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Abstract. We give a new and complete proof of the following theorem, discov-
ered by Detlef Laugwitz: (forward) complete and connected finite dimensional
Finsler manifolds admitting a proper homothety are Minkowski vector spaces.
More precisely, we show that under these hypotheses the Finsler manifold is
isometric to the tangent Minkowski vector space of the fixed point of the homo-
thety via the exponential map of the canonical spray of the Finsler manifold.
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§1. Introduction and history

In the 17th century John Wallis managed to prove Euclid’s parallel postulate
(EPP) by assuming a new axiom: to every figure there exists a similar fig-
ure of arbitrary magnitude. Later in his book ‘Euclid vindicated from every
flaw’ (1733) G. G. Saccheri pointed out that Wallis could have proved EPP by
assuming only the existence of two similar but noncongruent triangles. Wal-
lis’ clever observation implies the collapse of similarity theory in hyperbolic
geometry. After the discovery of Riemannian geometry it turned out that
this phenomenon is almost typical: Riemannian manifolds admitting a proper
similitude are rare. More precisely, Euclidean spaces are characterized by the
existence of a proper similitude among (complete and connected) Riemannian
manifolds. Somewhat surprisingly it is not easy to find a complete proof of this
important fact in the literature (at least we did not manage to find one). In
his excellent textbook Differential and Riemannian Geometry Detlef Laugwitz
formulates the statement as follows:
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‘If a complete Riemannian space allows a proper similarity map-
ping onto itself, then it is a Euclidean space.’

(See [11, Theorem 13.6.1]). We think, however, that his proof is incomplete.
Laugwitz shows that if there is a contractive homothety of the manifold, then
it has a fixed point, and the holonomy group is trivial in the fixed point. From
this he immediately deduces that the space is Euclidean. This implication is
in general false (think of the flat torus), and he does not explain why it is still
true in this case. We note that Kobayashi and Nomizu state a weaker assertion
in their book (indirectly): there exists a local isometry from a neighbourhood
of the point into a Euclidean space [9, p. 242, Lemma 2], see also [8].

The theorem was also generalized to Finsler manifolds by Laugwitz in the
following form [12, p. 268]:

‘A complete connected finite dimensional Finsler space M which
admits a similitude S is a Minkowski space.’

The proof of this theorem (which implies immediately the Riemannian version)
seems to us also rather incomplete. Laugwitz shows that the Finsler manifold
is flat in the case of the existence of a contractive homothety. Then he refers
to p. 136 of Rund’s monograph [17], and applies É. Cartan’s characterization
of ‘Minkowskian spaces’. However, the terminology of Rund’s book is strongly
misleading here: ‘Minkowskian’ actually means ‘locally Minkowskian’, i.e., a
Finsler manifold with the property that all of its points have a neighbourhood
over which the Finsler function ‘depends only on the position’ (see [14, 3.2.4]
and [18, 3.14, Theorem 3]).

In common with E. Heil, Laugwitz published another proof of the theorem
[7]. This is much more convincing, but also suffers from some weakness: the
use of the holonomy group of Rund’s connection needs a much more careful
elaboration, and the blowing up argument in the last step of the proof is far
from being rigorous.

In this paper we wish to provide a new and self-contained proof of Laug-
witz’s nice theorem which is already free from the flaws made by him (and
them). Therefore we start along partially new lines. We use the simplest
covariant derivative operator in Finsler geometry, Berwald’s covariant deriva-
tive, rather than the Chern –Rund derivative (called only Rund derivative by
Laugwitz). We avoid the use of the holonomy group, since we think that
its complicatedness obscures the main points rather than clarifies them; in-
stead, we only use the curvature tensors of Berwald’s derivative. The use of
Banach’s fixed point theorem on a contractive homothety is rather standard,
thus the first part of our proof, where we show that the manifold is locally
Minkowskian, largely follows the proof of the Riemannian analogue in [9]. The
essential new point in the proof is that a suitable global isometry is provided
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by the exponential map of a covariant derivative operator on the base manifold
at the fixed point of the homothety. The proof of the fact that this exponential
map is a local isometry was inspired by [20]. The main original idea is the
proof that it is a global isometry as well in our case.

§2. Notation and setup

The term ‘manifold’ will always mean a finite dimensional, connected smooth
manifold which is Hausdorff and has a countable basis of open sets. If M is
a manifold, then C∞(M) is the ring of smooth real-valued functions on M ,
τ : TM → M is the tangent bundle of M , and X(M) denotes the C∞(M)-
module of (smooth) vector fields of M . The tangent map of a smooth map
ϕ will be denoted by ϕ∗. If D is a covariant derivative operator on M , c is a
smooth curve in M , and X(c) is the module of smooth vector fields along c,
then the induced covariant derivative operator along c will be denoted by Dc.
Let R be the curvature tensor of D, and suppose that c is a geodesic of D. We
recall that a vector field J ∈ X(c) is said to be a Jacobi field if it satisfies the
Jacobi equation DcDcJ = R(ċ, J)ċ. This is a second-order linear differential
equation on the components of J , thus, given any vectors v, w ∈ Tc(0)M , there
exists a unique Jacobi field J defined on the whole domain of c such that
J(0) = v, DcJ(0) = w.

Let
◦
TM := TM \ o(M), where o ∈ X(M) is the zero vector field, and con-

sider the vector bundle
◦
π :

◦
TM ×M TM →

◦
TM . Its fibre over v is canonically

isomorphic to the tangent space Tτ(v)M , and hence the C∞( ◦
TM

)
-module

Sec
(◦
π
)

of the sections of
◦
π may be viewed as{

X̃ :
◦
TM → TM

∣∣∣X̃ is smooth, and τ ◦ X̃ = τ ¹
◦
TM

}
.

The module Sec
(◦
π
)

is generated by the basic sections X̂ := X ◦τ , X ∈ X(M).

We have a canonical C∞( ◦
TM

)
-linear injection

i : Sec
(◦
π
)
→ X

( ◦
TM

)
, X̂ 7→ iX̂ := Xv := τ -vertical lift of X,

and a canonical C∞( ◦
TM

)
-linear surjection j : X

( ◦
TM

)
→ Sec

(◦
π
)

such that
for all X ∈ X(M),

jXv = 0, jXc = X̂,

where Xc is the complete lift of X. Since i and j are tensorial, they have
a natural pointwise interpretation which will be used automatically in the
sequel.



26 R. L. LOVAS AND J. SZILASI

The push-forwards of a vector field X on M and a section X̃ ∈ Sec
(◦
π
)

by
a diffeomorphism ϕ : M → M are

ϕ]X := ϕ∗ ◦ X ◦ ϕ−1 and ϕ]X̃ := (ϕ∗ × ϕ∗) ◦ X̃ ◦ ϕ−1, resp.

By an Ehresmann connection over M we mean a C∞( ◦
TM

)
-linear map H

from Sec
(◦
π
)

into X
( ◦
TM

)
such that j ◦ H is the identity of Sec

(◦
π
)
. To an

Ehresmann connection H we associate the horizontal projector h := H◦ j, the
vertical projector v := 1 − h and the vertical map V := i−1 ◦ v. (For details
we refer to [16, 18, 19].)

If S is a spray over M in the sense of Dazord [4] (see also [6, 18]), then a
diffeomorphism ϕ : M → M is said to be an automorphism of S if (ϕ∗)]S = S.
An affinity of S is a diffeomorphism ϕ of M such that ϕ ◦ c is a geodesic of
S whenever c is a geodesic of S. If H is an Ehresmann connection over M ,
then an automorphism of H is a diffeomorphism ϕ : M → M such that
ϕ∗∗ ◦ H = H ◦ (ϕ∗ × ϕ∗). Finally, if

∇ : X
( ◦
TM

)
× Sec

(◦
π
)
→ Sec

(◦
π
)

is a covariant derivative operator along
◦
π, then a diffeomorphism ϕ of M is

called an automorphism of ∇ if

ϕ]∇ξỸ = ∇(ϕ∗)]ξϕ]Ỹ ; ξ ∈ X
( ◦
TM

)
, Ỹ ∈ Sec

(◦
π
)
.

§3. Finsler manifolds

A continuous function F : TM → [0,∞[ is said to be a Finsler function over

a manifold M if it is smooth on
◦
TM , positive-homogeneous of degree 1, i.e.,

F (λv) = λF (v) for all λ ∈ [0,∞[ and v ∈ TM , and has the property that the

metric tensor g : Sec
(◦
π
)
× Sec

(◦
π
)
→ C∞( ◦

TM
)

defined on the basic vector
fields by

g
(
X̂, Ŷ

)
:=

1
2
XvY vF 2; X,Y ∈ X(M)

is pointwise nondegenerate. Then g is obviously symmetric, and it can also be
shown that our conditions on F imply the positive definiteness of the metric
tensor [13]. A manifold equipped with a Finsler function is said to be a Finsler
manifold. By the length of a piecewise smooth curve γ : [α, β] → M in a Finsler
manifold (M,F ) we mean the integral L(γ) :=

∫ β
α F ◦ γ̇. If p and q are points

of M , and

Γ(p, q) := {γ : [α, β] → M |γ is piecewise smooth, and γ(α) = p, γ(β) = q},
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then the function

%F : M × M → R, (p, q) 7→ %F (p, q) := inf
γ∈Γ(p,q)

L(γ)

is a quasi-distance on M , i.e., it has the following properties:

(i) %F (p, q) ≥ 0, %F (p, q) = 0, if and only if, p = q;

(ii) %F (p, s) ≤ %F (p, q) + %F (q, s) for all p, q, s ∈ M ;

(iii) the forward metric balls B+
r (a) := {p ∈ M |%F (a, p) < r} and the back-

ward metric balls B−
r (a) := {p ∈ M |%F (p, a) < r} generate the same

topology (namely, the underlying manifold topology)

[1, 15]. Thus (M,F ) determines a quasi-metric space (M,%F ).
By the property (iii), there is a well-defined notion of the convergence of

a sequence in our quasi-metric space (M,%F ), thus there is no need to speak
about ‘forward convergence’ and ‘backward convergence’. On the other hand,
we have to distinguish between the notions of a forward Cauchy sequence and
a backward Cauchy sequence. Namely, a sequence (pn)n∈N in M is said to be
a forward Cauchy sequence if for any positive ε there is a number N ∈ N such
that

%F (pm, pn) < ε whenever N ≤ m ≤ n,

and (pn)n∈N is said to be a backward Cauchy sequence if for any positive ε
there is a number N ∈ N such that

%F (pn, pm) < ε whenever N ≤ m ≤ n.

The quasi-metric space (M,%F ) is forward (backward) complete if every for-
ward (backward) Cauchy sequence converges, respectively. From the standard
proof of Banach’s fixed point theorem it is easy to see that it remains true for
quasi-metric spaces if either of the two completeness properties is required.
However, in our main theorem we shall assume forward rather than backward
completeness, since forward completeness implies that the exponential map of
the Finsler manifold (M,F ) is defined on the whole of each tangent space of
M [1].

A diffeomorphism ϕ of M is said to be a homothety of the Finsler manifold
(M,F ) if there is a positive real number λ such that F ◦ ϕ∗ = λF . If λ = 1,
then ϕ is called an isometry of (M,F ). A homothety is proper if it is not
an isometry. A homothety ϕ of (M,F ) with proportionality factor λ is also
a homothety of the quasi-metric space (M,%F ) with the same proportionality
factor. Indeed, for any points p, q ∈ M we obtain

%F (ϕ(p), ϕ(q)) = inf
γ∈Γ(p,q)

∫ β

α
F ◦ ˙p−−−qϕ ◦ γ = inf

γ∈Γ(p,q)

∫ β

α
F ◦ ϕ∗ ◦ γ̇
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= inf
γ∈Γ(p,q)

∫ β

α
λF ◦ γ̇ = λ inf

γ∈Γ(p,q)

∫ β

α
F ◦ γ̇ = λ%F (p, q).

Remark. In a rather forgotten paper [2] F. Brickell showed that a homeomor-
phism of a manifold equipped with a spray onto itself is a diffeomorphism if
it preserves the geodesics considered as parametrized curves. Applying this
result he deduced that the isometry group of the quasi-metric space (M,%F )
coincides with the isometry group of the Finsler manifold (M,F ), generalizing
a well-known theorem of S. B. Myers and N. E. Steenrod from Riemannian
geometry. (This result of Brickell was rediscovered by S. Deng and Z. Hou
[5].) Then it follows that the isometry group of (M,%F ) is a Lie group, which
implies, as M. Patrão showed [15], that the homothety group of (M,%F ) is also
a Lie group.

§4. Berwald connection, Berwald derivative, curvatures

First we recall that the Liouville vector field on TM is the velocity field of the
flow (t, v) ∈ R × TM 7→ etv ∈ TM ; it will be denoted by C.

We now come to what should be considered as the ‘fundamental lemma of
Finsler geometry’. If (M,F ) is a Finsler manifold, then there exists a unique
Ehresmann connection H over M such that

(i)
[
HX̂, C

]
= 0 for all X ∈ X(M) (H is homogeneous),

(ii)
[
HX̂, Y v

]
−

[
HŶ ,Xv

]
− [X,Y ]v = 0 for all X,Y ∈ X(M) (H is torsion-

free),

(iii) dF ◦ H = 0 (H is conservative).

This connection is said to be the Berwald connection of (M,F ). For a proof
we refer to [6, 18] (see also [19]); we only note that if S is the canonical spray
of the Finsler manifold determined by the Euler – Lagrange equation

iSd
(
∇vF 2 ◦ j

)
= −dF 2

(
∇vF 2

(
X̂

)
:= XvF 2

)
,

then we have
H

(
X̂

)
=

1
2
(Xc + [Xv, S]), X ∈ X(M).

Using Berwald’s connection, we define a Riemannian metric ḡ on
◦
TM , nicely

related to the metric tensor g of (M,F ), as follows:

ḡ(ξ, η) := g(jξ, jη) + g(Vξ,Vη); ξ, η ∈ X
( ◦
TM

)
.
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Berwald’s connection determines a covariant derivative operator

∇ : X
( ◦
TM

)
× Sec

(◦
π
)
→ Sec

(◦
π
)

in
◦
π by the rule

∇ξỸ := j
[
vξ,HỸ

]
+ V

[
hξ, iỸ

]
; ξ ∈ X

( ◦
TM

)
, Ỹ ∈ Sec

(◦
π
)
,

called Berwald’s derivative. Let R∇ be the classical curvature tensor of ∇.
Then the type (1, 3) tensors H and B over Sec

(◦
π
)

given by

H
(
X̃, Ỹ

)
Z̃ := R∇

(
HX̃,HỸ

)
Z̃ and B

(
X̃, Ỹ

)
Z̃ := R∇

(
iX̃,HỸ

)
Z̃

are said to be the affine and the Berwald curvature of (M,F ), respectively.
In our calculations we shall use the fact that the curvatures R∇, H and B are
tensorial in all of their arguments, thus, they can also be evaluated on single

vectors rather than vector fields on
◦
TM and along

◦
τ . The tensors H and B

have different homogeneity properties, namely, if u ∈
◦
TM , v1, v2, v3 ∈ Tτ(u)M ,

and α > 0, then

Hαu(v1, v2)v3 = Hu(v1, v2)v3, and Bαu(v1, v2)v3 =
1
α
Bu(v1, v2)v3.

An immediate calculation shows that for any sections X̃, Ỹ , Z̃ in Sec
(◦
π
)

we have
R∇

(
iX̃, iỸ

)
Z̃ = 0,

therefore R∇ vanishes, if and only if, the affine and the Berwald curvature of
(M,F ) vanish. In this case we say that the Finsler manifold (M,F ) is flat.
For some equivalents of flatness we refer to [18, 3.14, Theorem 3]. Notice that
flat Finsler manifolds are usually mentioned as locally Minkowski spaces.

§5. The main result

After two preparatory lemmas we prove the main result of the paper.

Lemma 1. If ϕ : M → M is a homothety of a Finsler manifold (M,F ), then
it is an automorphism of Berwald’s covariant derivative.

Proof. By the local length minimizing property of geodesics of a Finsler man-
ifold, ϕ is an affinity of the canonical spray S. Then, by [16, Lemma 5.1], ϕ
is also an automorphism of S, and by [16, Lemma 6.1], it is thus an automor-
phism of Berwald’s connection H as well. Finally, our assertion follows from
[16, Lemma 7.2].
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Lemma 2. Let D be a covariant derivative on M , p ∈ M , and

expp : U ⊂ TpM → M

be the exponential map at p ∈ M . Let v ∈ U , and let c (defined on an open
interval containing 0 and 1) be the geodesic such that c(0) = p and ċ(0) = v.
Let w ∈ TpM , and let J be the Jacobi field such that J(0) = 0 and DcJ(0) = w.
Then we have (

expp

)
∗ (wv) = J(1).

This is essentially a reformulation of [3, Chap. 5, 2.5 Corollary], see also
[10, Chapter IX, Theorem 3.1].

Theorem. If a forward complete connected finite-dimensional Finsler mani-
fold admits a proper homothety onto itself, then it is isometric to a Minkowski
vector space, namely, to the tangent Minkowski vector space at the fixed point
of the homothety.

Proof. Let (M,F ) be our Finsler manifold and ϕ be a homothety of (M,F )
with proportionality factor λ. We may assume that 0 < λ < 1 (otherwise
take ϕ−1 instead of ϕ). Then, as we have just seen, ϕ is also a homothety of
(M,%F ), thus, Banach’s fixed point theorem implies the existence of a unique
fixed point p of ϕ, i.e., a point p ∈ M such that ϕ(p) = p.

First we prove that (M,F ) is flat. Let U be an open neighbourhood of p
such that U is compact, and let

r := sup
{
gu

(
R∇

u (z1, z2)v, w
) ∣∣u ∈ TU, z1, z2 ∈ TuTM, v,w ∈ Tτ(u)M,

F (u) = 1, ḡu(z1, z1) = ḡu(z2, z2) = gu(v, v) = gu(w,w) = 1
}
.

Now we show that

(∗) R∇
ϕ∗u(ϕ∗∗z1, ϕ∗∗z2)ϕ∗v = ϕ∗R

∇
u (z1, z2)v

for any q ∈ M , u ∈
◦
T qM , z1, z2 ∈ TuTM , v ∈ TqM . Indeed, let ξ, η be

vector fields on
◦
TM such that ξ(u) = z1, η(u) = z2, and Z ∈ X(M) such that

Z(q) = v. Since, by Lemma 1, ϕ is an automorphism of ∇, R∇ is preserved
by ϕ∗. Thus we obtain

R∇
ϕ∗u(ϕ∗∗z1, ϕ∗∗z2)ϕ∗v = R∇

ϕ∗u(ϕ∗∗ξ(u), ϕ∗∗η(u))ϕ∗Z(u)

=
(
R∇((ϕ∗)]ξ, (ϕ∗)]η)ϕ̂]Z

)
(ϕ∗u) = ϕ]

(
R∇(ξ, η)Ẑ

)
(ϕ∗u)

= ϕ∗
(
R∇

u (ξ(u), η(u))Z(u)
)

= ϕ∗R
∇
u (z1, z2)v,



HOMOTHETIES OF FINSLER MANIFOLDS 31

which proves (∗). If, in addition, w ∈ TqM , then we have

gϕ∗u

(
R∇

ϕ∗u(ϕ∗∗z1, ϕ∗∗z2)ϕ∗v, ϕ∗w
)

= gϕ∗u

(
ϕ∗R

∇
u (z1, z2)v, ϕ∗w

)
= λ2gu

(
R∇

u (z1, z2)v, w
)
,

and, if n ∈ N, then

gϕn
∗u

(
R∇

ϕn
∗u(ϕn

∗∗z1, ϕ
n
∗∗z2)ϕn

∗v, ϕn
∗w

)
= λ2ngu

(
R∇

u (z1, z2)v, w
)

by induction. Now suppose that

F (u) = 1 and ḡu(z1, z1) = ḡu(z2, z2) = gu(v, v) = gu(w,w) = 1.

In that case we have

F (ϕn
∗u) = λn and ḡϕn

∗ (u)(ϕ
n
∗∗z1, ϕ

n
∗∗z1) = ḡϕn

∗u(ϕn
∗∗z2, ϕ

n
∗∗z2)

= gϕn
∗u(ϕn

∗∗v, ϕn
∗∗v) = gϕn

∗u(ϕn
∗w,ϕn

∗w) = λ2n.

The sequence (ϕn(q))n∈N converges to p, thus there is an index n0 ∈ N such
that ϕn(q) ∈ U for all n ≥ n0. Therefore∣∣∣gϕn

∗u

(
R∇

ϕn
∗u(ϕn

∗∗z1, ϕ
n
∗∗z2)ϕn

∗v, ϕn
∗w

)∣∣∣
=

∣∣∣gϕn
∗u

(
R∇

ϕn
∗u(hϕn

∗∗z1,hϕn
∗∗z2)ϕn

∗v, ϕn
∗w

)
+ gϕn

∗u

(
R∇

ϕn
∗u(vϕn

∗∗z1,hϕn
∗∗z2)ϕn

∗v, ϕn
∗w

)
+gϕn

∗u

(
R∇

ϕn
∗u(hϕn

∗∗z1,vϕn
∗∗z2)ϕn

∗v, ϕn
∗w

)∣∣∣
≤

∣∣gϕn
∗u

(
Hϕn

∗u(jϕn
∗∗z1, jϕn

∗∗z2)ϕn
∗v, ϕn

∗w
)∣∣

+
∣∣gϕn

∗u

(
Bϕn

∗u(Vϕn
∗∗z1, jϕn

∗∗z2)ϕn
∗v, ϕn

∗w
)∣∣

+
∣∣gϕn

∗u

(
Bϕn

∗u(Vϕn
∗∗z2, jϕn

∗∗z1)ϕn
∗v, ϕn

∗w
)∣∣ .

On the first term we get the following estimate:∣∣gϕn
∗u

(
Hϕn

∗u(jϕn
∗∗z1, jϕn

∗∗z2)ϕn
∗v, ϕn

∗w
)∣∣

= λ4n

∣∣∣∣gϕn∗ u

λn

(
Hϕn∗ u

λn

(
jϕn

∗∗z1

λn
,
jϕn

∗∗z2

λn

)
ϕn
∗v

λn
,
ϕn
∗w

λn

)∣∣∣∣ ≤ λ4nr

if n ≥ n0, while for the second term we have∣∣gϕn
∗u

(
Bϕn

∗u(jϕn
∗∗z1, jϕn

∗∗z2)ϕn
∗v, ϕn

∗w
)∣∣

= λ3n

∣∣∣∣gϕn∗ u

λn

(
Bϕn∗ u

λn

(
jϕn

∗∗z1

λn
,
jϕn

∗∗z2

λn

)
ϕn
∗v

λn
,
ϕn
∗w

λn

)∣∣∣∣ ≤ λ3nr
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if n ≥ n0. The third term is treated analogously. Putting these together, we
obtain the estimate∣∣∣gϕn

∗u

(
R∇

ϕn
∗u(ϕn

∗∗z1, ϕ
n
∗∗z2)ϕn

∗v, ϕn
∗w

)∣∣∣ ≤ (
λ4n + 2λ3n

)
r

if n ≥ n0. Comparing the two expressions for the curvature tensor, we obtain∣∣gu

(
R∇

u (z1, z2)v, w
)∣∣ ≤ (

λ2n + 2λn
)
r (n ≥ n0),

from which we get gu

(
R∇

u (z1, z2)v, w
)

= 0 by taking the limit n → ∞. Non-
degeneracy of g implies that R∇

u (z1, z2)v = 0, and by the homogeneity of R∇

in u and its linearity in its arguments, it follows that R∇ vanishes identically.
This proves that (M,F ) is flat.

We note that it was due to the different homogeneity properties of the two
curvature tensors that, unlike in the Riemannian case in [9], the curvature
tensor had to be cut into three pieces.

From the vanishing of B it also follows that ∇ is basic in the sense that
there is a covariant derivative operator D on M such that ∇HX̂ Ŷ = D̂XY for
any X,Y ∈ X(M). Now we show that expp : TpM → M , the exponential map
of D in p (which is just the exponential map associated to the canonical spray
S), is a local isometry between the vector space TpM equipped with the norm
F ¹ TpM and the Finsler manifold (M,F ). (Due to the forward completeness
of M , expp is indeed defined on the whole of TpM .) Let v, w ∈ TpM and
c : [0,∞[ → M be as in Lemma 2, and let X be the unique parallel vector
field along c with X(0) = w. Since H = 0, the curvature of D also vanishes,
thus in this case the Jacobi equation has the very simple form

DcDcJ = 0.

If J(t) := tX(t) (t ∈ [0,∞[), then

DcJ(t) = X(t) + tDcX(t) = X(t), DcDcJ = 0, and DcJ(0) = X(0) = w,

thus J is just the Jacobi field along c which features in Lemma 2. Since X is

parallel as a vector field along c, it is horizontal as a curve running in
◦
TM .

(We can ignore the trivial case when w = 0.) Therefore F is constant along
X, and

F
((

expp

)
∗ (wv)

)
= F (J(1)) = F (X(1)) = F (X(0)) = F (w),

which means that expp is a local isometry.
Finally we show that expp : TpM → M is in fact a (global) isometry. It

is enough to check that expp is injective, since its surjectivity will then follow
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from the connectedness of M . Suppose, indirectly, that there are two vectors
v, w ∈ TpM with expp(v) = expp(w), and consider the parametrized straight
line segment t ∈ [0, 1] 7→ v + t(w − v), which is a geodesic segment of the
Minkowski vector space TpM . Being a geodesic is a local property, thus

c : [0, 1] → M, c(t) := expp(v + t(w − v)) (t ∈ [0, 1])

is also a geodesic segment of M , whose starting point and end point coincide
in addition. Let U ⊂ TpM be an open star-shaped neighbourhood of 0 such
that expp ¹ U : U → V ⊂ M is an isometry. The sets(

ϕ−1
)n (V), n ∈ N

cover M , and since c([0, 1]) is compact, there is an index n0 such that c([0, 1]) ⊂(
ϕ−1

)n0 (V), or, equivalently, ϕn0(c([0, 1])) ⊂ V, thus ϕn0 ◦ c is a geodesic
segment in V with coinciding starting and end point, which contradicts the fact
that V is isometric to an open subset of a Minkowski space, in which geodesics
are straight lines. This completes the proof that expp is an isometry.
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