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RECTIFIABILITY OF MEASURES AND

THE βp COEFFICIENTS

Xavier Tolsa

Abstract: In some former works of Azzam and Tolsa it was shown that n-rectifiabil-
ity can be characterized in terms of a square function involving the David–Semmes

β2 coefficients. In the present paper we construct some counterexamples which show

that a similar characterization does not hold for the βp coefficients with p 6= 2. This
is in strong contrast with what happens in the case of uniform n-rectifiability. In

the second part of this paper we provide an alternative argument for a recent result

of Edelen, Naber, and Valtorta about the n-rectifiability of measures with bounded
lower n-dimensional density. Our alternative proof follows from a slight variant of

the corona decomposition in one of the aforementioned works of Azzam and Tolsa

and a suitable approximation argument.
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1. Introduction

Let µ be a Radon measure in Rd. One says that µ is n-rectifiable if
there are Lipschitz maps fi : Rn → Rd, i = 1, 2, . . . , such that

(1.1) µ

(
Rd \

⋃
i

fi(Rn)

)
= 0,

and µ is absolutely continuous with respect to the n-dimensional Haus-
dorff measure Hn. A set E ⊂ Rd is called n-rectifiable if the mea-
sure Hn|E is n-rectifiable. On the other hand, E is called purely n-un-
rectifiable if any n-rectifiable subset F ⊂ E satisfies Hn(F ) = 0.

The study of n-rectifiability of sets and measures is one of the main
objectives of geometric measure theory. The introduction of multiscale
quantitative techniques by Jones [Jon] in the 1990’s was very fruitful
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and influential in the area of geometric analysis because its applications
to other related questions, for example in connection with singular inte-
grals and analytic capacity (see [DS1], [DS2], [Dav], [Lég], [NTV], or
[Tol1], for instance).

In the monograph [DS1], David and Semmes introduced the notion of
uniform n-rectifiability, which should be considered as a quantitative ver-
sion of n-rectifiability. Let µ be an n-AD-regular (i.e., n-Ahlfors–David
regular) Radon measure, that is, for some constant c > 0,

(1.2) c−1rn ≤ µ(B(x, r)) ≤ c rn

for all x ∈ suppµ and 0 < r ≤ diam(suppµ).

The measure µ is called uniformly n-rectifiable if, besides being n-AD-
regular, there exist constants θ,M > 0 such that for all x ∈ suppµ and
all 0 < r ≤ diam(suppµ) there is a Lipschitz mapping g from the ball
Bn(0, r) ⊂ Rn to Rd with Lip(g) ≤M such that

µ(B(x, r) ∩ g(Bn(0, r))) ≥ θ rn.

A set E⊂Rd is called uniformly n-rectifiable if Hn|E is uniformly n-rec-
tifiable.

In [DS1] and [DS2], David and Semmes gave several equivalent char-
acterizations of uniform n-rectifiability. One of the most relevant involves
the βp coefficients. For 1 ≤ p <∞, x ∈ Rd, r > 0, one defines

βnµ,p(x, r) = inf
L ⊂ Rd is an n-plane

(∫
B(x,r)

(
dist(y, L)

r

)p
dµ(y)

rn

)1/p

,

and also

β̃nµ,p(x, r) = inf
L ⊂ Rd is an n-plane

(∫
B(x,r)

(
dist(y, L)

r

)p
dµ(y)

µ(B(x, r))

)1/p

.

It was shown in [DS1] that, for 1 ≤ p < 2n/(n − 2) in the case n > 2
and 1 < p <∞ in the case n = 1 or 2, an n-AD-regular measure µ in Rd
is uniformly n-rectifiable if and only if

(1.3)

∫
B(z,R)

∫ R

0

βnµ,p(x, r)
2 dr

r
dµ(x) ≤ cRn for all z∈suppµ, R > 0.

Of course, the same statement is valid replacing the coefficients βnµ,p(x, r)

by β̃nµ,p(x, r), because they are comparable for all x ∈ suppµ, 0 < r ≤
diam(suppµ) when µ is n-AD-regular.
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More recently, Jonas Azzam and the author obtained a related char-
acterization of n-rectifiability for general Radon measures with positive
and bounded upper n-dimensional density. The upper and lower n-di-
mensional densities of µ at a point x∈Rd are defined, respectively, by

Θn,∗(x, µ) = lim sup
r→0

µ(B(x, r))

(2r)n
, Θn

∗ (x, µ) = lim inf
r→0

µ(B(x, r))

(2r)n
.

The aforementioned characterization of n-rectifiability is the following:

Theorem A. Let µ be a Radon measure in Rd such that 0 < Θn,∗(x, µ)<
∞ for µ-a.e. x ∈ Rd. Then µ is n-rectifiable if and only if

(1.4)

∫ 1

0

βnµ,2(x, r)2 dr

r
<∞ for µ-a.e. x ∈ Rd.

The “if” direction of the theorem was proven in [AT], and the “only
if” one in [Tol3]. As an immediate corollary of the above result, it
follows that a set E ⊂ Rd with Hn(E) <∞ is n-rectifiable if and only if∫ 1

0

βnHn|E ,2(x, r)2 dr

r
<∞ for Hn-a.e. x ∈ E.

For other criteria for rectifiability in terms of related square functions
which apply to measures which are absolutely continuous with respect
to Hausdorff measure, see [Ler] or [Tol4], for example. For other recent
works which study the rectifiability of more general measures, we refer
the reader to [BS1], [BS3], [MO], [ADT], or [ATT].

We also remark that quite recently Edelen, Naber, and Valtor-
ta [ENV] showed that Theorem A also holds for Radon measures µ
satisfying the conditions

(1.5) Θn,∗(x, µ) > 0 and Θn
∗ (x, µ) <∞ for µ-a.e. x ∈ Rd,

instead of the more restrictive one

(1.6) 0 < Θn,∗(x, µ) <∞ for µ-a.e. x ∈ Rd.

That is, they proved the following:

Theorem B ([ENV]). Let µ be a finite Borel measure in Rd satisfy-
ing (1.5). If

(1.7)

∫ 1

0

βnµ,2(x, r)2 dr

r
<∞ for µ-a.e. x ∈ Rd,

then µ is n-rectifiable.
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Notice that the condition (1.6) ensures that the measure µ is abso-
lutely continuous with respect to Hn, while the the assumption (1.5)
does not. However, Theorem B implies that if both (1.6) and (1.7) hold,
then µ is absolutely continuous with respect to Hn. This is the main
novelty in Theorem B.

In view of the characterization of uniform n-rectifiability in terms of
the βnµ,p coefficients with 1 ≤ p < 2n/(n − 2) by David and Semmes
described in (1.3), it is natural to think that perhaps Theorem A is also
valid with βnµ,2 replaced by βnµ,p for some p 6= 2. Under some additional
assumptions on the measure µ, the following result is already known:

Theorem C. Let 1 ≤ p < 2n/(n− 2) in the case n > 2, and 1 ≤ p <∞
in the case n = 1 or 2. Let µ be a Radon measure in Rd. The following
hold:

(a) Suppose that 0 < Θn
∗ (x, µ) ≤ Θn,∗(x, µ) <∞ for µ-a.e. x ∈ Rd. If

(1.8)

∫ 1

0

βnµ,p(x, r)
2 dr

r
<∞ for µ-a.e. x ∈ Rd,

then µ is n-rectifiable.
(b) Suppose that µ = Hn|E for some E ⊂ Rn and that µ is n-AD-reg-

ular. Then (1.8) holds.

The statement (a) of the theorem was first proved by Pajot [Paj] in
the particular case where µ = Hn|E , with E ⊂ Rd such thatHn(E) <∞.
Later on Badger and Schul [BS2] showed that this extends easily to
any measure µ such that 0 < Θn

∗ (x, µ) ≤ Θn,∗(x, µ) < ∞ µ-a.e. The
statement (b) is also due to Pajot [Paj].

We remark that the assumptions that Θn
∗ (x, µ) > 0 µ-a.e. in (a) and

the fact that µ is n-AD-regular in (b) play an essential role in the ar-
guments for the previous theorem. In fact, they allow to reduce the
arguments to the case when the measure µ is n-AD-regular and to apply
then the result of David and Semmes stated in (1.3).

For arbitrary Radon measures µ, from Hölder’s inequality it follows
that, for 1 ≤ p < q,

βnµ,p(x, r) ≤
(
µ(B(x, r))

rn

) 1
p−

1
q

βµ,q(x, r).

By Theorem A, this implies that if µ is n-rectifiable and 1 ≤ p ≤ 2, then

(1.9)

∫ 1

0

βnµ,p(x, r)
2 dr

r
<∞ for µ-a.e. x ∈ Rd,
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and in the other direction, we also deduce that if 0 < Θn,∗(x, µ) < ∞
µ-a.e. and (1.9) holds for some p ≥ 2, then µ is n-rectifiable. However,
from these statements one can not conclude the validity of the double
implication in Theorem A for some βnµ,p with p 6= 2. In this paper
we show that indeed p = 2 is the only case when Theorem A is valid,
which may look somewhat surprising in view of the results for uniform
n-rectifiability. More precisely, we have:

Theorem 1.1. There exists a set E ⊂ R2 such that 0 < H1(E) < ∞,
which is purely 1-unrectifiable, and so that, for 1 ≤ p < 2,

(1.10)

∫ 1

0

β1
H1|E ,p(x, r)

2 dr

r
<∞ for H1-a.e. x ∈ E.

Also:

Theorem 1.2. There exists a set E ⊂ R2 such that 0 < H1(E) < ∞,
which is 1-rectifiable, and so that, for all p > 2,

(1.11)

∫ 1

0

β1
H1|E ,p(x, r)

2 dr

r
=∞ for H1-a.e. x ∈ E.

So Theorem 1.1 shows that the validity of the “if” direction in Theo-
rem A requires p ≥ 2, while Theorem 1.2 shows that the other “only if”
implication fails for p > 2 and thus requires p ≤ 2.

To prove Theorems 1.1 and 1.2 we will construct some Cantor type
sets E such that H1|E is non-doubling. They are obtained as limits in
the Hausdorff distance of other sets Ek made up of finitely many parallel
segments in the plane. It is worth comparing these sets with other
counterexamples constructed in [ATT] in connection with the so-called
α coefficients.

In this work we will also see that the purely 1-unrectifiable set E in
Theorem 1.1 can be constructed so that, for 1 ≤ p < 2,

(1.12)

∫ 1

0

β̃1
H1|E ,p(x, r)

2 dr

r
<∞ for H1-a.e. x ∈ E,

which, a priori, is a stronger condition than (1.10), taking into account
that Θ1,∗(x,H1|E) <∞ for H1-a.e. x ∈ E. This shows that Theorem A

does not hold either if we replace the coefficients βµ,2(x, r) by β̃µ,p(x, r)
for any p ≥ 1 different from 2. For more details, see Theorem 3.1 below.

In the last part of this paper we will provide a new proof of Theorem B.
Indeed, we will show that this can be derived from the results in [AT] in
combination with a careful approximation argument. The techniques are
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quite different from the ones of Edelen, Naber, and Valtorta in [ENV]
and use a slight variant of the corona decomposition obtained in [AT].
On the other hand, we remark that the work [ENV] contains other
more quantitative results about rectifiability and β2 numbers, apart from
Theorem B. We will not consider these additional results in the current
paper.

2. Proof of Theorem 1.1

To shorten notation we will write βµ,p(x, r) instead of β1
µ,p(x, r).

Given a closed segment I contained in a horizontal line in R2 and
two constants h ≥ 0 and 0 < a < 1 and an integer n ≥ 2, we denote
by I(h, a, n) the set made up of n closed segments J1, . . . , Jn, of equal
length, contained in the parallel segment I+h e2 (where e2 = (0, 1)), with∑n
i=1H1(Ji) = aH1(I), and so that the left endpoint of J1 coincides

with the left endpoint of I + h e2, the right endpoint of Jn coincides
with the right endpoint of I + h e2, and dist(Ji, Ji+1) = 1−a

n−1H
1(I) for

all i = 1, . . . , n− 1.
Our set E will be constructed as a limit in the Hausdorff distance of

a sequence of compact sets Ek, k ≥ 0. We consider sequences {ak}k,
{hk}k, nk, so that 0 < ak, hk < 1, nk > 2. Both {ak}k and {hk}k
converge to 0, while nk tends to ∞ very quickly. Each set Ek, k ≥ 0, is
of the form

Ek =

mk⋃
i=1

Jki ,

where Jki , i = 1, . . . ,mk is a family of horizontal segments in R2 (which
may be contained in different lines and may have different lengths). The
sets Ek are constructed inductively. We let E0 = [0, 1] × {0}, and we
construct Ek+1 from Ek as follows. We denote

Edk+1 =

mk⋃
i=1

Jki (0, 1− ak+1, nk+1), Euk+1 =

mk⋃
i=1

Jki (hk+1, ak+1, nk+1),

where Jki (h, a, n) is the set associated to the segment Jki with param-
eters h, a, n which was defined in the previous paragraph. Then we
set

Ek+1 = Edk+1 ∪ Euk+1

(the superindices d and u stand for “down” and “up”). See Figure 1.
Observe that

Edk+1 ⊂ Ek and Euk+1 ⊂ Ek + hk+1 e2.
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Also,

H1(Edk+1) = (1− ak+1)H1(Ek) and H1(Euk+1) = ak+1H1(Ek),

since
H1(Jki (0, 1− ak+1, nk+1)) = (1− ak+1)H1(Jki )

and
H1(Jki (hk+1, ak+1, nk+1)) = ak+1H1(Jki )

for each i = 1, . . . ,mk. Hence H1(Ek+1) = H1(Ek), because the sets
Jki (0, 1−ak+1, nk+1), Jki′(hk+1, ak+1, nk+1) are pairwise disjoint (assum-
ing hk+1 to be small enough).

E1 E2

Figure 1. The generations E1 and E2 of the Cantor
set E, with n1 = 3 and n2 = 4.

Later we will choose {ak}k so that
∑
k a

2/p
k < ∞ but

∑
k ak = ∞.

On the other hand, we will take hk so that {hk}k converges to 0 much
faster than {ak}k. Further, for convenience we will choose nk such that
nk ≈ 1/h2

k (for example, we may take nk as the smallest integer larger
than 1/h2

k). We also assume that

(2.1) hk+1 ≤ 2−2k−5 min

(
hk, min

1≤i≤mk
H1(Jki )

)
.

In particular, the condition hk+1 ≤ 2−2k−5hk guaranties that hk+1 is
much smaller than the minimal distance among the different horizontal
lines that intersect suppµk (which equals hk).

We denote µk = H1|Ek . Next we will estimate βµk+1,p(x, r) for
x ∈ suppµk+1 in terms of βµk,p(x

′, r + c1hk+1), where x′ is the near-
est point to x from suppµk and c1 is some universal constant. That is,
by construction, x′ = x if x ∈ Edk+1 and x′ = x − hk+1e2 if x ∈ Euk+1.
Note first that, for our fixed point x ∈ Ek,

βµk+1,p(x, r) = 0 if 0 < r ≤ hk+1.

In the case hk+1 < r ≤ hk/2, B(x, r) only intersects either one or two

lines from the family of all lines which contain some segment Jk+1
i ,

i = 1, . . . ,mk+1. If it only intersects one line, then βµk+1,p(x, r) = 0.
Otherwise, let us call Ld and Lu the two lines which contain some seg-
ment Jk+1

i , i = 1, . . . ,mk+1 and intersect B(x, r), so that Ld contains
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segments which are contained in Edk+1, and Lu, segments from Euk+1.
Further, the distance between Ld and Lu is hk+1. Then we have

βµk+1,p(x, r)
p ≤ 1

r

∫
B(x,r)

(
dist(y, Ld)

r

)p
dµk+1(y)

=
1

r

∫
B(x,r)∩Lu

(
dist(y, Ld)

r

)p
dµk+1(y)

=
hpk+1

rp+1
µk+1(Lu ∩B(x, r)).

By construction, it is easy to check that

(2.2) µk+1(Lu ∩B(x, r)) . ak+1 r.

To this end, notice that nk+1 ≈ h−2
k+1 and thus

H1(Jk+1
i ) ≤ 1

nk+1
max
j
H1(Jkj ) ≤ 1

nk+1
≈ h2

k+1 � hk+1,

for k big enough. From (2.2) we derive

βµk+1,p(x, r) . a
1/p
k+1

hk+1

r
.

Therefore,

(2.3)

∫ hk/2

0

βµk+1,p(x, r)
2 dr

r
.
∫ hk/2

hk+1

a
2/p
k+1

h2
k+1

r2

dr

r
. a

2/p
k+1

for all x ∈ suppµk+1.

To deal with the case r > hk/2 we claim that, if hk+1 is small enough,
then

(2.4) βµk+1,p(x, r)
p ≤ βµk,p(x′, r + c1hk+1)p + C

hk+1

r
,
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for some universal constants c1, C to be fixed below. We defer the
details to the end of the proof. Gathering the previous estimates, for
any 0 < εk+1 < 1/2, we obtain∫ ∞

hk/2

βµk+1,p(x, r)
2 dr

r
≤(1 + εk+1)

∫ ∞
hk/2

βµk,p(x
′, r + c1hk+1)2 dr

r

+ C
1

εk+1

∫ ∞
hk/2

h
2/p
k+1

r2/p

dr

r

≤(1 + εk+1)
1
2hk

1
2hk − c1hk+1

∫ ∞
0

βµk,p(x
′, r)2 dr

r

+ C
h

2/p
k+1

εk+1h
2/p
k

,

(2.5)

by a change of variables in the last inequality. Together with (2.3), and
using that

1
2hk

1
2hk − c1hk+1

≤ 1 + C
hk+1

hk
,

this gives∫ ∞
0

βµk+1,p(x, r)
2 dr

r

≤ C a2/p
k+1 + (1 + εk+1)

(
1 + C

hk+1

hk

)∫ ∞
0

βµk,p(x
′, r)2 dr

r

+ C
hk+1

εk+1 hk
.

(2.6)

Choosing εk+1 = 2−k and since, by (2.1),

hk+1

hk
≤ 2−2k

iterating the estimate (2.6), it follows that∫ ∞
0

βµk+1,p(x, r)
2 dr

r
.
k+1∑
j=1

a
2/p
j +

k∑
j=1

2j hj+1

hj
. 1 +

k+1∑
j=1

a
2/p
j .

Since this is uniform on k, taking a weak limit and denoting by µ the
corresponding weak limit, we derive

(2.7)

∫ ∞
0

βµ,p(x, r)
2 dr

r
. 1 +

∑
j≥1

a
2/p
j .
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Consider now a sequence {aj}j such that
∑
j≥1 a

2/p
j <∞ but so that∑

j aj = ∞, such as, for example, aj = 1/(2j) (recall that 1 ≤ p < 2).

It is easy to check that µ = gH1|E for some function g ≈ 1, and so
0 < H1(E) < ∞. We also postpone the detailed arguments to the end
of this section. Thus the condition (2.7) yields∫ ∞

0

βH1|E ,p(x, r)
2 dr

r
. 1 +

∑
j≥1

a
2/p
j <∞.

It remains to prove that E = suppµ is purely unrectifiable. This
is a consequence of the fact that

∑
j aj = ∞. Indeed, given x ∈ E,

write x ∈ Uk if the closest point to x from Ek belongs to Euk , and write
x ∈ Dk otherwise. By the second Borel–Cantelli lemma the condition∑
j aj =∞ implies that x ∈ Uk for infinitely many k’s. Note now that,

by construction, if x ∈ Uk, then there exists some segment Jki ⊂ Euk such
that

dist(x, Jki ) ≤
∑
j≥k+1

hj ≤
1

10
hk,

because of the quick decay of {hk}. Then, for r = hk/2 and k big enough,
we have

H1(B(x, r) ∩ E) ≤ C µ(B(x, r) ∩ E) ≤ C µk(B(x, 1.1r) ∩ E) . C ak r.

Therefore, if x ∈ Uk for infinitely many k’s, since ak → 0 as k → ∞,
then

lim inf
r→0

H1(E ∩B(x, r))

2r
= 0.

As this happens for H1-a.e. x ∈ E, it turns out that E is purely unrec-
tifiable (see Theorem 17.6 in [Mat], for example).

Proof of (2.4): Split each segment Jki , i = 1, . . . ,mk, into nk+1 segments

with disjoint interiors and equal length, and denote by {Ik+1
j }1≤j≤mk+1/2

the resulting family of segments obtained from such splitting. Let Ik+1,l
j

be the leftmost closed sub-segment of Ik+1
j of length (1−ak+1)H1(Ik+1

j )

and let Ik+1,r
j be the rightmost half open-closed sub-segment of Ik+1

j of

length ak+1H1(Ik+1
j ), so that Ik+1

j = Ik+1,l
j ∪ Ik+1,r

j and the union is
disjoint.

Suppose that the family of segments {Jk+1
j }1≤j≤mk+1

is labeled so

that the indices j = 1, . . . ,mk+1/2 correspond to the subfamily of the

segments Jk+1
j which are contained in Edk+1, and assume also that the

labeling is so that, for each 1 ≤ j ≤ mk+1/2, Jk+1
j is the closest seg-

ment (in Hausdorff distance) from {Jk+1
j′ }1≤j′≤mk+1/2 to Ik+1

j . Also, for
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j = 1, . . . ,mk+1/2, given some segment Jk+1
j ⊂ Jki , denote by Jk+1,u

j

a segment from the family {Jk+1
j′ }mk+1/2≤j′≤mk+1

which is contained in

hk+1e2+Jki and is at a distance at most c hk+1 from Jk+1
j , where c is some

absolute constant. By our geometric construction, it is easy to check that

such choice can be done so that the segments from {Jk+1,u
j′ }1≤j′≤mk+1/2

are pairwise different (i.e. the correspondence Jk+1
j 7→ Jk+1,u

j is one to

one).
Now we consider the map T k+1 : suppµk → suppµk+1 defined as

follows. For each j = 1, . . . ,mk+1/2 we denote by T k+1,l
j the translation

such that T k+1,l
j (Ik+1,l

j ) = Jk+1
j and by T k+1,r

j the translation such that

T k+1,r
j (Ik+1,r

j ) = (Jk+1,u
j ). Now, for each j = 1, . . . ,mk+1/2, we set

T k+1(x)=T k+1,l
j (x) if x ∈ Ik+1,l

j , and T k+1(x) = T k+1,r
j (x) if x ∈ Ik+1,r

j .
Then it is easy to check that, for all x ∈ suppµk+1,

(2.8) |x− T k+1(x)| ≤ C hk+1,

and further

(2.9) T k+1#µk = µk+1.

To estimate βµk+1,p(x, r) for r ≥ hk/2, let L be some line minimizing
βµk,p(x

′, r + c1hk+1) for some constant c1 ≈ 1 to be fixed below. Then
we have

βµk+1,p(x, r)
p ≤

∫
B(x,r)

(
dist(y, L)

r

)p
d(T k+1#µk)(y)

r

=

∫
(Tk+1)−1(B(x,r))

(
dist(T k+1(y), L)

r

)p
dµk(y)

r
.

(2.10)

To deal with the last integral above, we take into account that∣∣∣∣(dist(y, L)

r

)p
−
(

dist(T k+1(y), L)

r

)p∣∣∣∣ . |y − T k+1(y)|
r

.
hk+1

r
.

Using also that µk((T k+1)−1(B(x, r))) ≤ µk(B(x′, r + c1hk+1)) ≤ c2 r
for some universal constants c1 and c2 (see Remark 2.1 for more details),
we obtain

βµk+1,p(x, r)
p ≤

∫
B(x′,r+c1hk)

(
dist(y, L)

r

)p
dµk(y)

r
+ c

hk+1

r

= βµk,p(x
′, r + c1hk)p + c

hk+1

r
,

which proves (2.4).
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Proof of µ = gHn|E for some g ≈ 1: First we show that Hn|E ≤ µ|E .
To this end we consider a family of “dyadic cubes”

DE = {Qkj : k ≥ 0, 1 ≤ j ≤ mk}

defined as follows. For k ≥ 0 and 1 ≤ j ≤ mk, consider a segment Jkj
from the construction of E. Then denote by Rkj the closed rectangle

whose bases are Jkj and 2hk+1e2 + Jkj , and set

Qkj = Rkj ∩ E.

Alternatively, one can think that Qkj is the limit in the Hausdorff distance
of the set

T k+i ◦ T k+i−1 ◦ · · · ◦ T k(Jkj )

as i→∞. Observe that, by (2.1)

diamQkj ≤ diamRkj ≤ H1(Jkj ) + 2hk+1 ≤ (1 + 2−2k−4)H1(Jkj ).

Thus, by the covering

Qkj =
⋃

i:Qk+hi ⊂Qkj

Qk+h
i

and setting εh = maxi:Qk+hi ⊂Qkj
diam(Qk+h

i ), it follows that

H1
εh

(Qkj ) ≤
∑

i:Qk+hi ⊂Qkj

diam(Qk+h
i )

≤ (1 + 2−2k−2h−4)
∑

i:Qk+hi ⊂Qkj

H1(Jk+h
i ) ≤ (1 + 2−2k−2h)H1(Jkj ).

So, letting h → ∞, H1(Qkj ) ≤ H1(Jkj ) = µ(Qkj ). Since any relatively
open subset G ⊂ E can be split into a countable disjoint union of cubes
from DE , one deduces that H1(G) ≤ µ(G). By the regularity of H1|E
and µ, this implies that H1|E ≤ µ.

To show that µ ≤ gHn|E for some g . 1, it is enough to prove that

(2.11) µ(A) ≤ C diam(A) for any Borel set A ⊂ R2.

Indeed, given any subset F ⊂ E, any arbitrary covering F ⊂ ∪iAi
satisfies

µ(F ) ≤
∑
i

µ(Ai) ≤ C
∑
i

diam(Ai),

which implies that µ(F ) ≤ CH1(F ), by the definition of H1.
To prove (2.11), let k be such that 1

2hk+1 ≤ diamA < 1
2hk. Denote

by {Lki }1≤i≤2k the family of lines which contain some segment from the
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family {Jkj }1≤j≤mk , and recall that the distance between two different

lines Lki , Lki′ is at least hk. Also, it is easy to check that, by construction,
µk|Lki ≤ H

1|Lki for each i. Therefore, any set A′ intersecting at most one

of such lines satisfies µk(A′) ≤ diam(A′). Recall now, that for any j,

µj+1(A) = T j+1#µj(A) = µj((T
j+1)−1(A)) ≤ µj(UC hj+1

(A)),

taking into account (2.9) and (2.8), and denoting by Ut(A) the t-neigh-
borhood of A. Iterating the preceding estimate, for j ≥ k we get

µj(A) ≤ µj−1(UC hj (A)) ≤ · · · ≤ µk(UC hj+···+C hk+1
(A))

≤ µk(UC′ hk+1
(A)),

taking also into account the fast decay of the sequence {hk}k, by (2.1).
Since the set A′ := UC′ hk+1

(A) intersects at most one line Lki (assuming
k big enough), we deduce that

(2.12) µj(A) ≤ diam(UC′ hk+1
(A)) ≤ diam(A)+2C ′ hk+1 ≤ C diam(A)

for all j ≥ k. Letting j → ∞, we infer that any set A ⊂ R2 satisfies
µ(A) ≤ C diam(A) as wished.1

Remark 2.1. The arguments above also show that

(2.13) µj(A) ≤ C diam(A) for any Borel set A ⊂ R2.

Indeed, (2.12) shows that this holds if 1
2hk+1 ≤ diamA < 1

2hk for

some k ≤ j. In the case diamA < 1
2hj+1, then A intersect at most

one line Lji and so (2.13) also holds.

3. The counterexample involving the β̃p coefficients

In this section we will prove the following.

Theorem 3.1. There exists a set E ⊂ R2 such that 0 < H1(E) < ∞,
which is purely 1-unrectifiable, and so that, for 1 ≤ p < 2,

(3.1)

∫ 1

0

β̃1
H1|E ,p(x, r)

2 dr

r
<∞ for H1-a.e. x ∈ E.

Let us remark that, for sets E ⊂ R2 such that 0 < H1(E) < ∞, the
condition (3.1) implies (1.10), and thus Theorem 1.1 is implied by the
theorem above. However, we have preferred to prove first Theorem 1.1
separately because its proof is a little more transparent and less technical
than the one of Theorem 3.1.

1By a more careful argument, one can show that µ(A) ≤ diam(A) for any Borel
set A ⊂ R2, which implies that µ = H1|E .
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Proof: To shorten notation we write β̃µ,p(x, r) instead of β̃1
µ,p(x, r).

We consider exactly the same set E constructed in the previous sec-
tion, and we use the same notation. We also choose ak=1/(2k) and hk as
in (2.1), and also nk ≈ 1/h2

k. We have already shown that 0<H1(E)<∞
and that E is purely 1-rectifiable, and thus we just have to show that
(3.1) holds for 1 ≤ p < 2 if hk decreases fast enough as k → ∞ (be-
sides satisfying (2.1)). Further, we may assume that 1 < p < 2 because

β̃H1|E ,1(x, r) . β̃H1|E ,p(x, r) for such p’s.
To prove (3.1) we will follow some arguments quite similar to the ones

in the preceding section. Clearly, for any x ∈ Ek,

β̃µk+1,p(x, r) = 0 if 0 < r ≤ hk+1.

In the case hk+1 < r ≤ hk/2, B(x, r) (still for x ∈ Ek) only inter-
sects either one or two lines from the family of all lines which contain
some segment Jk+1

i , i = 1, . . . ,mk+1. If it only intersects one line, then

β̃µk+1,p(x, r) = 0. Otherwise, let we call Ld and Lu the two lines which

contain some segment Jk+1
i , i = 1, . . . ,mk+1 and intersect B(x, r), so

that Ld contains segments which are contained in Edk+1, and Lu, seg-
ments from Euk+1. Then we have

β̃µk+1,p(x, r)
p ≤ 1

µk+1(B(x, r))

∫
B(x,r)

(
dist(y, Ld)

r

)p
dµk+1(y)

=
hpk+1

rp
µk+1(Lu ∩B(x, r))

µk+1(B(x, r))
.

Then, from (2.2) it follows that

(3.2) β̃µk+1,p(x, r) . a
1/p
k+1

hk+1

r

(
r

µk+1(B(x, r))

)1/p

.

Now we need to estimate µk+1(B(x, r)) from below, still assuming
that hk+1 < r ≤ hk/2. It is easy to check that

(3.3) µk+1(B(x, r)) & H1(B(x, r) ∩ Ld) ≈ r if x ∈ Ld.

In the case x ∈ Lu we write

µk+1(B(x, r)) ≥ µk+1(B(x, r) ∩ Ld).

Observe that

H1(B(x, r) ∩ Ld) = 2
√
r2 − h2

k+1.
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Recall that, by construction, each of the segments Jk+1
i , i = 1, . . . ,mk+1,

which are contained in Lu is also contained in a set Jkj (0, 1−ak+1, nk+1)
for some j ∈ [1,mk]. Denote

sk+1 = max
i

dist(Jk+1
i , Ek+1 \ Jk+1

i ).

Clearly, by construction,

(3.4) sk+1 ≤
1

nk+1 − 1
max
i
H1(Jk+1

i ) ≤ 1

nk+1 − 1
≈ h2

k+1.

It follows easily that if H1(B(x, r) ∩ Ld) ≥ 2 sk+1 (or equivalently, r2 ≥
h2
k+1 + s2

k+1), then

µk+1(B(x, r) ∩ Ld) ≈ H1(B(x, r) ∩ Ld) = 2
√
r2 − h2

k+1.

Hence, for hk+1 + sk+1 ≤ r ≤ hk/2 we have

µk+1(B(x, r)) &
√
r2 − h2

k+1.

By (3.3) this estimate also holds for x ∈ Ld. Together with (3.2), this
implies that for all x ∈ Ek+1 and hk+1 + sk+1 ≤ r ≤ hk/2 we have

β̃µk+1,p(x, r)
2 . a

2/p
k+1

h2
k+1

r2

(
r2

r2 − h2
k+1

)1/p

≈ a2/p
k+1

h2
k+1

r2

(
r

r − hk+1

)1/p

.

From the preceding estimate we deduce∫ hk/2

0

β̃µk+1,p(x, r)
2 dr

r
.
∫ hk+1+sk+1

hk+1

dr

r

+

∫ hk/2

hk+1+sk+1

a
2/p
k+1

h2
k+1

r2

(
r

r − hk+1

)1/p
dr

r

=: I1 + I2.

Note that, by (3.4),

I1 = log
hk+1 + sk+1

hk+1
≈ sk+1

hk+1
. hk+1.
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Concerning I2, we write

I2 ≤
∫ hk/2

hk+1

a
2/p
k+1

h2
k+1

r2

(
r

r − hk+1

)1/p
dr

r

≤
∫ 2hk+1

hk+1

· · ·+
∫ ∞

2hk+1

· · ·

. a
2/p
k+1 h

1/p−1
k+1

∫ 2hk+1

hk+1

1

(r − hk+1)1/p
dr + a

2/p
k+1 h

2
k+1

∫ ∞
2hk+1

1

r2

dr

r

≈ a2/p
k+1,

using the fact that p > 1 to estimate the first integral in the before to
last line. So we have

(3.5)

∫ hk/2

0

β̃µk+1,p(x, r)
2 dr

r
. hk+1 + a

2/p
k+1 ≈ a

2/p
k+1,

assuming that hk+1 � a
2/p
k+1.

For r > hk/2 and x ∈ suppµk+1 we will estimate β̃µk+1,p(x, r) in

terms of β̃µk,p(x
′, r + c1hk+1), where x′ is again the nearest point to x

from suppµk and c1 is some universal constant. By (2.4), denoting
r′ = r + c1hk+1, we have

β̃µk+1,p(x, r)
p =

r

µk+1(B(x, r))
βµk+1,p(x, r)

p

≤ r

µk+1(B(x, r))

(
βµk,p(x

′, r′)p + C
hk+1

r

)

=
r

µk+1(B(x, r))

(
µk(B(x′, r′))

r′
β̃µk,p(x

′, r′)p + C
hk+1

r

)
.

Observe that

(3.6) µk+1(B(x, r)) = µk((T k+1)−1(B(x, r)))

≥ µk(B(x′, r − c3hk+1)) ≥ µk(B(x′, r/2)) ≥ ck r,

where c3 is some universal constant and ck is some constant depending
on the parameters k, a1, . . . , ak, h1, . . . , hk, n1, . . . , nk (probably the esti-
mate (3.6) can be sharpened, but this is enough for us). So taking also
into account that r′ > r, we derive

(3.7) β̃µk+1,p(x, r)
p ≤ µk(B(x′, r′))

µk+1(B(x, r))
β̃µk,p(x

′, r′)p + C c−1
k

hk+1

r
.
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We have∣∣∣∣1− µk(B(x′, r′))

µk+1(B(x, r))

∣∣∣∣ =

∣∣µk(B(x′, r′))− µk+1(B(x, r))
∣∣

µk+1(B(x, r))

=

∣∣µk(B(x′, r′))− µk((T k+1)−1(B(x, r)))
∣∣

µk+1(B(x, r))

≤ µk(A(x′, r − c4 hk+1, r + c4 hk+1))

ck r

for some universal constant c4. To estimate µk(A(x′, r − c4 hk+1, r +
c4 hk+1)) we take into account that Ek is contained in the union of
2k horizontal lines, and we use the brutal inequality

µk(A(x′, r − c4 hk+1, r + c4 hk+1))

≤ 2k sup
L
H1(A(x′, r − c4 hk+1, r + c4 hk+1) ∩ L),

where the supremum is taken over all lines L. One can easily to check
that

sup
L
H1(A(x′, r−c4 hk+1, r+c4 hk+1)∩L)=

√
(r+c4 hk+1)2−(r−c4 hk+1)2

=
√

2c4 r hk+1.

Therefore,∣∣∣∣1− µk(B(x′, r′))

µk+1(B(x, r))

∣∣∣∣ ≤ 2k
√

2c4 r hk+1

ck r
=: Ck

(
hk+1

r

)1/2

.

Together with (3.7), this gives

β̃µk+1,p(x, r)
p ≤

(
1 + Ck

h
1/2
k+1

r1/2

)
β̃µk,p(x

′, r′)p + C c−1
k

hk+1

r

≤ β̃µk,p(x′, r′)p + C Ck

(
hk+1

r

)1/2

+ C c−1
k

hk+1

r

≤ β̃µk,p(x′, r′)p + C̃k

(
hk+1

r

)1/2

,
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which should be compared with (2.4). Arguing now as in (2.5), (2.6),

(2.7), if we take hk+1 small enough (depending on C̃k), by iterating the
estimate above, we obtain∫ ∞

0

β̃µ,p(x, r)
2 dr

r
. 1 +

∑
j≥1

a
2/p
j <∞,

recalling that aj = 1/(2j). We leave the details for the reader.

4. Proof of Theorem 1.2

We consider the same construction as in Sections 2 and 3 for the proofs
of Theorems 1.1 and 3.1, respectively, and we use the same notation.
However, now we choose

aj =
1

j (log(e+ j))2
.

In this way, by the estimate (2.7) with p = 2, for any x ∈ E,∫ ∞
0

βµ,2(x, r)2 dr

r
. 1 +

∑
j≥1

aj <∞,

and so E is n-rectifiable, by Theorem A.
We will show now that, for all p > 2,∫ ∞

0

βµ,p(x, r)
2 dr

r
=∞ for all x ∈ E.

To this end, consider a ball B(x, r), with x ∈ E and r such that 2hk ≤
r ≤ 4hk. Let x′ ∈ Ek be the closest point to x from Ek. By construction
B
(
x′, 3

2r
)

intersects two lines Ld and Lu which contain segments Jki
from Edk and Euk respectively, so that moreover,

µk
(
Ld ∩B

(
x′, 3

2r
))

& (1− ak) r ≈ r,

and

µk
(
Lu ∩B

(
x′, 3

2r
))

& ak r.

Consider an arbitrary line L ⊂ R2 and denote B = B
(
x′, 3

2r
)
. If

distH(L∩B,Ld ∩B) ≤ 1
100hk, then one can easily check that distH(L∩

B,Lu ∩B) & hk ≈ r, and then it easily follows that∫
B
(
x′,

3
2 r
) (dist(y, L)

r

)p
dµk(y)

r
&
µk
(
B
(
x′, 3

2r ∩ L
u
))

r
≈ ak.
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Since hk+1 � hk, it is easy to check that in fact we also have∫
B
(
x′,

3
2 r
) (dist(y, L)

r

)p
dµj(y)

r
&
µk
(
B
(
x′, 3

2r ∩ L
u
))

r
≈ ak

uniformly for all j ≥ k, with k big enough. Hence, by taking a weak
limit, ∫

B(x,r)

(
dist(y, L)

r

)p
dµ(y)

r
& ak.

On the other hand, if distH(L∩B,Ld∩B) > 1
100hk, then it easily follows

that∫
B
(
x′,

3
2 r
) (dist(y, L)

r

)p
dµk(y)

r
&
µk
(
B
(
x′, 3

2r ∩ L
d
))

r
≈ 1− ak ≈ 1.

Since hk+1 � hk, then we also have∫
B
(
x′,

3
2 r
) (dist(y, L)

r

)p
dµj(y)

r
& 1

uniformly for all j ≥ k with k big enough, and then letting j →∞,∫
B(x,r)

(
dist(y, L)

r

)p
dµ(y)

r
& 1.

So in any case, for any line L we have∫
B(x,r)

(
dist(y, L)

r

)p
dµ(y)

r
& min(1, ak) = ak,

and thus

βµ,p(x, r) & a
1/p
k for 2hk ≤ r ≤ 4hk.

Therefore, for p > 2,∫ ∞
0

βµ,p(x, r)
2 dr

r
≥
∞∑
k=1

∫ 4hk

2hk

a
2/p
k

dr

r
≈
∞∑
k=1

1

j2/p(log(e+ j))4/p
=∞,

which concludes the proof of Theorem 1.2.

5. Rectifiability of measures with bounded lower density

In this section we will deduce Theorem B of Edelen, Naber and Val-
torta from the corona decomposition in [AT] and a suitable approxima-
tion argument.
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5.1. The dyadic lattice and the corona decomposition from [AT].
We recall that one of the main ingredients of the proof of Theorem A
in [AT] is a corona decomposition in terms of a dyadic lattice Dµ asso-
ciated to the measure µ, which we assume to be compactly supported.
We have Dµ = ∪k≥k0Dµ,k, and each family Dµ,k consists of a collection
of Borel subsets (or “cubes”) of E = suppµ which form a partition of E.
That is, for each k ≥ k0,

E =
⋃

Q∈Dµ,k

Q,

and the union is disjoint. Further, if k < l, Q ∈ Dµ,l, and R ∈ Dµ,k,
then either Q ∩R = ∅ or else Q ⊂ R.

The general position of the cubes Q can be described as follows. There
are constants A0, C0 � 1 so that for each k ≥ k0 and each cubeQ ∈ Dµ,k,
there is a ball B(Q) = B(zQ, r(Q)) such that

zQ ∈ E, A−k0 ≤ r(Q) ≤ C0A
−k
0 ,

E ∩B(Q) ⊂ Q ⊂ E ∩ 28B(Q) = E ∩B(zQ, 28r(Q)),

and

the balls 5B(Q), Q ∈ Dµ,k, are disjoint.

For other additional properties of this lattice (constructed by David and
Mattila in [DM]) see Lemma 2.1 from [AT].

We set `(Q) = 56C0A
−k
0 and we call it the side length of Q. Note

that
1

28
C−1

0 `(Q) ≤ diam(B(Q)) ≤ `(Q).

We also denote BQ = 28B(Q) = B(zQ, 28 r(Q)), so that

E ∩ 1
28BQ ⊂ Q ⊂ BQ.

The corona decomposition from [AT] is a partition of Dµ into tree-like
families whose family of associated roots is denoted by Topµ. The only
properties of this corona decomposition that here we need to know here
are the following:

(1) Topµ ⊂ Dµ, E ∈ Topµ, and each R ∈ Topµ satisfies

µ(2BR) ≤ C µ(R).
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(2) For R ∈ Topµ, let T (R) be the subfamily of cubes from Dµ which
are contained in R and which are not contained in any other cube
from Topµ. Then

Dµ =
⋃

R∈Topµ

T (R),

and the union is disjoint.
(3) For each R ∈ Topµ and each Q ∈ T (R),

Θµ(2BQ) ≤ C Θµ(2BR),

where Θµ(B(x, r)) = µ(B(x,r))
rn .

(4) If

µ

(
R \

⋃
Q∈T (R)

Q

)
> 0,

then T (R) contains cubes Q ∈ Dµ of arbitrarily small side length
satisfying Θµ(2BR) ≈ Θµ(2BQ).

(5) If µ satisfies the growth condition

(5.1) µ(B(x, r)) ≤ C∗ rn for all x ∈ E, r > 0,

then Topµ satisfies the packing condition

(5.2)
∑

R∈Topµ

Θµ(2BR)µ(R) ≤ C C∗ µ(R0)+C

∫∫ ∞
0

βµ,2(x, r)2 dr

r
dµ(x).

The properties above are proved in Section 5 from [AT]. We also
remark that another key property is the fact that, in a sense, the mea-
sure µ is quite well approximated by n-dimensional Hausdorff measure
in a Lipschitz n-dimensional manifold at the scales and locations of each
tree T (R). However, this property will not be used here and so we skip
the details.

In [AT] the growth condition (5.1) is only used to prove the packing
condition (5.2). Indeed this is not used in connection with the other
properties of the corona decomposition listed above.

We claim now that the packing condition (5.2) also holds if instead
of (5.1) we just assume that there exists some r0 > 0 such that

(5.3) µ(B(x, r)) ≤ C∗ rn for all x ∈ E, 0 < r ≤ r0,

with the constants in (5.2) independent of r0. The only required modifi-
cations are located in the proof of Lemma 5.5 from [AT]. They are quite
minor and we just sketch them, and advise the reader to have [AT] at
hand to follow the details:
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• Equation (5.9) from [AT] is still valid under the assumption (5.3),
because for k big enough, Θµ(2BR) ≤ C∗ for all R ∈ Topk.
• To estimate the first sum on the right hand side of (5.11) from [AT]

we take into account that if

µ

(
R \

⋃
Q∈Next(R)

Q

)
> 0,

then Θ(2BR) ≈ Θ(2BQ) . C∗ for infinitely many Q ∈ T (R), by
the above property (4) of the corona decomposition.
• Also, S2 = 0 because we are taking F = E and so B = ∅ in [AT,

Section 5].

5.2. Preliminaries for the proof of Theorem B. To prove The-
orem B it is enough to show that any subset F ⊂ E with µ(F ) > 0
contains another subset F ′ ⊂ F with µ(F ′) > 0 which is n-rectifiable.
Having this in mind, by standard methods, it is easy to check that we
can assume that, for some constants C∗ and C1,

(5.4) lim inf
r→0

µ(B(x, r))

rn
≤ C∗ for all x ∈ E,

and

(5.5)

∫ 1

0

βµ,2(x, r)2 dr

r
≤ C1 for all x ∈ E.

We need the following auxiliary result.

Lemma 5.1. Let Λ > 2. Under the assumption (5.4), for µ-a.e. x ∈ E
there exists a sequence of radii rk → 0 such that

(5.6) µ(B(x,Λrk))≤2Λd µ(B(x, rk)) and µ(B(x, rk))≤10C∗ Λn rn.

Proof: Denote by E0 the subset of points x ∈ E such that Θn,∗(x, µ) ≤
4C∗ Λn. Let x ∈ E0 and consider a sequence of balls B(x, rk) with
µ(B(x,Λrk)) ≤ 2Λd µ(B(x, rk)) (such sequence exists for µ-a.e. x ∈ E0,
as shown in Chapter 2 of [Tol2], for example). It is clear then that (5.6)
holds for k big enough for µ-a.e. x ∈ E0.

In the case x ∈ E \ E0, let sk → 0 be a sequence of radii such that

µ(B(x, sk))

snk
≤ 2C∗.

Note that, for each k,

lim sup
j→∞

µ(B(x,Λ−jsk))

(Λ−jsk)n
≥ Λ−n lim sup

r→0

µ(B(x, r))

rn
≥ 4C∗.
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Now we let j ≥ 0 be the least integer such that

µ(B(x,Λ−jsk))

(Λ−jsk)n
≥ 3C∗,

and we set rk = Λ−jsk. Then we have

µ(B(x,Λrk)) = µ(B(x,Λ−j+1sk)) ≤ 3C∗(Λ
−j+1sk)n

≤ Λn µ(B(x,Λ−jsk)) = Λn µ(B(x, rk)),

which implies that µ(B(x,Λrk)) ≤ 2Λd µ(B(x, rk)) and also that

µ(B(x, rk)) ≤ µ(B(x,Λ rk)) ≤ 3C∗Λ
n rnk .

This concludes the proof of (5.6) for µ-a.e. x ∈ E.

5.3. Proof of Theorem B. Because of Theorem A, it is enough to
show that

Mnµ(x) = sup
r>0

µ(B(x, r))

rn
<∞ for µ-a.e. x ∈ E.

Recall that we are assuming the conditions (5.4) and (5.5).
We need to consider an auxiliary approximating measure µ̃ which we

proceed to define. By Lemma 5.1 and a Vitali type covering lemma,
there is a family of pairwise disjoint balls Bi, i ∈ I, centered at E, which
cover µ-a.e. E, satisfying

(5.7) µ(ΛBi) ≤ 2Λd µ(Bi) and µ(Bi) ≤ 10C∗ Λn r(Bi)
n,

and also that

r(Bi) ≤ ρ,
for some arbitrary fixed ρ > 0. Let I0 ⊂ I be a finite subfamily such
that

µ

(
E \

⋃
i∈I0

Bi

)
≤ ε µ(E),

where ε > 0 is some small value to be chosen below. For each i ∈ I0, we
consider an n-dimensional disk Di concentric with Bi and radius 1

2r(Bi)
and we define

µ̃ =
∑
i∈I0

µ(Bi)

Hn(Di)
Hn|Di ,

so that µ̃(Di) = µ(Bi) for each i ∈ I0.
We claim now that if Λ is taken big enough, then

(5.8)

∫
Mnµ̃ dµ̃ ≤ C(Λ)C∗ µ(E) + C

∫∫ ∞
0

βµ,2(x, r)2 dr

r
dµ(x),
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with the constants on the right hand side depending neither on ρ nor
on ε. Before proving (5.8) we show how this implies that Mnµ(x) < ∞
µ-a.e. Indeed, by an approximating argument, and denoting

Mn,ρµ(x) = sup
r>ρ

µ(B(x, r))

rn

and

Eε,ρ := E ∩
⋃
i∈I0

Bi,

it follows easily that

(5.9)

∫
Eε,ρ

Mn,ρ(χEε,ρµ) dµ ≤ C
∫
Mn,ρµ̃ dµ̃.

To check this, take x, x′ ∈ Bj , j ∈ I0, and r ≥ ρ. Then

µ(B(x, r) ∩ Eε,ρ) ≤ µ(B(x′, 2r) ∩ Eε,ρ) ≤
∑

i∈I0:Bi∩B(x′,2r)6=∅

µ(Bi)

=
∑

i∈I0:Bi∩B(x′,2r)6=∅

µ̃(Di) ≤ µ̃(B(x′, 3r)),

taking into account that B(x, r) ⊂ B(x′, 2r) in the first inequality, and
that the balls Bi in the before to last sum are contained B(x′, 3r). There-
fore,

Mn,ρ(χEε,ρµ)(x) ≤ 3n inf
x′∈Dj

Mn,ρµ̃(x′)

for all x ∈ Bj , j ∈ I0. The preceding estimate readily yields (5.9) by
integrating with respect to µ in Eε,ρ.

From (5.8) and (5.9) we get∫
Eε,ρ

Mn,ρ(χEε,ρµ) dµ ≤ C(Λ)C∗ µ(E)+C

∫∫ ∞
0

βµ,2(x, r)2 dr

r
dµ(x)=:K,

with K independent of ρ and ε. For ρ > 0 fixed, take εk = 2−k, and
note that up to a set of null µ-measure, E = lim infk Eεk,ρ. Recall that
by definition,

lim inf
k

Eεk,ρ =
⋃
j≥1

Gj , with Gj =
⋂
k≥j

Eεk,ρ.

Obviously, we have∫
Gj

Mn,ρ(χGjµ) dµ ≤
∫
Eεj,ρ

Mn,ρ(χEεj,ρµ) dµ ≤ K.
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Since the sequence of sets Gj is increasing, by monotone convergence we
get

χGjMn,ρ(χGjµ)(x)→Mn,ρµ(x) for µ-a.e. x ∈ E.

Then, again by monotone convergence, we deduce that
∫
Mn,ρµdµ ≤ K.

Since this estimate is uniform on ρ, again by monotone convergence we
infer that ∫

Mnµdµ ≤ K,

which shows that Mnµ(x) <∞ µ-a.e., as wished.

It just remains to prove (5.8) now. To this end, we consider the corona
decomposition associated to µ̃ described in Subsection 5.1. Notice that
the condition (5.3) holds (with C(Λ)C∗ instead of C∗) for some r0 > 0
because of the definition of µ̃, (5.7), and because the family I0 is finite.
Therefore, by (5.2) and the subsequent discussion,

(5.10)
∑

R∈Topµ̃

Θµ̃(2BR) µ̃(R)≤C(Λ)C∗ µ̃(Rd)+C

∫∫ ∞
0

βµ̃,2(x, r)2 dr

r
dµ̃(x).

By the property (3) of the corona decomposition it is immediate to check
that ∫

Mnµ̃ dµ̃ .
∑

R∈Topµ̃

Θµ̃(2BR) µ̃(R),

and thus

(5.11)

∫
Mnµ̃ dµ̃ . C(Λ)C∗ µ(E) + C

∫∫ ∞
0

βµ̃,2(x, r)2 dr

r
dµ̃(x).

Thus we just have to estimate the double integral on the right hand side.
Consider x ∈ Di for some i ∈ I0 and r > 0. Note that βµ̃,2(x, r) = 0

unless B(x, r) intersects some disc Dj , j 6= i. In fact, denoting

D(Bi, Bj) = r(Bi) + r(Bj) + dist(Bi, Bj),

by construction (using that the radius of Dk is one half of the one of Bk),

βµ̃,2(x, r)2 = inf
L

∑
j∈I0:D(Bi,Bj)≤2r

∫
B(x,r)∩Bj

(
dist(y, L)

r

)2
dµ̃(y)

rn
.

Observe also that the balls Bi and Bj appearing in this equation are
contained in B(y, 20r) for all y ∈ Bi. Then, taking into account that
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µ̃(Bk) = µ(Bk) for each k ∈ I0, letting L be the n-plane that minimizes
βµ,2(x, 20r), for each j in the sum above we have:∫
Bj

(
dist(z, L)

r

)2
dµ̃(z)

rn
≤
∫
Bj

(
supz′∈Bj dist(z′, L)

r

)2
dµ̃(z)

rn

=

∫
Bj

(
supz′∈Bj dist(z′, L)

r

)2
dµ(z)

rn

≤ 2

∫
Bj

(
dist(z, L)

r

)2
dµ(z)

rn
+ 4

r(Bj)
2

rn+2
µ̃(Bj).

Hence for all x ∈ Di and y ∈ Bi we can estimate βµ̃,2(x, r) in terms of
βµ,2(y, 20r) as follows:

βµ̃,2(x, r)2 . βµ,2(y, 20r)2 +
∑

j∈I0:D(Bi,Bj)≤2r

r(Bj)
2

rn+2
µ̃(Bj).

So we obtain∫∫ ∞
0

βµ̃,2(x, r)2 dr

r
dµ̃(x)

=
∑
i∈I0

∫ ∞
0

∫
Bi

βµ̃,2(x, r)2 dµ̃(x)
dr

r

.
∑
i∈I0

∫ ∞
0

∫
Bi

βµ,2(y, 20r)2 dµ(y)
dr

r

+
∑
i∈I0

∫ ∞
0

∑
j∈I0:D(Bi,Bj)≤2r

r(Bj)
2

rn+2
µ̃(Bj)

dr

r
µ̃(Bi).

(5.12)

Clearly, the first sum on the right hand side of the inequality does not
exceed C

∫∫∞
0
βµ,2(x, r)2 dr

r dµ(x). Concerning the last sum, by Fubini
this equals

(5.13)
∑
j∈I0

r(Bj)
2 µ̃(Bj)

∫ ∞
0

∑
i∈I0:D(Bi,Bj)≤2r

µ̃(Bi)
dr

rn+3

≤
∑
j∈I0

r(Bj)
2 µ̃(Bj)

∫
r>r(Bj)/2

µ̃(B(xj , 20r))

rn
dr

r3
,
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where xj is the center of Dj and Bj . Now note that, for 0 < r ≤
1
10 Λ r(Bj),

µ̃(B(xj , 20r))

rn
≤ C(Λ)

µ(B(xj , 20r))

rn
≤ C(Λ)

µ(Bj)

r(Bj)n
≤ C(Λ)C∗,

and also that

µ̃(B(xj , 20r))

rn
≤ C inf

y∈Bj
Mnµ̃(y) for all r > 0 and y ∈ Bj .

Therefore,∫
r>r(Bj)/2

µ̃(B(xj , 20r))

rn
dr

r3
≤
∫ 1

10 Λr(Bj)

r(Bj)/2

C(Λ)C∗
dr

r3

+

∫ ∞
1
10 Λr(Bj)

inf
y∈Bj

Mnµ̃(y)
dr

r3

.
C(Λ)C∗
r(Bj)2

+
1

Λ2 r(Bj)2
inf
y∈Bj

Mnµ̃(y).

Plugging this estimate into (5.13), we deduce that the last term on the
right hand side of (5.12) satisfies∑
i∈I0

∫ ∞
0

∑
j∈I0:D(Bi,Bj)≤2r

r(Bj)
2

rn+2
µ̃(Bj)

dr

r
µ̃(Bi)

.
∑
j∈I0

C(Λ)C∗ µ̃(Bj) +
1

Λ2

∑
j∈I0

µ̃(Bj) inf
y∈Bj

Mnµ̃(y)

. C(Λ)C∗ µ(E) +
1

Λ2

∫
Mnµ̃ dµ̃.

From (5.11), (5.12), and the preceding estimate we obtain∫
Mnµ̃ dµ̃ . C(Λ)C∗ µ(E)+

1

Λ2

∫
Mnµ̃ dµ̃+

∫∫ ∞
0

βµ,2(x, r)2 dr

r
dµ(x).

Choosing Λ big enough and taking into account that Mnµ̃ ∈ L∞(µ̃) (by
the construction of µ̃) and that µ̃ is finite, we derive∫

Mnµ̃ dµ̃ ≤ C(Λ)C∗ µ(E) + C

∫∫ ∞
0

βµ,2(x, r)2 dr

r
dµ(x),

as wished.
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