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Abstract. Given a graph G = (V, E), an k-edge-weighting is a map φ :
E(G) → {1, 2, 3, . . . , k}, where k is a positive integer. For a vertex v of G,
let Sφ(v) denote the sum of edge-weights appearing on the edges incident at v
under the edge-weighting φ. An k-edge-weighting of G is said to be equitable
irregular if |Sφ(u)−Sφ(v)| ≤ 1, for every pair of adjacent vertices u and v in G.
A graph G is said to be equitable irregular if G admits an equitable irregular
edge-weighting. If G is equitable irregular then the equitable irregular strength
of G is defined to be the smallest positive integer k such that there is a k-edge-
weighting of G, and is denoted by Se(G). In this paper we initiate a study of
this new non-proper edge weighting of graphs.
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§1. Introduction

By a graph G = (V,E), we mean a finite, undirected graph with neither loops
nor multiple edges. For graph theoretic terminology we refer to Chartrand
and Lesniak [3]. All graphs in this paper are assumed to be connected and
non-trivial.

The study of graph labeling is one of the fastest growing areas within graph
theory which has been extensively studied. A graph labeling is an assignment
of integers to the vertices or edges or both subject to certain conditions. Graph
labelings were first introduced in the late 1960s. In the intervening years
dozens of graph labelings have been studied in over 800 papers. A detailed
survey of graph labeling is given in [6].

The labeling we deal with this paper is basically an edge-labeling, that is,
assigning label to the edges of the graph. We prefer the term edge-weighting
instead of edge-labeling. The class of edge-weighting problems can roughly
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be split into two parts. The first are the proper edge-weightings, that is,
edge-weightings of G where any two incident edges must get different labels,
which is just the classical edge-coloring problem. The second are the non-
proper edge-weightings, that is edge-weightings where we do not require that
incident edges get different labels.

The first question about non-proper edge-weightings is the irregularity str-
ength of a graph. This question, introduced by Chartrand et al. [2], asks for
the smallest k such that there is a k-edge-weighting φ of a given graph G such
that for any two vertices x and y we have Sφ(x) 6= Sφ(y), where Sφ(v) of a
vertex v denotes the sum of edge weights appearing on the edges incident at v
under the edge-weighting φ, called weighted degree of v. In other words, the
weighted degrees of the vertices of G are all distinct. This graph parameter is
called the irregularity strength of G and is denoted by S(G) and the k-edge-
weighting is called irregular edge-weighting. For a survey of known results and
many open questions about the irregularity strength, see Lehel [8]. For many
results which were not mentioned in the survey, see [1], [4], [5].

Motivated by the results on irregularity strength, Karonski et al. [7] pro-
pose the study of non-proper edge-weightings where they require that only ad-
jacent vertices have distinct weighted degrees and called such edge-weighting
as chromatic irregular edge-weighting. Thus in an irregular edge-weighting of
a graph G, the weighted degrees of the vertices of G are all admit, whereas
in a chromatic irregular edge-weighting only adjacent vertices have different
weighted degrees. In this sequence we introduce the notion of equitable irreg-
ular edge-weighting, where we demand that the weighted degrees of any two
adjacent vertices differ by at most one and we call a graph admitting an equi-
table edge-weighting as an equitable irregular graph. In this paper we initiate
a study of this new non-proper edge-weighting of a graph.

§2. Classes of Equitable Irregular Graphs

In this section we give some families of equitable irregular graphs. We first
formally define the notion of equitable irregular edge-weighting and equitable
irregular strength of a graph.

Definition 2.1. Given a graph G = (V,E), an k-edge-weighting is a map
φ : E(G) → {1, 2, 3, . . . , k}, where k is a positive integer. For a vertex v of G,
let Sφ(v) denote the sum of edge-weights appearing on the edges incident at v,
under the edge-weighting φ. An k-edge-weighting of G is said to be equitable
irregular if |Sφ(u) − Sφ(v)| ≤ 1, for every pair of adjacent vertices u and v in
G.

A graph G is said to be equitable irregular if G admits an equitable irregular
edge-weighting. If G is equitable irregular then the equitable irregular strength
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of G is defined to be the smallest positive integer k such that there is a k-
edge-weighting of G and is denoted by Se(G).

Example 2.2. (i) Obviously, if G is either regular or semi regular (that is,
a graph in which degree of any vertex is either k or k+1 for some integer
k > 0) then G is equitable irregular and Se(G) = 1.

(ii) The grid graph Pm×Pn is equitable irregular, because the edge-weighting
of Pm×Pn obtained by assigning one to all of whose edges is an equitable
irregular edge-weighting and consequently Se(Pm × Pn) = 1.

(iii) Consider the graph G given in Figure 1. If φ is any k-edge-weighting of
G with Sφ(u1u2) = a, then Sφ(u1) ≥ a + 2 because φ(u1u3) and φ(u1u4)
are at least one, whereas Sφ(u2) = a so that |Sφ(u1) − Sφ(u2)| ≥ 2.
Hence G has no equitable irregular edge-weighting and hence G is not
equitable irregular.
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Figure 1:

Theorem 2.3. The wheel Wn on n vertices is equitable irregular.

Proof. Let V (Wn) = {v0, v1, . . . , vn−1} and E(Wn) = {v0vi : 1 ≤ i ≤ n − 1} ∪
{vivi+1 : 1 ≤ i ≤ n − 2} ∪ {v1vn−1}. Define an edge-weighting φ of Wn as
follows.

Let φ(v0vi) = 1 for all i = 1, 2, . . . , n − 1

φ(vivi+1) =
⌈

n − 3
2

⌉
, for all i = 1, 2, . . . , n − 2,

and φ(v1vn−1) =
⌈

n − 3
2

⌉
.
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Then Sφ(v0) =
∑n−1

i=1 φ(v0vi) = n − 1 and for all i = 1, 2, . . . , n − 1,

Sφ(vi) = φ(v0vi) + φ(vi−1vi) + φ(vivi+1)

= 1 + 2
⌈

n − 3
2

⌉
=

{
n − 2 if n is odd

n − 1 if n is even

Thus, for any two adjacent vertices of Wn, the weighted degrees differ by
at most one so that φ is an equitable edge-weighting of Wn and hence Wn is
equitable irregular.

A triangular cactus is a connected graph all of whose blocks are triangles.
A triangular snake Sn is a triangular cactus whose block-cut point-graph is a
path. That is a triangular snake is obtained from a path (u1, u2, . . . , un+1) by
joining ui and ui+1 to a new vertex vi for i = 1, 2, . . . , n.

Theorem 2.4. The snake graph Sn is equitable irregular for all n.

Proof. Consider the edge-weighting φ of Sn defined as follows. For all i =
1, 2, . . . , n, let

φ(uiui+1) = 1
φ(uivi) = n + 1 − i

and φ(ui+1vi) = i

u 1 u 6u u u u

23 45 1

2

4

5
1

2 3
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3

2 34 51

v
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Figure 2:

(For the snake S5 the labeling φ is illustrated in Figure 2). Then for all
i = 1, 2, . . . , n, we have Sφ(vi) = φ(uivi) + φ(ui+1vi) = n + 1 and for all
i = 2, 3, . . . , n, we have Sφ(ui) = φ(uivi−1)+φ(ui+vi)+φ(ui−1ui)+φ(uiui+1) =
n+2. Also, Sφ(u1) = φ(u1v1)+φ(u1u2) = n+1 and Sφ(un+1) = φ(unun+1)+
φ(un+1un) = n + 1. Hence φ is an equitable irregular edge-weighting of Sn so
that the snake Sn is equitable irregular.

For a given graph G, we define G∇ to be the graph obtained from G by
attaching a triangle at each vertex G. That is, for a graph G if V (G) =
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{v1, v2, v3, . . . , vn}, then G∇ is obtained from G by introducing two vertices xi

and yi for each i, where 1 ≤ i ≤ n, and joining vi to the both xi and yi, and
also joining the vertices xi and yi.

Theorem 2.5. For any graph G, the graph G∇ is equitable irregular.

Proof. Let V (G) = {v1, v2, . . . , vn}. Then G∇ is the graph with V (G∇) =
{v1, x1, y1, v2, x2, y2, . . . , vn, xn, yn} and E(G∇) = E(G) ∪ {xiyi : 1 ≤ i ≤
n} ∪ {vixi : 1 ≤ i ≤ n} ∪ {viyi : 1 ≤ i ≤ n}. Define an edge-weighting φ of G∇

as follows. For all i = 1, 2, . . . , n, let

φ(vixi) = φ(viyi) =
⌊

∆(G) − deg vi + 2
2

⌋

φ(xiyi) =
⌈

∆(G) + deg vi

2

⌉
.

Further assign the label one to all the edges of G. For the given graph G,
the graph G∇ and its edge-weighting φ are illustrated in Figure 3.
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Figure 3:

Now, for all i = 1, 2, . . . , n, we have,

Sφ(vi) = deg vi + 2
⌊

∆(G) − deg vi + 2
2

⌋
=

{
∆(G) + 1 if ∆(G) − deg vi + 2 is odd

∆(G) + 2 if ∆(G) − deg vi + 2 is even

and Sφ(xi) = Sφ(yi) =
⌊

∆(G) − deg vi + 2
2

⌋
+

⌈
∆(G) + deg vi

2

⌉
= ∆(G) + 1.

Thus, the weighted degrees of any two adjacent vertices of G∇ differ by at
most one so that G∇ is equitable irregular.
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For a graph G, the cartesian product G×K2 is called the prism of G. That
is, the prism of a graph G is the graph obtained by taking two copies of G and
joining each vertex of one copy of G with the same vertex in the other copy
of G.

Theorem 2.6. The prism of any graph is equitable irregular.

Proof. If G is the given graph, we define an edge-weighting φ of the prism
G×K2 as follows. Assign the weight one to all the edges of G (in both copies).
Also, if e is an edge of G×K2 which joins a vertex v of one copy of G with the
same vertex in the other copy of G, define φ(e) = ∆(G) − degGv + 1. Then,
for any vertex u in the prism, we have Sφ(u) = degGu + ∆(G)− degGu + 1 =
∆(G) + 1 so that φ is an equitable irregular edge-weighting of the prism. A
graph G and its prism along with the equitable irregular edge-weighting φ are
given in Figure 4.

G 

G    K2×

3

1 1

1

1 1

1

1 1

1

2 2

Figure 4:

An n-fan graph is defined to be a graph obtained by attaching n number
cycles, say Ck1 , Ck2 , . . . , Ckn of length k1, k2, . . . , kn respectively at a vertex
and is denoted by G(Ck1 , Ck2 , . . . , Ckn). Here the cycles of the n-fan graph are
called leaves and leaves of even length are called even leaves. A 3-fan graph is
given in Figure 5.

G(C  , C  , C )3 3 4

Figure 5:
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Theorem 2.7. The n-fan graph G is equitable irregular if and only if all of
whose even leaves are of length at least 4(n − 1).

Proof. Suppose all the leaves of the n-fan graph G(Ck1 , Ck2 , . . . , Ckn) have
length at least 4(n − 1). We have to define an equitable irregular edge-
weighting of the n-fan graph. In order to obtain such an equitable irregular
edge-weighting it is sufficient if we say that how an arbitrary leaf must be
labeled. Now, let us consider a leaf Cki

, of the n-fan graph.
If the length of Cki

is odd, then assign the weights 1 and 2n − 2 to the
edges of the leaf Cki

alternatively starting from the edge of this leaf incident
at v, where v is the centre vertex of the n-fan graph.

Now, suppose the length of the leaf Cki
is even and let its length be 4(n −

1) + r where r ≥ 0. For our convenience let us denote the vertices of the leaf
Cki

as in Figure 6.
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Figure 6:

We now assign weights to the edges of Cki
as follows. Let φ(vvi1) =

φ(vui1) = 1. Also for all j = 1, 2, . . . , n − 2,

let φ(vi2j−1vi2j ) = 2n − (j + 1)
φ(vi2jvi2j+1) = j + 1
φ(ui2j−1ui2j ) = 2n − (j + 1)

and φ(ui2jui2j+1) = j + 1.

Further assign the weight n to all the remaining edges of Cki
. Hence, for all

j = 1, 2, . . . , n − 2, we have

Sφ(vi2j ) = φ(vi2j−1vi2j ) + φ(vi2jvi2j+1)
= 2n − j − 1 + j + 1 = 2n,

Sφ(vi2j+1) = φ(vi2jvi2j+1) + φ(vi2j+1vi2j+2)
= j + 1 + 2n − j − 2 = 2n − 1,

and Sφ(vi1) = φ(vvi1) + φ(vi1vi2) = 2n − 1.



86 I.S. HAMID AND S.A. KUMAR

Thus, the degree weights for any two adjacent vertices of Cki
differ by at most

one, so that the n-fan graph G is equitable irregular.
Suppose the n-fan graph G is equitable irregular. Then G has an equitable

irregular edge-weighting φ. We now wish to prove that the length of any even
leaf of G is at least 4(n − 1). Let C be an arbitrary leaf of even length say
l = 2r, where r ≥ 1. Let C = (v, x1, x2, . . . , xr−1, u, yr−1, . . . , y1, v). Now, let
us denote the edge weights of the edges vx1 and vy1 under the labeling φ as
a1 and a2 respectively. Also let li and l′i denote the edge weights of the edges
yiyi+1 and xixi+1 respectively for all i = 1, 2, . . . , r − 1.

Now, there are 2n − 2 edges (other than vx1 and vy1) incident at the
vertex v and also the weight of each of those edges is at least one. Hence
Sφ(v) ≥ φ(vx1) + φ(vy1) + 2n − 2 = a1 + a2 + 2n − 2. Since φ(vy1) = a2

and |Sφ(v) − Sφ(y1)| ≤ 1, it follows that l1 = a1 + k1, for some k1 with
k1 ∈ {2n−3, 2n−2, 2n−1}. Similarly, since Sφ(y1) = φ(vy1)+φ(y1y2) = a2 +
l1 = a1+a2+k1 and |Sφ(y1)−Sφ(y2)| ≤ 1, it follows that l2 = a2+k2 for some
k2 with k2 ∈ {−1, 0, 1}. Proceeding like this we have for all i = 1, 2, . . . , r− 1,

li =


a1 +

∑ i+1
2

j=1 k2j−1 if i is odd

a2 +
∑ i

2
j=1 k2j if i is even,

and l′i =


a2 +

∑ i+1
2

j=1 k′
2j−1 if i is odd

a1 +
∑ i

2
j=1 k′

2j if i is even,

where kj , k
′
j ∈ {−1, 0, 1}, for all j = 2, 3, . . . , r− 1. We now consider following

two cases.

Case (i) r is even

Now, Sφ(u) = lr−1+ l′r−1 and Sφ(xr−1) = l′r−2+ l′r−1. Also, since φ is equitable
irregular, we have Sφ(u) − Sφ(xr−1) ≤ 1, so that lr−1 − l′r−2 ≤ 1

Hence

a1 +

r
2∑

j=1

k2j−1

 −

a1 +

r
2
−1∑

j=1

k′
2j

 ≤ 1

⇒

r
2∑

j=1

k2j−1 −

r
2
−1∑

j=1

k′
2j ≤ 1

⇒

r
2∑

j=1

k2j−1 ≤ 1 +

r
2
−1∑

j=1

k′
2j ≤ 1 +

r

2
− 1 =

r

2
.(i)
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Also, since k1 ≥ 2n − 3 and ki ≥ −1, for each i ≥ 2, we have
r
2∑

j=1

k2j−1 ≥ 2n − 3 − r

2
+ 1 = 2n − 2 − r

2
.(ii)

Using (i) and (ii) we get 2r ≥ 4n − 4 so that l ≥ 4(n − 1).

Case (ii) r is odd

Now, Sφ(u) = lr−1 + l′r−1 and Sφ(yr−1) = lr−1 + lr−2. Also, since φ is equitable
irregular, we have Sφ(yr−1) − Sφ(u) ≤ 1, so that lr−2 − l′r−1 ≤ 1.

Hence

a1 +

r−1
2∑

j=1

k2j−1

 −

a1 +

r−1
2∑

j=1

k′
2j

 ≤ 1

⇒

r−1
2∑

j=1

k2j−1 ≤ 1 + a1 −

r−1
2∑

j=1

k′
2j ≤ 1 +

r

2
− 1

2
=

r

2
+

1
2
.(iii)

Also,

r−1
2∑

j=1

k2j−1 ≥ 2n − 3 +
(

r − 1
2

− 1
)

(−1).(iv)

Using (iii) and (iv) we get 2r ≥ 4n − 4 so that l ≥ 4(n − 1).
In either cases all even leaves of G are of the length at least 4(n − 1).

Theorem 2.8. The complete bipartite graph K2,n is equitable irregular if and
only if n ≤ 3.

Proof. Obviously K2,n is equitable irregular if n ≤ 3. Suppose n ≥ 4. Let
(X,Y ) be the bipartition of K2,n, where X = {x1, x2} and Y = {y1, y2, . . . , yn}.
Suppose φ is any k-edge-weighting of K2,n. Let φ(x1yi) = ai, 1 ≤ i ≤ n. Then

Sφ(x1) = a1 + a2 + a3 + · · · + an. Hence φ(x2yi) ≥
(∑n

j=1,j 6=i aj

)
− 1, for all

i = 1, 2, . . . , n. Thus

Sφ(x2) =
n∑

i=1

φ(x2yi)

≥
n∑

i=1

 n∑
j=1,j 6=i

aj

 − n

= (n − 1)
n∑

i=1

ai − n

= (n − 1)Sφ(x1) − n.
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Also, Sφ(y1) ≤ Sφ(x1)+1. Hence Sφ(x2)−Sφ(y1) ≥ (n−1)Sφ(x1)−n−Sφ(x1)−
1 = (n−2)Sφ(x1)−n−1. Thus |Sφ(x2)−Sφ(y1)| ≥ (n−2)Sφ(x1)−n−1. But
|Sφ(x2)−Sφ(y1)| ≤ 1 so that (n−2)Sφ(x1)−n−1 ≤ 1 and hence Sφ(x1) ≤ n+2

n−2 .
Since Sφ(x1) ≥ n, it follows that n ≤ n+2

n−2 which is a contradiction when
n ≥ 4.

Theorem 2.9. The complete bipartite graph Km,n is equitable irregular if and
only if |m − n| ≤ 1.

Proof. We may assume m ≤ n. Let G = Km,n, and let X and Y be the
partite sets of G having cardinalities m and n, respectively. It is clear that
if n ≤ m + 1, then G is equitable irregular. Conversely, suppose that G has
an equitable irregular edge-weighting φ. Let r denote the minimum of Sφ(y)
as y ranges over Y . Then

∑
e∈E(G) φ(e) =

∑
y∈Y Sφ(y) ≥ rn. On the other

hand, since φ is equitable irregular, Sφ(x) ≤ r + 1 for all x ∈ X, and hence∑
e∈E(G) φ(e) =

∑
x∈X Sφ(x) ≤ (r + 1)m. Consequently rn ≤ (r + 1)m. Note

that r ≥ m because φ(e) ≥ 1 for all e ∈ E(G). Therefore n ≤ m(r + 1)/r ≤
m + 1, as desired.

§3. Properties of Equitable Irregular Graphs

In this section, we present some properties of equitable irregular graphs. A
vertex of degree one is called pendant vertex and a vertex which is adjacent to
a pendant vertex is called a support vertex.

Theorem 3.1. If G is equitable irregular, then every support vertex in G (if
any) is of degree two.

Proof. Suppose there exists a support vertex v of degree greater than two in
G. Let u be a pendant vertex adjacent to v. Now, if φ is a k-edge-weighting
of G with φ(uv) = a then Sφ(u) = a and since deg v ≥ 3 it follows that
Sφ(v) = a+2 so that |Sφ(u)−Sφ(v)| ≥ 2. Hence G has no equitable irregular
k-edge-weighting.

Remark 3.2. The converse of the above theorem is not true. That is a graph G
in which every support vertex is of degree two need not be equitable irregular.
For example, in the graph G given in Figure 7 the support vertex is of degree
two, whereas G is not equitable irregular.

We now present a lower bound for the equitable irregular strength of a graph
G, which is useful in determining the value of Se(G). For this purpose, we
define the term µ(G) as follows. For a vertex x ∈ V (G), let µx = min{deg y :
yx ∈ E(G)}, and then define µ(G) = min{µx : x ∈ V (G) with deg x = ∆}.
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Figure 7:

Theorem 3.3. If G is equitable irregular, then Se(G) ≥ ∆−2
µ(G)−1 .

Proof. Let φ be any k-edge-weighting of G. Let x be a vertex of degree ∆ with
µ(G) = µx and let y be a neighbour of x with µx = deg y. Let φ(xy) = a.
Now, if the weight of each of the edges incident at y other then xy is less
then ∆−2

µ(G)−1 , then Sφ(y) < ∆ − 2 + a. Also Sφ(x) ≥ ∆ − 1 + a and hence
Sφ(x)− Sφ(y) > ∆− 1 + a−∆ + 2− a so that |Sφ(x)− Sφ(y)| ≥ 2. Thus if φ
is any equitable irregular edge-weighting of G, then at least one of the edges
incident at y has weight at least ∆−2

µ(G)−1 under the edge-weighting φ and hence

Se(G) ≥ ∆−2
µ(G)−1 .

Corollary 3.4. For the wheel Wn on n vertices, Se(Wn) = dn−3
2 e

Proof. By considering the equitable irregular labeling of Wn as in Theorem 2.3,
we have Sφ(Wn) ≤ dn−3

2 e. Now, it follows from Theorem 3.3 that Sφ(Wn) ≥
dn−3

2 e.

Corollary 3.5. For the n-fan graph G(Ck1 , Ck2 , . . . , Ckn), Se(G) = 2(n − 1).

Proof. By considering the equitable irregular labeling of n-fan graph G(Ck1 ,
Ck2 , . . . , Ckn) as in Theorem 2.7, we have Sφ(G) = 2(n − 1). Now, it follows
from Theorem 3.3 that Sφ(G) = 2(n − 1).

Corollary 3.6. For any graph G, we have Se(G∇) = ∆(G).

Proof. Consider the equitable irregular edge-weighting φ of G∇ as in Theorem
2.5. Then Se(G∇) ≤ ∆(G). Now, since ∆(G∇) = ∆(G) + 2 and µ(G∇) = 2 it
follows from Theorem 3.3 that Se(G∇) ≥ ∆(G).

Remark 3.7. By the virtue of Theorem 2.5 and Theorem 2.6, one can observe
that any graph G (whether or not it is equitable irregular) can be embedded
as an induced subgraph of an equitable irregular graph H which shows the
impossibility of obtaining a forbidden subgraph characterization for an equi-
table irregular graph. Here the graph H is called an embedding of G; and
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infact this embedding is not unique, as we have seen that, for any graph G,
the graph G∇ and the prism G×K2 are equitable irregular. Also, it is always
possible to embed any graph as an induced subgraph of a regular graph which
is equitable irregular so that we have another way of embedding a graph in
a equitable irregular graph. Thus, at this point we have three types of em-
beddings; however these are not the only such embedding. For example, the
graph H given in Figure 8 is an embedding of the graph G; but H is neither
of the above three types and infact H is an embedding of G with minimum
order. In this connection, the following problem naturally arises.

G H

Figure 8:

Problem 3.8. If G is non-equitable irregular, what is the minimum order of
an equitable irregular graph H having G as an induced subgraph?

Conclusion and Scope

In this paper we have introduced a new edge labeling namely equitable ir-
regular edge-weighting and have initiated a study of this labeling. However,
there is a wide scope for further research on this topic. Here we present some
directions for further research.

(A) In Theorem 3.1, we have given a necessary condition for a graph to be
equitable irregular. However, we have no other tool so far to say that whether
or not a graph is equitable irregular. Hence, obtaining a necessary or sufficient
condition for being equitable irregular is worthy trying.

(B) Since a complete graph is equitable irregular, it is always possible to
make a graph equitable irregular by adding edges within the graph and so one
can naturally look for the minimum number of edges to be added in order to
make a graph equitable irregular.

(C) It seems to us that the problem of characterizing trees which are equi-
table irregular would be very interesting.



EDGE-WEIGHTING OF GRAPHS 91

(D) The effect of removal of an edge from a graph on a parameter is of some
practical importance. One can observe that removal of an edge from a graph
G can make it either equitable irregular or non-equitable irregular. Hence, let
us call an edge e of G a critical edge if G−e becomes equitable irregular when
G is not and vice versa. Now, we can initiate a study on critical edges of a
graph.

(E) Characterize equitable irregular graphs G for which Se(G) = ∆(G)−2
µ(G)−1 .
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