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Abstract. The object of the present paper is to study a non-flat quasi-
conformally flat Riemannian manifold whose Ricci tensor S satisfies the condi-
tion S(X, Y ) = γT (X)T (Y ), where γ is the scalar curvature and T is a 1-form
defined by T (X) = g(X, ξ), ξ is a unit vector field.
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§1. Introduction

The notion of a quasi-conformal curvature tensor was given by Yano and
Sawaki [10]. According to them a quasi-conformal curvature tensor C∗ is
defined by

C∗(X, Y )Z = aR(X, Y )Z + b[S(Y, Z)X − S(X, Z)Y + g(Y, Z)QX

− g(X, Z)QY ] − γ

n
[

a

n − 1
+ 2b][g(Y, Z)X − g(X, Z)Y ], (1.1)

where a and b are constants and R, Q and γ are the Riemannian curvature
tensor of type (1, 3), the Ricci operator defined by g(QX, Y ) = S(X, Y ) and
the scalar curvature, respectively. If a = 1 and b = − 1

n−2 , then (1.1) takes the
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form

C∗(X, Y )Z = R(X, Y )Z − 1
n − 2

[S(Y, Z)X − S(X, Z)Y + g(Y, Z)QX

− g(X, Z)QY ] +
γ

(n − 1)(n − 2)
[g(Y, Z)X − g(X, Z)Y ]

= C(X, Y )Z,

where C is the conformal curvature tensor [4]. Thus the conformal curvature
tensor C is a particular case of the tensor C∗. For this reason C∗ is called the
quasi-conformal curvature tensor. A manifold (Mn, g) (n > 3) shall be called
quasi-conformally flat if C∗ = 0. It is known [1] that a quasi-conformally flat
manifold is either conformally flat if a �= 0 or Einstein if a = 0 and b �= 0.
Since they give no restrictions for manifolds if a = 0 and b = 0, it is essential
for us to consider the case of a �= 0 or b �= 0.

A Riemannian manifold of quasi-constant curvature was given by B. Y.
Chen and K. Yano [3] as a conformally flat manifold with the curvature tensor
R̃ of type (0, 4) satisfies the condition

R̃(X, Y, Z, W ) = p[g(Y, Z)g(X, W ) − g(X, Z)g(Y, W )]
+ q[g(X, W )T (Y )T (Z) + g(Y, Z)T (X)T (W )
− g(X, Z)T (Y )T (W ) − g(Y, W )T (X)T (Z)], (1.2)

where R̃(X, Y, Z, W ) = g(R(X, Y )Z, W ), R is the curvature tensor of type (1,
3), p, q are scalar functions and T is a non-zero 1-form defined by

g(X, ξ̃) = T (X), (1.3)

where ξ̃ is a unit vector filed. It can be easily seen that if the curvature tensor
R̃ is of the form (1.2), then the manifold is conformally flat. On the other
hand, G. Vrǎnceanu [8] defined the notion of almost constant curvature by the
same expression (1.2). Later A. L. Mocanu [6] pointed out that the manifold
introduced by Chen and Yano and the manifold introduced by Vrǎnceanu
are the same. Hence a Riemannian manifold is said to be of quasi-constant
curvature if the curvature tensor R̃ satisfies the relation (1.2). If q = 0, then
the manifold reduces to a manifold of constant curvature.

The present paper deals with the quasi-conformally flat manifold (Mn, g)
(n > 3) whose Ricci tensor S satisfies

S(X, Y ) = γT (X)T (Y ), (1.4)

where T is a non-zero 1-form defined by g(X, ξ) = T (X), ξ is a unit vector
field. For the scalar curvature γ we suppose that γ �= 0 for each point of
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M . Under the assumption above we know that M is not Einstein. Hence we
consider the case of a �= 0 (See §3). We shall prove the following:

Theorem 1. A quasi-conformally flat manifold satisfying the condition (1.4)
under the assumption of γ �= 0 is a manifold of quasi-constant curvature.

Theorem 2. In a quasi-conformally flat Riemannian manifold satisfying the
condition (1.4) under the same assumption as Theorem 1, the integral curves
of the vector field ξ are geodesic.

Theorem 3. In a quasi-conformally flat manifold satisfying (1.4) under the
same assumption as Theorem 1, the vector field ξ is a proper concircular vector
field (See §4).

Theorem 4. If a quasi-conformally flat manifold satisfies (1.4) under the
same assumption as Theorem 1, then the manifold is a locally product manifold.

Theorem 5. A quasi-conformally flat manifold satisfying (1.4) under the
same assumption as Theorem 1 can be expressed as a locally warped product
I ×eq M∗ where M∗ is an Einstein manifold (See §4).

§2. Preliminaries

From (1.1) we obtain

(∇W C∗)(X, Y )Z = a(∇W R)(X, Y )Z + b[(∇W S)(Y, Z)X − (∇W S)(X, Z)Y
+ g(Y, Z)(∇W Q)(X) − g(X, Z)(∇W Q)(Y )]

− dγ(W )
n

[
a

n − 1
+ 2b][g(Y, Z)X − g(X, Z)Y ], (2.1)

where ∇ is the covariant differentiation with respect to the Riemannian metric
g. We know that (div R)(X, Y )Z = (∇XS)(Y, Z) − (∇Y S)(X, Z). Hence
contracting (2.1) we obtain

(div C∗)(X, Y )Z = (a + b)((∇XS)(Y, Z) − (∇Y S)(X, Z))

+
1
n

[
(n − 4)b

2
− a

n − 1
](g(Y, Z)dγ(X) − g(X, Z)dγ(Y )). (2.2)

Here we consider quasi-conformally flat manifold i.e., C∗ = 0. Hence div C∗ =
0, where ’div’ denotes the divergence. If a + b �= 0, then from (2.2) it follows
that

(∇XS)(Y, Z) − (∇Y S)(X, Z)

=
1

n(a + b)
[

a

n − 1
− (n − 4)b

2
][g(Y, Z)dγ(X) − g(X, Z)dγ(Y )].
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This can be written as

(∇XS)(Y, Z) − (∇Y S)(X, Z) = α[g(Y, Z)dγ(X) − g(X, Z)dγ(Y )], (2.3)

where α =
1

n(a + b)
[

a

n − 1
− (n − 4)b

2
] = constant.

§3. Quasi-conformally flat manifold satisfying the condition (1.4)

From (1.1) we get

C̃∗(X, Y, Z, W ) = aR̃(X, Y, Z, W ) + b[S(Y, Z)g(X, W ) − S(X, Z)g(Y, W )
+ S(X, W )g(Y, Z) − S(Y, W )g(X, Z)]

− γ

n
[

a

n − 1
+ 2b][g(Y, Z)g(X, W ) − g(X, Z)g(Y, W )]. (3.1)

If the manifold is quasi-conformally flat under the assumption of γ �= 0, then
we get

γ(a + (n − 2)b) = 0.

Then we note that [
(n − 4)b

2
− a

n − 1
] =

3na

2(n − 1)(n − 2)
. Since a �= 0 under

the assumption of γ �= 0, we know that a + b �= 0 and α �= 0. Moreover, from
(1.4) we have

R̃(X, Y, Z, W )

=
b

a
[S(X, Z)g(Y, W )−S(Y, Z)g(X, W )+S(Y, W )g(X, Z)−S(X, W )g(Y, Z)]

+
γ

na
[

a

n − 1
+ 2b][g(Y, Z)g(X, W ) − g(X, Z)g(Y, W )] (3.2)

Using (1.4) in (3.2), we obtain

R̃(X, Y, Z, W )

=
γb

a
[g(Y, W )T (X)T (Z) − g(X, W )T (Y )T (Z) + g(X, Z)T (Y )T (W )

−g(Y, Z)T (X)T (W )]+
γ

na
[

a

n − 1
+2b][g(Y, Z)g(X, W )−g(X, Z)g(Y, W )],

which implies that the manifold is a manifold of quasi-constant curvature.
Hence we can state that

Theorem 1. A quasi-conformally flat manifold satisfying the condition (1.4)
under the assumption of γ �= 0 is a manifold of quasi-constant curvature.
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§4. The results concerning the product manifold

From (1.4) we have

(∇ZS)(X, Y )
= dγ(Z)T (X)T (Y ) + γ[(∇ZT )(X)T (Y ) + T (X)(∇ZT )(Y )]. (4.1)

Substituting (4.1) in (2.3), we get

dγ(Z)T (X)T (Y ) + γ[(∇ZT )(X)T (Y ) + T (X)(∇ZT )(Y )]
− dγ(X)T (Z)T (Y ) − γ[(∇XT )(Z)T (Y ) + T (Z)(∇XT )(Y )]

= α[g(X, Y )dγ(Z) − g(Z, Y )dγ(X)]. (4.2)

Putting Y = Z = ei in the above expression where {ei} is an orthonormal basis
of the tangent space at each point of the manifold and taking summation over
i, 1 ≤ i ≤ n, we get

α(1 − n)dγ(X) = dγ(ξ)T (X) + γ(∇ξT )(X) + γT (X)(δT ) − dγ(X), (4.3)

where we put δT =
n∑

i=1

(∇eiT )(ei). Again putting Y = Z = ξ in (4.2), it yields

γ(∇ξT )(X) = (α − 1)[dγ(ξ)T (X) − dγ(X)]. (4.4)

Substituting (4.4) in (4.3), we get

α(n − 2)dγ(X) − αdγ(ξ)T (X) + γδT = 0. (4.5)

Now putting X = ξ in (4.5), it yields

α(n − 3)dγ(ξ) + γδT = 0. (4.6)

From (4.5) and (4.6) it follows that

αdγ(X) = αdγ(ξ)T (X).

Since α �= 0, we have
dγ(X) = dγ(ξ)T (X). (4.7)

Putting Y = ξ in (4.2) and using (4.7), we obtain

(∇XT )(Z) − (∇ZT )(X) = 0, (4.8)

since γ �= 0. This means that the 1-form T defined by g(X, ξ) = T (X) is
closed, i.e., dT (X, Y ) = 0. Hence it follows that

g(∇Xξ, Y ) = g(∇Y ξ, X) (4.9)
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for all X, Y . Now putting Y = ξ in (4.9), we get

g(∇Xξ, ξ) = g(∇ξξ, X). (4.10)

Since g(∇Xξ, ξ) = 0, from (4.10) it follows that g(∇ξξ, X) = 0 for all X.
Hence ∇ξξ = 0. This means that the integral curves of the vector field ξ are
geodesic. Therefore we can state the following:

Theorem 2. In a quasi-conformally flat Riemannian manifold satisfying the
condition (1.4) under the assumption of γ �= 0, the integral curves of the vector
field ξ are geodesic.

From (4.4), by virtue of (4.7) we get

(∇ξT )(Z) = 0, (4.11)

since γ �= 0. Now we consider the scalar function

f = α
dγ(ξ)

γ
.

We have

∇Xf =
α

γ2
[dγ(ξ)T (∇Xξ)γ − dγ(X)dγ(ξ)] +

α

γ
d2γ(ξ, X), (4.12)

where the Hessian d2γ is defined by d2γ(X, Y ) = X(Y γ) − (∇XY )γ. On the
other hand, (4.7) implies that

d2γ(Y, X) = d2γ(ξ, Y )T (X) + dγ(ξ)T (∇Y ξ)T (X) + dγ(ξ)(∇Y T )(X),

from which we get

d2γ(ξ, Y )T (X) = d2γ(ξ, X)T (Y ), (4.13)

since (∇XT )(Y ) = (∇Y T )(X) and d2γ(Y, X) = d2γ(X, Y ). Putting X = ξ in
(4.13), it follows that

d2γ(ξ, Y ) = d2γ(ξ, ξ)T (Y ),

since T (ξ) = 1. Thus
∇Xf = μT (X), (4.14)

where μ =
α

γ
[d2γ(ξ, ξ) − dγ(ξ)

γ
dγ(ξ)] and we used (4.7). Using (4.14), it is

easy to show that
ω(X) =

α

γ
dγ(ξ)T (X) = fT (X)
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is closed. In fact,
dω(X, Y ) = 0.

Using (4.7) and (4.8) in (4.2), we get

γ[T (Z)(∇XT )(Y ) − T (X)(∇ZT )(Y )]
= αdγ(ξ)[g(Y, Z)T (X) − g(X, Y )T (Z)].

Now putting Z = ξ in the above expression it yields

−(∇XT )(Y ) = α
dγ(ξ)

γ
[T (X)T (Y ) − g(X, Y )], (4.15)

by (4.11). Thus (4.15) can be rewritten as follows:

(∇XT )(Y ) = −fg(X, Y ) + ω(X)T (Y ), (4.16)

where ω is closed. But this means that the vector field ξ defined by g(X, ξ) =
T (X) is a proper concircular vector field ([7], [9]). Hence we can state the
following:

Theorem 3. In a quasi-conformally flat manifold satisfying (1.4) under the
assumption of γ �= 0, the vector field ξ is a proper concircular vector field.

From (4.16) it follows that

∇Xξ = −fX + ω(X)ξ. (4.17)

Let ξ⊥ denote the (n− 1)-dimensional distribution in a quasi-conformally flat
manifold orthogonal to ξ. If X and Y belong to ξ⊥, then

g(X, ξ) = 0 (4.18)

and
g(Y, ξ) = 0. (4.19)

Since (∇Xg)(Y, ξ) = 0, it follows from (4.17) and (4.19) that

g(∇XY, ξ) = g(∇Xξ, Y ) = −fg(X, Y ).

Similarly, we get

g(∇Y X, ξ) = g(∇Y ξ, X) = −fg(X, Y ).

Hence
g(∇XY, ξ) = (∇Y X, ξ). (4.20)
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Now [X, Y ] = ∇XY −∇Y X and therefore by (4.20) we obtain

g([X, Y ], ξ) = g(∇XY −∇Y X, ξ) = 0.

Hence [X, Y ] is orthogonal to ξ. That is, [X, Y ] belongs to ξ⊥. Thus the distri-
bution ξ⊥ is involutive [2]. Hence from Frobenius’ theorem [2] it follows that
ξ⊥ is integrable. This implies that if a quasi-conformally flat manifold satis-
fies (1.4), then it is a product manifold. We can therefore state the following
theorem:

Theorem 4. If a quasi-conformally flat manifold satisfies (1.4) under the
assumption of γ �= 0, then the manifold is a locally product manifold.

If a quasi-conformally flat manifold satisfies (1.4) under the assumption of
γ �= 0, then in view of Theorem 3, ξ is a concircular vector field. Also, M is a
quasi-constant curvature manifold and satisfies (1.2) and from Theorem 4 we
know that ξ⊥ is integrable and it holds

g(∇XY, ξ) = −(∇XT )(Y )

for the local vector fields X, Y belonging to ξ⊥. Thus from (4.15) the second
fundamental form k for each leaf satisfies

k(X, Y ) = −α
dγ(ξ)

γ
g(X, Y )ξ.

Hence we know that each leaf is totally umbilic. Therefore each leaf is a
manifold of constant curvature. Hence it must be a warped product I ×eq M∗

where M∗ is an Einstein manifold. Thus we can state the following result (See
[9], [5]):

Theorem 5. A quasi-conformally flat manifold satisfying (1.4) under the
assumption of γ �= 0 can be expressed as a locally warped product I ×eq M∗

where M∗ is an Einstein manifold.
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