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Abstract: We prove that a finite non-degenerate involutive set-theoretic solu-

tion (X, r) of the Yang–Baxter equation is a multipermutation solution if and only if

its structure group G(X, r) admits a left ordering or equivalently it is poly-Z.
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Introduction

According to Drinfeld [9], a set-theoretic solution of the Yang–Baxter
equation is a pair (X, r), where X is a set and r : X ×X → X ×X is a
bijective map such that

(r × idX)(idX ×r)(r × idX) = (idX ×r)(r × idX)(idX ×r).
The seminal papers [10] and [15] initiated the study of non-degenerate

involutive set-theoretic solutions of the Yang–Baxter equation. Etingof,
Schedler, and Soloviev introduced the structure group G(X, r) of a so-
lution (X, r) as the group presented with set of generators X and with
relations xy = uv whenever r(x, y) = (u, v). This group turned out
to be very important to understand set-theoretic solutions. As proved
by Gateva-Ivanova and Van den Bergh, the structure group G(X, r) of
a finite non-degenerate involutive set-theoretic solution of the Yang–
Baxter equation is a Bieberbach group, i.e. a finitely generated torsion-
free abelian-by-finite group.

In [10] multipermutation solutions were introduced. This is an im-
portant notion that was intensively studied [2, 3, 4, 5, 12, 14, 20].
In [17, Proposition 4.2] Jespers and Okniński proved that the structure
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group of a finite multipermutation solution is poly-Z. The main result
of this paper is to prove the converse: a finite solution (X, r) such that
G(X, r) is poly-Z is a multipermutation solution.

To prove our result we use the language of braces introduced by Rump
in [19]. Braces are algebraic structures that generalize radical rings.
This fact allows us to use tools and techniques from ring theory to study
set-theoretic solutions of the Yang–Baxter equation.

In [11, Theorem 23] Farkas proved that a Bieberbach group is poly-Z
if and only if it admits a left ordering. Since Chouraqui proved in [6,
Theorem 1] that the structure group of a finite non-degenerate involutive
set-theoretic solution of the Yang–Baxter equation is a Garside group,
our result in particular yields an infinite family of Garside groups that
are not left orderable.

1. Preliminaries

A set-theoretic solution of the Yang–Baxter equation is a pair (X, r),
where X is a set and r : X ×X → X ×X is a bijective map such that

(r × idX)(idX ×r)(r × idX) = (idX ×r)(r × idX)(idX ×r).
A solution (X, r) is said to be involutive if r2 = idX2 and it is said to

be non-degenerate if

r(x, y) = (σx(y), γy(x)),

where σx and γx are permutations of X for all x ∈ X. The structure
group G(X, r) of a non-degenerate solution (X, r) is defined as the group
presented with set of generators X and with relations xy = uv whenever
r(x, y) = (u, v). In [6, Theorem 1] Chouraqui proved that the structure
group of a non-degenerate involutive set-theoretic solution of the Yang–
Baxter equation is a Garside group. A simpler proof of this result was
recently given by Dehornoy in [8].

Example 1.1. Let X be a conjugacy class of a finite group G such that
the subgroup generated by X is non-abelian. Then the map

r : X ×X → X ×X, r(x, y) = (xyx−1, x),

is a non-degenerate solution of the Yang–Baxter equation. This solution
is not involutive. We claim that G(X, r) is not a Garside group. Let
G(X, r) act onX by conjugation. Then the center ofG(X, r) is the kernel
of this action and hence it has finite index in G(X, r). This implies that
all conjugacy classes of G(X, r) are finite. Thus the derived subgroup
of G(X, r) is a finite group by a theorem of Schur [18, Theorem 7.57].
In particular, G(X, r) has torsion elements and hence G(X, r) is not a
Garside group.
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Remark 1.2. In [6] it is conjectured that structure groups of finite non-
degenerate solutions are Garside groups. Example 1.1 shows that this
conjecture is not true.

Convention 1.3. A solution (X, r) of the YBE will always be a non-
degenerate involutive set-theoretic solution of the Yang–Baxter equation.

A left brace is an abelian group (A,+) with another group structure
with multiplication A×A→ A, (a, b) 7→ ab, such that

a(b+ c) + a = ab+ ac, a, b, c ∈ A.
It is known that in any left brace A the neutral elements of the
groups (A,+) and (A, ·) coincide. If A is a left brace, then the map
λ : (A, ·)→ Aut(A,+) given by λa(b) = ab−a is a group homomorphism.
It follows from the definition that ab = a + λa(b) and a + b = aλ−1a (b)
for all a, b ∈ A.

An ideal I of a left brace A is a normal subgroup I of the multiplicative
group of A such that λa(y) ∈ I for all a ∈ A and y ∈ I. The socle of a
left brace A is defined as the set

Soc(A) = {a ∈ A : λa = id} = {a ∈ A : a+ b = ab for all b ∈ A}.
The socle of A is an ideal of A.

Rump proved that each left brace A produces a solution of the YBE

rA : A×A→ A×A, rA(a, b) = (λa(b), λ−1λa(b)
(a)).

One of the main results of [10] is the following: If (X, r) is a solution of
the YBE, then there exists a bijective 1-cocycle G(X, r)→ Z(X), where
Z(X) is the free abelian group on X. From this it immediately follows
that the canonical map ι : X → G(X, r) is injective. Now using the
language of braces the existence of a bijective 1-cocycle can be written
as follows: If (X, r) is a solution, there exists a unique left brace structure
over the structure group G(X, r) such that the additive group of G(X, r)
is isomorphic to Z(X), the multiplicative structure is that of G(X, r), and
such that

rG(X,r)(ι× ι) = (ι× ι)r.
The permutation group G(X, r) of a solution (X, r) of the YBE is

defined as the group generated by {σx : x ∈ X}, where r(x, y) =
(σx(y), γy(x)). It is known that the map x 7→ σx extends to a homomor-
phism of groups π : G(X, r)→ G(X,R) such that Ker(π) = Soc(G(X, r))
and therefore G(X, r) has a unique structure of left brace such that the
group isomorphism

π : G(X, r)/ Soc(G(X, r))→ G(X, r)

induced by π is an isomorphism of left braces.
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Remark 1.4. Let B be a left brace. Using the operation

a ∗ b = ab− a− b = (λa − id)(b), a, b ∈ B,
Rump introduced the series

B = B(1) ⊇ B(2) ⊇ B(3) ⊇ · · · ,
where B(m+1) = B(m) ∗B is the additive group generated by

{(λa − id)(b) : a ∈ B(m), b ∈ B}
for all m ≥ 1. As a corollary of [19, Proposition 6] Rump proved that
each B(m) is an ideal of B. Notice that this corollary refers to right
braces.

For any left brace A and a subset X ⊆ A we will denote by 〈X〉
the subgroup of (A, ·) generated by X. Similarly 〈X〉+ will denote the
subgroup of (A,+) generated by X.

Remark 1.5. Let (X, r) be a finite solution of the YBE and let G =
G(X, r). Let m be a positive integer and let X1, . . . , Xr be the orbits
of X under the action of G(m). Then

G(m+1) = 〈(λa − id)(b) : a ∈ G(m), b ∈ G〉+
= 〈(λa − id)(x) : a ∈ G(m), x ∈ X〉+
= 〈y − x : x, y ∈ Xi, 1 ≤ i ≤ r〉+.

The second equality follows from the fact that (G,+) is generated by X
and λa is an automorphism of (G,+). The third equality is obtained
using that λa(x) ∈ X for all x ∈ X and all a ∈ G.

2. Multipermutation solutions

Let (X, r) be a solution of the YBE. Consider the equivalence relation
on X given by x ∼ y if and only if σx = σy. The retraction of (X, r)
is defined as the solution Ret(X, r) induced by this equivalence relation.
One defines recursively Retm+1(X, r) = Ret(Retm(X, r)) for all m. A
solution (X, r) of the YBE is said to be a multipermutation solution of
level m if m is the minimal positive integer such that Retm(X, r) has
only one element. A solution (X, r) of the YBE is said to be irretractable
if Ret(X, r) = (X, r).

Recall that a group G is said to be poly-Z if it has a subnormal series

{1} = G0 / G1 / · · · / Gn = G

such that each quotient Gi/Gi−1 is isomorphic to Z. A group G is said
to be left orderable if there is a total order < on G such that for any
x, y, z ∈ G, x < y implies zx < zy.
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The main result of the paper is the following theorem.

Theorem 2.1. Let (X, r) be a finite non-degenerate involutive set-the-
oretic solution of the Yang–Baxter equation. Then the following state-
ments are equivalent:

(1) (X, r) is a multipermutation solution.
(2) G(X, r) is left orderable.
(3) G(X, r) is poly-Z.

Proof: Let G = G(X, r) and G = G(X, r). By [15, Theorem 1.6], G is
a Bieberbach group. Hence the equivalence between (2) and (3) fol-
lows from [11, Theorem 23]. The implication (1) ⇒ (3) is [17, Propo-
sition 4.2]; see also [7] for another proof of (1) ⇒ (2). Let us prove
(2) ⇒ (1). For that purpose let us assume that (X, r) is not a multi-
permutation solution. By [13, Theorem 5.15], the solution (G, rG) is
not a multipermutation solution. This implies that the solution (G, rG)
is not a multipermutation solution. Using [3, Proposition 6] one ob-
tains that G(m) 6= {0} and G(m) 6= {0} for all m. Since G is finite,
there exists m such that G(m+1) = G(m) 6= 0. By [11, Theorem 23],
to prove that G is not left orderable it suffices to prove that the non-
trivial subgroup H = G(m+1) of (G, ·) has trivial center. Let z ∈ Z(H).
Since Soc(G) has finite index in G and G is torsion free, without loss of
generality we may assume that z ∈ Soc(G). Notice that if h ∈ H, then

(2.1) λh(z) = hz − h = zh− h = z + h− h = z.

Let X1, . . . , Xr be the orbits of X under the action of G(m). These orbits
are the orbits of X under the action of G(m) through the map λ. Since
(G,+) is the free abelian group with basis X, the element z can be
uniquely written as z = z1 + · · · + zr, where each zi ∈ 〈Xi〉+. From
the uniqueness of the decomposition of z and (2.1) one obtains that
λh(zi) = zi for all i ∈ {1, . . . , r} and h ∈ H. Now write each zi as

zi =
∑
t∈Xi

ntt,

where each nx ∈ Z. Remark 1.5 implies that
∑
t∈Xi

nt = 0. This decom-

position is unique since (G,+) is the free abelian group with basis X.
Let x, y ∈ Xi be such that x 6= y. Then there exists g ∈ G(m) such that
λg(x) = y. From G(m+1) = G(m) it follows

G(m) = G(m+1) + (Soc(G) ∩G(m)) = H + (Soc(G) ∩G(m)).

Thus g=g1+g2, where g1∈H and g2∈Soc(G)∩G(m). Since g2 ∈ Soc(G),
g = g2g1. Therefore

y = λg(x) = λg2g1(x) = λg2λg1(x) = λg1(x).
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Since zi = λg1(zi) =
∑
t∈Xi

ntλg1(t), we conclude that nx = ny. Since∑
t∈Xi

nt = 0, it follows that nt = 0 for all t ∈ Xi and all i ∈ {1, . . . , r}.
Therefore z = 0 = 1 and the result follows.

Example 2.2. Let X = {1, 2, 3, 4, 5, 6, 7, 8, 9, a, b, c, d, e, f, g} and let

σ1 = id, σ2 = (37)(48)(bf)(cg),

σ3 = (25)(3b4f)(7c8g)(9dea), σ4 = (25)(3g4c)(7f8b)(9dea),

σ5 = (38)(47)(bg)(cf), σ6 = (34)(78)(bc)(fg),

σ7 = (25)(3c7b)(4g8f)(9dea), σ8 = (25)(3f7g)(4b8c)(9dea),

σ9 = (38)(47)(9e)(ad), σa = (34)(78)(9e)(ad)(b, f)(c, g),

σb = (25)(3f4b)(7g8c)(9aed), σc = (25)(3c4g)(7b8f)(9aed),

σd = (9e)(ad)(bg)(cf), σe = (37)(48)(9e)(ad)(bc)(fg),

σf = (25)(3g7f)(4c8b)(9aed), σg = (25)(3b7c)(4f8g)(9aed).

Then r(x, y) = (σx(y), σ−1σx(y)
(x)) is an irretractable solution of the YBE.

Hence its structure group G(X, r) is not left orderable. In this case

G(X, r) = {σx : x ∈ X}.

Example 2.3. Let X = {1, 2, 3, 4, 5, 6, 7, 8, 9, a, b, c, d, e, f, g} and let

σ1 = id, σ2 = (9e)(ad)(bg)(cf),

σ3 = (34)(78)(9e)(ad)(bf)(cg), σ4 = (34)(78)(bc)(fg),

σ5 = (9a)(bc)(de)(fg), σ6 = (9d)(ae)(bf)(cg),

σ7 = (34)(78)(9d)(ae)(bg)(cf), σ8 = (34)(78)(9a)(de),

σ9 = (56)(78)(de)(fg), σa = (56)(78)(9dae)(bfcg),

σb = (34)(56)(9dae)(bgcf), σc = (34)(56)(bc)(de),

σd = (56)(78)(9ead)(bgcf), σe = (56)(78)(9a)(bc),

σf = (34)(56)(9a)(fg), σg = (34)(56)(9ead)(bfcg).

Then r(x, y) = (σx(y), σ−1σx(y)
(x)) is an irretractable solution of the YBE.

Hence its structure group G(X, r) is not left orderable. In this case

G(X, r) = {σx : x ∈ X} ' Z/2× D8,

where D8 denotes the dihedral group of size 8.

Remark 2.4. The solutions of Examples 2.2 and 2.3 correspond to the
associated solutions to the only left braces of size 16 with trivial socle.
This was checked with GAP and the list of small braces of [16].



Multipermutation Solutions 647

Example 2.5. Let X = {1, 2, 3, 4, 5, 6, 7, 8, 9, a, b, c, d, e, f, g, h, i, j, k, l,
m,n, o}. Let

σ1 = id,

σ2 = (4ag)(5bh)(6ci)(7jd)(8ke)(9lf),

σ3 = (4ga)(5hb)(6ic)(7dj)(8ek)(9fl),

σ4 = (23)(4ogc)(5nhb)(6mia)(7j)(8l)(9k)(ef),

σ5 = (23)(4cmi)(5bnh)(6aog)(7d)(8f)(9e)(kl),

σ6 = (23)(46)(89)(ac)(dj)(el)(fk)(go)(hn)(im),

σ7 = (4m)(5n)(6o)(ag)(bh)(ci),

σ8 = (4gm)(5hn)(6io)(7jd)(8ke)(9lf),

σ9 = (4am)(5bn)(6co)(7dj)(8ek)(9fl),

σa = (23)(4cgo)(5bhn)(6aim)(7j)(8l)(9k)(ef),

σb = (23)(4o)(5n)(6m)(7d)(8f)(9e)(ac)(gi)(kl),

σc = (23)(4iao)(5hbn)(6gcm)(89)(dj)(el)(fk),

σd = (4a)(5b)(6c)(gm)(hn)(io),

σe = (7jd)(8ke)(9lf)(amg)(bnh)(coi),

σf = (4mg)(5nh)(6oi)(7dj)(8ek)(9fl),

σg = (23)(46)(7j)(8l)(9k)(ao)(bn)(cm)(ef)(gi),

σh = (23)(4imc)(5hnb)(6goa)(7d)(8f)(9e)(kl),

σi = (23)(4oai)(5nbh)(6mcg)(89)(dj)(el)(fk),

σj = (4g)(5h)(6i)(am)(bn)(co),

σk = (4ma)(5nb)(6oc)(7jd)(8ke)(9lf),

σl = (7dj)(8ek)(9fl)(agm)(bhn)(cio),

σm = (23)(4i)(5h)(6g)(7j)(8l)(9k)(ac)(ef)(mo),

σn = (23)(46)(7d)(8f)(9e)(ai)(bh)(cg)(kl)(mo),

σo = (23)(4c)(5b)(6a)(89)(dj)(el)(fk)(gi)(mo).

Then r(x, y) = (σx(y), σ−1σx(y)
(x)) is an irretractable solution of the YBE.

Hence its structure group G(X, r) is not left orderable. In this case

G(X, r) = {σx : x ∈ X} ' S4.

The unique subgroup of index two of G(X, r) is an ideal of G(X, r). Hence
G(X, r) is not a simple brace.
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Remark 2.6. There are two braces of size 24 with trivial socle. One is
the simple brace found in [1] and the other one is that of Example 2.5.
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