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A MARCINKIEWICZ INTEGRAL TYPE

CHARACTERIZATION OF THE SOBOLEV SPACE

Piotr Haj lasz and Zhuomin Liu

Abstract: In this paper we present a new characterization of the Sobolev space W 1,p,
1 < p < ∞ which is a higher dimensional version of a result of Waterman [32]. We

also provide a new and simplified proof of a recent result of Alabern, Mateu, and

Verdera [2]. Finally, we generalize the results to the case of weighted Sobolev spaces
with respect to a Muckenhoupt weight.
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1. Introduction

In connection with differentiability properties of periodic functions
Marcinkiewicz [21] introduced the following integral

ν(f) =

(ˆ 2π

0

|F (x+ t) + F (x− t)− 2F (x)|2 dt
t3

)1/2

,

where

F (x) =

ˆ x

0

f(t) dt.

For more details regarding Marcinkiewicz’s results see Vol. II, Chap-
ter XIV, Theorems 5.1 and 5.3 in [36]. Marcinkiewicz conjectured that
for 1 < p <∞ there is a constant Cp > 0 such that

‖ν(f)‖p ≤ Cp‖f‖p for f ∈ Lp(S1)

and

‖f‖p ≤ Cp‖ν(f)‖p for f ∈ Lp(S1) such that

ˆ 2π

0

f(t) dt = 0.

The condition in the second inequality that the integral vanishes is neces-
sary, because for constant functions the right hand side of the inequality
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equals zero. The conjecture of Marcinkiewicz was answered in the affir-
mative by Zygmund [35]. Later Waterman [32] extended the method of
Zygmund to the non-periodic case and he proved:

Theorem 1.1. For 1 < p <∞, there is a constant Cp ≥ 1 such that

C−1
p ‖f‖p ≤ ‖µ(f)‖p ≤ Cp‖f‖p, for all f ∈ Lp(R),

where

(1.1)
µ(f)(x) =

(ˆ ∞
0

|F (x+ t) + F (x− t)− 2F (x)|2 dt
t3

)1/2

,

F (x) =

ˆ x

0

f(t) dt.

Stein [26] generalized the Marcinkiewicz integral (1.1) to higher di-
mensions as follows. Let Ω ∈ L1(Sn−1) have vanishing integral

(1.2)

ˆ
Sn−1

Ω(y) dσ(y) = 0.

The Marcinkiewicz integral of Stein is defined by

(1.3) µΩ(f)(x)=

(̂
∞

0

∣∣∣ˆ
|y|≤t

Ω(y′)

|y|n−1
f(x−y) dy

∣∣∣2 dt
t3

)1/2

, where y′=y/|y|.

If n = 1 and Ω(y′) = sign y, we obtain integral (1.1). Stein proved in
all dimensions that if Ω is odd, then µΩ is bounded in Lp, 1 < p < ∞,
and if Ω is Hölder continuous with exponent 0 < α ≤ 1, then µΩ is
bounded in Lp, 1 < p ≤ 2, and is of weak type (1, 1). In the odd case the
result was obtained as a consequence of the one dimensional result due
to Waterman. The methods used by Stein were quite difficult. Later
Benedek, Calderón, and Panzone [3] proved the following result by way
of vector valued singular integrals.

Theorem 1.2. If Ω ∈ C1(Sn−1) satisfies (1.2), then for 1 < p < ∞
there is a constant C = C(n, p) ≥ 1 such that

(1.4) ‖µΩ(f)‖p ≤ C‖f‖p for f ∈ Lp(Rn).

An optimal condition under which (1.4) is satisfied was discovered in
[1]: (1.4) holds true provided Ω satisfies (1.2) and Ω ∈ L(logL)1/2(Sn−1).
A generalization of Theorem 1.2 to the case of weighted Lpw(Rn) spaces,
where w ∈ Ap is a Muckenhoupt weight, was obtained by Sato in [23], see
Theorem 4.2 below. For recent sharp results, see [7]. There has been a
tremendous development of the theory of Marcinkiewicz integrals (liter-
ally hundreds of papers) and it is simply not possible to provide relevant
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references here; nonetheless the reader will have no problems with finding
them.

It turns out that under certain additional assumptions about Ω we
have

(1.5) C−1‖f‖p ≤ ‖µΩ(f)‖p ≤ C‖f‖p for f ∈ Lp(Rn).

The left inequality is obtained from the right one by a duality argument
(see Step 4 in Section 3 for details). These assumptions are satisfied for
example by Ω(y′) = sign y when n = 1 and hence Theorem 1.1 follows.

Recall that the Sobolev space W 1,p(Rn) is the space of functions f ∈
Lp(Rn) with first order weak derivatives in Lp(Rn). W 1,p(Rn) is a Banach
space with the norm ‖f‖1,p = ‖f‖p+‖∇f‖p. Observe that Theorem 1.1
can be regarded as a characterization of the Sobolev space W 1,p(R).
Indeed, if f ∈W 1,p(R), 1 < p <∞, and

(1.6) T (f) =

(ˆ ∞
0

|f(x+ t) + f(x− t)− 2f(x)|2 dt
t3

)1/2

,

then T (f) = µ(f ′) and hence

(1.7) C−1
p ‖f ′‖p ≤ ‖T (f)‖p ≤ Cp‖f ′‖p.

It follows from this inequality that f ∈W 1,p(R) if and only if f ∈ Lp(R)
and T (f) ∈ Lp(R). Stein [27], [28, p. 163] generalized this characteriza-
tion to higher dimensions as follows.

Theorem 1.3. f ∈ W 1,p(Rn), 2n
n+1 < p <∞ if and only if f ∈ Lp(Rn)

and

(1.8)

(ˆ
Rn

|f(x+ y) + f(x− y)− 2f(x)|2

|y|n+2
dy

)1/2

∈ Lp(Rn).

Note that when n = 1, the integral in (1.8) equals
√

2T (f) and
hence Theorem 1.3 is a natural generalization of the characterization
of W 1,p(R) mentioned above to higher dimensions, but a problem is
that in higher dimensions Theorem 1.3 does not cover the case 1 < p ≤
2n/(n + 1). Actually Stein proved a more general result that includes
a characterization of Bessel potential spaces. For other related char-
acterizations of Sobolev and Bessel potential spaces, see for example
[2, 6, 22, 30, 33, 34]. We will discus the paper [2] later on.

One of the aims of this paper is to generalize the characterization (1.7)
to higher dimensions in a way that it would be valid for all 1 < p <∞.
To avoid the limitation on the exponent p in Stein’s Theorem 1.3, we
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generalize the Marcinkiewicz integral in a different way. Observe that in
dimension one

f(x+ t) + f(x− t)− 2f(x)

2
=

 
S(x,t)

f(y) dσ(y)− f(x) = fS(x,t)− f(x),

where the barred integral denotes the integral over the (n − 1)-dimen-
sional sphere S(x, t), which in the case of n = 1 it is simply the average
(f(x + t) + f(x − t))/2. Here and in what follows fE is used to denote
the integral average of f over E. Now for f ∈ Lp(Rn) we define

(1.9) Tf(x) =

(ˆ ∞
0

∣∣∣f(x)− fS(x,t)

∣∣∣2 dt
t3

)1/2

.

Note that when n = 1, the definition (1.9) is consistent with (1.6) (up
to a constant factor). One of the main results of this paper reads as
follows.

Theorem 1.4. Suppose that f ∈Lp(Rn), 1<p <∞. Then f ∈W 1,p(Rn)
if and only if Tf ∈ Lp(Rn). Moreover there is a constant C=C(n, p) ≥ 1
such that

(1.10) C−1‖∇f‖p ≤ ‖Tf‖p ≤ C‖∇f‖p.

When n = 1, Theorem 1.4 is the same as the characterization (1.7).
We will also prove that Tf can be expressed as a Marcinkiewicz inte-
gral (1.3) of ∇f . Let

φ(x) =
1

nωn

x

|x|n
χB(0,1)(x) and

φt(x) = t−nφ(x/t) =
1

tnωn

x

|x|n
χB(0,t)(x).

Here and in what follows ωn is the volume of a unit ball in Rn and hence
nωn is the surface area of the sphere Sn−1(0, 1).

Lemma 1.5. If f ∈W 1,1
loc (Rn), then

Tf(x) =

(ˆ ∞
0

∣∣φt ∗ ∇f(x)
∣∣2 dt
t

)1/2

=
1

nωn

(ˆ ∞
0

∣∣∣ˆ
|y|≤t

y

|y|n
· ∇f(x− y) dy

∣∣∣2 dt
t3

)1/2(1.11)

for almost all x ∈ Rn.
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The functions φt and ∇f take values in Rn and φt ∗ ∇f is defined as
the integral of the scalar product

φt ∗ ∇f(x) =

ˆ
Rn

φt(y) · ∇f(x− y) dy.

The inequality ‖Tf‖p ≤ C‖∇f‖p follows directly from Lemma 1.5 and
Theorem 1.2. The proof of the reverse inequality ‖∇f‖p≤C‖Tf‖p will
be obtained by a standard duality argument; see Section 3, Steps 4 and 5.

Theorem 1.1 can be regarded as a characterization of the Sobolev
space W 1,p(R), see (1.7) and a comment that follows. Theorems 1.2
and 1.3 are higher dimensional generalizations of Theorem 1.1. However,
in higher dimensions Theorem 1.2 cannot be interpreted as a character-
ization of W 1,p(Rn) and in Theorem 1.3 we can characterize W 1,p(Rn)
but only for p > 2n/(n + 1). From this perspective Theorem 1.4 is a
more natural generalization on Theorem 1.1 to higher dimensions: it
works for all 1 < p < ∞ and it gives a characterization of W 1,p(Rn) in
terms of the Marcinkiewicz integral of the gradient (1.11), just like the
characterization (1.7) in dimension n = 1.

Theorem 1.4 is related to a recent characterization of W 1,p(Rn) due
to Alabern, Mateu, and Verdera [2, Theorem 1] where instead of sub-
tracting averages over spheres we subtract averages over balls.

Theorem 1.6. Suppose that f ∈Lp(Rn), 1<p <∞. Then f ∈W 1,p(Rn)
if and only if Sf ∈ Lp(Rn), where

Sf(x) =

(ˆ ∞
0

|f(x)− fB(x,t)|2
dt

t3

)1/2

.

Moreover there is a constant C = C(n, p) ≥ 1 such that

(1.12) C−1‖∇f‖p ≤ ‖Sf‖p ≤ C‖∇f‖p.
We will provide a new, and on a technical side much simpler, proof

of this result based on the following representation formula. Let

ψ(x) =
1

nωn

(
x

|x|n
− x
)
χB(0,1)(x) and ψt(x) = t−nψ(x/t).

Lemma 1.7. If f ∈W 1,1
loc (Rn), then

Sf(x) =

(ˆ ∞
0

|ψt ∗ ∇f(x)|2 dt
t

)1/2

=
1

nωn

(ˆ ∞
0

∣∣∣ˆ
|y|≤t

( y

|y|n
− y

tn

)
· ∇f(x− y) dy

∣∣∣2 dt
t3

)1/2

for almost all x ∈ Rn.
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The original proof of Theorem 1.6 is based on vector valued singu-
lar integrals and the main technical difficulty is a verification that a
suitable vector valued integral operator satisfies the Hörmander condi-
tion. Our approach is much simpler as we will show that the inequality
‖Sf‖p ≤ C‖∇f‖p in Theorem 1.6 is a direct consequence of Lemma 1.7,
Theorem 1.2, and the following classical result in the Littlewood–Paley
theory due to Benedek, Calderón, and Panzone [3], [31, Chapter XII,
Theorem 3.5]. (Alternatively one can use a result of Sato, Theorem 4.2,
in place of Theorems 1.2 and 1.8, see (4.1).)

Theorem 1.8. Let φ ∈ L1(Rn) be such that

(1.13)

ˆ
Rn

φ(x) dx = 0.

Assume that there are constants C,α > 0 such that

(1.14) |φ(x)| ≤ C(1 + |x|)−n−α, x ∈ Rn

and

(1.15)

ˆ
Rn

|φ(x+ h)− φ(x)| dx ≤ C|h|α, h ∈ Rn.

Let φt(x) = t−nφ(x/t). Then the operator

Gf(x) =

(ˆ ∞
0

|φt ∗ f(x)|2 dt
t

)1/2

is bounded in Lp, 1 < p <∞ and of weak type (1, 1).

The main result of [2, Theorem 3] is actually more general since it
also covers the case of higher order derivatives and the case of Bessel
potential spaces. It is possible to modify Theorem 1.4 in a way that
it would cover the case of higher order derivatives, but we decided to
restrict to the case of the first order derivatives for the sake of simplicity.
The higher dimensional version of the theorem requires rather tedious
computations that would obscure simplicity of our approach.

It is interesting to point out that the functions Sf and Tf satisfy the
following pointwise inequality.

Proposition 1.9. If f ∈W 1,p(Rn), 1 ≤ p ≤ ∞, then

(1.16) Sf(x) ≤ n

n+ 2
Tf(x) a.e.
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Actually it follows from the proof that (1.16) holds true under a

weaker assumption that f ∈W 1,1
loc (Rn) is such that

lim
t→∞

1

t

 
B(x,t)

|f(y)| dy = 0.

As we pointed out, the inequality ‖Tf‖p ≤ C‖∇f‖p is a direct conse-
quence of Theorem 1.2 and the elementary formula (1.11). This com-
bined with Proposition 1.9 proves also the inequality ‖Sf‖p ≤ C‖∇f‖p,
but the proof of the reverse inequality ‖∇f‖p ≤ C‖Sf‖p cannot be di-
rectly concluded from Theorem 1.4 and Proposition 1.9. To prove the
reverse inequality we will use Lemma 1.7 instead of Proposition 1.9.
For this reason we will prove Theorem 1.6 directly without referring to
Proposition 1.9. We will prove Proposition 1.9 in Section 5, after the
proofs of Theorems 1.4 and 1.6 since it will not be used in these proofs.

We believe that the content of this paper will be of interest mostly
for the community of people working with geometric aspects of Sobolev
spaces. Since many of the researchers working in this area do not
use tools form harmonic analysis, we decided to make the paper self-
contained and easy to read by providing all necessary details. But we
also hope that researchers whose main area of research is harmonic anal-
ysis will find this paper interesting too.

Notation used in the paper is pretty standard. The Fourier transform
is defined by

f̂(ξ) =

ˆ
Rn

e−2πix·ξf(x) dx.

By C we will denote a positive constant whose value may change in a
single string of estimates.

The paper is organized as follows. In Section 2 we prove Lemmas 1.5
and 1.7. The proofs are very elementary. In Section 3 we prove The-
orems 1.4 and 1.6. The proofs use some harmonic analysis including
Theorems 1.2 and 1.8. In Section 4 we prove the second main result
of the paper, Theorem 4.1 which is a generalization of Theorems 1.4
and 1.6 to the case of weighted Sobolev spaces with a Muckenhoupt
weight. Theorems 1.4 and 1.6 are special cases of Theorem 4.1, but
we decided to include separate proofs in the unweighted case, because
the proofs are based on more elementary arguments (in particular we
could use classical Theorems 1.2 and 1.8 in place of a more complicated
Theorem 4.2) and the proofs of Theorems 1.4 and 1.6 are in fact used
in the proof of Theorem 4.1. Proposition 1.9 which gives an inequality
between Sf and Tf is presented in Section 5. This result is not needed
in the proofs of Theorems 1.4, 1.6, and 4.1. In Section 6 we include final
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remarks which are of independent interest – they are not needed in the
proofs of the results in the earlier sections.

Acknowledgements. We would like to thank Yibiao Pan and Joan
Verdera for helpful discussions. Yibiao Pan showed us that the duality
argument works also in the weighted case which was needed to complete
the proof of Theorem 4.1. We would also like to thank Shuichi Sato for
providing a copy of his very recent work [24], where some of the results
of this paper have been generalized.

2. Proof of Lemmas 1.5 and 1.7

Both of the lemmas follow immediately from the lemma below.

Lemma 2.1. If f ∈W 1,1
loc (Rn), then for all t > 0 and almost all x ∈ Rn

we have

f(x)− fS(x,t) =
1

nωn

ˆ
B(x,t)

∇f(y) · x− y
|x− y|n

dy,

f(x)−fB(x,t) =
1

nωn

ˆ
B(x,t)

∇f(y) · x− y
|x−y|n

dy− 1

n

 
B(x,t)

∇f(y) ·(x−y) dy.

Proof: We can assume that f ∈ C∞0 (Rn). The general case will follow by

approximation. Note that the restriction (trace) of f ∈ W 1,1
loc to S(x, t)

is well defined [8, Section 4.3, Theorem 1]. We have

f(x)−
 
S(x,t)

f(y) dσ(y) = −
ˆ t

0

d

dτ

( 
S(x,τ)

f(y) dσ(y)

)
dτ

= −
ˆ t

0

d

dτ

( 
S(0,1)

f(x+ τz) dσ(z)

)
dτ

= −
ˆ t

0

 
S(0,1)

∇f(x+ τz) · z dσ(z) dτ

= −
ˆ t

0

 
S(x,τ)

∇f(y) · y − x
|y − x|

dσ(y) dτ

=
1

nωn

ˆ t

0

ˆ
S(x,τ)

∇f(y) · x− y
|x− y|n

dσ(y) dτ

=
1

nωn

ˆ
B(x,t)

∇f(y) · x− y
|x− y|n

dy.
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This proves the first identity. The proof of the second one is similar.

f(x)−
 
B(x,t)

f(y) dy = −
ˆ t

0

d

dτ

( 
B(x,τ)

f(y) dy

)
dτ

= −
ˆ t

0

d

dτ

( 
B(0,1)

f(x+ τz) dz

)
dτ

= −
ˆ t

0

 
B(0,1)

∇f(x+ τz) · z dz dτ

= −
ˆ t

0

 
B(x,τ)

∇f(y) · y − x
τ

dy dτ

=
1

ωn

ˆ t

0

ˆ
B(x,τ)

∇f(y) · x− y
τn+1

dy dτ

=
1

ωn

ˆ
B(x,t)

(ˆ t

|x−y|

dτ

τn+1

)
∇f(y) · (x− y) dy

=
1

nωn

ˆ
B(x,t)

(
1

|x− y|n
− 1

tn

)
∇f(y) · (x− y) dy.

The proof is complete.

3. Proof of Theorems 1.4 and 1.6

Step 1: ‖Tf‖p ≤ C‖∇f‖p and ‖Sf‖p ≤ C‖∇f‖p.
As we already pointed out the inequality ‖Tf‖p ≤ C‖∇f‖p for f ∈

W 1,p follows directly from Theorem 1.2 and Lemma 1.5. To prove the
inequality ‖Sf‖p ≤ C‖∇f‖p observe that

(3.1) ψ(x) = φ(x)− η(x), where η(x) =
x

nωn
χB(0,1).

Hence

Sf(x) ≤ Tf(x) +Wf(x),

where

Wf(x) =

(ˆ ∞
0

∣∣ηt ∗ ∇f(x)
∣∣2 dt
t

)1/2

.

It remains to show that ‖Wf‖p ≤ C‖∇f‖p, f ∈ W 1,p. This is how-
ever, a consequence of Theorem 1.8. Indeed, the function η clearly
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satisfies (1.13) and (1.14) with α = 1 and condition (1.15) also holds
with α = 1 which can be justified as follows.

If |h| > 1/2, thenˆ
Rn

|η(x+ h)− η(x)| dx ≤ 2‖η‖1 ≤ C|h|.

If |h| ≤ 1/2, then

nωn

ˆ
Rn

|η(x+ h)− η(x)| dx ≤
ˆ
B(0,1+|h|)\B(0,1−|h|)

2 dx

+

ˆ
B(0,1−|h|)

|h| dx ≤ C|h|.

Step 2: Square functions T̃ g and S̃g.
In this subsection we modify the definitions of the square functions Tf

and Sf and prove boundedness of these modified square functions in Lp.
It will play a crucial role in the proof of the reverse inequalities ‖∇f‖p ≤
‖Tf‖p and ‖∇f‖p ≤ ‖Sf‖p.

For g ∈ Lp(Rn) let

Rg = (R1g, . . . , Rng)

be the vector valued Riesz transform, where

(Rϕ)∧(ξ) = −i ξ
|ξ|
ϕ̂(ξ) for ϕ ∈ S (Rn).

Now we define

T̃ g(x) =

(ˆ ∞
0

|φt ∗Rg(x)|2 dt
t

)1/2

, g ∈ Lp(Rn),

S̃g(x) =

(ˆ ∞
0

|ψt ∗Rg(x)|2 dt
t

)1/2

, g ∈ Lp(Rn).

Lemma 3.1. For 1 < p <∞ we have

‖T̃ g‖p ≤ C‖g‖p, g ∈ Lp(Rn),(3.2)

‖S̃g‖p ≤ C‖g‖p, g ∈ Lp(Rn).(3.3)

Proof: Estimate (3.2) follows from Theorem 1.2 and boundedness of the
Riesz transform in Lp while (3.3) follows from

S̃g ≤ T̃ g +

(ˆ ∞
0

|ηt ∗Rg|2
dt

t

)1/2
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combined with (3.2), the fact that η satisfies the assumptions of Theo-
rem 1.8 and from boundedness of the Riesz transform in Lp.

Step 3: L2 isometries.
We will prove that up to a constant factor, the square functions T̃

and S̃ are isometries in L2, i.e.:

Lemma 3.2. There are constants C1, C2 > 0 such that

‖T̃ g‖2 = C1‖g‖2 and ‖S̃g‖2 = C2‖g‖2 for g ∈ L2(Rn).

Observe that the functions φ and ψ are of the form g(|x|)x/|x|. This
allows us to find the structure of the Fourier transforms of φ and ψ.

Lemma 3.3. Let f ∈ L1(Rn,Rn) be of the form

f(x) =
x

|x|
g(|x|).

Then there is a continuous function h : [0,∞) → R, h(0) = 0, h(t) → 0
as t→∞ such that

f̂(ξ) = i
ξ

|ξ|
h(|ξ|), ξ ∈ Rn.

The proof is based on the following well known result from linear
algebra [10, Lemma 4.1.15], [28, p. 57].

Lemma 3.4. If m : Rn → Rn is a measurable function that is homo-
geneous of degree 0, i.e. m(tx) = m(x) for t > 0, and commutes with
orthogonal transformations, i.e.

m(ρ(x)) = ρ(m(x)), x ∈ Rn, ρ ∈ O(n),

then there is a constant C ∈ R such that

m(x) = C
x

|x|
for all x 6= 0.

Proof of Lemma 3.3: Since the function f is odd and takes values in Rn,

the real part of f̂ equals zero, and hence

if̂(ξ) =

ˆ
Rn

sin(2πx · ξ)f(x) dx

takes values in Rn. Fix k > 0 and define mk : Sn−1(0, k) → Rn by

mk(ξ) = if̂(ξ) for |ξ| = k. Extend mk to mk : Rn \ {0} → Rn as a
function homogeneous of degree 0, i.e.

mk(ξ) = i f̂

(
kξ

|ξ|

)
for ξ 6= 0.
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We claim that

(3.4) mk(ρ(ξ)) = ρ(mk(ξ)) for ρ ∈ O(n) and ξ 6= 0.

Indeed, it suffices to check (3.4) for |ξ| = k. We have

mk(ρ(ξ)) =

ˆ
Rn

sin(2πx · ρ(ξ))
x

|x|
g(|x|) dx

=

ˆ
Rn

sin(2πρ−1(x) · ξ) x
|x|
g(|x|) dx

=

ˆ
Rn

sin(2πx · ξ) ρ(x)

|ρ(x)|
g(|ρ(x)|) dx

=

ˆ
Rn

sin(2πx · ξ)ρ(x)

|x|
g(|x|) dx

= ρ

(ˆ
Rn

sin(2πx · ξ) x
|x|
g(|x|) dx

)
= ρ(mk(ξ)).

According to Lemma 3.4 there is a constant h(k) ∈ R such that mk(ξ) =
−h(k)ξ/|ξ|. In particular for |ξ| = k we have

if̂(ξ) = mk(ξ) = − ξ

|ξ|
h(|ξ|).

Clearly h is continuous, h(0) = 0 and h(t) → 0 as t → ∞, because

f̂ ∈ C0(Rn,Rn).

Proof of Lemma 3.2: We will prove the result in the case of the square
function T̃ g only. The proof in the case of S̃g is the same. Using the

Fubini theorem, the Plancherel theorem and the fact that φ̂t(ξ) = φ̂(tξ)
we obtain

‖T̃ g‖22 =

ˆ ∞
0

ˆ
Rn

|φt ∗Rg|2 dx
dt

t
=

ˆ ∞
0

ˆ
Rn

|φ̂(tξ) · R̂g(ξ)|2 dξ dt
t

= ♥,

φ̂(tξ) = i
ξ

|ξ|
h(t|ξ|), R̂g(ξ) = −i ξ

|ξ|
ĝ(ξ),

♥ =

ˆ ∞
0

ˆ
Rn

|ĝ(ξ)h(t|ξ|)|2 dξ dt
t

=

ˆ
Rn

|g(x)|2 dx
ˆ ∞

0

|h(t)|2 dt
t

= C‖g‖22.

Note that the integral involving h does not depend on |ξ| (use the change

of variables s = t|ξ|). Since the square function T̃ g is bounded in L2 we
conclude that ˆ ∞

0

|h(t)|2 dt
t

= C <∞.

The proof is complete.
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Step 4: Duality argument.
We will use a standard duality argument [9, Remark 5.6, p. 507], [11,

Exercise 5.1.6], to show that Lemma 3.1 and Lemma 3.2 imply:

Lemma 3.5. For 1 < p <∞ there is a constant C ≥ 1 such that

C−1‖g‖p ≤ ‖T̃ g‖p ≤ C‖g‖p, g ∈ Lp(Rn),

C−1‖g‖p ≤ ‖S̃g‖p ≤ C‖g‖p, g ∈ Lp(Rn).

Proof: We will prove the result in the T̃ g case, the proof in the S̃g case is
the same. Consider the following operator acting on functions g defined
on Rn whose values at x ∈ Rn are measurable functions of variable t∈R+

Kg(x) =
(
φt ∗Rg(x)

)
t>0

.

Lemma 3.1 states that K is a bounded operator between the spaces

(3.5) K : Lp(Rn)→ Lp(Rn, L2(R+, dt/t)) = Lp(Rn, H),

and Lemma 3.2 means that K : L2(Rn) → L2(Rn, H) is an isometry
multiplied by a constant factor

(3.6)

(ˆ
Rn

‖Kg‖2H dx
)1/2

= C1

(ˆ
Rn

|g|2 dx
)1/2

, g ∈ L2(Rn).

Here we consider real valued functions g. Let q be the Hölder conjugate
exponent to p, p−1 + q−1 = 1. Since the scalar product is determined
by the Hilbert norm (polarization identity) we conclude from (3.6) and
from (3.2) with p replaced by q that for g ∈ Lp ∩L2 and h ∈ Lq ∩L2 we
have

C2
1

ˆ
Rn

gh dx=

ˆ
Rn

〈Kg,Kh〉H dx≤
(ˆ

Rn

‖Kg‖pH dx
)1/p(ˆ

Rn

‖Kh‖qH dx
)1/q

=‖T̃ g‖p‖T̃ h‖q ≤ C‖T̃ g‖p‖h‖q.

Taking supremum over h ∈ Lq∩L2, ‖h‖q ≤ 1 we obtain ‖g‖p ≤ C‖T̃ g‖p.
We proved this inequality for g ∈ Lp∩L2, but a density argument shows
that it is true for any g ∈ Lp(Rn).

Step 5: Fractional Laplacian (−∆)1/2.
In this section we will prove the left inequalities at (1.10) and (1.12)

for f ∈W 1,p by applying Lemma 3.5 to g = (−∆)1/2f .
Recall that the fractional Laplace operator is defined by

(−∆)1/2ϕ = (2π|ξ|ϕ̂(ξ))∨, ϕ ∈ S (Rn).
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Lemma 3.6. For 1 < p <∞ there is a constant C ≥ 1 such that

C−1‖∇ϕ‖p ≤ ‖(−∆)1/2ϕ‖p ≤ C‖∇ϕ‖p, ϕ ∈ S (Rn).

Proof: By taking the Fourier transform and looking at the multipliers
we see that

R(−∆)1/2ϕ = −∇ϕ and R · ∇ϕ = (−∆)1/2ϕ,

where R · ∇ϕ =
∑
j Rj∂jϕ. Then the result follows from boundedness

of R in Lp.

By continuity (−∆)1/2 uniquely extends to a bounded operator

(−∆)1/2 : W 1,p(Rn)→ Lp(Rn), 1 < p <∞

that also satisfies the inequality of Lemma 3.6 and

R(−∆)1/2f = −∇f for f ∈W 1,p(Rn), 1 < p <∞.

Now for f ∈W 1,p(Rn) Lemma 3.5 yields

‖Tf‖p = ‖T̃
(
(−∆)1/2f

)
‖p ≈ ‖(−∆)1/2f‖p ≈ ‖∇f‖p

and similarly ‖Sf‖p ≈ ‖∇f‖p.

Step 6: The final step of the proof.
We proved that f ∈W 1,p, 1 < p <∞, satisfies the inequalities (1.10)

and (1.12). It remains to prove that if f ∈ Lp satisfies Tf ∈ Lp(Rn) or
Sf ∈ Lp(Rn), then f ∈W 1,p.

Let f ∈ Lp(Rn), 1 < p < ∞ and assume that Tf ∈ Lp or Sf ∈ Lp.
Observe that the functions Tf and Sf are of the form

Kf(x) =

(ˆ ∞
0

|f ∗ µt(x)|2 dt
t3

)1/2

,

where µt is some measure. For example in the case of the square func-
tion Tf , µt is the Dirac delta minus the Hausdorff measure Hn−1 re-
stricted to Sn−1(0, t), normalized to have total mass 1.

Let ϕ be a standard mollifier, i.e. ϕ ∈ C∞0 (Rn), ϕ ≥ 0,
´
Rn ϕ(x) dx =

1. Let ϕε(x) = ε−nϕ(x/ε) and fε = f ∗ϕε. Clearly fε → f in Lp. Since
∇fε = f ∗∇ϕε, ‖∇fε‖p ≤ ‖f‖p‖∇ϕε‖1 <∞. Hence fε ∈W 1,p and thus

‖Kfε‖p ≈ ‖∇fε‖p.
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On the other hand for almost all x ∈ Rn we have

Kfε(x) =

(ˆ ∞
0

∣∣∣ˆ
Rn

(f ∗ µt)(x− y)ϕε(y) dy
∣∣∣2 dt
t3

)1/2

≤
(ˆ ∞

0

(ˆ
Rn

|F (y, t)|ϕε(y) dy
)2 dt

t3

)1/2

,

where F (y, t) = (f ∗ µt)(x − y). Thus the Minkowski integral inequal-
ity [28] implies

Kfε(x) ≤
ˆ
Rn

(ˆ ∞
0

|F (y, t)|2 dt
t3

)1/2

ϕε(y) dy = Kf ∗ ϕε(x).

Hence

‖∇fε‖p ≈ ‖Kfε‖p ≤ ‖Kf‖p‖ϕε‖1 = ‖Kf‖p <∞.

Since the functions ∇fε are bounded in Lp, there is a sequence εk ↓ 0
such that the sequence ∇fεk converges weakly in Lp. Since fεk → f
in Lp we conclude that f ∈W 1,p. The proof is complete.

4. Weighted Sobolev spaces

In this section we will show that the claims of Theorems 1.4 and 1.6
remain valid in the weighted Sobolev space W 1,p

w (Rn), 1 < p < ∞,
where w ∈ Ap as a Muckenhoupt weight; see [9, 12] for the theory of
Muckenhoupt weights and [19, Chapter 1] for the theory of weighted
Sobolev spaces. We will write Lpw or Lp(w) to denote the weighted
Lp space.

Theorem 4.1. Let w ∈ Ap, 1 < p <∞, and let f ∈ Lpw(Rn). Then the
following conditions are equivalent:

(1) f ∈W 1,p
w (Rn),

(2) Tf ∈ Lpw(Rn),

(3) Sf ∈ Lpw(Rn).

Moreover for f ∈W 1,p
w (Rn) we have ‖Tf‖Lp

w
≈ ‖Sf‖Lp

w
≈ ‖∇f‖Lp

w
.

Proof: First of all observe that for w ∈ Ap, W
1,p
w (Rn) ⊂ W 1,1

loc (Rn)
(see [19, p. 14]) and hence Lemmas 1.5 and 1.7 remain valid in the
weighted Sobolev space W 1,p

w (Rn).
The proof is based on the following result of Sato [23, Corollary 1]

which is a generalization of Theorem 1.2.
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Theorem 4.2. For ε > 0 let

ζ(x) = |x|−n+εΩ(x′)χB(0,1)(x),

where x′ = x/|x|, Ω ∈ L∞(Sn−1), and
´
Sn−1 Ω(x) dσ(x) = 0. Then the

square function

σ(f)(x) =

(ˆ ∞
0

|ζt ∗ f(x)|2 dt
t

)1/2

is bounded in the weighted space Lpw(Rn), w ∈ Ap, 1 < p <∞,

‖σ(f)‖Lp
w
≤ Cp,w‖f‖Lp

w
.

As an immediate application we obtain that if g ∈ Lpw(Rn), then

(4.1) ‖T̃ g‖Lp
w
≤ C‖g‖Lp

w
, ‖S̃g‖Lp

w
≤ C‖g‖Lp

w
.

Indeed, the functions φ and η (defined in (3.1)) satisfy the assumptions
of Theorem 4.2. Since ψ = φ − η (see (3.1)) boundedness of the Riesz
transform in Lpw (see [9, Chapter IV.3], [12]) yields (4.1). It is also
easy to see that the duality argument works in the weighted case too.
Indeed, let q be the Hölder conjugate exponent to p. It directly follows
from the definition of the Muckenhoupt weight that w−q/p ∈ Aq. Hence
the unweighted isometry, Lemma 3.2, yields

C2
1

ˆ
Rn

gh dx ≤
ˆ
Rn

‖Kg‖H‖Kh‖H dx

≤
(ˆ

Rn

‖Kg‖pHw dx
)1/p(ˆ

Rn

‖Kh‖qHw
−q/p dx

)1/p

= ‖T̃ g‖Lp
w
‖T̃ h‖Lq(w−q/p) ≤ C‖T̃ g‖Lp

w
‖h‖Lq(w−q/p).

Taking the supremum over ‖h‖Lq(w−q/p) ≤ 1 we get

‖g‖Lp
w

= ‖gw1/p‖p = sup
‖hw−1/p‖q≤1

ˆ
Rn

gw1/phw−1/p dx

= sup
‖h‖

Lq(w−q/p)
≤1

ˆ
Rn

gh ≤ C‖T̃ g‖Lp
w
.

A similar argument applies also to S̃g. This combined with (4.1) yields
that

‖T̃ g‖Lp
w
≈ ‖S̃g‖Lp

w
≈ ‖g‖Lp

w
.

Since the Riesz transform is bounded in Lpw, Lemma 3.6 is also true if
we replace Lp by Lpw. Hence as in the unweighted case for f ∈W 1,p

w we
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have

‖Tf‖Lp
w
≈ ‖Sf‖Lp

w
≈ ‖∇f‖Lp

w
.

Finally the argument used to show that if f ∈ Lp and Tf ∈ Lp or
Sf ∈ Lp, then f ∈W 1,p also extends to the weighted case, but we need
to use boundedness of the Hardy–Littlewood maximal functionM in Lpw
(see [9], [12, Theorem 9.1.9]).

Suppose that f ∈ Lpw and Tf ∈ Lpw or Sf ∈ Lpw. We need to show
that f ∈ W 1,p

w . Since Lpw ⊂ L1
loc, fε = f ∗ ϕε → f a.e. It is easy to see

that |fε| ≤ CMf ∈ Lpw, and hence the dominated convergence theorem
yields that fε → f in Lpw. Moreover

|∇fε| = |f ∗ ∇ϕε| ≤ Cε−1Mf ∈ Lpw,

so fε ∈ W 1,p
w . Accordingly ‖Kfε‖Lp

w
≈ ‖∇f‖Lp

w
. From the proof in the

unweighted case we have

Kfε ≤ Kf ∗ ϕε ≤ CM(Kf) ∈ Lpw,

‖∇fε‖Lp
w
≈ ‖Kfε‖Lp

w
≤ C‖M(Kf)‖Lp

w
<∞.

Thus fε is a bounded family in the reflexive Sobolev space W 1,p
w (see [19,

p. 13] for the proof of reflexivity). Since fε → f in Lpw, a weak compact-
ness argument implies that f ∈W 1,p

w (Rn). The proof is complete.

5. Proof of Proposition 1.9

Integration by parts gives

ω2
n

ˆ T

ε

|f(x)− fB(x,t)|2
dt

t3

=

ˆ T

ε

(ˆ
B(x,t)

(f(x)− f(y)) dy

)2
dt

t2n+3

=
t−2n−2

−2n− 2

(ˆ
B(x,t)

(f(x)− f(y)) dy

)2
∣∣∣∣∣∣
T

ε

+
1

2n+ 2

ˆ T

ε

t−2n−2 d

dt

(ˆ
B(x,t)

(f(x)− f(y)) dy

)2

dt

= A(t)
∣∣T
ε

+Bε,T .
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We have

Bε,T =
1

2n+ 2

ˆ T

ε

t−2n−2

× 2

(ˆ
B(x,t)

(f(x)− f(y)) dy

)(ˆ
S(x,t)

(f(x)− f(y)) dσ(y)

)
dt

=
2nω2

n

2n+ 2

ˆ T

ε

(f(x)− fB(x,t))(f(x)− fS(x,t))
dt

t3

≤ nω2
n

2n+ 2

[ˆ T

ε

|f(x)− fB(x,t)|2
dt

t3
+

ˆ T

ε

|f(x)− fS(x,t)|2
dt

t3

]
.

In the last step we applied the inequality ab ≤ (a2 + b2)/2. Thus

ω2
n

(
1− n

2n+ 2

)ˆ T

ε

|f(x)− fB(x,t)|2
dt

t3

≤ A(t)
∣∣T
ε

+
nω2

n

2n+ 2

ˆ T

ε

|f(x)− fS(x,t)|2
dt

t3

and it suffices to prove that for almost all x,

A(t)
∣∣T
ε

= A(T )−A(ε)→ 0 as T →∞ and ε→ 0.

We have

A(T ) = C(n)

(
1

T

(
f(x)−

 
B(x,T )

f(y) dy
))2

→ 0

as T →∞ for almost all x ∈ Rn.

Since ˆ
B(x,ε)

∇f(x) · (y − x) dy = 0

we have

A(ε)=C(n)

(
1

ε

 
B(x,ε)

(
f(x)+∇f(x) · (y − x)−f(y)

)
dy

)2

→0 as ε→0

for almost all x ∈ Rn by [8, Section 6.1.2, Theorem 2].
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6. Final remarks and comments

6.1. Sobolev spaces on metric spaces. As was pointed out by Al-
abern, Mateu, and Verdera [2], the characterization of W 1,p given in
Theorem 1.6 can be used to define a Sobolev space on any metric-measure
space. It is an interesting question to see how this definition is related to
other definitions existing in the literature, [5, 14, 13, 15, 25]. Formally
one could try to use the characterization given in Theorem 1.4 to define a
Sobolev space on a metric-measure space, but the main difficulty would
be that, in general, there is no reasonable way to define measure on the
boundary of a ball which would be needed for the spherical averages. It
may even happen that the boundary of a ball is empty.

6.2. The spherical maximal function. Kinnunen [20] proved that
the Hardy–Littlewood maximal function is bounded in the Sobolev space,
M : W 1,p(Rn) → W 1,p(Rn), 1 < p < ∞. Actually, any sub-linear oper-
ator that commutes with translations and is bounded in Lp, 1 < p <∞
is also bounded in W 1,p, see e.g. [18, Theorem 1]. From this result it
follows that the spherical maximal operator

S f(x) = sup
t>0

∣∣∣∣∣
 
S(x,t)

f(y) dσ(y)

∣∣∣∣∣
is bounded in W 1,p for p > n/(n− 1). Indeed, according to a celebrated
result of Stein [29], and Bourgain [4], S : Lp(Rn)→ Lp(Rn) is bounded
for p > n/(n − 1). It was conjectured in [18] that in the range 1 <
p ≤ n/(n − 1) the spherical maximal operator is a bounded operator

from W 1,p to the homogeneous Sobolev space Ẇ 1,p; see [16, 17] for
results supporting this conjecture.

The next result which is a direct consequence of Lemma 2.1 provides
another support for this conjecture as it allows to represent S f as a
Hardy–Littlewood type maximal function.

Theorem 6.1. For f ∈W 1,1
loc (Rn) we have

S f(x) = sup
t>0

∣∣∣∣∣
 
B(x,t)

(
f(y)− 1

n
∇f(y) · (x− y)

)
dy

∣∣∣∣∣ .
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