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Abstract. For the analysis of square contingency tables with ordered cate-
gories, Tomizawa, Miyamoto and Ashihara (2003) considered the measure which
represents the degree of departure from the marginal homogeneity (MH) model
and does not depend on the diagonal probabilities in the table. This paper pro-
poses another measure which represents the degree of departure from MH and
depends on the diagonal probabilities. The measure proposed is expressed by
using the Cressie-Read power-divergence or Patil-Taillie diversity index, which
is applied for the cumulative marginal probabilities that an observation will fall
in row (column) category i or below [or in row (column) category i+1 or above].
The measure is useful for seeing how far the cumulative marginal probabilities
are distant from those with a MH structure, and for comparing the degree of
departure from MH in several tables. Examples are given.
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§1. Introduction

Consider an R × R square contingency table with the same row and column
classifications. Let pij denote the probability that an observation will fall in
the ith row and jth column of the table (i = 1, 2, . . . , R; j = 1, 2, . . . , R), and
let X and Y denote the row and column variables, respectively. The marginal
homogeneity (MH) model is defined by

Pr(X = i) = Pr(Y = i) for i = 1, 2, . . . , R,

namely
pi· = p·i for i = 1, 2, . . . , R,
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where pi· =
∑R

t=1 pit and p·i =
∑R

s=1 psi (Stuart, 1955). This model indi-
cates that the row marginal distribution is identical with the column marginal
distribution. This model may be expressed as

Pr(X = i|X �= Y ) = Pr(Y = i|X �= Y ) for i = 1, 2, . . . , R,

namely
pc

i· = pc
·i for i = 1, 2, . . . , R,

where
pc

i· = (pi· − pii)/δ, pc
·i = (p·i − pii)/δ and δ =

∑∑
i�=j

pij .

This states that the conditional row marginal distribution is identical with the
conditional column marginal distribution, given that an observation will fall
in one of the off-diagonal cells of the table.

Let FX
i and F Y

i denote the cumulative marginal probabilities of X and Y ,
respectively; those are FX

i = Pr(X ≤ i) =
∑i

k=1 pk· and F Y
i = Pr(Y ≤ i) =∑i

k=1 p·k for i = 1, 2, . . . , R − 1. Then the MH model may also be expressed
as

FX
i = F Y

i for i = 1, 2, . . . , R − 1.

This states that the row cumulative marginal distribution is identical with the
column cumulative marginal distribution. Then, by considering the difference
between the cumulative marginal probabilities, FX

i −F Y
i for i = 1, 2, . . . , R−1,

we see that the MH model may further be expressed as

G1(i) = G2(i) for i = 1, 2, . . . , R − 1,

where

G1(i) =
i∑

s=1

R∑
t=i+1

pst = Pr(X ≤ i, Y ≥ i + 1),

and

G2(i) =
R∑

s=i+1

i∑
t=1

pst = Pr(X ≥ i + 1, Y ≤ i).

Namely, this model states that the cumulative probability that an observation
will fall in row category i or below and column category i+1 or above is equal
to the cumulative probability that the observation falls in column category i
or below and row category i + 1 or above.

For square contingency tables with nominal categories, Tomizawa (1995)
proposed the measure to represent the degree of departure from MH, which are
expressed by using the Kullback-Leibler information (or the Shannon entropy)
and the Pearson χ2-type discrepancy (or the Gini concentration); namely, (i)
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two kinds of measures (denoted by Ψ(0) and Ψ(1)) being functions of {pi·} and
{p·i}, and (ii) two kinds of measures (denoted by Φ(0) and Φ(1)) being functions
of {pc

i·} and {pc
·i}. Tomizawa and Makii (2001) considered a generalization of

Tomizawa’s (1995) measures, which is expressed by using Cressie and Read’s
(1984) power-divergence (or Patil and Taillie’s (1982) diversity index); the
measures are denoted by Ψ(λ) and Φ(λ), λ > −1, though the details are omitted
here. Note that the measure Ψ(λ) depends on the diagonal probabilities in the
table and the measure Φ(λ) does not depend on the diagonal probabilities.
The measures Ψ(λ) and Φ(λ) are applied to nominal data because those are
invariant under arbitrary similar permutations of row and column categories.

For square contingency tables with ordered categories, Tomizawa, Miyamoto
and Ashihara (2003) proposed the measure to represent the degree of departure
from MH. The measure (denoted by Γ(λ)) is a function of the cumulative
probabilities {G1(i)} and {G2(i)}, and it is not invariant under arbitrary similar
permutations of row and column categories except the reverse order. The
measure Γ(λ) does not depend on the diagonal probabilities.

So we are also interested in a measure (1) which is a function of the cu-
mulative marginal probabilities {FX

i } and {F Y
i }, (2) which depends on the

diagonal probabilities, and (3) which is applied to the ordinal data; because
(i) the MH model indicates that {FX

i } is identical with {F Y
i }, (ii) FX

i (F Y
i )

depend on the diagonal probabilities, and (iii) FX
i (F Y

i ) are meaningful for
the ordinal data.

The purpose of this paper is to propose a measure which represents the
degree of departure from MH for square contingency tables with ordered cate-
gories. The measure proposed is a function of the cumulative marginal prob-
abilities {FX

i } and {F Y
i }, and depends on the diagonal probabilities. The

measure is applied to square tables with ordered categories. It would be useful
for seeing how far the cumulative marginal probabilities are distant from those
with a MH structure and for comparing the degree of departure from MH in
several tables.

§2. Measure of departure from marginal homogeneity

In Sections 2.1 and 2.2, we shall define the two kinds of submeasures to rep-
resent the degree of departure from MH (denoted by Ω(λ)

M1 and Ω(λ)
M2). In

Section 2.3, we shall define the complete measure which represents the degree
of departure from MH (denoted by Ω(λ)

M ).
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2.1. Submeasure I

For the R × R square contingency table with ordered categories, let

Δ1 =
R−1∑
i=1

(FX
i + F Y

i ),

and

F ∗
1(i) =

FX
i

Δ1
, F ∗

2(i) =
F Y

i

Δ1
, Q∗

1(i) =
1
2

(F ∗
1(i)+F ∗

2(i)) for i = 1, 2, . . . , R−1.

We see that {F ∗
1(i) = F ∗

2(i) = Q∗
1(i)} when the MH model holds. Note that∑R−1

i=1 (F ∗
1(i) + F ∗

2(i)) = 1 and
∑R−1

i=1 (2Q∗
1(i)) = 1. Assume that FX

1 + F Y
1 �= 0

(thus, FX
i + F Y

i �= 0 for i = 1, 2, . . . , R− 1). Consider the submeasure defined
by

Ω(λ)
M1 =

λ(λ + 1)
2λ − 1

I(λ)
(
{F ∗

1(i), F
∗
2(i)}; {Q∗

1(i), Q
∗
1(i)}

)
for λ > −1,

where

I(λ)(·; ·) =
1

λ(λ + 1)

R−1∑
i=1

⎡⎣F ∗
1(i)

⎧⎨⎩
(

F ∗
1(i)

Q∗
1(i)

)λ

− 1

⎫⎬⎭+ F ∗
2(i)

⎧⎨⎩
(

F ∗
2(i)

Q∗
1(i)

)λ

− 1

⎫⎬⎭
⎤⎦ ,

and the value at λ = 0 is taken to be the limit as λ → 0. Thus,

Ω(0)
M1 =

1
log 2

I(0)
(
{F ∗

1(i), F
∗
2(i)}; {Q∗

1(i), Q
∗
1(i)}

)
,

where

I(0)(·; ·) =
R−1∑
i=1

[
F ∗

1(i) log

(
F ∗

1(i)

Q∗
1(i)

)
+ F ∗

2(i) log

(
F ∗

2(i)

Q∗
1(i)

)]
.

The I(λ)({F ∗
1(i), F

∗
2(i)}; {Q∗

1(i), Q
∗
1(i)}) is the power-divergence between {F ∗

1(i),

F ∗
2(i)} and {Q∗

1(i), Q
∗
1(i)}, i = 1, 2, . . . , R − 1, and especially, I(0)(·; ·) is the

Kullback-Leibler information between them. For more details of the power-
divergence, see Cressie and Read (1984), and Read and Cressie (1988, p.15).
We see that I(λ)(·; ·) = 0 when the MH model holds. Note that a real value λ
is chosen by the user.

Let

F c
1(i) =

FX
i

FX
i + F Y

i

, F c
2(i) =

F Y
i

FX
i + F Y

i

for i = 1, 2, . . . , R − 1.
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Then F c
1(i) indicates the ratio of the probability that the value of X for an

observation is i or below to the sum of the probability that the value of X
is i or below and the probability that the value of Y is i or below, and F c

2(i)

in a similar manner. Noting that {F c
1(i) + F c

2(i) = 1}, the MH model may be
expressed as

F c
1(i) = F c

2(i)

(
=

1
2

)
for i = 1, 2, . . . , R − 1.

So, the MH model also states that the ratio of the probability that the value
of X for an observation is i or below to the sum of the probability that the
value of X is i or below and the probability that the value of Y is i or below,
is equal to the ratio of the probability that the value of Y for the observation
is i or below to the same sum of the probabilities. Then the measure Ω(λ)

M1

may also be expressed as

Ω(λ)
M1 =

λ(λ + 1)
2λ − 1

R−1∑
i=1

(F ∗
1(i) + F ∗

2(i))I
(λ)
i

({
F c

1(i), F
c
2(i)

}
;
{

1
2

,
1
2

})
,

for λ > −1, where

I
(λ)
i (·; ·) =

1
λ(λ + 1)

⎡⎣F c
1(i)

⎧⎨⎩
(

F c
1(i)

1/2

)λ

− 1

⎫⎬⎭+ F c
2(i)

⎧⎨⎩
(

F c
2(i)

1/2

)λ

− 1

⎫⎬⎭
⎤⎦ ,

and the value at λ = 0 is taken to be the limit as λ → 0. Thus

Ω(0)
M1 =

1
log 2

R−1∑
i=1

(F ∗
1(i) + F ∗

2(i))I
(0)
i

({
F c

1(i), F
c
2(i)

}
;
{

1
2

,
1
2

})
,

where

I
(0)
i (·; ·) = F c

1(i) log

(
F c

1(i)

1/2

)
+ F c

2(i) log

(
F c

2(i)

1/2

)
.

Therefore, for each λ, the Ω(λ)
M1 would represent essentially the weighted sum

of the power-divergence I
(λ)
i ({F c

1(i), F
c
2(i)}; {1

2 , 1
2}). The I

(λ)
i (·; ·) indicates how

far the {F c
1(i), F

c
2(i)} is distant from those with an MH structure, i.e., from

{1
2 , 1

2}.
Furthermore, the measure Ω(λ)

M1 may be expressed as

Ω(λ)
M1 = 1 − λ2λ

2λ − 1

R−1∑
i=1

(F ∗
1(i) + F ∗

2(i))H
(λ)
i ({F c

1(i), F
c
2(i)}) for λ > −1,
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where
H

(λ)
i (·) =

1
λ

[
1 − (F c

1(i))
λ+1 − (F c

2(i))
λ+1
]
,

and the value at λ = 0 is taken to be the limit as λ → 0. Thus

Ω(0)
M1 = 1 − 1

log 2

R−1∑
i=1

(F ∗
1(i) + F ∗

2(i))H
(0)
i ({F c

1(i), F
c
2(i)}),

where
H

(0)
i (·) = −F c

1(i) log F c
1(i) − F c

2(i) log F c
2(i).

The H
(λ)
i ({F c

1(i), F
c
2(i)}) is the Patil and Taillie’s (1982) diversity index of

degree-λ for {F c
1(i), F

c
2(i)}, which includes the Shannon entropy when λ = 0.

The measure Ω(λ)
M1 represents essentially the weighted sum of the diversity

index H
(λ)
i ({F c

1(i), F
c
2(i)}).

Noting that for each λ, the minimum value of H
(λ)
i ({F c

1(i), F
c
2(i)}) is 0 when

F c
1(i) = 0 (then F c

2(i) = 1) or F c
2(i) = 0 (then F c

1(i) = 1), and the maximum
value of it is (2λ − 1)/(λ2λ) (if λ �= 0), log 2 (if λ = 0), when F c

1(i) = F c
2(i), we

see that the measure Ω(λ)
M1 must lie between 0 and 1. Also for each λ (> −1),

(i) there is a structure of MH in the R × R table (i.e., F c
1(i) = F c

2(i) = 1/2

(thus FX
i = F Y

i ), for all i = 1, 2, . . . , R − 1) if and only if Ω(λ)
M1 = 0, and (ii)

the degree of departure from MH is the largest, in the sense that F c
1(i) = 0

(then F c
2(i) = 1) or F c

2(i) = 0 (then F c
1(i) = 1) [i.e., FX

i = 0 (then F Y
i �= 0)

or F Y
i = 0 (then FX

i �= 0)] for all i = 1, 2, . . . , R − 1, if and only if Ω(λ)
M1 = 1

(namely, the ratio of the probability that the value of X for an observation
is i or below to the sum of the probability that the value of X is i or below
and the probability that the value of Y is i or below, is equal to 0 or 1 for all
i = 1, 2, . . . , R − 1).

According to the weighted sum of the power-divergence or the weighted sum
of the Patil-Taillie diversity index, Ω(λ)

M1 represents the degree of the departure
from MH, and the degree increases as the value of Ω(λ)

M1 increases.

2.2. Submeasure II

Let SX
i and SY

i denote the reverse cumulative marginal probabilities of X and
Y , respectively, defined by SX

i = Pr(X ≥ i + 1) =
∑R

k=i+1 pk· and SY
i =

Pr(Y ≥ i + 1) =
∑R

k=i+1 p·k for i = 1, 2, . . . , R − 1. These are the cumulative
marginal probabilities which are taken in reverse order of categories; thus,

SX
i = 1 − FX

i , SY
i = 1 − F Y

i for i = 1, 2, . . . , R − 1.
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Then the MH model may further be expressed as

SX
i = SY

i for i = 1, 2, . . . , R − 1.

Let

Δ2 =
R−1∑
i=1

(SX
i + SY

i ),

and

S∗
1(i) =

SX
i

Δ2
, S∗

2(i) =
SY

i

Δ2
, Q∗

2(i) =
1
2

(S∗
1(i) +S∗

2(i)) for i = 1, 2, . . . , R−1.

We see that {S∗
1(i) = S∗

2(i) = Q∗
2(i)} when the MH model holds. Note that∑R−1

i=1 (S∗
1(i)+S∗

2(i)) = 1 and
∑R−1

i=1 (2Q∗
2(i)) = 1. Assuming that SX

R−1+SY
R−1 �=

0 (thus SX
i + SY

i �= 0 for i = 1, 2, . . . , R − 1), we shall define the submeasure
Ω(λ)

M2 (for λ > −1), which represents the degree of departure from MH, by Ω(λ)
M1

with {F ∗
1(i)}, {F ∗

2(i)}, and {Q∗
1(i)} replaced by {S∗

1(i)}, {S∗
2(i)}, and {Q∗

2(i)},
respectively.

2.3. Measure for marginal homogeneity

We shall define the complete measure which represents the degree of departure
from MH.

Assume that FX
1 + F Y

1 �= 0 and SX
R−1 + SY

R−1 �= 0 (thus FX
i + F Y

i �= 0 and
SX

i + SY
i �= 0 for i = 1, 2, · · · , R − 1). Consider a measure defined by

Ω(λ)
M =

1
2

(
Ω(λ)

M1 + Ω(λ)
M2

)
for λ > −1,

and the value at λ = 0 is taken to be the limit as λ → 0. Thus

Ω(0)
M =

1
2

(
Ω(0)

M1 + Ω(0)
M2

)
.

We obtain the following theorem although the proof is omitted.

Theorem 1. For each λ,

(i) 0 ≤ Ω(λ)
M ≤ 1,

(ii) Ω(λ)
M = 0 if and only if there is a structure of MH in the R × R table,

(iii) Ω(λ)
M = 1 if and only if the degree of departure from MH is the largest, in
the sense that FX

i = 0 (then SX
i = 1) and F Y

i = 1 (then SY
i = 0), or

FX
i = 1 (then SX

i = 0) and F Y
i = 0 (then SY

i = 1), for arbitrary cut
point i (i = 1, 2, . . . , R − 1).
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We point out that Ω(λ)
M = 1 indicates that the cell probability pR1 is 1 and

other cell probabilities are 0 or the cell probability p1R is 1 and other cell
probabilities are 0. Thus, Ω(λ)

M = 1 indicates that pR· = 1 and p·1 = 1 (thus
p1· = · · · = pR−1· = 0 and p·2 = · · · = p·R = 0) or p1· = 1 and p·R = 1
(thus p2· = · · · = pR· = 0 and p·1 = · · · = p·R−1 = 0). So, this indicates that
Pr(X ≤ i) = 0 and Pr(Y ≤ i) = 1 for i = 1, 2, . . . , R − 1, or Pr(X ≤ i) = 1
and Pr(Y ≤ i) = 0 for i = 1, 2, . . . , R − 1.

§3. Approximate confidence interval for measure

Let nij denote the observed frequency in the ith row and jth column of the
table (i = 1, 2, . . . , R; j = 1, 2, . . . , R). Assuming that a multinomial distribu-
tion applies to the R × R table, we shall consider an approximate standard
error and large-sample confidence interval for the measure Ω(λ)

M , using the delta
method, as described by Bishop, Fienberg and Holland (1975, Section 14.6)
and Agresti (1990, Section 12.1). The sample version of Ω(λ)

M , i.e., Ω̂(λ)
M , is given

by Ω(λ)
M with {pij} replaced by {p̂ij}, where p̂ij = nij/n and n =

∑∑
nij .

Using the delta method, we obtain the following theorem.

Theorem 2.
√

n(Ω̂(λ)
M − Ω(λ)

M ) has asymptotically a normal distribution with
mean zero and variance σ2[Ω̂(λ)

M ], where σ2[Ω̂(λ)
M ] is given in Appendix.

We note that the asymptotic distribution of
√

n(Ω̂(λ)
M − Ω(λ)

M ) is not appli-
cable when Ω(λ)

M = 0 and Ω(λ)
M = 1 because then σ2[Ω̂(λ)

M ] = 0. Let σ̂2[Ω̂(λ)
M ]

denote σ2[Ω̂(λ)
M ] with {pij} replaced by {p̂ij}. Then σ̂[Ω̂(λ)

M ]/
√

n is an esti-
mated approximate standard error for Ω̂(λ)

M , and Ω̂(λ)
M ± zp/2σ̂[Ω̂(λ)

M ]/
√

n is an

approximate 100(1− p) percent confidence interval for Ω(λ)
M , where zp/2 is the

percentage point from the standard normal distribution corresponding to a
two-tail probability equal to p.

§4. Comparison between measures

First, we shall compare the measures Ω(λ)
M and Ψ(λ) (Φ(λ)) (see Tomizawa

and Makii (2001) for Ψ(λ) (Φ(λ))). Consider the artificial data in Table 1a,
and their modified data in Table 1b, which are obtained by interchanging
categories 1, 2, and 3. Then we can see from Table 2 that for each λ, (i) the
values of Ψ̂(λ) (Φ̂(λ)) for Table 1a are theoretically equal to the corresponding
values for Table 1b, but (ii) the value of Ω̂(λ)

M is greater for Table 1a than for
Table 1b.
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Generally, (i) the measure Ω(λ)
M is not invariant under arbitrary similar

permutations of row and column categories (except the reverse order), but
(ii) the measure Ψ(λ) (Φ(λ)) is invariant under them. If the data in Tables 1a
and 1b are on a nominal scale, then it would be natural to conclude that
the degree of departure from MH for Table 1a is equal to that for Table 1b
because the pairs of counts in the marginal same row and column categories
of the tables are the same for Tables 1a and 1b. On the other hand, if the
data in Tables 1a and 1b are on an ordinal scale and if we want to utilize the
information about the category ordering, then it seems natural to conclude
that the degree of departure from MH is different between Tables 1a and 1b and
it is greater for Table 1a rather than for Table 1b, because from the comparison
between Tables 1c and 1d (also from that between Tables 1e and 1f), it seems
that the degree of departure from MH (i.e., from FX

i = F Y
i and SX

i = SY
i

for i = 1, 2, 3) is different between Tables 1a and 1b and the degree is greater
for Table 1a rather than for Table 1b.

Therefore we conclude that it is suitable to use the measure Ψ(λ) (Φ(λ))
for analyzing the data on a nominal scale and also it may be possible to use
Ψ(λ) (Φ(λ)) for analyzing the data on an ordinal scale since it only requires
a categorical scale. When used for analyzing the data on an ordinal scale,
however, Ψ(λ) (Φ(λ)) does not use the information about the category ordering.
Therefore, for the data on an ordinal scale, the measure Ω(λ)

M rather than Ψ(λ)

(Φ(λ)) should be used when one wants to use the information about that
ordering.

We note that it is dangerous to use the measure Ω(λ)
M for analyzing the data

on a nominal scale because the Ω(λ)
M is not invariant under arbitrary similar

permutations of row and column categories.

Secondly, we shall compare the measures Ω(λ)
M and Γ(λ) (see Tomizawa,

Miyamoto and Ashihara (2003) for Γ(λ)). Consider the artificial data in
Table 3. The values of observations for the off-diagonal cells are the same
for Tables 3a, 3b and 3c. Thus it is easily seen that {Ĝ1(i)} and {Ĝ2(i)} for
Table 3a are equal to those for Table 3b and 3c, but {F̂X

i } and {F̂ Y
i } for

Table 3a are not equal to those for Table 3b and 3c. From Table 3d, we see
that the values of Γ̂(λ) are the same for Tables 3a, 3b, and 3c, but the values
of Ω̂(λ)

M are not the same for those data. In addition, from Tables 3a, 3b, 3c,
and 3d, we see that the value of Ω̂(λ)

M becomes closer to the value of Γ̂(λ) as
the observed proportions on the main diagonal decrease. So, it seems that the
values of Ω̂(λ)

M and Γ̂(λ) are markedly different when the observed proportions
on the main diagonal are great. Because the measure Γ(λ) does not depend
on the main diagonal probabilities but the measure Ω(λ)

M depends on the main
diagonal probabilities.
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The measure Ω(λ)
M is useful for seeing how far the cumulative marginal

probabilities {FX
i } and {F Y

i } are distant from those with the MH structure
(though the measure Γ(λ) is useful for seeing how far the cumulative probabil-
ities {G1(i)} and {G2(i)} are distant from those with the MH structure).

Moreover, we compare the cases of Ω(λ)
M = 1 and Γ(λ) = 1. As shown

in Section 2, Ω(λ)
M = 1 indicates that the degree of asymmetry is the largest

in the sense that FX
i = 0 (then SX

i = 1) and F Y
i = 1 (then SY

i = 0),
or FX

i = 1 (then SX
i = 0) and F Y

i = 0 (then SY
i = 1), for arbitrary cut

point i (i = 1, 2, . . . , R − 1). On the other hand, Γ(λ) = 1 indicates that
the degree of asymmetry is the largest in the sense that Gc

1(i) = 0 (then
Gc

2(i) = 1), or Gc
2(i) = 0 (then Gc

1(i) = 1) for all i = 1, 2, . . . , R − 1, where
Gc

1(i) = G1(i)/(G1(i) + G2(i)) and Gc
2(i) = G2(i)/(G1(i) + G2(i)) (assuming that

G1(i) + G2(i) �= 0). The definition of the maximum departure from MH for

the measure Ω(λ)
M depends on the main diagonal probabilities. However, the

definition of that for the measure Γ(λ) does not depend on them. Since {FX
i }

and {F Y
i } depend on the main diagonal probabilities, when we want to utilize

the information on the main diagonal cells, the measure Ω(λ)
M (rather than

Γ(λ)) is useful.

§5. Examples

Consider the data in Table 4, taken from Tominaga (1979, p.53). These data
describe the cross-classification of father’s and son’s occupational status cate-
gories in Japan which were examined in 1955, 1965 and 1975.

Since the confidence intervals for Ω(λ)
M applied to the data in each of

Tables 4a, 4b and 4c do not include zero for all λ (see Table 5), these would
indicate that there is not a structure of MH in each table.

When the degree of departure from MH in Tables 4a, 4b and 4c are com-
pared using the confidence interval for Ω(λ)

M , it would be greater for Tables 4b
and 4c than for Table 4a.

We denote the power-divergence statistic for testing goodness-of-fit of the
MH model with R− 1 = 7 degrees of freedom by W

(λ)
M . See Cressie and Read

(1984) and Read and Cressie (1988, p.15) for details of the power-divergence
test statistic. In particular, W

(0)
M and W

(1)
M are the likelihood ratio and the

Pearson’s chi-squared statistics, respectively. Table 6 gives the values of W
(λ)
M

applied to the data in Tables 4a, 4b and 4c. The data in each table fit the
MH model very poorly.
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§6. Discussion

The measure Ω(λ)
M always ranges between 0 and 1 independent of the dimension

R and sample size n. Therefore, Ω(λ)
M may be useful for comparing the degree

of departure from MH in several tables.
As described in Section 2.3, the measure Ω(λ)

M would be useful when we want
to see with single summary measure how degree the departure from MH is to-
ward the complete marginal asymmetry of cumulative marginal probabilities.
We defined the complete marginal asymmetry, namely, the case of Ω(λ)

M = 1,
as Pr(X ≤ i) = 0 and Pr(Y ≤ i) = 1 for i = 1, 2, . . . , R − 1, or Pr(X ≤ i) = 1
and Pr(Y ≤ i) = 0 for i = 1, 2, . . . , R− 1. This seems natural as the definition
of the maximum departure from MH for the data on an ordinal scale.

We point out that when one wants to compare the degrees of departure from
the MH model in several tables, it may be dangerous to use the test statistic
such as W

(λ)
M because it may arise that the value of Ω̂(λ)

M is greater for table A
than for table B, but the value of test statistic is less for table A than for
table B. For example, consider the artificial data in Tables 7a and 7b. Then
we see from Tables 7c and 7d that, for each λ, the value of Ω̂(λ)

M is greater for
Table 7a than for Table 7b, but the value of W

(λ)
M is less for Table 7a than for

Table 7b. So, like these cases, it would be dangerous to use the test statistic
for comparing the degrees of departure from the MH model in several tables.

In addition, for several tables, using the measure Ω̂(λ)
M we can compare how

degree the departure from MH is toward the complete marginal asymmetry
(defined above), however, using the test statistic W

(λ)
M we cannot do it.

For analyzing the degree of departure from MH, we first should check
whether or not the MH model holds by using a test statistic, such as W

(λ)
M .

Then, if it is judged that there is not a structure of MH, the next step would
be to measure the degree of departure from MH by using Ω̂(λ)

M . However, if
it is judged that there is a structure of MH in the table by the test statistic,
then it may be not meaningful to use the measure Ω̂(λ)

M .

Furthermore, we point out that when λ = 0, the submeasure Ω(0)
M1 in the

measure Ω(0)
M can be expressed as

(6.1) Ω(0)
M1 =

1
log 2

min
{C1(i),C2(i)}

I(0)
(
{F ∗

1(i), F
∗
2(i)}; {C1(i), C2(i)}

)
,

where

I(0)(·; ·) =
R−1∑
i=1

[
F ∗

1(i) log

(
F ∗

1(i)

C1(i)

)
+ F ∗

2(i) log

(
F ∗

2(i)

C2(i)

)]
,
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C1(i) = C2(i), C1(i) ≥ 0, C2(i) ≥ 0,
R−1∑
i=1

(
C1(i) + C2(i)

)
= 1.

Namely, Ω(0)
M1 indicates the minimum Kullback-Leibler information between

{F ∗
1(i), F

∗
2(i)} and {C1(i), C2(i)} with the structure of MH. We note that {C1(i)(=

C2(i))} minimize I(0)(·; ·) in (6.1) when {C1(i) = (F ∗
1(i) + F ∗

2(i))/2 = Q∗
1(i)}. In

a similar way, the submeasure Ω(0)
M2 in the measure Ω(0)

M is expressed. Note
that the reader may also be interested in (6.1) with I(0)(·; ·) replaced by the
power-divergence I(λ)(·; ·); however, it would be difficult to obtain the value
of {C1(i), C2(i)} such that the corresponding power-divergence is a minimum,
and also difficult to obtain the maximum value of such a measure.

For the measure Ω(λ)
M , the analyst may be interested in which value of λ

is preferred for a given table. However, it seems difficult to discuss this. It
seems to be important and safe that for comparing the degrees of departure
from MH in several tables, the analyst calculates the values of Ω̂(λ)

M for various
values of λ and discusses the degree of departure from MH in terms of them.
For example, consider the artificial data in Tables 8a and 8b. Then we see
from Table 8c that the value of Ω̂(0)

M is less for Table 8a than for Table 8b,
but the value of Ω̂(1)

M is greater for Table 8a than for Table 8b (though the
differences are slight in these cases). So, for these cases, it may be impossible
to decide (by using Ω̂(λ)

M ) whether the degree of departure from MH is greater
for Table 8a or for Table 8b. But generally, for the comparison between two
tables, it would be possible to draw a conclusion if Ω̂(λ)

M is always greater (or
always less) for one table than for the other table. If the analyst wants to set
importance on the interpretation of the measure, the case of λ = 0, i.e., Ω̂(0)

M

may be recommended in terms of expression (6.1).
Finally we observe that (i) the estimate of the degree of departure from

MH should be considered in terms of an approximate confidence interval for
the measure Ω(λ)

M and not in terms of Ω̂(λ)
M itself, (ii) the measure Ω(λ)

M would
be useful for describing relative magnitudes (of departure from MH) rather
than absolute magnitudes, (iii) Ω(λ)

M cannot be used for testing goodness-of-fit
of the MH model, and (iv) Ω(2)

M is theoretically equal to Ω(1)
M , though the test

statistic W
(2)
M is not always equal to W

(1)
M (see Table 7).
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Appendix

Using the delta method,
√

n(Ω̂(λ)
M −Ω(λ)

M ) has the asymptotic variance σ2[Ω̂(λ)
M ]

as follows:

σ2[Ω̂(λ)
M ] =

1
4

R∑
i=1

R∑
j=1

(
w

(λ)
ij + v

(λ)
ij

)2
pij ,

where for λ > −1 and λ �= 0,

w
(λ)
ij =

2λ

Δ1(2λ − 1)

[
R−1∑
k=1

{
I(i ≤ k)(F c

1(k))
λ + I(j ≤ k)(F c

2(k))
λ

+ λ(F c
1(k))

λ(I(i ≤ k) − F c
1(k)(I(i ≤ k) + I(j ≤ k)))

+ λ(F c
2(k))

λ(I(j ≤ k) − F c
2(k)(I(i ≤ k) + I(j ≤ k)))

}
− (2R − (i + j))

(2λ − 1)Ω(λ)
M1 + 1

2λ

]
,

v
(λ)
ij =

2λ

Δ2(2λ − 1)

[
R−1∑
k=1

{
I(i > k)(Sc

1(k))
λ + I(j > k)(Sc

2(k))
λ

+ λ(Sc
1(k))

λ(I(i > k) − Sc
1(k)(I(i > k) + I(j > k)))

+ λ(Sc
2(k))

λ(I(j > k) − Sc
2(k)(I(i > k) + I(j > k)))

}
− ((i + j) − 2)

(2λ − 1)Ω(λ)
M2 + 1

2λ

]
,

and where for λ = 0,

w
(0)
ij =

1
Δ1 log 2

[
R−1∑
k=1

{
I(i ≤ k) log(F c

1(k)) + I(j ≤ k) log(F c
2(k))

}
− (2R − (i + j))(log 2)(Ω(0)

M1 − 1)
]
,

v
(0)
ij =

1
Δ2 log 2

[
R−1∑
k=1

{
I(i > k) log(Sc

1(k)) + I(j > k) log(Sc
2(k))

}
− ((i + j) − 2)(log 2)(Ω(0)

M2 − 1)
]
,

Sc
1(k) =

SX
k

SX
k + SY

k

, Sc
2(k) =

SY
k

SX
k + SY

k

,

and I(·) is the indicator function, I(·) = 1 if true, 0 if not.



20 K. TAHATA, T. IWASHITA AND S. TOMIZAWA

References

[1] Agresti, A. (1990). Categorical Data Analysis. John Wiley, New York.

[2] Bishop, Y. M. M., Fienberg, S. E. and Holland, P. W. (1975). Discrete Multivari-
ate Analysis: Theory and Practice. The MIT Press, Cambridge, Massachusetts.

[3] Cressie, N. and Read, T.R.C. (1984). Multinomial goodness-of-fit tests. Journal
of the Royal Statistical Society, Series B, 46, 440-464.

[4] Patil, G.P. and Taillie, C. (1982). Diversity as a concept and its measurement.
Journal of the American Statistical Association, 77, 548-561.

[5] Read, T.R.C. and Cressie, N. (1988). Goodness-of-Fit Statistics for Discrete Mul-
tivariate Data. Springer-Verlag, New York.

[6] Stuart, A. (1955). A test for homogeneity of the marginal distributions in a
two-way classification. Biometrika, 42, 412-416.

[7] Tominaga, K. (1979). Nippon no Kaisou Kouzou (Japanese Hierarchical Struc-
ture). University of Tokyo Press, Tokyo, (in Japanese).

[8] Tomizawa, S. (1995). Measures of departure from marginal homogeneity for con-
tingency tables with nominal categories. Journal of the Royal Statistical Society,
Series D; The Statistician, 44, 425-439.

[9] Tomizawa, S. and Makii, T. (2001). Generalized measures of departure from
marginal homogeneity for contingency tables with nominal categories. Journal
of Statistical Research, 35, 1-24.

[10] Tomizawa, S., Miyamoto, N. and Ashihara, N. (2003). Measure of departure from
marginal homogeneity for square contingency tables having ordered categories.
Behaviormetrika, 30, 173-193.



MEASURE FROM SYMMETRY OF CUMULATIVE MARGINAL PROBABILITIES 21

Table 1: Artificial data (Tables 1a and 1b) and the corresponding values of
{nF̂X

i }, {nF̂ Y
i }, {nŜX

i } and {nŜY
i } (n is sample size)

(a) n = 1539
Y

X (1) (2) (3) (4) Total
(1) 200 170 150 90 610
(2) 11 180 109 60 360
(3) 25 4 160 230 419
(4) 4 5 1 140 150

Total 240 359 420 520 1539

(b) n = 1539
Y

X (1) (2) (3) (4) Total
(1) 180 109 11 60 360
(2) 4 160 25 230 419
(3) 170 150 200 90 610
(4) 5 1 4 140 150

Total 359 420 240 520 1539

(c) Values of {nF̂X
i } and {nF̂ Y

i } for Table 1a
i 1 2 3

nF̂X
i 610 970 1389

nF̂ Y
i 240 599 1019

(d) Values of {nF̂X
i } and {nF̂ Y

i } for Table 1b
i 1 2 3

nF̂X
i 360 779 1389

nF̂ Y
i 359 779 1019

(e) Values of {nŜX
i } and {nŜY

i } for Table 1a
i 1 2 3

nŜX
i 929 569 150

nŜY
i 1299 940 520

(f) Values of {nŜX
i } and {nŜY

i } for Table 1b
i 1 2 3

nŜX
i 1179 760 150

nŜY
i 1180 760 520
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Table 2: Values of Ω̂(λ)
M , Ψ̂(λ) and Φ̂(λ) applied to Tables 1a and 1b

Values of λ For Table 1a For Table 1b
Ω̂(λ)

M Ψ̂(λ) Φ̂(λ) Ω̂(λ)
M Ψ̂(λ) Φ̂(λ)

0 0.054 0.090 0.337 0.022 0.090 0.337
0.6 0.068 0.112 0.373 0.027 0.112 0.373
1 0.072 0.119 0.381 0.029 0.119 0.381

1.8 0.073 0.120 0.383 0.029 0.120 0.383
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Table 3: Artificial data (Tables 3a, 3b and 3c) and the corresponding values
of Ω̂(λ)

M and Γ̂(λ) (n is sample size)

(a) n = 7022
(1) (2) (3) (4) Total

(1) 1032 2 8 60 1102
(2) 2 2304 8 58 2372
(3) 3 4 982 46 1035
(4) 4 5 4 2500 2513

Total 1041 2315 1002 2664 7022

(b) n = 878
(1) (2) (3) (4) Total

(1) 102 2 8 60 172
(2) 2 230 8 58 298
(3) 3 4 92 46 145
(4) 4 5 4 250 263

Total 111 241 112 414 878

(c) n = 268
(1) (2) (3) (4) Total

(1) 12 2 8 60 82
(2) 2 18 8 58 86
(3) 3 4 12 46 65
(4) 4 5 4 22 35

Total 21 29 32 186 268

(d) Values of Ω̂(λ)
M and Γ̂(λ)

For Table 3a For Table 3b For Table 3c
λ Ω̂(λ)

M Γ̂(λ) Ω̂(λ)
M Γ̂(λ) Ω̂(λ)

M Γ̂(λ)

0 0.0002 0.5544 0.0145 0.5544 0.1648 0.5544
0.6 0.0003 0.6404 0.0187 0.6404 0.2038 0.6404
1 0.0003 0.6619 0.0200 0.6619 0.2155 0.6619

1.8 0.0003 0.6656 0.0203 0.6656 0.2179 0.6656
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Table 4: Occupational status for Japanese father-son pairs; from Tominaga
(1979, p.53)

(a) Examined in 1955
Son’s status

Father’s status (1) (2) (3) (4) (5) (6) (7) (8) Total
(1) 36 4 14 7 8 2 3 8 82
(2) 20 20 27 24 11 11 2 11 126
(3) 9 6 23 12 9 5 3 16 83
(4) 15 14 39 81 17 16 11 15 208
(5) 6 7 22 13 72 20 6 13 159
(6) 3 2 5 12 18 19 9 7 75
(7) 5 3 10 11 21 15 38 25 128
(8) 39 30 76 80 69 52 45 614 1005

Total 133 86 216 240 225 140 117 709 1866

(b) Examined in 1965
Son’s status

Father’s status (1) (2) (3) (4) (5) (6) (7) (8) Total
(1) 27 10 16 3 6 6 1 2 71
(2) 15 38 30 20 8 4 3 7 125
(3) 13 17 32 17 7 16 6 5 113
(4) 12 36 40 132 22 30 13 6 291
(5) 8 22 38 41 91 42 22 9 273
(6) 2 2 7 12 13 16 3 2 57
(7) 3 2 11 11 13 26 30 6 102
(8) 38 44 95 101 132 114 60 309 893

Total 118 171 269 337 292 254 138 346 1925

(c) Examined in 1975
Son’s status

Father’s status (1) (2) (3) (4) (5) (6) (7) (8) Total
(1) 44 18 28 8 6 8 1 5 118
(2) 15 50 45 20 18 17 4 7 176
(3) 18 25 47 30 24 18 5 7 174
(4) 16 27 53 77 40 29 9 6 257
(5) 18 25 42 31 122 43 17 13 311
(6) 12 15 21 15 36 33 3 8 143
(7) 3 5 8 7 26 21 9 3 82
(8) 44 65 114 92 184 195 58 325 1077

Total 170 230 358 280 456 364 106 374 2338
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Table 5: Estimate of Ω(λ)
M , estimated approximate standard error for Ω̂(λ)

M ,
and approximate 95% confidence interval for Ω(λ)

M , applied to
Tables 4a, 4b and 4c

(a) For Table 4a
Values of λ Estimated Standard Confidence

measure error interval
−0.4 0.008 0.001 (0.006, 0.011)

0 0.012 0.002 (0.008, 0.016)
0.6 0.016 0.002 (0.011, 0.020)
1 0.017 0.003 (0.012, 0.022)

1.4 0.017 0.003 (0.012, 0.022)
2 0.017 0.003 (0.012, 0.022)

(b) For Table 4b
Values of λ Estimated Standard Confidence

measure error interval
−0.4 0.019 0.002 (0.015, 0.022)

0 0.027 0.003 (0.022, 0.032)
0.6 0.035 0.003 (0.029, 0.041)
1 0.037 0.003 (0.031, 0.044)

1.4 0.038 0.003 (0.031, 0.045)
2 0.037 0.003 (0.031, 0.044)

(c) For Table 4c
Values of λ Estimated Standard Confidence

measure error interval
−0.4 0.021 0.002 (0.018, 0.024)

0 0.030 0.002 (0.025, 0.034)
0.6 0.038 0.003 (0.032, 0.044)
1 0.041 0.003 (0.034, 0.047)

1.4 0.042 0.003 (0.035, 0.048)
2 0.041 0.003 (0.034, 0.047)
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Table 6: Values of power-divergence test statistic W
(λ)
M (with 7 degrees of

freedom), applied to Tables 4a, 4b and 4c

λ For Table 4a For Table 4b For Table 4c
−0.2 270.21 700.11 822.08

0 260.89 636.53 763.18
0.2 253.13 589.32 717.64
0.6 241.59 527.51 656.03
1 234.43 493.65 622.41

1.8 230.40 474.66 610.05
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Table 7: Artificial data (Tables 7a and 7b) and the corresponding values of
Ω̂(λ)

M and the test statistic W
(λ)
M (n is sample size)

(a) n = 612
(1) (2) (3) (4) Total

(1) 30 20 15 141 206
(2) 20 60 96 15 191
(3) 10 95 15 20 140
(4) 15 15 15 30 75

Total 75 190 141 206 612

(b) n = 612
(1) (2) (3) (4) Total

(1) 30 20 15 141 206
(2) 10 95 15 20 140
(3) 20 60 96 15 191
(4) 15 15 15 30 75

Total 75 190 141 206 612

(c) Value of Ω̂(λ)
M

λ For Table 7a For Table 7b
−0.2 0.038 0.031

0 0.044 0.036
0.6 0.055 0.046
1 0.059 0.049

1.4 0.060 0.050
2 0.059 0.049

(d) Value of W
(λ)
M

λ For Table 7a For Table 7b
−0.2 107.44 132.26

0 104.54 128.56
0.6 99.03 121.14
1 97.55 118.74

1.4 97.51 118.04
2 99.84 119.81
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Table 8: Artificial data (Tables 8a and 8b) and the corresponding values of
Ω̂(λ)

M (n is sample size)

(a) n = 585
(1) (2) (3) (4) Total

(1) 17 71 114 290 492
(2) 15 1 15 7 38
(3) 7 12 6 8 33
(4) 5 7 4 6 22

Total 44 91 139 311 585

(b) n = 791
(1) (2) (3) (4) Total

(1) 67 71 250 310 698
(2) 15 3 9 7 34
(3) 7 12 6 8 33
(4) 5 7 4 10 26

Total 94 93 269 335 791

(c) Value of Ω̂(λ)
M

λ For Table 8a For Table 8b
−0.2 0.3454 0.3462

0 0.3856 0.3862
0.2 0.4156 0.4158
0.6∗ 0.4535 0.4530
1∗ 0.4716 0.4707

1.6∗ 0.4769 0.4758
* indicates that Ω̂(λ)

M is greater for
Table 8a than for Table 8b.
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