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Abstract. Let k ≥ 2 and n ≥ 1 be integers, let G be a graph of order n with
minimum degree at least k + 1. Let v1, v2, · · · , vk be k distinct vertices of G,
and suppose that there exist k vertex disjoint cycles C1, · · · , Ck in G such that
vi ∈ V (Ci) for each 1 ≤ i ≤ k. Suppose further that the minimum value of the
sum of the degrees of two nonadjacent distinct vertices is greater than or equal
to n + k−4

3
. Under these assumptions, we show that there is a 2-factor of G

with k cycles D1, D2, · · · , Dk such that vi ∈ V (Di) for each 1 ≤ i ≤ k.
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§1. Introduction

All graphs considered in this paper are finite simple undirected graphs with
no loops and no multiple edges. For a graph G, we let V (G) and E(G) denote
the set of vertices and edges of G, respectively. For a vertex v of G, we let
dG(v) denote the degree of v in G. We define δ(G) to be the minimum degree
of G, and σ2(G) to be the minimum value of the sum of the degrees of two
nonadjacent distinct vertices.

The following theorem appears in [1]:

Theorem A. Let k and n be positive integers with n ≥ 3k, and let G be a
graph of order n. Suppose that one of the following four conditions is satisfied:

a) n = 3k and δ(G) ≥ 7k−2
3 ;

b) 3k + 1 ≤ n ≤ 4k and δ(G) ≥ 2n+k−3
3 ;
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c) 4k ≤ n ≤ 6k − 3 and δ(G) ≥ 3k − 1; or

d) n ≥ 6k − 3 and δ(G) ≥ n
2 .

Then for any k distinct vertices v1, · · · , vk, there is a 2-factor of G with k
cycles Ci, 1 ≤ i ≤ k such that vi ∈ V (Ci) for each 1 ≤ i ≤ k.

In [1], Theorem A is derived as an immediate corollary of the following two
theorems:

Theorem B. Let k and n be positive integers with n ≥ 3k, and let G be a
graph of order n. Suppose that one of the conditions a) through d) in Theorem
A is satisfied. Then for any k distinct vertices v1, · · · , vk, there exist k vertex
disjoint cycles Ci, 1 ≤ i ≤ k, such that |V (Ci)| ≤ 5 and vi ∈ V (Ci) for each
1 ≤ i ≤ k.

Theorem C. Let k and n be positive integers, and let G be a graph of order
n such that σ2(G) ≥ n, δ(G) ≥ k + 1 and σ2(G) + δ(G) ≥ n + 3k − 2.
Let v1, · · · , vk be distinct vertices of G, and suppose that there exist k vertex
disjoint cycles Ci, 1 ≤ i ≤ k, such that vi ∈ V (Ci) for each 1 ≤ i ≤ k. Then
there is a 2-factor of G with k cycles Di, 1 ≤ i ≤ k, such that vi ∈ V (Di) for
each 1 ≤ i ≤ k.

This paper is concerned with Theorem C. In Theorem C, the condition
σ2(G) + δ(G) ≥ n + 3k − 2 is of technical nature, and it has been conjectured
that Theorem C holds even if we drop the condition σ2(G)+δ(G) ≥ n+3k−2.
This conjecture has partially been settled affirmatively by the following two
theorems proved in [2] (Theorem D says that if we regard a path of length 0 or
1 as a cycle of length 1 or 2, respectively, then the conjecture is true; Theorem
E says that if n ≥ 6k − 4, then the conjecture is true):

Theorem D. Let k and n be positive integers, and let G be a graph of order
n. Suppose that σ2(G) ≥ n and δ(G) ≥ k +1. Then for any k distinct vertices
v1, · · · , vk, there is a spanning subgraph of G with k components Ci, 1 ≤ i ≤ k,
such that for each i, vi ∈ V (Ci) and Ci is either a cycle or a path of length 0
or 1.

Theorem E. Let k and n be positive integers with n ≥ 6k − 4, and let G be
a graph of order n such that σ2(G) ≥ n and δ(G) ≥ k + 1. Let v1, · · · , vk be
distinct vertices of G, and suppose that there exist k vertex disjoint cycles Ci,
1 ≤ i ≤ k, such that vi ∈ V (Ci) for each 1 ≤ i ≤ k. Then there is a 2-factor
of G with k cycles Di, 1 ≤ i ≤ k, such that vi ∈ V (Di) for each 1 ≤ i ≤ k.
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In this paper, we give the following (somewhat negative) solution to the
conjecture (as we shall see in the second paragraph following the statement
of Theorem 1, the condition σ2(G) ≥ n + k−4

3 in Theorem 1 is best possible,
which means that if we drop the condition σ2(G) + δ(G) ≥ n + 3k − 2 in
Theorem C, then we need to replace the condition σ2(G) ≥ n by the stronger
condition σ2(G) ≥ n + k−4

3 ):

Theorem 1. Let k ≥ 2 and n ≥ 1 be integers, and let G be a graph of order n
such that σ2(G) ≥ n+ k−4

3 and δ(G) ≥ k+1. Let v1, · · · , vk be distinct vertices
of G, and suppose that there exist k vertex disjoint cycles Ci, 1 ≤ i ≤ k, such
that vi ∈ V (Ci) for each 1 ≤ i ≤ k. Then there is a 2-factor of G with k cycles
Di, 1 ≤ i ≤ k, such that vi ∈ V (Di) for each 1 ≤ i ≤ k.

Theorem 1 does not hold for k = 1. To see this, let l ≥ 2 be an integer,
and consider a complete bipartite graph G = K(l, l + 1). Then σ2(G) =
2l = |V (G)| − 1 = |V (G)| + k−4

3 and δ(G) = l ≥ 2 = k + 1, but G does
not have a 2-factor. Also the condition δ(G) ≥ k + 1 is best. To verify
this, let k, n be integers with k ≥ 2 and n ≥ 3k + 1, and define a graph G
of order n as follows: let L be a complete graph of order n − 1 containing
specified distinct vertices v1, v2, · · · , vk, let u be a vertex with u �∈ V (L),
and let V (G) = V (L) ∪ {u} and E(G) = E(L) ∪ {uvi | 1 ≤ i ≤ k}. Then
δ(G) = dG(u) = k, σ2(G) = (n− 2)+ k = n+ k− 2 ≥ n+ k−4

3 , and there exist
k vertex disjoint cycles C1, · · · , Ck in L (so in G) such that vi ∈ V (Ci) for each
1 ≤ i ≤ k. But G does not contain a 2-factor with k cycles D1,D2, · · · ,Dk

such that vi ∈ V (Di) for each 1 ≤ i ≤ k because any cycle containing u must
passes through at least two vertices in {v1, v2, · · · , vk}.

Finally we verify that the condition σ2(G) ≥ n + k−4
3 is best for 3k + 2 ≤

n ≤ ⌈
13
3 k

⌉
. Let k, n be integers with k ≥ 2 and 3k+2 ≤ n ≤ ⌈

13
3 k

⌉
, and write

n = 3k + h. We define a graph G of order n as follows. Let H be a complete
graph of order h. Let m = �2k

3 � and let L be the graph of order 3k with vertex
set

V (L) = {vi | 1 ≤ i ≤ k} ∪ {ui | 1 ≤ i ≤ k} ∪ {wi | 1 ≤ i ≤ k}

such that the complement graph L of L satisfies

E(L) = {wiwj | 1 ≤ i < j ≤ m} ∪ {wiwk | 1 ≤ i ≤ m}
∪ {uivj |m + 1 ≤ i ≤ k, j �= i}
∪ {viwj | 1 ≤ i ≤ m, m + 1 ≤ j ≤ k − 1}

(Figure 1). Define G by V (G) = V (H) ∪ V (L) and E(G) = E(H) ∪ E(L) ∪
{hui |h ∈ V (H), 1 ≤ i ≤ k}.
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Figure 1: Dotted lines stand for the edges of L while solid lines stand for some
of edges of L for the case where k = 5.

Then

dG(h) = h + k − 1 (for h ∈ V (H)),

dG(ui) = dL(ui) + |V (H)| =

{
n − 1 (for 1 ≤ i ≤ m),
n − k (for m + 1 ≤ i ≤ k),

dG(vi) = dL(vi) =

{
k + 2m (for 1 ≤ i ≤ m),
2k + m (for m + 1 ≤ i ≤ k),

dG(wi) = dL(wi) = 3k − m − 1 (for 1 ≤ i ≤ k),

and hence δ(G) ≥ k + 1. Next we verify that σ2(G) ≥ n + k−4
3 − 1. Let

εk = 0, 2, 1 and ck = 3, 4, 2 according as k ≡ 0, 1, 2 (mod 3). Then m = 2k−εk
3 ,

k−ck
3 is an integer, the condition σ2(G) ≥ n+ k−4

3 −1 is equivalent to σ2(G) ≥
n + k−ck

3 − 1, and

(i) dG(h)+dG(vi)−
(
n + k−ck

3 − 1
)
≥ ck−2εk

3 ≥ 0 and dG(h)+dG(wi)−(
n + k−ck

3 − 1
)

= εk+ck
3 − 1 ≥ 0 for any h ∈ V (H) and any i with

1 ≤ i ≤ k,

(ii) dG(wi)+dG(wj)−
(
n + k−ck

3 − 1
)

= 13k+2εk+ck−3
3 −n ≥ ⌈

13
3 k

⌉−n ≥ 0
for any i and j with 1 ≤ i < j ≤ m, or 1 ≤ i ≤ m and j = k,
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(iii) dG(ui) + dG(vj) −
(
n + k−ck

3 − 1
)
≥ k + ck−2εk

3 + 1 ≥ k + 1 > 0 for
any i with m + 1 ≤ i ≤ k and any j with j �= i, and

(iv) dG(vi)+dG(wj)−
(
n + k−ck

3 − 1
)

= 13k+ck−εk
3 −n ≥ ⌈

13k+1
3

⌉−n > 0
for any i with 1 ≤ i ≤ m and any j with m + 1 ≤ j ≤ k − 1.

Consequently, we have σ2(G) ≥ n + k−ck
3 − 1. Also G contains vertex disjoint

cycles Ci = uiviwiui, 1 ≤ i ≤ k, such that vi ∈ V (Ci) for each i. However, G
does not contain a 2-factor with k cycles D1,D2, · · · ,Dk such that vi ∈ V (Di)
for each i. To see this, by way of contradiction, suppose that G contains a
2-factor with k cycles D1,D2, · · · ,Dk such that vi ∈ V (Di) for each i. First
note that each Di must contain exactly three vertices in V (L). Let Di1 be a
cycle containing a vertex in V (H). Then Di1 contains (exactly) two vertices
in {u1, · · · , uk}, and hence there is a cycle Di2 that consists of vi2 and two
vertices wj1 and wj2, where j1 �= j2. For each i with m + 1 ≤ i ≤ k, vi is the
only vertex in {v1, · · · , vk} that is adjacent to ui, and hence ui and vi are in
the same cycle. Therefore

1 ≤ i2 ≤ m.(1.1)

On the other hand, wiwj ∈ E(G) only when at least one of i and j is in
{m + 1, · · · , k − 1}. Thus we may assume m + 1 ≤ j1 ≤ k − 1. But then
wj1vi2 �∈ E(G) by (1.1) and the construction of G, a contradiction.

Our notation is standard with the possible exception of the following:
Let G be a graph. For a subset U of V (G), we let 〈U〉G denote the subgraph of
G induced by U . For a vertex v of G, we denote by NG(v) the set of neighbours
of v. For a vertex v of G and for a subgraph H of G with v �∈ V (H), we let
NH(v) = NG(v) ∩ V (H) and dH(v) = |NH(v)|. Furthermore, for subgraphs
H and K of G with V (H) ∩ V (K) = ∅, we let NH(K) = ∪v∈V (K)NH(v). Let
C = u0u1 · · · um−1u0 be a cycle (indices are to be read modulo m). For two
vertices ui, uj on C with i ≤ j ≤ i + m − 1, we let C[ui, uj ] and C(ui, uj)
denote the paths uiui+1 · · · uj and ui+1ui+2 · · · uj−1, respectively (if j = i or
j = i + 1, C(ui, uj) denotes an empty path).

§2. Proof of Theorem 1

Throughout this section, let k, n, G, vi and Ci be as in Theorem 1. We may
assume we have chosen k cycles Ci so that

∑k
i=1 |V (Ci)| is maximum. Let

L = 〈∪k
i=1V (Ci)〉G, l = |V (L)| and H = G − L. If V (H) = ∅, then there is

nothing to be proved. Thus suppose that

V (H) �= ∅.(2.1)
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Let H0 be a connected component of H. We shall obtain a contradiction in
a series of claims. The first five claims, Claims 1 through 5, are essentially
proved in [1], but we include their proofs for the convenience of the reader.

Claim 1. Let Di, 1 ≤ i ≤ k, be vertex disjoint subgraphs of L such that D1 is
a path (we allow D1 to consist of a single vertex), and Di is a cycle for each
2 ≤ i ≤ k. Suppose that Di contains exactly one vertex in {v1, · · · , vk} for
each 1 ≤ i ≤ k, and write V (Di) ∩ {v1, · · · , vk} = {vji}. Suppose further that
dL(u) ≥ l− 1

2 |∪k
i=1V (Di)| for all u ∈ V (L)−∪k

i=1V (Di). Then there are vertex
disjoint subgraphs D∗

i , 1 ≤ i ≤ k, of L such that D∗
1 is a path, D∗

i is a cycle
for each 2 ≤ i ≤ k, vji ∈ V (D∗

i ) for each 1 ≤ i ≤ k, and ∪k
i=1V (D∗

i ) = V (L),
and such that D∗

1 has the same initial vertex and the same terminal vertex as
D1 (thus if D1 consists of a single vertex, then D∗

1 = D1).

Proof. Choose vertex disjoint subgraphs D∗
i , 1 ≤ i ≤ k, of L satisfying the

same conditions as the Di so that
∑k

i=1 |V (D∗
i )| is as large as possible, subject

to the condition that V (D∗
i ) ⊇ V (Di) for each 1 ≤ i ≤ k and D∗

1 has the
same initial vertex and the same terminal vertex as D1. Let A = ∪k

i=1V (D∗
i ).

Suppose that A �= V (L), and take u ∈ V (L) − A. Then dL(u) ≥ l − 1
2 | ∪k

i=1

V (Di)| ≥ l − 1
2 |A| by assumption, and hence d〈A〉G(u) = dL(u) − dL−A(u) ≥

(l − 1
2 |A|) − (l − |A| − 1) = 1

2 |A| + 1. Consequently there exist v, v′ ∈ NG(u)
such that v and v′ are consecutive on some D∗

i , 1 ≤ i ≤ k. Inserting u into
D∗

i , we get a contradiction to the maximality of |A|. Thus A = V (L), as
desired.

Claim 2.

(i) |NCi(H0)| ≤ 1 for each 1 ≤ i ≤ k.

(ii) H = H0.

Proof. (i) First note that for each 1 ≤ i ≤ k,

no two vertices in NCi(H0) are consecutive on Ci(2.2)

because of the maximality of
∑k

i=1 |V (Ci)|. By way of contradiction, suppose
|NCi(H0)| ≥ 2 for some i, say i = 1. Take u1, u2 ∈ V (C1) and h1, h2 ∈ V (H0)
(we allow the possibly that h1 = h2) such that uihi ∈ E(G) for i = 1, 2,
V (C1(u1, u2)) �� v1 and such that NH0(C1(u1, u2)) = ∅. Let P = C1[u2, u1]
and let Q be a path in H0 having h1 and h2 as its initial vertex and its
terminal vertex, respectively. Then C = PQu2 is a cycle containing v1. Let
R = C1(u1, u2) and r = |V (R)|, and take w ∈ V (R) (note that V (R) �= ∅ by
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(2.2)). Then since dG(h1) ≤ |V (H0)| − 1 + l−r+1
2 by (2.2), dG(w) + |V (H0)| −

1 + l−r+1
2 ≥ dG(w) + dG(h1) ≥ n +

⌈
k−4

3

⌉ ≥ n. Consequently

dL(w) ≥ dG(w) − |V (H) − V (H0)| ≥ l − 1
2
(l − r) +

1
2

= l − 1
2
|V (P ) ∪ (∪k

i=2V (Ci))| + 1
2
,

and hence it follows from Claim 1 that there exist vertex disjoint subgraphs
P ′, C ′

2, · · · , C ′
k of L such that P ′ is a path with v1 ∈ V (P ′) joining u2 and u1, C ′

i

is a cycle with vi ∈ V (C ′
i) for each 2 ≤ i ≤ k, and V (P ′)∪(∪k

i=2V (C ′
i)) = V (L).

Set C ′
1 = P ′Qu2. Then C ′

1, C
′
2, · · · , C ′

k are vertex disjoint cycles such that vi ∈
V (C ′

i) for each 1 ≤ i ≤ k and such that
∑k

i=1 |V (C ′
i)| =

∑k
i=1 |V (Ci)|+|V (Q)|.

This contradicts the maximality of
∑k

i=1 |V (Ci)|.
(ii) Suppose H �= H0. Take h ∈ V (H0) and h′ ∈ V (H) − V (H0). Then
n ≤ dG(h)+dG(h′) ≤ (|V (H0)|−1+dL(h))+(|V (H)|−|V (H0)|−1+dL(h′)) =
dL(h) + dL(h′) + |V (H)| − 2, and hence dL(h) + dL(h′) ≥ n − |V (H)| + 2 =
l + 2 ≥ 3k + 2. On the other hand, it follows from (i) of this claim that
dL(h) + dL(h′) ≤ k + k = 2k. Consequently 3k + 2 ≤ 2k, a contradiction.

Set S = {u ∈ V (L) | dH (u) ≥ 2} and let s = |S|. By Claim 2 (i), |S ∩
V (Ci)| ≤ 1 for each i ∈ {1, · · · , k}. We may assume S∩V (Ci) = {ui} for each
i ∈ {1, · · · , s} and S ∩ V (Ci) = ∅ for each i ∈ {s + 1, · · · , k}.

Claim 3.

(i) ui �= vi for each i ∈ {1, · · · , s}.
(ii) |V (H)| > k − s.

Proof. (i) Suppose vi = ui for some i ∈ {1, · · · , s}, say i = 1. Take h1, h2 ∈
NH(v1) with h1 �= h2. Since H is connected by Claim 2 (ii), there is a path
Q in H connecting h1 and h2. Take u ∈ V (C1) − {v1}. By Claim 2 (i), u is
adjacent to no vertex in V (H). Hence n ≤ dG(u) + dG(h1) = dL(u) + dG(h1),
which implies dL(u) ≥ n− (|V (H)|− 1+ k) = l− (k− 1) > l− 1

2

∑k
i=2 |V (Ci)|.

Thus applying Claim 1 with D1 = v1, we obtain k − 1 vertex disjoint cycles
C ′

i (2 ≤ i ≤ k) in L such that vi ∈ V (C ′
i) for each 2 ≤ i ≤ k and {v1} ∪

(∪k
i=2V (C ′

i)) = V (L). Set C ′
1 = v1Qv1. Then the C ′

i (1 ≤ i ≤ k) are vertex
disjoint cycles such that vi ∈ V (C ′

i) for each 1 ≤ i ≤ k, which contradicts the
maximality of

∑k
i=1 |V (Ci)|.

(ii) Suppose |V (H)| ≤ k − s. Let E(H,L) denote the set of edges which
have one endvertex in V (H) and the other in V (L). Since δ(G) ≥ k + 1,
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|V (H)|(k+1−(|V (H)|−1)) ≤ |E(H,L)| ≤ s|V (H)|+(k−s) = s(|V (H)|−1)+k,
and hence |V (H)|(k + 2 − |V (H)|) ≤ (k − |V (H)|)(|V (H)| − 1) + k by the
assumption that |V (H)| ≤ k − s. This implies 2|V (H)| ≤ |V (H)|, which
contradicts (2.1).

Recall σ2(G) ≥ n + k−4
3 . Let ck = 3, 4, 2 according to whether k ≡ 0, 1, 2

(mod 3). Then we have

σ2(G) ≥ n +
k − ck

3
(2.3)

because σ2(G) is an integer.

Claim 4. dL(u) ≥ l − s + k−ck
3 + 1 for all u ∈ V (L) − NL(H).

Proof. Since
∑

h∈V (H) dG(h) ≤ |V (H)|(|V (H)| − 1) + s|V (H)| + k − s, there
exists h ∈ V (H) such that dG(h) ≤ |V (H)| − 1 + s + k−s

|V (H)| . In view of Claim
3 (ii), we have dG(h) ≤ |V (H)| − 1 + s. Thus for every u ∈ V (L) − NL(H),

dL(u) = dG(u) ≥ n +
k − ck

3
− dG(h) ≥ l − s +

k − ck

3
+ 1

by (2.3).

For each u ∈ V (L)−NL(H), dL(u) ≥ l− s + 1 = |(V (L)−{u})−S|+ 2 by
Claim 4, and hence |NG(u) ∩ S| ≥ 2. In view of Claims 2 (i) and 3 (i), this in
particular implies that s ≥ 2, and

NG(vi) ∩ (S − {ui}) �= ∅ for each i ∈ {1, · · · , s}.(2.4)

Claim 5. There exist no vertex disjoint subgraphs P, C ′
i, 2 ≤ i ≤ k, in L such

that 


P is a path joining two distinct vertices in {u1, · · · , us}, C ′
i is a cycle

for each 2 ≤ i ≤ k, each of P and the C ′
i, 2 ≤ i ≤ k, contains exactly

one vertex in {v1, · · · , vk}, and V (P ) ∪ (∪k
i=2V (C ′

i)
) ⊇ NL(H).

(2.5)

Proof. Suppose that there exist vertex disjoint subgraphs P, C ′
i, 2 ≤ i ≤ k,

in L which satisfy (2.5). Write V (P ) ∩ {v1, · · · , vk} = {vj1} and V (C ′
i) ∩

{v1, · · · , vk} = {vji} for each 2 ≤ i ≤ k. Let ur and ut be the initial vertex
and the terminal vertex of P , respectively. Since dL(u) > l − s ≥ l − k >
l− 1

2 (|V (P )|+ ∑k
i=2 |V (C ′

i)|) for all u ∈ V (L)−NL(H) by Claim 4, it follows
from Claim 1 that there are vertex disjoint subgraphs P ′, C ′′

i , 2 ≤ i ≤ k, in L
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such that P ′ is a path with vj1 ∈ V (P ′) connecting ur and ut, C ′′
i is a cycle

with vji ∈ V (C ′′
i ) for each 2 ≤ i ≤ k, and V (P ′)∪ (∪k

i=2V (C ′′
i )) = V (L). Take

h ∈ NH(ur) and h′ ∈ NH(ut) − {h} (note that dH(ut) ≥ 2 because ut ∈ S).
Combining P ′ and a path in H connecting h and h′, we obtain a cycle C ′

1. Then
C ′

1 and the C ′′
i , 2 ≤ i ≤ k, are vertex disjoint cycles in G such that vj1 ∈ V (C ′

1),
vji ∈ V (C ′′

i ) for each 2 ≤ i ≤ k, and |V (C ′
1)| +

∑k
i=2 |V (C ′′

i )| >
∑k

i=1 |V (Ci)|.
This contradicts the maximality of

∑k
i=1 |V (Ci)|.

For each i∈{1,· · · , s}, take wi∈V (Ci)−{ui,vi} and let Wi =〈{ui,vi,wi}〉G.
We redefine the orientation of each Ci, 1 ≤ i ≤ s, so that wi ∈ V (Ci(vi, ui)).

Claim 6. Let 1 ≤ h, j ≤ s with h �= j, and suppose that vhuj ∈ E(G). Then
whvj �∈ E(G) or whwj �∈ E(G).

Proof. At the cost of relabeling, we may assume h = 1 and j = 2. Suppose
v1u2 ∈ E(G), w1v2 ∈ E(G) and w1w2 ∈ E(G). Let P ′ = C1[u1, v1]u2 and
C ′

2 = w1C2[v2, w2]w1, and let C ′
i = Ci for 3 ≤ i ≤ k. Then P ′ and the

C ′
i (2 ≤ i ≤ k) satisfy (2.5), a contradiction.

Having (2.4) in mind, take i1 and i2 with 1 ≤ i1, i2 ≤ s and i1 �= i2
satisfying ui2 ∈ NG(vi1) so that∑s

i=1 dWi(wi1) is minimum.(2.6)

We may assume i1 = 1 and i2 = 2. We remark in advance that we make use
of (2.6) only in the last stage of the proof (see the paragraph following Claim
12).

Claim 7. We have dW1(w1) + dW1(v2) + dW1(w2) ≤ 7. Further if dW1(w1) +
dW1(v2) + dW1(w2) = 7, then{

w1w2 �∈ E(G), w1u1 ∈ E(G), w1v1 ∈ E(G);
v2x ∈ E(G) for each x ∈ {u1, v1, w1}; and
w2x ∈ E(G) for each x ∈ {u1, v1}.

(2.7)

Proof. Applying Claim 6 with h = 1 and j = 2, we get v2w1 �∈ E(G) or w2w1 �∈
E(G). This implies dW1(v2) + dW1(w2) ≤ 5, and hence dW1(w1) + dW1(v2) +
dW1(w2) ≤ 7. Now assume that dW1(w1) + dW1(v2) + dW1(w2) = 7, i.e.,
dW1(v2) + dW1(w2) = 5 and dW1(w1) = 2. Assume further that w1w2 ∈ E(G).
Then v2w1 �∈ E(G) by Claim 6. Hence by the assumption that dW1(v2) +
dW1(w2) = 5, we in particular have v2u1 ∈ E(G) and w2v1 ∈ E(G). But then
applying Claim 6 with h = 2 and j = 1, we get a contradiction. Thus the
equality dW1(w1) + dW1(v2) + dW1(w2) = 7 implies (2.7).
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Claim 8. dW2(w1) + dW2(v2) + dW2(w2) ≤ 6.

Proof. Since dW2(w1) ≤ 2 by Claim 6, the desired inequality follows.

Claim 9. dWi(w1) + dWi(v2) + dWi(w2) ≤ 7 for each i ∈ {3, · · · , s}.
Proof. Let 3 ≤ i ≤ s. If v2ui �∈ E(G), then dWi(v2) ≤ 2; if v2ui ∈ E(G), then
dWi(w2) ≤ 2 by Claim 6. In either case, we have dWi(v2) + dWi(w2) ≤ 5. Now
assume that dWi(v2) + dWi(w2) = 5 and dWi(w1) = 3. Then ui ∈ NG(v2) ∩
NG(w2) or wi ∈ NG(v2) ∩ NG(w2). If ui ∈ NG(v2) ∩ NG(w2), then P ′ =
C1[u1, v1]u2, C ′

2 = uiC2[v2, w2]ui, C ′
i = w1Ci[vi, wi]w1 and C ′

j = Cj , j �= 1, 2, i,
satisfy (2.5), a contradiction; if wi ∈ NG(v2)∩NG(w2), then P ′ = C1[u1, v1]u2,
C ′

2 = wiC2[v2, w2]wi, C ′
i = w1Ci[ui, vi]w1 and C ′

j = Cj, j �= 1, 2, i, satisfy
(2.5), a contradiction.

Let W = 〈∪s
i=1V (Wi)〉G. Clearly{
dL(x) ≤ |V (L)−V (W )|+dW (x) = l−3s+dW (x)
for each x ∈ {w1, v2, w2}.(2.8)

From this and Claims 7, 8 and 9, it follows that

dL(w1) + dL(v2) + dL(w2) ≤ 3l − 9s + 7 + 6 + 7(s − 2) = 3l − 2s − 1.(2.9)

Now if dL(w1)+dL(v2)+dL(w2) ≤ 3l−2s−2, then 3l−2s−2 ≥ 3
(
l − s + k−ck

3

+1) by Claim 4, and hence s ≥ k − ck + 5 ≥ k + 1, a contradiction. Thus
dL(w1)+ dL(v2)+ dL(w2) = 3l− 2s− 1. Then again by Claim 4, 3l− 2s− 1 ≥
3
(
l − s + k−ck

3 + 1
)
, i.e., s ≥ k + 4 − ck. This inequality holds only when

ck = 4 and s = k. Thus s = k ≡ 1 (mod 3). Consequently, s ≥ 4, and all of
the following equalities, (2.10) through (2.12), must hold:

dW1(w1) + dW1(v2) + dW1(w2) = 7;(2.10)
dW2(w1) + dW2(v2) + dW2(w2) = 6; and(2.11)
dWi(w1) + dWi(v2) + dWi(w2) = 7 for each i ∈ {3, · · · , s}.(2.12)

Note that we have not made use of (2.6) so far. Note also that we have

u1 ∈ NG(v2)(2.13)

by (2.7) and (2.10). Thus dW2(w2) + dW2(v1) + dW2(w1) = 7, and hence (2.7)
holds with the roles of W1 and W2 replaced by each other. Consequently{

w1w2 �∈ E(G), w1u1 ∈ E(G), w1v1 ∈ E(G), and every vertex
in {u1, v1, w1} and every vertex in {u2, v2, w2}, except w1 and
w2 and except possibly u1 and u2, are adjacent to each other.

(2.14)
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Again note that we have not yet used (2.6). Thus{
for any i, j ∈ {1, · · · , s} with i �= j such that uj ∈ NG(vi), the
statements corresponding to (2.10) through (2.12) and (2.14) hold.(2.15)

Let I = { i | dWi(w1) = 3, 3 ≤ i ≤ s } and let J = {3, · · · , s} − I. Since
dW (w1) ≥ 2s + 1 by Claim 4 and (2.8), and since dW1(w1) = dW2(w1) = 2 by
(2.14), we have

I �= ∅.(2.16)

Claim 10. Let i ∈ I. Then wiv1, wiv2 �∈ E(G) and dWi(w2) = 3.

Proof. We first show that uiv2 �∈ E(G). Suppose that uiv2 ∈ E(G). Since
dWi(w1) = 3 by assumption, and since dWi(v2) + dWi(w2) = 5 by (2.14) and
(2.15), we have dWi(w1) + dWi(v2) + dWi(w2) = 8, which contradicts (2.12).
Thus uiv2 �∈ E(G). Next suppose that wiv2 ∈ E(G). If uiw2, viw2 ∈ E(G),
then P ′ = C1[u1, v1]u2, C ′

2 = w1v2wiw1, C ′
i = w2Ci[ui, vi]w2 and C ′

j = Cj, j �=
1, 2, i, satisfy (2.5), a contradiction; otherwise, in view of (2.12), wiw2 ∈ E(G),
and hence P ′ = C1[u1, v1]u2, C ′

2 = wiC2[v2, w2]wi, C ′
i = w1Ci[ui, vi]w1 and

C ′
j = Cj, j �= 1, 2, i, satisfy (2.5), a contradiction. Thus wiv2 �∈ E(G). Conse-

quently dWi(v2) = 1 and

dWi(w2) = 3(2.17)

by (2.12). Now by (2.13) and (2.17), we can argue as above with the roles of W1

and W2 replaced by each other, to obtain (uiv1 �∈ E(G) and) wiv1 �∈ E(G).

Claim 11. Let j ∈ J . Then wjw1 �∈ E(G), and ujv1, ujw1, vjw1 ∈ E(G).

Proof. We have

dWj (w1) + dWj (v2) + dWj (w2) = 7(2.18)

by (2.12), and dWj (w1) ≤ 2 by the assumption that j ∈ J . Furthermore, it
follows from (2.12), (2.13) and (2.15) that

dWj(w2) + dWj (v1) + dWj (w1) = 7.(2.19)

If dWj(w2) = 3, then applying Claim 10 with the roles of W1 and W2 re-
placed by each other, we obtain dWj(w1) = 3, which contradicts the assump-
tion that j ∈ J . Thus dWj(w2) ≤ 2. Consequently by (2.18) and (2.19),
dWj (v1) = dWj (v2) = 3. Therefore ujv1 ∈ E(G), and hence wjw1 �∈ E(G) and
ujw1, vjw1 ∈ E(G) by (2.14) and (2.15).
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Since v1uj ∈ E(G) for each j ∈ J by Claim 11, we can apply Claim 10 to
W1 and Wj in place of W1 and W2, to obtain the following claim:

Claim 12. Let i ∈ I and let j ∈ J . Then wivj �∈ E(G).

Take i′ ∈ I (recall (2.16)). Since
∑s

i=1 dWi(wi′) ≤ 2|J ∪ {1, 2, i′}| + 3|I −
{i′}| = 3|I|+2|J |+3 by Claims 10 and 12, it follows from the choice of i1 = 1
and i2 = 2 (recall (2.6)) that

s∑
i=1

dWi(w1) ≤ 3|I| + 2|J | + 3.(2.20)

On the other hand, it follows from (2.14) and Claim 11 that

s∑
i=1

dWi(w1) = |{u1, v1, u2, v2}| + 3|I| + 2|J | = 3|I| + 2|J | + 4,

which contradicts (2.20).
This completes the proof of Theorem 1.
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