliminaries

First, let us prepare notation and some topological facts.
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2.1. Notation for bundles

We mostly follow the terminology of Husemoller [7] with slight changes in
notation. Thus, we are going to set up notation for bundles. For a continuous
map π : E → X, we call the map π : E → X itself a bundle while usually the
triple ξ = (E, π,X) (c.f. [7]) or the total space E is referred to as a bundle.
Let π : E → X and π′ : E′ → X ′ be two bundles. For continuous maps
h : E → E′ and f : X → X ′, we call (h, f) : π → π′ a bundle morphism if
π′ ◦h = f ◦π. If X = X ′, we call (h, idX) : π → π′ an X-morphism and denote
it simply by h. For Y ⊂ X, put

E|Y := π−1(Y ), π|Y := π|π−1(Y ).

We call π|Y : E|Y → Y the restricted bundle of π to Y . For a continuous map
f : Z → X, the induced bundle or pull-back of π is denoted by f∗π : f∗E → Z,
where

f∗E := Z ×X E := {(z, u) ∈ Z × E | f(z) = π(u)}

is a fiber product of Z
f−→ X

π←− E. Put f := pr2|f∗E : f∗E → E. Then, a
bundle morphism (f, f) : f∗π → π is called the canonical bundle map. For
topological spaces X and F , a bundle pr1 : X × F → X is called a product
bundle. If π is X-isomorphic to a product bundle, we say that π is trivial. We
say that π : E → X is locally trivial if for any x ∈ X, there exists an open
neighborhood V of x in X such that π|V is V -isomorphic to a product bundle
pr1 : V × F → V . A V -isomorphism π|V → pr1 is called a local trivialization.

2.2. G-spaces

Let us recall the notion of G-space. Let G be a topological group. A right
G-space is a topological space E equipped with a continuous right action µ :
E × G → E. We often denote µ(u, a) simply by ua. A left G-space is defined
in a similar way. Remark that by a G-space we mean a right G-space, unless
otherwise mentioned. Now, let E be a G-space. We call E a free G-space
if the right action is free. Denote by E/G the orbit space with the quotient
topology, and by qE

G : E → E/G the natural projection. Put

E∗ := {(u, ua) ∈ E2 | a ∈ G}.

A map T : E∗ → G (not necessarily continuous) is called a translation function
when T satisfies uT (u, v) = v for any (u, v) ∈ E∗. When E is a free G-space,
we have a translation function T : E∗ → G by setting

T (u, v) := a
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because for any (u, v) ∈ E∗ there exists a unique a ∈ G satisfying v = ua.
Then, this T satisfies

(1) T (u, u) = 1G for any u ∈ E;

(2) (ua, vb)∈E∗ and T (ua, vb)=a−1T (u, v)b for any (u, v) ∈ E∗, (a, b) ∈ G2;

(3) T (u, v)T (v, w) = T (u, w) for any (u, v, w) ∈ E3 with (u, v), (v, w) ∈ E∗.

We call a free G-space E a principal G-space if T is continuous.

2.3. Principal G-bundles

Let π : E → X be a bundle such that E is a G-space. We call π a G-bundle if
qE
G and π are isomorphic by (idE , f), where f is a unique continuous map such

that f ◦ qE
G = π ◦ idE . Let π : E → X and π′ : E′ → X ′ be G-bundles. We call

a bundle morphism (h, f) : π → π′ a G-morphism if h(ua) = h(u)a for any
(u, a) ∈ E × G. If X = X ′, we call h : π → π′ an (X,G)-morphism if it is an
X-morphism and a G-morphism. We call a G-bundle π : E → X a principal
G-bundle if E is a principal G-space. Every morphism in the category of
principal G-bundles over X is an (X,G)-isomorphism ([7, Theorem 3.2, Chap.
4]). Let π : E → X be a principal G-bundle. The restricted bundle π|Y and
the induced bundle f∗π are principal G-bundles in the natural way.

Let π : E → X be a G-bundle. We say that π is locally G-trivial or simply
locally trivial if for any x ∈ X, there exists an open neighborhood V of x in X
such that π|V is (V,G)-isomorphic to a product G-bundle pr1 : V × G → V .
A (V,G)-isomorphism π|V → pr1 is called a local trivialization. For a local
trivialization α : π|V → pr1, put Uα := V . For local trivializations α and β,
the transition function gαβ : Uα ∩ Uβ → G is given by

gαβ(x) := (pr2 ◦ α ◦ β−1)(x, 1G).

Note that a locally trivial G-bundle is a principal G-bundle. For a local trivial-
ization α, let sα : Uα → E|Uα be the local section given by sα(x) := α−1(x, 1G).
Then T ◦ (sα×̂sβ) = gαβ holds. If π is a locally trivial G-bundle, then both
π|Y and f∗π are locally trivial.

2.4. The Milnor construction

Following [7], we will recall the universal principal bundle which comes from
the Milnor construction [13]. Let G be a topological group and I = [0, 1] the
unit interval. Put

(I × G)∞ :=
{
(ti, gi)i∈N ∈ (I × G)N | #{i ∈ N | ti ̸= 0} < ∞,

∑
i∈N

ti = 1
}
.
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For k ∈ N, let tk : (I × G)∞ → I, gk : (I × G)∞ → G be the projections such
that tk((tj , gj)j∈N) := tk and gk((tj , gj)j∈N) := gk respectively. An equivalence
relation on (I×G)∞ is defined as follows. For (ti, gi)i∈N, (si, hi)i∈N ∈ (I×G)∞,
(ti, gi)i∈N ∼ (si, hi)i∈N if ti = si for any i ∈ N, and gi = hi for any i ∈ N with
ti = si > 0. Put

EG := (I × G)∞/ ∼

and denote by q the natural projection. We denote by ⊕i∈Ntigi or t1g1⊕t2g2⊕
· · · the image q((ti, gi)i∈N) of (ti, gi)i∈N. For k ∈ N, let t̃k : EG → I be the map
induced from tk. For k ∈ N, put Vk := (t̃k)−1((0, 1]) = {⊕i∈Ntigi | tk > 0}.
Let g̃k : Vk → G the map induced from gk|(tk)−1((0,1]). Let the topology of EG

be the weakest topology so that t̃k and g̃k are continuous for any k ∈ N. A
free right action µG : EG × G → EG is defined by

µG(⊕i∈Ntigi, g) := ⊕i∈Ntigig.

From the fact that equalities t̃i(⊕i∈Ntigig) = t̃i(⊕i∈Ntigi) and g̃i(⊕i∈Ntigig) =
g̃i(⊕i∈Ntigi)g hold for any ⊕i∈Ntigi ∈ EG and g ∈ G, we can see that µG is
continuous. Put

BG := EG/G

and denote by πG the natural projection . We denote by [⊕i∈Ntigi] the image
πG(⊕i∈Ntigi) of ⊕i∈Ntigi. Let k ∈ N and put Uk := πG(Vk) = {[⊕i∈Ntigi] | ti >
0}. A local trivialization ϕk : EG|Uk

= Vk → Uk × G is defined by

ϕk(⊕i∈Ntigi) := ([⊕i∈Ntigi], gk)

for ⊕i∈Ntigi ∈ EG|Ui . The inverse map ϕ−1
k : Uk × G → EG|Ui is given by

ϕ−1
k ([⊕i∈Ntigi], g) = ⊕i∈Ntigig

−1
k g.

Then, for k, l ∈ N, transition function gkl : Uk ∩ Ul → G is given by

gkl([⊕i∈Ntigi]) = gkg
−1
l .

Thus, πG : EG → BG is a principal G-bundle. We can see that πG is a
universal bundle, that is, EG is ∞-connected.

2.5. Numerable bundles

Next, we recall numerable bundles (cf. [7]). Let Y be a topological space.
An open covering (Ui)i∈S of Y is said to be numerable if there exists a locally
finite partition of unity (λi)i∈S such that λ−1

i ((0, 1]) ⊂ Ui for each i ∈ S. A
principal G-bundle π over X is numerable if there exists a numerable covering
(Ui)i∈S of X such that π|Ui is trivial for each i ∈ S.
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Lemma 2.1. ([7, Proposition 12.1, Chap. 4]) Let π be a numerable principal
G-bundle over a space X. Then there exists a locally finite countable partition
of unity (λi)i∈N such that π|λ−1

i ((0,1]) is trivial for each i ∈ N.

Let π : E → X be a numerable principal G-bundle. Then, from Lemma
2.1 there exists a bundle atlas (a system of local trivializations) A = (αi)i∈N
such that there exists a locally finite countable partition of unity (λi)i∈N such
that λ−1

i ((0, 1]) = Uαi for each i ∈ N. Now, we define numerable bundle atlas
as following:

Definition 2.2. Let π be a principal G-bundle and A = (αi)i∈N a bundle
atlas. We say that A is numerable if there exists a locally finite countable
partition of unity (λi)i∈N such that λ−1

i ((0, 1]) = Uαi for each i ∈ N.

Let π : E → X be principal G-bundle and A = (αi)i∈N a numerable bundle
atlas with a locally finite countable partition of unity (λi)i∈N. Then, a G-
morphism (hA, fA) : π → πG is given by

(2.1) hA(u) := ⊕i∈Nλi(π(u))pr2(αi(u))

for u ∈ E, where fA is the induced map from hA. Moreover, π and f∗
AπG are

(X,G)-isomorphic ([7, Theorem 12.2, Chap. 4]).

§3. Slicing functions and morphisms

In previous papers [9, 10], we studied slicing functions and demonstrated that
slicing functions in topological bundles are a generalization of connections
in the smooth category [9]. Moreover, we introduced the notion of flatness
for slicing functions as a generalization of that for connections [10]. In this
section, we recall the definition of slicing functions (cf. [9, 10], [12]) and
the Asada’s connections ([2, 3, 4]). We note that an Asada’s connection is
the germ of a slicing function at the diagonal set of the base space of a G-
bundle. Next, we introduce morphisms preserving slicing functions given for
each bundles. Restricted or induced slicing functions are also introduced and
some fundamental properties of them are studied.

3.1. Definition of slicing functions

Let π : E → X be a bundle, ∆X the diagonal set of X. We consider a subset
U ⊂ X2 with ∆X ⊂ U . We define a map pi : X2 → X by

pi(x1, x0) := xi for (x1, x0) ∈ U, i = 1, 2.
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We consider a continuous map ω : (p0|U )∗E → E. Every element of (p0|U )∗E
is written as (x, y, u) such that (x, y) ∈ U, u ∈ Ey. Then, for (x, y) ∈ U , we
set a map ωx,y := ω(x, y, ·) : Ey → E.

Definition 3.1. (cf. [9, 10], [12]) We call ω a slicing function in π over U if
it satisfies:

(1) ωx,y induces a map Ey → Ex for any (x, y) ∈ U ;

(2) ωx,x = idEx for any x ∈ X.

For a slicing function ω in π over U , we define that ω is invertible, G-
compatible, and C-flat respectively in the following:

Definition 3.2. (cf. [9, 10], [12]) (I) Suppose that U is symmetric, that is,
(y, x) ∈ U for all (x, y) ∈ U . A slicing function ω over U is said to be invertible
if ωx,y is invertible and satisfies

ωy,x = ω−1
x,y for any (x, y) ∈ U

(II) In the case where π is a G-bundle, we say that a slicing function ω over
U is G-compatible if

ωx,y(ua) = ωx,y(u)a for any (x, y) ∈ U and (u, a) ∈ E × G

(III) Let C be a covering of X and ω a invertible slicing function over sym-
metric U . We say that ω is C-flat if it satisfies

ωx,y ◦ ωy,z = ωx,z

for any C ∈ C and any x, y, z ∈ X with (x, y), (y, z), (x, z) ∈ U ∩ C2.

Henceforth, we denote by SF (π,U), SFinv(π,U), and SFC-flat(π,U) the sets
of slicing functions, invertible slicing functions, and C-flat slicing functions in
π over U , respectively. For a G-bundle π, we denote by SF (π,U)G the set of
G-compatible slicing functions in π over U . In addition, we set

SFinv(π,U)G := SFinv(π,U) ∩ SF (π,U)G,

SFC-flat(π,U)G := SFC-flat(π,U) ∩ SFinv(π,U)G.

3.2. Asada’s connections

In this subsection, we recall Asada’s connections and discuss a relation between
Asada’s connections and G-compatible slicing functions. Let π : E → X be a
G-bundle and U ⊂ X2 with ∆X ⊂ U .
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Definition 3.3. (cf. [2, 3, 4], [9, 10]) (I) Let C1(π,U)G denotes the set of
continuous maps s : E2|U → G such that

(1) s(u, u) = 1G for u ∈ E,

(2) s(ua, vb) = a−1s(u, v)b for (u, v) ∈ E2|U and a, b ∈ G.

(II) When U is symmetric, we denote by C1
inv(π,U)G the set of s ∈ C1(π,U)G

such that
s(u, v) = s(v, u)−1 for (u, v) ∈ E2|U ,

where s(v, u)−1 is the inverse element of s(v, u) in G.
(III) For a covering C of X, we denote by C1

C-flat(π,U)G the set of s ∈
C1

inv(π,U)G such that
s(u, v)s(v, w) = s(u,w)

for any C ∈ C and any u, v, w ∈ E with (u, v), (v, w), (w, u) ∈ E2|U∩C2 .

Consider the inductive limit lim−→U
C1(π,U)G over all neighborhoods U of

∆X in X2. Regarding elements of lim−→U
C1(π,U)G as connections in π, Asada

[2, 3, 4] has constructed a connection theory in a category of topological fiber
bundles. Here we discuss a relation between Asada’s connections and G-
compatible slicing functions. Suppose that π is a principal G-bundle. For
a G-compatible slicing function ω ∈ SF (π,U)G, we set a map sω : E2|U → G
given by

sω(u, v) := T (u, ω(π(u), π(v), v)).

Then, we see sω ∈ C1(π,U)G. On the contrary, for any s ∈ C1(π,U)G, we set
a map ωs : U ×X E → E given by

(3.1) ωs(x, y, u) := vs(v, u),

where we can fix v ∈ Ex arbitrarily. Then we see ωs ∈ SF (π,U)G. We
can see that maps ω 7→ sω and s 7→ ωs are inverse maps of each other.
Thus, SF (π,U)G corresponds bijectively to C1(π,U)G. In addition, the map
ω 7→ sω induces bijections SFinv(π,U)G → C1

inv(π,U)G and SFC-flat(π,U)G →
C1
C-flat(π,U)G.

3.3. Morphisms

Next, we introduce bundle morphisms preserving slicing functions.

Definition 3.4. Let π : E → X (resp. π′ : E′ → X ′) be a bundle, ω ∈
SF (π,U) (resp. ω′ ∈ SF (π′, U ′)), and (h, f) : π → π′ a bundle morphism.
(I) We say that (h, f) preserves ω and ω′ if f2(U) ⊂ U ′ and

h(ω(x, y, u)) = ω′(f(x), f(y), h(u)) for any (x, y, u) ∈ (p0|U )∗E.
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(II) The concept of C-flatness depends on coverings. When ω (resp. ω′) is
C-flat (resp. C′-flat), we say that (h, f) preserves (ω, C) and (ω′, C′) if (h, f)
preserves ω and ω′, and f∗C is a refinement of C′, where f∗C := {f(C) | C ∈ C}.

It is obvious that when (h, f) preserves (ω, C) and (ω′, C′), we have

h((ωx,y ◦ ωy,z)(u)) = (ω′
f(x),f(y) ◦ ω′

f(y),f(z))(h(u))

for any x, y, z ∈ X with (x, y), (y, z), (z, x) ∈ U ∩ C2 and u ∈ Ez.
We obtain a category of bundles with slicing functions whose morphisms are

bundle morphisms preserving slicing functions. By considering the concepts
of invertible, G-compatible, and C-flat, we get subcategories.

Let π : E → X be a bundle and ω ∈ SF (π,U). For a subset V ⊂ U with
∆X ⊂ V, ω induces a slicing function ω|V := ω|(p0|V )∗E : (p0|V )∗E → E, called
a restricted slicing function. Let f : X ′ → X be a continuous map and put
f∗U := (f2)−1(U). Then we have a slicing function f∗ω : (p0|f∗U )∗f∗E → f∗E
given by

(f∗ω)(x1, x0, (x0, u)) :=(x1, ω(f(x1), f(x0), f(x0, u)))=(x1, ω(f(x1),f(x0), u))

for (x1, x0, (x0, u)) ∈ (p0|f∗U )∗f∗E. We call f∗ω an induced slicing function.
The following properties are fundamental.

Proposition 3.5. (1) The isomorphism (idX , idE) preserves ω|V and ω (not
ω and ω|V if V ̸= U);

(2) If π is a G-bundle and ω is G-compatible, then ω|V and f∗ω are also
G-compatible;

(3) If ω is C-flat, then ω|V (resp. f∗ω) is C-flat (resp. f∗C-flat), where
f∗C := {f−1(C)|C ∈ C}. Moreover, the canonical bundle map (f, f)
preserves (f∗ω, f∗C) and (ω, C);

(4) Suppose that π and π′ are principal G-bundles. Consider two slicing
functions ω ∈ SFC-flat(π,U)G, ω′ ∈ SFC′-flat(π′, U ′)G, and a G-morphism
(h, f) : π → π′ preserving (ω, C) and (ω′, C′). Then, the canonical (X,G)-
isomorphism θ : π → f∗π′ (resp. θ−1 : f∗π′ → π) preserves (ω, C) and
(f∗ω′, f∗C′) (resp. ((f∗ω′)|U , C) and (ω, C)).

§4. A construction and Proofs of Theorems

In this section we construct a flat slicing function and present proofs of The-
orems 1.1, 1.2, 1.3, and 1.4 in the introduction.
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4.1. Construction of flat slicing function

In this subsection, we construct a map sA which is shown to be a slicing
function of Asada’s type. At first, we give a domain (E)♭

A ⊂ E2. Then, a
map sA : (E)♭

A → G is defined as follows. Let G be a discrete group and
π : E → X a principal G-bundle with a bundle atlas A. We denote by α the
local trivialization E|Uα

α−→ Uα × G and by pr2 the projection Uα × G
pr2−−→ G.

Then, we have a map pr2 ◦ α : E|Uα → G. We consider a domain of sA. We
set UA :=

∪
α∈A Uα × Uα and we put a domain

(E)♭
A :=

(u, v) ∈ E2|UA

There exists g ∈ G such that
(pr2 ◦ α)(v) = (pr2 ◦ α)(u)g

for any α ∈ A with (u, v) ∈ (E|Uα)2

 .

Note that for (u, v) ∈ (E)♭
A, if (u, v) ∈ (E|Uα)2 ∩ (E|Uβ

)2, then

(pr2 ◦ α)(u)−1(pr2 ◦ α)(v) = (pr2 ◦ β)(u)−1(pr2 ◦ β)(v).

Thus, we have a map sA : (E)♭
A → G such that

(4.1) sA(u, v) := (pr2 ◦ α)(u)−1(pr2 ◦ α)(v), (u, v) ∈ (E|Uα)2.

Put
(X)♭

A := (π × π)((E)♭
A).

Then, we have ∆X ⊂ (X)♭
A. As we shall see in Subsection 4.3, we have

(π×π)−1((X)♭
A) = (E)♭

A, hence (E)♭
A = E2|(X)♭

A
. Thus, we can take (X)♭

A as U

in Definition 3.3. To show that sA is an element of C1
CA-flat(π, (X)♭

A)G, we will
check in Subsection 4.3 the continuity of sA and the conditions in Definition
3.3, where CA := {Uα | α ∈ A}. As we have already seen in Subsection 3.2,
C1
CA-flat(π, (X)♭

A)G corresponds bijectively to SFCA-flat(π, (X)♭
A)G by the map

s 7→ ωs given by (3.1). Thus, once we can see sA ∈ C1
CA-flat(π, (X)♭

A)G, we get
a CA-flat G-compatible slicing function ωA := ωsA ∈ SFCA-flat(π, (X)♭

A)G.

4.2. Proof of Theorem 1.1

Since E2|UA
⊃ (E)♭

A, it suffices to show E2|UA
⊂ (E)♭

A. Let (u, v) ∈ E2|UA
.

Then, there exists α ∈ A such that (u, v) ∈ (E|Uα)2 and we put

g := (pr2 ◦ α)(u)−1(pr2 ◦ α)(v).

For any β ∈ A such that (u, v) ∈ (E|Uβ
)2, the transition function satisfies

(pr2 ◦ β)(u) = gβα(π(u))(pr2 ◦ α)(u)
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and also for v. Then, we have

(pr2 ◦ β)(u)−1(pr2 ◦ β)(v) = (gβα(π(u))(pr2 ◦ α)(u))−1gβα(π(v))(pr2 ◦ α)(v)

= (pr2 ◦ α)(u)−1gαβ(π(u))gβα(π(v))(pr2 ◦ α)(v).

Since Uα ∩ Uβ is connected and G is discrete, we see gαβ(π(u)) = gαβ(π(v)).
Then we have

(pr2 ◦ β)(u)−1(pr2 ◦ β)(v) = (pr2 ◦ α)(u)−1(pr2 ◦ α)(v) = g.

Thus, (u, v) ∈ (E)♭
A, which gives the desired result. ¤

4.3. Proof of Theorem 1.2

Proof of (i) To show that sA ∈ C1
CA-flat(π, (X)♭

A)G, we will check the following:

(A) sA satisfies (I),(II), and (III) in Definition 3.3;

(B) the domain (E)♭
A of sA is written as (π × π)−1((X)♭

A), hence (E)♭
A =

E2|(X)♭
A
;

(C) sA is continuous.

To show (A), (B) and (C), we consider for α ∈ A a continuous map Fα :
(E|Uα)2 → G given by

Fα(u, v) := (pr2 ◦ α)(u)−1(pr2 ◦ α)(v).

The map Fα has the following properties:

(a) Fα(u, u) = 1G for u ∈ E;

(b) Fα(ua, vb) = a−1Fα(u, v)b for a, b ∈ G and (u, v) ∈ (E|Uα)2;

(c) Fα(v, u) = Fα(u, v)−1 for (u, v) ∈ (E|Uα)2;

(d) Fα(u, v)Fα(v, w) = Fα(u,w) for (u, v), (v, w) ∈ (E|Uα)2.

It is obvious sA|(E)♭
A∩(E|Uα )2 = Fα|(E)♭

A∩(E|Uα )2 . Then (A) follows from
properties (a),(b),(c), and (d).

Next, we shall check (B). Note that (π×π)−1((X)♭
A) =

∪
g∈G(π×π)−1((π×

π)(s−1
A ({g}))). Suppose that (u, v) ∈ (π × π)−1((π × π)(s−1

A ({g}))). Then, we
have (π(u), π(v)) ∈ (π × π)(s−1

A ({g})). Thus, there exists (u′, v′) ∈ s−1
A ({g})

such that (π(u), π(v)) = (π(u′), π(v′)). Therefore, there exist a, b ∈ G such
that u′ = ua and v′ = vb, hence (ua, vb) ∈ s−1

A ({g}). Then, from the condition
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(I) of sA, we have (u, v) ∈ s−1
A ({agb−1}). Thus, we get (π × π)−1((X)♭

A) ⊂
(E)♭

A.
Next, we will show (C). We note here that for any g ∈ G, (u, v) is an

element of s−1
A ({g}) if and only if (u, v) ∈ E2|UA

and (u, v) ∈ F−1
α ({g}) for

any α ∈ A with (u, v) ∈ (E|Uα)2. To show that sA is continuous, let us take
an open set O in G and (u, v) ∈ s−1

A (O). Then, there exists g ∈ O such
that (u, v) ∈ s−1

A ({g}). Thus, we have (u, v) ∈ E2|UA
and (u, v) ∈ F−1

α ({g})
for any α ∈ A with (u, v) ∈ (E|Uα)2. From (u, v) ∈ E2|UA

, there exists
β ∈ A such that (u, v) ∈ (E|Uβ

)2. Together with the latter condition we
get (u, v) ∈ F−1

β ({g}). Note that F−1
β ({g}) is an open set in E2 since G is

discrete. Therefore, F−1
β ({g}) ∩ (E)♭

A is an open neighborhood of (u, v) in
(E)♭

A. If an inclusion F−1
β ({g}) ∩ (E)♭

A ⊂ s−1
A ({g}) holds, we see that s−1

A (O)
is an open set in (E)♭

A, hence sA is continuous. Thus, we will check the
inclusion F−1

β ({g})∩ (E)♭
A ⊂ s−1

A ({g}). Let (u′, v′) ∈ F−1
β ({g})∩ (E)♭

A. Then,
(u′, v′) ∈ F−1

β ({g}) and there exists g′ ∈ G such that (u′, v′) ∈ F−1
α ({g′}) for

any α ∈ A with (u′, v′) ∈ (E|Uα)2. From these two conditions we get g′ = g.
Obviously, we have (u′, v′) ∈ E2|UA

. Thus, we obtain (u′, v′) ∈ s−1
A ({g}). This

ends the proof of (i).

Proof of (ii) At first, we set up the notation used in the following. We denote
by ϕi : EG|Ui → Ui × G (i ∈ N) a local trivialization of πG : EG → BG (see
Subsection 2.4) and put AG := {ϕi | i ∈ N}. Recall that g̃k : EG|Uk

→ G
is given by g̃k(⊕i∈Ntigi) = gk. Thus, we have g̃k = pr2 ◦ ϕk. We put UG :=
UAG

:=
∪

i∈N Ui ×Ui. By taking EG as E, UG as UA, and g̃k as pr2 ◦ α in the
definition of (E)♭

A, we get the following expression:

(EG)♭
AG

=

(⊕i∈Ntigi,⊕j∈Nsjhj)∈(EG)2|UG

There exists g∈G such that
hk = gkg for any k∈N

with tk > 0 and sk > 0

 .

By taking AG as A in the definition (4.1) of sA, we have the expression of
sG := sAG

: (EG)♭
AG

→ G as follows:

sG(⊕i∈Ntigi,⊕j∈Nsjhj) := g−1
k hk

if tk > 0 and sk > 0. Then, by the bijection (3.1), we have the expression of
ωG := ωsG : (BG)♭

AG
×BG

EG → EG as follows:

(4.2) ωG([⊕i∈Ntigi], [⊕j∈Nsjhj ],⊕j∈Nsjhj) = ⊕i∈Ntigig
−1
k hk

if tk > 0 and sk > 0. Under the above notation, we will start proving (ii) of
Theorem 1.2. Let ([⊕i∈Ntigi], [⊕j∈Nsjhj ]) ∈ (BG)♭

AG
. Then, there exists g ∈ G



14 K.KITADA

such that hk = gkg for any k ∈ N with tk > 0 and sk > 0. Consider a map
c : I = [0, 1] → EG given by

c(r) := ⊕i∈N(tir + si(1 − r))hi

for r ∈ I. We have (c(r),⊕j∈Nsjhj) ∈ (EG)♭
AG

and ([c(r)], [⊕j∈Nsjhj ]) ∈
(BG)♭

AG
for all r ∈ I. Note that the topology of EG is the weakest one such

that t̃i : EG → I and g̃i : EG|Ui → G are continuous for all i ∈ N. To show
that the map c is continuous, we only have to show that t̃i ◦ c and g̃i ◦ c
are continuous for all i ∈ N, and it is obvious. We have [c(0)] = [⊕j∈Nsjhj ]
and [c(1)] = [⊕i∈Ntihi] = [⊕i∈Ntigig] = [⊕i∈Ntigi]. Thus, πG ◦ c : I → BG

is a curve joining [⊕j∈Nsjhj ] to [⊕i∈Ntigi]. Let ω be any slicing function in
πG over (BG)♭

AG
and suppose that ([⊕i∈Ntigi], [⊕j∈Nsjhj ]) ∈ Uk × Uk. Since

g̃k(ω([c(·)], [c(0)],⊕j∈Nsjhj)) : I → G is a continuous map from a connected
set I to a discrete group G, we have

g̃k(ω([c(1)], [c(0)],⊕j∈Nsjhj)) = g̃k(ω([c(0)], [c(0)],⊕j∈Nsjhj)).

Then, we get

g̃k(ω([⊕i∈Ntigi], [⊕j∈Nsjhj ],⊕j∈Nsjhj)) = g̃k(⊕j∈Nsjhj)) = hk.

Here, we note that in general, by using a local trivialization α, any point
u ∈ E|Uα is written as u = α−1(π(u), pr2(α(u))). Thus, we have

ω([⊕i∈Ntigi],[⊕j∈Nsjhj ],⊕j∈Nsjhj)

= ϕ−1
k ([⊕i∈Ntigi], g̃k(ω([⊕i∈Ntigi], [⊕j∈Nsjhj ],⊕j∈Nsjhj)))

Then, the right hand side is equal to

ϕ−1
k ([⊕i∈Ntigi], hk) = ⊕i∈Ntigig

−1
k hk

= ωG([⊕i∈Ntigi], [⊕j∈Nsjhj ],⊕j∈Nsjhj),

hence ω = ωG. This is the required result. ¤

4.4. Proof of Theorem 1.3

Let A = (αi)i∈N be a numerable bundle atlas of π : E → X and (λi)i∈N a
locally finite countable partition of unity such that λ−1

i ((0, 1]) = Uαi for each
i ∈ N. As a G-morphism π → πG, we take (hA, fA) given by (2.1):

hA(u) = ⊕i∈Nλi(π(u))pr2(α(u)).
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Firstly, we show that (fA)2((X)♭
A) ⊂ (BG)♭

AG
. Let (x, y) ∈ (X)♭

A and take
(u, v) ∈ (E)♭

A such that π(u) = x and π(v) = y. Then, there exists g ∈ G
such that (u, v) ∈ s−1

A ({g}). From (u, v) ∈ E2|UA
, there exists i ∈ N such that

λi(x) > 0 and λi(y) > 0. Thus, we have (hA(u), hA(v)) ∈ (EG)2|UG
. On the

other hand, from (u, v) ∈ s−1
A ({g}), for any k ∈ N, if λk(x) > 0 and λk(y) > 0,

then we have Fαk
(u, v) = g, that is, pr2(αk(v)) = pr2(αk(u))g. Therefore, we

have (hA(u), hA(v)) ∈ (EG)♭
AG

and (fA(x), fA(y)) ∈ (BG)♭
AG

.
Secondly, we show that (hA, fA) preserves ωA and ωG. Note that in general,

by using a local trivialization α, ωA is expressed as

ωA(x, y, u) = α−1(x, pr2(α(u))).

In fact, by the definition of bijection (3.1) and sA, we have

ωA(x, y, u) = α−1(x, 1G)sA(α−1(x, 1G), u)

= α−1(x, 1G)pr2(α(u)) = α−1(x, pr2(α(u))).

Let (x, y, u) ∈ (X)♭
A ×X E. Then, by the expression of ωA, we have for any

i ∈ N,
pr2(αi(ωA(x, y, u))) = pr2(αi(u)).

Then we have

hA(ωA(x, y, u)) = ⊕i∈Nλi(x)pr2(αi(ωA(x, y, u))) = ⊕i∈Nλi(x)pr2(αi(u)).

Here, note that we can take ωA(x, y, u) as an element of Ex to express fA(x)
as [hA(ωA(x, y, u))]. Thus, we have the following expression

ωG(fA(x), fA(y), hA(u))
= ωG([hA(ωA(x, y, u))], [⊕i∈Nλi(y)pr2(αi(u))],⊕i∈Nλi(y)pr2(αi(u))).

Then, from the expression (4.2) of ωG, if λk(x) > 0 and λk(y) > 0, the right
hand side is equal to

ωG([⊕i∈Nλi(x)pr2(αi(u))], [⊕i∈Nλi(y)pr2(αi(u))],⊕i∈Nλi(y)pr2(αi(u)))

= ⊕i∈Nλi(x)pr2(αi(u))pr2(αk(u))−1pr2(αk(u)))
= ⊕i∈Nλi(x)pr2(αi(u)).

Therefore, we get hA(ωA(x, y, u)) = ωG(fA(x), fA(y), hA(u)).
Finally, we shall check that fA∗CA is a refinement of CG := CAG

= {Ui | i ∈
N}. Let [⊕i∈Nλi(y)pr2(αi(u))] ∈ fA(Uαk

) with y ∈ Uαk
and u ∈ Ey. Then,

λk(y) > 0 holds. Thus, we get [⊕i∈Nλi(y)pr2(αi(u))] ∈ Uk. Therefore, (hA, fA)
preserves (ωA, CA) and (ωG, CG). From Proposition 3.5, it follows that ωA is
induced from ωG. This ends the proof. ¤
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4.5. Proof of Theorem 1.4

Let G be a discrete group, π : E → X a principal G-bundle (not necessarily
locally trivial), Λ = (λi)i∈N a locally finite countable partition of unity. Put
CΛ := {λ−1

i ((0, 1]) | i ∈ N} and UΛ :=
∪

i∈N λ−1
i ((0, 1]) × λ−1

i ((0, 1]). We
remark here that we do not consider slicing functions over (X)♭

A but over UΛ.
Hence, let ω ∈ SFCΛ-flat(π,UΛ)G.

Firstly, we give a G-morphism (hΛ,ω, fΛ,ω) : π → πG. To this end, fix
zi ∈ λ−1

i ((0, 1]) and wi ∈ Ezi for each i ∈ N, and let T be the translation
function of π. Then, a continuous map hΛ,ω : E → EG is given by

(4.3) hΛ,ω(u) := ⊕i∈Nλi(π(u))T (wi, ω(zi, π(u), u))

for u ∈ E. By the definition, we have hΛ,ω(ua) = h(u)a for (u, a) ∈ E×G. Let
fΛ,ω : X → BG be the induced map from hΛ,ω such that fΛ,ω ◦ π = πG ◦ hΛ,ω.
Then, (hΛ,ω, fΛ,ω) is a G-morphism.

Secondly, we show that (fΛ,ω)2(UΛ) ⊂ (BG)♭
AG

. Let (x, y) ∈ UΛ and (u, v) ∈
E2|UΛ

such that (π(u), π(v)) = (x, y). Then, we put g := T (u, ω(x, y, v)).
From the properties of translation function T , for any k ∈ N, we get

T (wk, ω(zk, x, u))g = T (wk, ω(zk, x, u))T (u, ω(x, y, v))
= T (wk, ω(zk, x, uT (u, ω(x, y, v)))) = T (wk, ω(zk, x, ω(x, y, v))).

Since ω is CΛ-flat, for any k ∈ N, we get ω(zk, x, ω(x, y, v))) = ω(zk, y, v).
Thus, for any k ∈ N, we get

T (wk, ω(zk, x, u))g = T (wk, ω(zk, y, v)).

This implies (hΛ,ω(u), hΛ,ω(v)) ∈ (EG)♭
AG

, hence (fΛ,ω(x), fΛ,ω(y)) ∈ (BG)♭
AG

.
Thirdly, we show that (hΛ,ω, fΛ,ω) preserves ω and ωG. Let (x, y, v) ∈

UΛ ×X E and u ∈ E such that π(u) = x. Suppose that λk(x) > 0 and
λk(y) > 0. Then, from the expressions (4.2) of ωG and (4.3) of hΛ,ω, we have

ωG(fΛ,ω(x), fΛ,ω(y), hΛ,ω(v))

= ⊕i∈Nλi(x)T (wi, ω(zi, x, u))T (wk, ω(zk, x, u))−1T (wk, ω(zk, y, v)).(4.4)

From the properties of T and the flatness of ω, we have

T (wk,ω(zk, x, u))T (u, ω(x, y, v))
= T (wk, ω(zk, x, ω(x, y, v))) = T (wk, ω(zk, y, v)).

Then, the right hand side of (4.4) is equal to

⊕i∈Nλi(x)T (wi, ω(zi, x, u))T (u, ω(x, y, v))
= ⊕i∈Nλi(x)T (wi, ω(zi, x, uT (u, ω(x, y, v))))
= ⊕i∈Nλi(x)T (wi, ω(zi, x, ω(x, y, v))) = hΛ,ω(ω(x, y, v)).
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Finally, to show that fΛ,ω∗CΛ is a refinement of CG, we take an element
[⊕i∈Nλi(x)T (wi, ω(zi, x, v))] of fΛ,ω(λ−1

k ((0, 1])) with x ∈ λ−1
k ((0, 1]) and v ∈

Ex. Then, λk(x) > 0 holds. Thus, we get [⊕i∈Nλi(x)T (wi, ω(zi, x, v))] ∈ Uk.
Therefore, (hΛ,ω, fΛ,ω) preserves (ω, CΛ) and (ωG, CG). From Proposition 3.5,
it follows that ω is induced from ωG. This completes the proof. ¤
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