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1. Introduction

Given an algebra A, a well-known and important homological invari-
ant of A is its Hochschild cohomological dimension, which serves as a
noncommutative analogue of the dimension of an algebraic variety, and
is defined by

cd(A) = sup{n : Hn(A,M) 6= 0 for some A-bimodule M} ∈ N ∪ {∞}
= min{n : Hn+1(A,M) = 0 for any A-bimodule M}
= pd

AMA
(A),

where H∗(A,−) denotes Hochschild cohomology and pd
AMA

(A) is the
projective dimension of A in the category of A-bimodules.

In this paper we will be interested in the case when A is a Hopf
algebra, in which case we have as well

cd(A) = pdA(Cε),

where pdA(Cε) is the projective dimension of the trivial object Cε in the
category of (say right) A-modules (we work throughout the paper over
the field of complex numbers). Hopf algebras simultaneously generalize,
among other things, discrete groups and linear algebraic groups, and
in the classical situations of Hopf algebras associated to algebraic and
discrete groups, the Hochschild cohomological dimensions are as follows.
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(1) If A = O(G), the coordinate algebra on a linear algebraic group G,
it is well-known that cd(O(G)) = dimG, the usual dimension of G.

(2) If A = CΓ, the group algebra of a discrete group Γ, then cd(CΓ) =
cdC(Γ), the cohomological dimension of Γ with coefficients C. This
dimension of high importance in geometric group theory, see [13,
21]. We have cd(CΓ) = 0 if and only if Γ is finite, and if Γ is
finitely generated, then cd(CΓ) = 1 if and only if Γ contains a free
normal subgroup of finite index, see [23, 20, 21].

There is also another cohomology theory specific to Hopf algebras,
Gerstenhaber–Schack cohomology [28, 29] (the coefficients are Hopf bi-
modules or Yetter–Drinfeld modules), which has been useful in prov-
ing some fundamental results in Hopf algebra theory [41, 24], and
serves, similarly as above, to define another cohomological dimension,
denoted cdGS(A). In [7, 8] we proposed to study Gerstenhaber–Schack
cohomology in order to get informations on Hochschild cohomology it-
self. For example it is proved in [8] that cd(A) ≤ cdGS(A) for any Hopf
algebra, and it is asked there (Question 1.2) whether the equality always
holds, at least in the cosemisimple case (a positive answer is provided
in the cosemisimple Kac type case, i.e. when S2 = id). A positive an-
swer would lead to the interesting fact that two Hopf algebras having
equivalent monoidal categories of comodules have the same Hochschild
cohomological dimension (the Gerstenhaber–Schack cohomological di-
mension being an invariant in such a situation).

The aim of this paper is to discuss the cohomological dimensions of
a class of Hopf algebras that we believe to be of particular interest,
the universal cosovereign Hopf algebras H(F ), F ∈ GLn(C), [5] (see
Section 2 for the precise definition). The universal property of these
Hopf algebras make them play, in Hopf algebra theory, a role similar to
that of the general linear groups in algebraic group theory, and to that
of the free groups in discrete group theory. In particular any finitely
generated cosemisimple Hopf algebra is a quotient of one H(F ).

The Hopf algebras H(F ) are the algebraic counterparts of the univer-
sal compact quantum groups of Van Daele and Wang [48], which have
been widely studied in the operator algebraic context of quantum group
theory, starting with [2], see e.g. [12, 18, 19, 47, 50]. However, so far,
the algebraic properties of the general H(F ) have only been analyzed
through the study of its category of comodules [2, 6, 16, 11]. We provide
here a full computation of the cohomological dimensions of H(F ), when
the matrix F is a generic asymmetry (see Section 2 for the definition of
these notions): in that case we show that cd(H(F )) = 3 = cdGS(H(F )).
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To prove this result, our starting point is the recent observation [9]
that for F = EtE−1, then H(F ) is a graded twisting of the free prod-
uct B(E)∗B(E), where B(E) is the universal Hopf algebra of the bilinear
form associated to E, introduced by Dubois-Violette and Launer [22].
Since the cohomological dimensions of B(E) are known [7, 8], the com-
putation is then achieved thanks to the two main general contributions
of this paper: on one hand the invariance (for cosemisimple Hopf alge-
bras) of the cohomological dimensions under graded twisting by a finite
abelian group, and on the other hand the description of the cohomologies
of a free product in terms of the cohomologies of the factors.

Note that for F = In, we have H(In) = O(U+
n ), the coordinate

algebra on the free unitary quantum group U+
n [51]. Thus, similarly to

the case of the free orthogonal quantum group O+
n studied in [17, 7] and

of the quantum permutation group S+
n studied in [8], we get that all the

cohomological dimensions for U+
n equal 3. Therefore the “free” quantum

groups O+
n , S+

n , U+
n (see e.g. [3, 26] for the meaning of free) all have

dimension 3. It would be interesting to know is there is a conceptual
reason (maybe representation theoretic, in the spirit of [27]) for that.

The paper is organized as follows. In Section 2 we recall some ba-
sic facts on the universal cosovereign Hopf algebras, and we state our
main result on the computation of their cohomological dimensions. Sec-
tion 3 provides the necessary material on Yetter–Drinfeld modules and
Gerstenhaber–Schack cohomology. In Section 4, we recall, after some
considerations on cocentral exact sequences of Hopf algebras and Yetter–
Drinfeld modules over them, the construction of the graded twisting of
a Hopf algebra, and prove the invariance of the cohomological dimen-
sions under this construction (under suitable assumptions). Section 5 is
devoted to the description of Hochschild and Gerstenhaber–Schack co-
homologies of free products in terms of the cohomologies of the factors,
and finishes the proof of Theorem 2.1. In the final Section 6, we come
back to the problem of comparing the two cohomological dimensions
for cosemisimple Hopf algebras, and provide a slight extension to the
positive result in [8], proving that equality holds if S4 = id.

Notations and conventions. We work over C (or over any algebraically
closed field of characteristic zero). We assume that the reader is familiar
with the theory of Hopf algebras and their tensor categories of comod-
ules, as e.g. in [31, 32, 35]. If A is a Hopf algebra, as usual, ∆, ε,
and S stand respectively for the comultiplication, counit, and antipode
of A. We use Sweedler’s notations in the standard way. The category
of right A-comodules is denoted MA, the category of right A-modules
is denoted MA, etc. . . The trivial (right) A-module is denoted Cε. The



304 J. Bichon

set of A-module morphisms (resp. A-comodule morphisms) between two
A-modules (resp. two A-comodules) V and W is denoted HomA(V,W )

(resp. HomA(V,W )).

2. Universal cosovereign Hopf algebras

We fix n ≥ 2, and let F ∈ GLn(C). Recall [5] that the algebra H(F )
is the algebra generated by (uij)1≤i,j≤n and (vij)1≤i,j≤n, with relations:

uvt = vtu = In; vFutF−1 = FutF−1v = In,

where u = (uij), v = (vij), and In is the identity n × n matrix. The
algebra H(F ) has a Hopf algebra structure defined by

∆(uij) =
∑
k

uik ⊗ ukj , ∆(vij) =
∑
k

vik ⊗ vkj ,

ε(uij) = ε(vij) = δij , S(u) = vt, S(v) = FutF−1.

The universal property of the Hopf algebras H(F ) [5] shows that
they play, in the category of Hopf algebras, a role that is similar to
the one of O(GLn(C)) in the category of commutative Hopf algebras:
any finitely generated Hopf algebra having all its finite-dimensional co-
modules isomorphic to their bidual (in particular any finitely generated
cosemisimple Hopf algebra) is a quotient of H(F ) for some F . Hence
one might say that they correspond to “universal” quantum groups.

When F is a positive matrix, the Hopf algebra H(F ) is the canonical
Hopf ∗-algebra associated to Van Daele and Wang’s universal compact
quantum groups [48].

The category of comodules over H(F ) has been studied in [2, 6,
16, 11]. In order to recall the characterization of the cosemisimplicity
of H(F ), we need some vocabulary. A matrix F ∈ GLn(C) is said to be

• normalizable if tr(F ) 6= 0 and tr(F−1) 6= 0 or tr(F ) = 0 = tr(F−1);
• generic if it is normalizable and the solutions of the equation q2 −√

tr(F ) tr(F−1)q + 1 = 0 are generic, i.e. are not roots of unity
of order ≥ 3 (this property does not depend on the choice of the
square root);
• an asymmetry if there exists E ∈ GLn(C) such that F = EtE−1

(the terminology comes from the theory of bilinear forms, see [37]).

For q ∈ C∗, we denote by Fq the matrix

Fq =

(
q−1 0
0 q

)
and by H(q) the Hopf algebra H(Fq). The matrix Fq is an asymmetry.
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The following results are shown in [6].

• If F is normalizable, we have an equivalence between the tensor
categories of comodules

MH(F ) '⊗MH(q),

where q is any solution of the equation q2−
√

tr(F ) tr(F−1)q+1=0.
• The Hopf algebra H(F ) is cosemisimple if and only if F is generic.

Moreover, the simple comodules can be naturally labeled by the free
monoid N ∗ N [2, 6, 16], with an explicit model for these comodules
given in [11].

The aim of this paper is to prove the following result.

Theorem 2.1. Let F ∈ GLn(C), n ≥ 2.

(1) If F is an asymmetry, then cd(H(F )) = 3.
(2) If F is generic, then cdGS(H(F )) = 3.

In particular, if F is a generic asymmetry, we have cd(H(F )) = 3 =
cdGS(H(F )).

See the next section for the definition of cdGS. We will proceed by
using the fact, from [9], that when F is an asymmetry, then H(F ) is a
graded twisting of a free product of Hopf algebras whose cohomological
dimension are known. We therefore have two main tasks:

(1) relate the cohomological dimensions of (cosemisimple) Hopf alge-
bras that are graded twisting of each other (this is done in Sec-
tion 4);

(2) describe the cohomological dimensions of a free product of Hopf
algebras in terms of the cohomological dimensions of the factors
(this is done in Section 5).

3. Yetter–Drinfeld modules and Gerstenhaber–Schack
cohomology

In this section we recollect the basic facts on Yetter–Drinfeld mod-
ules and Gerstenhaber–Schack cohomology, and discuss restriction and
induction for Yetter–Drinfeld modules. Let A be a Hopf algebra.

3.1. Yetter–Drinfeld modules. Recall that a (right-right) Yetter–
Drinfeld module over A is a right A-comodule and right A-module V
satisfying the condition, ∀ v ∈ V , ∀ a ∈ A,

(v · a)(0) ⊗ (v · a)(1) = v(0) · a(2) ⊗ S(a(1))v(1)a(3).
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The category of Yetter–Drinfeld modules over A is denoted YDAA: the
morphisms are the A-linear A-colinear maps. Endowed with the usual
tensor product of modules and comodules, it is a tensor category, with
unit the trivial Yetter–Drinfeld module, denoted C.

We now discuss some important constructions of Yetter–Drinfeld mod-
ules (left-right versions of these constructions were first given in [14], see
[40] as well, in the context of Hopf bimodules).

Let V be a right A-comodule. The Yetter–Drinfeld module V � A
is defined as follows [7]. As a vector space V � A = V ⊗ A, the right
module structure is given by multiplication on the right, and the right
coaction αV�A is defined by

αV�A(v ⊗ a) = v(0) ⊗ a(2) ⊗ S(a(1))v(1)a(3).

The coadjoint Yetter–Drinfeld module is Acoad = C�A.
A Yetter–Drinfeld module is said to be free if it is isomorphic to V �A

for some comodule V , and is said to be relative projective if it is a direct
summand of a free Yetter–Drinfeld module. If A is cosemisimple, then
the projective objects in the category YDAA are precisely the relative
projective Yetter–Drinfeld modules, see [8, Proposition 4.2], the abelian

category YDAA has enough projectives, each object having a resolution
by free Yetter–Drinfeld modules [7, Corollary 3.4].

3.2. Gerstenhaber–Schack cohomology. Let V be a Yetter–Drin-
feld module over A. The Gerstenhaber–Schack cohomology of A with
coefficients in V , that we denote H∗GS(A, V ), was introduced in [28, 29]
by using an explicit bicomplex. In fact Gerstenhaber–Schack used Hopf
bimodules instead of Yetter–Drinfeld modules to define their cohomol-
ogy, but in view of the equivalence between Hopf bimodules and Yetter–
Drinfeld modules [38], we work with the simpler framework of Yetter–
Drinfeld modules. A special instance of Gerstenhaber–Schack cohomol-
ogy is bialgebra cohomology, given by H∗b (A) = H∗GS(A,C).

As examples, the bialgebra cohomologies of CΓ (for a discrete group Γ)
and of O(G) (for a connected reductive algebraic group G) are described
in [36]. Some finite-dimensional examples are also computed in [43].

A key result, due to Taillefer [42], characterizes Gerstenhaber–Schack
cohomology as an Ext-functor:

H∗GS(A, V ) ' Ext∗YDA
A

(C, V ).

We will use this description as a definition. Note that the category YDAA
has enough injective objects [14, 42], so the above Ext spaces can be
studied using injective resolutions of V .
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The Gerstenhaber–Schack cohomological dimension of a Hopf alge-
bra A is defined to be

cdGS(A) = sup{n : Hn
GS(A, V ) 6= 0 for some V ∈ YDAA} ∈ N ∪ {∞}.

The following facts were established in [7, 8].

• cd(A) ≤ cdGS(A), with equality if A is cosemisimple of Kac type
(i.e. S2 = id).
• If A, B are Hopf algebras withMA '⊗MB (the tensor categories

of comodules are equivalent), then max(cd(A), cd(B))≤cdGS(A)=
cdGS(B).
• If A is co-Frobenius (in particular if A is cosemisimple), so that

YDAA has enough projective objects, then cdGS(A) = pdYDA
A

(C).

3.3. Restriction and induction for Yetter–Drinfeld modules.
We now discuss the restriction and induction process for Yetter–Drinfeld
modules, having in mind applications to Gerstenhaber–Schack cohomol-
ogy. The considerations in this subsection (construction of a pair of
adjoint functors) are special instances of those in [15, Section 2.5], but
we give the detailed construction, on one hand for the sake of complete-
ness, and on the other hand because it is probably quicker to write them
down directly than to translate from the language of entwined modules
of [15].

Let B ⊂ A be a Hopf subalgebra. For an A-comodule X, we put

X(B) = {x ∈ X | x(0) ⊗ x(1) ∈ X ⊗B}.
It is clear that the A-comodule structure on X induces a B-comodule
structure on X(B), and that this construction produces a functor

MA −→MB

X 7−→ X(B).

This functor is left exact, and we will say that B ⊂ A is coflat if this
functor is exact (this agrees with the usual terminology, since the above
functor is isomorphic with the functor −�AB). For example B ⊂ A is
coflat when A is cosemisimple.

Proposition 3.1. Let B ⊂ A be a Hopf subalgebra, and let X be an
object in YDAA. Then X(B) is a sub-B-module of X, so that X(B) is an

object in YDBB. The assignment

YDAA −→ YD
B
B

X 7−→ X(B)

defines a linear functor, that we call the restriction functor, which is
exact if B ⊂ A is coflat.
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Proof: For x ∈ X(B) and b ∈ B, we have

(x · b)(0) ⊗ (x · b)(1) = x(0) · b(2) ⊗ S(b(1))x(1)b(3) ∈ X ⊗B

and hence X(B) is a sub-B-module of X. The other assertions are im-
mediate.

We have an induction functor as well.

Proposition 3.2. Let B ⊂ A be a Hopf subalgebra. Then for any V ∈
YDBB, the vector space V ⊗B A admits a natural Yetter–Drinfeld module
structure over A, whose A-module structure is given by multiplication on
the right, and whose A-comodule structure is given by the map

v ⊗B a 7−→ v(0) ⊗B a(2) ⊗ S(a(1))v(1)a(3).

This construction defines a linear functor

YDBB −→ YD
A
A

V 7−→ V ⊗B A

that we call the induction functor.

Proof: We have, for v ∈ V , b ∈ B, and a ∈ A,

(v · b)(0) ⊗B a(2) ⊗ S(a(1))(v · b)(1)a(3)

= v(0) · b(2) ⊗B a(2) ⊗ S(a(1))S(b(1))v(1)b(3)a(3)

= v(0) ⊗B b(2)a(2) ⊗ S(b(1)a(1))v(1)b(3)a(3)

and this shows that above map is well-defined. It is then straightfor-
ward to check that this indeed defines a comodule structure on V ⊗B A,
and a Yetter–Drinfeld module structure, and that we get the announced
functor.

We now observe that the functors of Propositions 3.1 and 3.2 form a
pair of adjoint functors, see [15, Section 2.5].

Proposition 3.3. Let B ⊂ A be a Hopf subalgebra. We have for any
V ∈ YDBB and any X ∈ YDAA, natural isomorphisms

HomYDA
A

(V ⊗B A,X) ' HomYDB
B

(V,X(B)).

If moreover B ⊂ A is coflat and A is flat as a left B-module, we have,
for any n ≥ 0, natural isomorphisms

ExtnYDA
A

(V ⊗B A,X) ' ExtnYDB
B

(V,X(B)).
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Proof: It is a direct verification to check that for f ∈ HomYDA
A

(V ⊗B
A,X), the map f0 : V → X defined by f0(v) = f(v ⊗ 1) has values
into X(B), and is a morphism of Yetter–Drinfeld modules over B. We
get a (natural) map

HomYDA
A

(V ⊗B A,X) −→ HomYDB
B

(V,X(B))

f 7−→ f0, f0(v) = f(v ⊗ 1)

which is easily seen to be an isomorphism, and hence we have a pair of
adjoint functors.

The assumptions that B ⊂ A is coflat and that A is flat as a left
B-module are precisely that our pair of adjoint functors is formed by
exact functors, and hence the restriction functor YDAA → YD

B
B preserve

injective objects. Starting now from an injective resolution

0 −→ X −→ I0 −→ I1 −→ · · ·
in YDAA, we get an injective resolution

0 −→ X(B) −→ I
(B)
0 −→ I

(B)
1 −→ · · ·

in YDBB , and the adjunction property gives an isomorphism of complexes

HomYDA
A

(V ⊗B A, I∗) ' HomYDB
B

(V, I
(B)
∗ ).

The Ext-spaces in the statement are the cohomologies of these com-
plexes.

We finish the subsection by noticing that, in most cases, there is
another description of the restriction functor (this will be convenient in
the next section).

Proposition 3.4. Let B ⊂ A be a Hopf subalgebra. Consider the quo-
tient coalgebra L = A/B+A, and denote p : A → L the quotient map.
For X ∈MA, put

XcoL = {x ∈ X | x(0) ⊗ p(x(1)) = x⊗ 1}.

If B = AcoL, then we have XcoL = X(B). Hence the assignment X 7→
XcoL defines linear functors MA →MB, YDAA → YD

B
B, that are exact

if B ⊂ A is coflat, or if L is cosemisimple.

Proof: Given x ∈ XcoL, we have x(0) ⊗ x(1) ⊗ p(x(2)) = x(0) ⊗ x(1) ⊗ 1,

and this shows that x(0) ⊗ x(1) ∈ X ⊗ B, since B = AcoL. Conversely,
if x(0) ⊗ x(1) ∈ X ⊗ B, then x(0) ⊗ p(x(1)) = x(0) ⊗ ε(x(1)) = x ⊗ 1,

hence x ∈ XcoL. We get the announced description for XcoL, the other
assertions follow from Proposition 3.1, and there just remains to check
exactness if L is cosemisimple. For this, notice that if X is a comodule
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over A, the coalgebra map p induces a L-comodule structure on X, and
the cosemisimplicity of L provides a decomposition

X = XcoL ⊕X ′

for some sub-L-comodule X ′. A morphism of A-comodules preserves this
decomposition, and from this, exactness of our functor follows easily.

Remark 3.5. The assumption B = AcoL holds if A is faithfully flat as a
left or right B-module, see [44, Theorem 1] and its opposite version. If
the antipode of B is bijective, then A is faithfully flat as a left or right
B-module if and only if it is flat as a left or right B-module, see [45,
Corollary 3.5] and the remark following it. I thank the referee to have
provided these references.

4. Graded twisting and cohomological dimensions

In this section we study the invariance of the cohomological dimen-
sions under graded twisting by a finite abelian group.

4.1. Exact sequences of Hopf algebras. We begin by some prelim-
inaries on exact sequences of Hopf algebras. First recall that a sequence
of Hopf algebra maps

C −→ B
i−→ A

p−→ L −→ C

is said to be exact [1] if the following conditions hold:

(1) i is injective and p is surjective,

(2) Ker(p) = Ai(B)+ = i(B)+A, where i(B)+ = i(B) ∩Ker(ε),

(3) i(B) = AcoL = {a ∈ A : (id⊗p)∆(a) = a⊗ 1} = coLA = {a ∈ A :
(p⊗ id)∆(a) = 1⊗ a}.

Note that condition (2) implies pi = ε1.
In an exact sequence as above, we will assume, without loss of gen-

erality, that B is Hopf subalgebra and i is the inclusion map. In what
follows we fix an exact sequence of Hopf algebras

C −→ B
i−→ A

p−→ L −→ C.

First we have the following well-known fact.

Proposition 4.1. Let M be a right A-module, and let MB = {x ∈M |
x · b = ε(b)x} be the space of B-invariants. Then the A-module structure
on M induces an L-module structure on MB with (MB)L = MA.
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Proof: For x ∈ MB and b ∈ B+, we have x · b = 0. Moreover, for
x ∈MB , a ∈ A, one easily sees, using that AB+ = B+A, that x·a ∈MB .
Hence the formula x · p(a) = x · a provides a well-defined L-module
structure on MB . The last equality is immediate.

Proposition 4.2. Assume that L is semisimple. Let τ ∈ L be a right
integral with ε(τ) = 1, and let t ∈ A be such that p(t) = τ . Let V , W be
right A-modules and let f : V → W be a B-linear map. Then the linear
map f̃ : V →W defined by f̃(v) = f(v · S(t(1))) · t(2) is A-linear.

Proof: Recall that Hom(V,W ) admits a right A-module structure de-
fined by

f · a(v) = f(v · S(a(1))) · a(2)

and that

HomA(V,W ) = Hom(V,W )A = (Hom(V,W )B)L.

Recall also that if M is a right L-module over the semisimple algebra L,
then ML = M · τ . Hence, since f ∈ HomB(V,W ) = Hom(V,W )B , we
have f · τ ∈ (Hom(V,W )B)L = HomA(V,W ). We now have f · τ =

f ·p(t) = f · t, and it is clear that f · t is the map f̃ in the statement.

Remark 4.3. When the above p is an isomorphism, the above result is
simply the well-known fact that a Hopf algebra having a right integral τ
with ε(τ) = 1 is semisimple.

4.2. Yetter–Drinfeld modules and cocentral exact sequences.
Recall that a Hopf algebra map p : A → L is said to be cocentral if
p(a(1)) ⊗ a(2) = p(a(2)) ⊗ a(1) for any a ∈ A, and we say that an exact

sequence C→ B → A
p→ CΓ→ C is cocentral if p is.

In this subsection we fix a cocentral exact sequence of Hopf algebras

C −→ B −→ A
p−→ CΓ −→ C

with Γ a finite abelian group. Our aim is to relate Yetter–Drinfeld
modules over A and B, and then use these considerations to relate the
cohomological dimensions of A and B (Theorem 4.8).

We assume that A (and hence B) is cosemisimple (but this will play
a true role only in Lemma 4.6 and Proposition 4.7).

Our first task is to study the action of the functor of Proposition 3.4
(and hence of Proposition 3.1) on relative projective Yetter–Drinfeld
modules. We begin with the free ones.

Lemma 4.4. We have, for any V ∈MA,

(V �A)coCΓ = V coCΓ �A.
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Proof: For v ∈ V coCΓ and a ∈ A, we have, using the cocentrality of p,

(v ⊗ a)(0) ⊗ p((v ⊗ a)(1)) = v(0) ⊗ a(2) ⊗ p(S(a(1))v(1)a(3))

= v ⊗ a(2) ⊗ p(S(a(1))a(3))

= v ⊗ a⊗ 1.

Hence V coCΓ�A ⊂ (V�A)coCΓ. Conversely, let
∑
i vi⊗ai ∈ (V�A)coCΓ.

We have, using the cocentrality of p and the fact that the algebra CΓ is
commutative,∑

i

vi ⊗ ai ⊗ 1 =
∑
i

vi(0) ⊗ ai(2) ⊗ p(S(ai(1))vi(1)ai(3))

=
∑
i

vi(0) ⊗ ai ⊗ p(vi(1)).

Taking the ai’s linearly independent, we see that each vi belongs to V coCΓ,
as needed.

Proposition 4.5. The exact functor

(−)coCΓ : YDAA −→ YD
B
B

V 7−→ V coCΓ

transforms relative projective objects of YDAA into relative projective ob-

jects of YDBB. Moreover, if M ∈ YDAA is free, then the B-module struc-
ture on M coCΓ is the restriction of an A-module structure, so that M coCΓ

is an object in YDAA.

Proof: Let P be a relative projective Yetter–Drinfeld over A: there exists
another Yetter–Drinfeld module Q and an A-comodule V such that P ⊕
Q ' V � A as Yetter–Drinfeld modules over A. We then have, using
Lemma 4.4,

P coCΓ ⊕QcoCΓ ' (P ⊕Q)coCΓ ' (V �A)coCΓ ' V coCΓ �A

as Yetter–Drinfeld modules over B (recall [8, Proposition 4.5] that if W

is B-comodule, then the free Yetter–Drinfeld module W�A ∈ YDAA is in
fact a comodule over B, so that W�A is Yetter–Drinfeld over B). More-
over V coCΓ � A is a relative projective Yetter–Drinfeld module over B,
by [8, Proposition 4.8], hence there exist T ∈ YDBB and W ∈ MB such
that (V coCΓ �A)⊕ T 'W �B. Finally

P coCΓ ⊕QcoCΓ ⊕ T 'W �B

which shows that P coCΓ is indeed a relative projective Yetter–Drinfeld
module over B. The last statement follows immediately from Lemma 4.4.
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Before proving our main technical result in view of the proof of The-
orem 4.8, we need a last ingredient.

Lemma 4.6. There exists an element t ∈ A such that

p(t) =
1

|Γ|
∑
g∈Γ

g and t(2) ⊗ S(t(1))t(3) = t⊗ 1.

If M , N are A-modules and f : M → N is a B-linear map, then the
linear map f̃ : M → N defined by f̃(x) = f(x · S(t(1))) · t(2) is A-linear.

Proof: The element τ = 1
|Γ|
∑
g∈Γ g is a right integral in the semisimple

Hopf algebra CΓ satisfying ε(τ) = 1, so the last statement follows from
Proposition 4.2, and it remains to check that t can be chosen such that
t(2) ⊗ S(t(1))t(3) = t ⊗ 1. To see this, note that CΓ and A both admit
right B-comodule structures given by

CΓ −→ CΓ⊗B
x 7−→ x⊗ 1,

A −→ A⊗B
a 7−→ a(2) ⊗ S(a(1))a(3),

and that p is B-colinear. Since A is cosemisimple, so is B, and there
exists σ, a B-colinear section to p, which thus satisfies, for any x ∈ CΓ,

σ(x)(2) ⊗ S(σ(x)(1))σ(x)(3) = σ(x)⊗ 1.

Hence we can take t = σ(τ). I thank the referee to have pointed out how
to remove some unnecessary complications in the original proof.

Proposition 4.7. Let V,W ∈ YDAA, and let i : V → W be an injective
morphism of Yetter–Drinfeld modules over A. Assume that the following
conditions hold.

(1) We have αV (V ) ⊂ V ⊗B and αW (W ) ⊂W ⊗B, so that V and W
are in fact B-comodules.

(2) The exists a B-linear and B-colinear map r : W → V such that
ri = idV .

Then there exists an A-linear and A-colinear map r̃ : W → V such that
r̃i = idV .

Proof: Let t ∈ A as in the previous lemma. We define r̃ : W → V by

r̃(w) = r(w · S(t(1))) · t(2).

It is immediate to check that r̃i = idV , and it follows from the previous
lemma that r̃ is A-linear. It thus remains to check that r̃ is A-colinear.
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Let w ∈W . We have

r̃(w)(0) ⊗ r̃(w)(1) = (r(w · S(t(1))) · t(2))(0) ⊗ (r(w · S(t(1))) · t(2))(1)

= r(w · S(t(1)))(0) · t(3) ⊗ S(t(2))r(w · S(t(1)))(1)t(4)

= r((w · S(t(1)))(0)) · t(3) ⊗ S(t(2))(w · S(t(1)))(1)t(4)

= r(w(0) · S(t(2))) · t(5) ⊗ S(t(4))S
2(t(3))w(1)S(t(1))t(6)

= r(w(0) · S(t(2))) · t(3) ⊗ w(1)S(t(1))t(4)

= r(w(0) · S(t(1))) · t(2) ⊗ w(1)

= r̃(w(0))⊗ w(1),

where we have used the Yetter–Drinfeld condition, the B-colinearity of r,
and the fact that t(2) ⊗ S(t(1))t(3) = t⊗ 1 which gives

t(2) ⊗ t(3) ⊗ S(t(1))t(4) = t(1)) ⊗ t(2) ⊗ 1.

Hence r̃ is A-colinear, and this concludes the proof.

Theorem 4.8. Let C → B → A → CΓ → C be a cocentral exact
sequence of Hopf algebras, with Γ a finite abelian group and A having
bijective antipode. Then cd(A) = cd(B), and if we assume that A is
cosemisimple, we have cdGS(A) = cdGS(B) as well.

Proof: The identity cd(A) = cd(B) is a particular case of [8, Propo-
sition 3.2] (the above exact sequence being automatically strict in the
sense of [39], since A → CΓ is faithfully coflat, CΓ being cosemisimple,
see [39], [44, Theorem 2] for details). Assume that A is cosemisimple,
and consider a resolution of the trivial Yetter–Drinfeld module

· · · −→ Pn −→ Pn−1 −→ · · · −→ P1 −→ P0 −→ C

by (relative) projective Yetter–Drinfeld over A. The exact functor

(−)coCΓ : YDAA → YD
B
B from Proposition 3.4 transforms, by Proposi-

tion 4.5, this resolution into a resolution of C by (relative) projective
Yetter–Drinfeld modules over B. It follows that cdGS(B) ≤ cdGS(A).

To prove the converse inequality, we can assume that m = cdGS(B)
is finite. Consider a resolution of the trivial Yetter–Drinfeld module

· · · −→ Fn −→ Fn−1 −→ · · · −→ F1 −→ F0 −→ C

by free Yetter–Drinfeld modules over A. The exact functor (−)coCΓ :

YDAA → YDBB from Proposition 3.4 transforms, by Lemma 4.4 and
Proposition 4.5, this resolution into a resolution of C of type

· · · −→ Vn �A −→ Vn−1 �A −→ · · · −→ V1 �A −→ V0 �A −→ C,
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where V0, V1, . . . are comodules over B, V0 � A, V1 � A, . . . are free
Yetter–Drinfeld modules over A (and projective over B), and the in-
volved linear map are morphisms of Yetter–Drinfeld modules over A.
Since m = cdGS(B), a standard argument yields an exact sequence of
Yetter–Drinfeld modules over B, and hence over A

0 −→ K
i−→ Vm�A −→ Vm−1�A −→ · · · −→ V1�A −→ V0�A −→ C

together with r : Vm � A→ K, a morphism of Yetter–Drinfeld modules
over B such that ri = idK . Proposition 4.7 gives r̃ : Vm � A → K, a
morphism of Yetter–Drinfeld modules over A such that r̃i = idK . We
thus get, since a direct summand of a projective is projective, a length m
resolution of C by projective Yetter–Drinfeld modules over A, and we
conclude that cdGS(A) ≤ m, as required.

4.3. Graded twisting. Let A be a Hopf algebra and let Γ be a group.
Recall [9] that an invariant cocentral action of Γ on A is a pair (p, α)
where

• p : A→ CΓ is a surjective cocentral Hopf algebra map,
• α : Γ → AutHopf(A) is an action of Γ by Hopf algebra automor-

phisms on A, with pαg = p for all g ∈ Γ.

The Hopf algebra map p induces a Γ-grading on A

A =
⊕
g∈Γ

Ag, Ag = {a ∈ A | p(a(1))⊗ a(2) = g ⊗ a}

and the last condition is equivalent to αg(Ah) = Ah for all g, h ∈ Γ.
When (p, α) is such an action, the graded twisting At,α of A is the Hopf
subalgebra

At,α =
∑
g∈Γ

Ag ⊗ g ⊂ Ao Γ

of the crossed product Hopf algebra A o Γ. Notice that the coalge-
bras A and At,α are isomorphic, and that the underlying algebra struc-
ture of At,α is that of twist in the sense of [53]. If no confusion can arise,
we will simply denote by At the twisted Hopf algebra At,α.

With these definitions, we are ready to prove the following result.

Theorem 4.9. Let A, B be Hopf algebras having bijective antipodes,
and assume that B is a graded twisting of A by a finite abelian group.
Then cd(A) = cd(B), and if we assume that A is cosemisimple, we have
cdGS(A) = cdGS(B) as well.
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Proof: Let Γ be the twisting group. It is pointed out in [10] that A
and B fit into cocentral exact sequences

C −→ L −→ A −→ CΓ −→ C, C −→ L −→ B −→ CΓ −→ C

for the Hopf algebra L = A1. We thus have, by Theorem 4.8, cd(A) =
cd(L) = cd(B) and cdGS(A) = cdGS(L) = cdGS(B) if A (and hence B)
is cosemisimple.

See [9] for examples of graded twistings. The example we have in
mind is the following one.

Let E ∈ GLn(C) and consider the Hopf algebra B(E) defined by
Dubois-Violette and Launer [22]: B(E) is the algebra generated by aij ,
1 ≤ i, j ≤ n, subject to the relations E−1atEa = In = aE−1atE, where a
is the matrix (aij) (for an appropriate matrix Eq, one gets Oq(SL2(C))).

Recall now [51] that if A, B are Hopf algebras, the free product
algebra A∗B has a unique Hopf algebra structure such that the canonical
morphisms A → A ∗ B and B → A ∗ B are Hopf algebra maps, and
consider the free product Hopf algebra B(E)∗B(E). We have a cocentral
Hopf algebra map

B(E) ∗ B(E) −→ CZ2, Z2 = 〈g〉
a

(1)
ij , a

(2)
ij 7−→ δijg,

where the superscript refers to the numbering of copies inside the free
product, and we have an action of Z2 of B(E) ∗B(E), given by the Hopf
algebra automorphism that exchanges the copies inside the free product.
We get in this way an invariant cocentral action of Z2 on B(E) ∗ B(E),
and we form the graded twisting (B(E) ∗ B(E))t. Now for F = EtE−1,
we have, by [9], a Hopf algebra isomorphism

H(F ) −→ (B(E) ∗ B(E))t

u, v 7−→ a(1) ⊗ g, Eta(2)(E−1)t ⊗ g.

Using Theorem 4.8, we get:

Corollary 4.10. For F = EtE−1, we have cd(H(F )) = cd(B(E) ∗
B(E)), and if F is generic, then cdGS(H(F )) = cdGS(B(E) ∗ B(E)).

It thus remains, in order to prove Theorem 2.1, to discuss the coho-
mological dimensions of a free product, the cohomological dimensions
of B(E) being known [7].
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5. Cohomologies of free products of Hopf algebras

In this section we discuss the cohomologies of a free product of Hopf
algebras.

5.1. Hochschild cohomology. We begin with Hochschild cohomol-
ogy. The following result generalizes the well-known one for group co-
homology, see [30], with essentially the same proof.

Theorem 5.1. Let A, B be augmented algebras. We have for any right
A ∗B-module M , and for any n ≥ 2, a natural isomorphism

ExtnA∗B(Cε,M) ' ExtnA(Cε,M)⊕ ExtnB(Cε,M),

where M has the respective restricted A-module and B-module structures.

The result and proof are probably well-known, but in lack of a conve-
nient reference (however see [46] for the case of trivial coefficients), we
will give the details, which also will be useful in view of the proof of an
analogous result for Gerstenhaber–Schack cohomology in a forthcoming
subsection.

At the level of Hochschild cohomology, Theorem 5.1 gives the follow-
ing result.

Theorem 5.2. Let A, B be Hopf algebras. We have for any A ∗ B-bi-
module M , and for any n ≥ 2, a natural isomorphism

Hn(A ∗B,M) ' Hn(A,M)⊕Hn(B,M),

where M has the respective restricted A-bimodule and B-bimodule struc-
tures.

Proof: This follows directly from Theorem 5.1, since for a Hopf alge-
bra A and an A-bimodule M , we have H∗(A,M) ' Ext∗A(Cε,M ′), where
M ′ has the right A-module structure given by m · a = S(a(1)) ·m · a(2).
See e.g. [7] for this well-known fact.

Corollary 5.3. Let A, B be non trivial Hopf algebras. We have

cd(A ∗B) =

{
1 if cd(A) = 0 = cd(B),

max(cd(A), cd(B)) if max(cd(A), cd(B)) ≥ 1.

Proof: If cd(A) = 0 = cd(B), Theorem 5.1 yields that cd(A ∗ B) ≤ 1.
If cd(A ∗ B) = 0, then A ∗ B is a semisimple Hopf algebra, hence is
finite-dimensional. But if A and B are non trivial, the free product
algebra A ∗B is necessarily infinite-dimensional, so cd(A ∗B) = 1.

Since A ∗ B is free both as a left A-module and as a left B-module,
we have cd(A∗B) ≥ max(cd(A), cd(B)) (see e.g. [8]). If m = max(cd(A),
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cd(B)) ≥ 1, we get from Theorem 5.1 that Hm+1(A ∗ B,M) = (0) for
any A-bimodule M , and hence cd(A ∗B) ≤ m, as needed.

Remark 5.4. The above result also can be obtained as a direct conse-
quence of [4, Corollary 2.5], as well. Indeed, the Hochschild cohomolog-
ical dimension of a Hopf algebra coincides with its (right or left) global
dimension (this is pointed out in [52]), hence the result follows from
Corollary 2.5 in [4], having in mind that since A and B are non trivial,
the free product algebra A ∗ B is necessarily infinite-dimensional, so is
not semisimple, and hence cd(A ∗B) ≥ 1.

We prefer the proof obtained as a corollary of Theorem 5.2, since it
gives more information on Hochschild cohomology, and it will be better
for adaptation to the Gerstenhaber–Schack cohomology case.

Our aim now is to prove Theorem 5.1. We begin with the following
classical shifting lemma.

Lemma 5.5. Let (A, ε) be an augmented algebra. We have, for any n ≥
2 and any right A-module M ,

ExtnA(Cε,M) ' Extn−1
A (A+,M).

Proof: One gets the result by applying the Ext long exact sequence to
the exact sequence of right A-modules

0 −→ A+ −→ A
ε−→ Cε −→ 0

with A a free A-module, hence projective.

We thus have to study the augmentation ideal in a free product of
augmented algebras. For this, recall that if (A, ε) is an augmented alge-
bra and M is a right A-module, a derivation d : A→M is a linear map
such that d(ab) = ε(a)d(b) + d(a)b for any a, b ∈ A. The space of such
derivations is denoted Der(A,M).

The following result relates derivations and the augmentation ideal.

Lemma 5.6. Let A = (A, ε) be an augmented algebra. We have, for
any right A-module M , a natural isomorphism

Der(A,M) ' HomA(A+,M).

Proof: It follows from the definition of a derivation that we have a linear
map

Der(A,M) −→ HomA(A+,M)
d 7−→ d|A+

which is easily seen to be an isomorphism.
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Lemma 5.7. We have, for any augmented algebras A, B and for any
right (A ∗B)-module M , natural isomorphisms

Der(A ∗B,M) ' Der(A,M)⊕Der(B,M).

Proof: We have a linear map

Der(A ∗B,M) −→ Der(A,M)⊕Der(B,M)
d 7−→ (d|A, d|B)

which is clearly injective by the derivation property and the fact that
A∗B is generated, as an algebra, by A and B. To prove surjectivity, first
recall that in general, if M is a right A-module, a derivation d : A→M
corresponds precisely to an algebra map

A −→
(
A M
0 A

)
, a 7−→

(
a d(a)
0 a

)
,

where (A M
0 A ) is the usual triangular matrix algebra, with M having the

left A-module structure induced by ε. Now given (d, d′) ∈ Der(A,M)⊕
Der(B,M), consider the algebra maps

A −→
(
A ∗B M

0 A ∗B

)
, a 7−→

(
a d(a)
0 a

)
,

B −→
(
A ∗B M

0 A ∗B

)
, b 7−→

(
b d′(b)
0 b

)
.

The universal property of the free product yields an algebra map

A ∗B −→
(
A ∗B M

0 A ∗B

)
which extends the above maps, and hence a derivation δ : A ∗ B → M ,
which clearly satisfies δ|A = d and δ|B = d′.

Lemma 5.8. Let A, B be augmented algebras. We have

(A ∗B)+ ' (A+ ⊗A (A ∗B))⊕ (B+ ⊗B (A ∗B))

as right (A ∗B)-modules.
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Proof: We have, for any right (A ∗ B)-module M , using Lemmas 5.6
and 5.7,

HomA∗B((A∗B)+,M)'Der(A ∗B,M)

'Der(A,M)⊕Der(B,M)

'HomA(A+,M)⊕HomB(B+,M)

'HomA∗B(A+ ⊗A (A ∗B),M)

⊕HomA∗B(B+ ⊗B (A ∗B),M)

'HomA∗B((A+⊗A(A∗B))⊕(B+⊗B (A ∗B)),M).

We conclude by the Yoneda Lemma.

Proof of Theorem 5.1: Let n ≥ 2 and let M be a right A ∗ B-module.
We have, using Lemmas 5.5 and 5.8,

ExtnA∗B(Cε,M)'Extn−1
A∗B((A ∗B)+,M)

'Extn−1
A∗B((A+ ⊗A A ∗B)⊕ (B+ ⊗B A ∗B),M)

'Extn−1
A∗B(A+⊗A(A∗B),M)⊕Extn−1

A∗B(B+⊗B (A∗B),M).

Now since A ∗B is flat as an A-module (it is even free as an A-module),
[30, Proposition 12.2, IV] gives

Extn−1
A∗B(A+ ⊗A (A ∗B),M) ' Extn−1

A (A+,M)

and similarly for B. We thus have, using again Lemma 5.5,

ExtnA∗B(Cε,M) ' Extn−1
A (A+,M)⊕ Extn−1

B (B+,M)

' ExtnA(Cε,M)⊕ ExtnB(Cε,M)

which is the expected result.

5.2. Gerstenhaber–Schack cohomology. We can now formulate the
Gerstenhaber–Schack cohomology analogue of Theorem 5.2, using the
restriction functor from Subsection 3.3.

Theorem 5.9. Let A, B be cosemisimple Hopf algebras. We have, for
any Yetter–Drinfeld module M over A ∗B, and for any n ≥ 2, a natural
isomorphism

Hn
GS(A ∗B,M) ' Hn

GS(A,M (A))⊕Hn
GS(B,M (B)).

Corollary 5.10. Let A, B be non trivial cosemisimple Hopf algebras.
We have

cdGS(A∗B)=

{
1 if cdGS(A) = 0 = cdGS(B),

max(cdGS(A), cdGS(B)) if max(cdGS(A), cdGS(B))≥1.
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Proof: This is similar to the proof of Corollary 5.3.

The scheme of the proof of Theorem 5.9 will be similar to that of
Theorem 5.1. First we have a shifting lemma.

Lemma 5.11. Let A be a cosemisimple Hopf algebra. We have, for
any n ≥ 2 and any Yetter–Drinfeld module M over A,

ExtnYDA
A

(C,M) ' Extn−1
YDA

A

(A+,M).

Proof: Similarly to Lemma 5.5, the result is obtained by applying the
Ext long exact sequence to the exact sequence of Yetter–Drinfeld mod-
ules

0 −→ A+ −→ Acoad
ε−→ C −→ 0

with Acoad a free Yetter–Drinfeld module, hence projective since A is
cosemisimple.

Given a Yetter–Drinfeld module M over A, we note by DerYD(A,M)
the derivations d ∈ Der(A,M) such that d : Acoad → M is a morphism
of A-comodules. With this notation, we have the following analogue of
Lemma 5.6, whose proof is immediate.

Lemma 5.12. Let A be a Hopf algebra. We have, for any M ∈ YDAA,
a natural isomorphism

DerYD(A,M) ' HomYDA
A

(A+,M).

Lemma 5.13. We have, for any Hopf algebras A, B and for any M ∈
YDA∗BA∗B, natural isomorphisms

DerYD(A ∗B,M) ' DerYD(A,M (A))⊕DerYD(B,M (B)).

Proof: Given d ∈ DerYD(A ∗B,M), it is immediate that

d|A ∈ DerYD(A,M (A)),

hence we have an injective linear map

DerYD(A ∗B,M) −→ DerYD(A,M (A))⊕DerYD(B,M (B))
d 7−→ (d|A, d|B).

The proof of Lemma 5.7 provides, for

(d, d′) ∈ DerYD(A,M (A))⊕DerYD(B,M (B)),

an element δ ∈ Der(A ∗ B,M) such that (δ|A, δ|B) = (d, d′), with δ ∈
DerYD(A∗B,M), so our map is surjective, and the proof is complete.

We now describe the augmentation ideal of a free product, as a Yetter–
Drinfeld module, using the induction functor from Subsection 3.3.
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Lemma 5.14. Let A, B be Hopf algebras. We have

(A ∗B)+ ' (A+ ⊗A (A ∗B))⊕ (B+ ⊗B (A ∗B))

as Yetter–Drinfeld modules over A ∗B.

Proof: We have, for any M ∈ YDA∗BA∗B , using Lemmas 5.12, 5.13, and
Proposition 3.3,

HomYDA∗B
A∗B

((A ∗B)+,M) ' DerYD(A ∗B,M)

' DerYD(A,M (A))⊕DerYD(B,M (B))

' HomYDA
A

(A+,M (A))⊕HomYDB
B

(B+,M (B))

' HomYDA∗B
A∗B

(A+ ⊗A (A ∗B),M)

⊕HomYDA∗B
A∗B

(B+ ⊗B (A ∗B),M)

' HomYDA∗B
A∗B

((A+ ⊗A (A ∗B))

⊕ (B+ ⊗B (A ∗B)),M).

We conclude by the Yoneda Lemma.

Proof of Theorem 5.9: Let n ≥ 2 and let M be a Yetter–Drinfeld module
overA∗B. We have, using Lemma 5.11, Lemma 5.14, and Proposition 3.3
(using that A,B ⊂ A ∗B is flat and coflat),

ExtnYDA∗B
A∗B

(C,M) ' Extn−1
YDA∗B

A∗B
((A ∗B)+,M)

' Extn−1
YDA∗B

A∗B
((A+ ⊗A A ∗B)⊕ (B+ ⊗B A ∗B),M)

' Extn−1
YDA∗B

A∗B
(A+ ⊗A (A ∗B),M)

⊕ Extn−1
YDA∗B

A∗B
(B+ ⊗B (A ∗B),M)

' Extn−1
YDA

A

(A+,M (A))⊕ Extn−1
YDB

B

(B+,M (B))

' ExtnYDA
A

(C,M (A))⊕ ExtnYDB
B

(C,M (B)).

The result then follows from the Ext-description of Gerstenhaber–Schack
cohomology.

5.3. Application to H(F ): Proof of Theorem 2.1. Let F ∈GLn(C)
be an asymmetry (n ≥ 2), so that F = EtE−1 for some E ∈ GLn(C).
By Corollary 4.10, we have cd(H(F )) = cd(B(E) ∗ B(E)). We have
cd(B(E)) = 3 by [7], hence we get cd(H(F )) = 3 from Corollary 5.3.

Assume now that F is generic, so that H(F ) and B(E) are cosemisim-
ple. Then Corollary 4.10 yields cdGS(H(F )) = cdGS(B(E) ∗ B(E)). We
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have cdGS(B(E)) = 3, by [7, 8], hence by Corollary 5.10, we obtain
cdGS(H(F )) = 3.

Assume finally that F is generic, but not necessarily an asymmetry.
Then there exists a generic asymmetry F ′ such that the tensor categories
of comodules over H(F ) and H(F ′) are equivalent (see Section 2), hence
the monoidal invariance of cdGS (see [8]) and the previous discussion
ensure that cdGS(H(F )) = cdGS(H(F ′)) = 3, as required.

Remark 5.15. Suppose again that F is generic, but not an asymmetry.
Since cdGS(H(F )) ≥ cd(H(F )) [8], we get cd(H(F )) ≤ 3. We conjecture
that this is an equality.

Remark 5.16. Consider the case F = In, so that H(In) = O(U+
n ), the

coordinate algebra on the free unitary quantum group U+
n . It follows

immediately from Theorem 2.1 that β
(2)
k

(
Û+
n

)
= 0 for k ≥ 4, where β

(2)
k

stands for the k-th L2-Betti number [33] of the dual discrete quantum

group Û+
n . It was shown in [49] that β

(2)
1

(
Û+
n

)
6= 0, and this result has

been made more precise in the recent preprint [34], where it is shown

that β
(2)
1

(
Û+
n

)
= 1.

6. Relations between cohomological dimensions

In this last section we come back to the problem of comparing the two
cohomological dimensions. We prove the following slight generalization
of [8, Corollary 5.10].

Theorem 6.1. If A is a cosemisimple Hopf algebra with S4 = id, we
have cd(A) = cdGS(A).

Of course, a generalization of this theorem to the arbitrary cosemisim-
ple case would make trivial the proof of the second part of Theorem 2.1.

Before proving this result, we need to recall some facts on the structure
of cosemisimple Hopf algebras, see [32, Chapter 11] for example. Let A
be a cosemisimple Hopf algebra with Haar integral h : A → C. There
exists a convolution invertible linear map ψ : A→ C such that

(1) S2 = ψ ∗ idA ∗ψ−1,
(2) ψ ◦ S = ψ−1,
(3) σ = ψ ∗ idA ∗ψ is an algebra endomorphism of A, and h(ab) =

h(bσ(a)) for any a, b ∈ A.

In all the known examples, the map ψ above can be chosen to be an
algebra map, so that the second condition is automatic, but it is always
unknown whether this can always be done (this is a particular case of
Question 4.8.3 in [25]). We call such a map ψ a modular functional
on A.
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Lemma 6.2. Let A be cosemisimple Hopf algebra with Haar integral h
and modular functional ψ. We have for any a, x ∈ A

h(S(a(1))xa(2)) = ψ−1(a(2))ψ
−1(a(3))h(xa(4)S

−1(a(1))),

h(S(a(2))xS
2(a(1))) = ψ−1(a(2))ψ

−1(a(3))h(a(1)S(a(4))x).

In particular, if S4 = id, we have ψ ∗ ψ = ε and

h(S(a(1))xa(2)) = h(x)ε(a) = h(S(a(2))xS
2(a(1))).

Proof: We have, using that S = ψ ∗ S−1 ∗ ψ−1,

h(S(a(1))x(a(2)))=h(xa(2)σS(a(1)))

=h(xa(4)ψ
−1(a(3))S(a(2))ψ

−1(a(1)))

=h(xa(6)ψ
−1(a(5))ψ(a(2))S

−1(a(3))ψ
−1(a(4))ψ

−1(a(1)))

=h(xa(4)ψ
−1(a(3))ψ

−1(a(2))S
−1(a(1)))

=ψ−1(a(2))ψ
−1(a(3))h(xa(4)S

−1(a(1))).

The second identity is obtained from the first one using that hS = h.
At x = 1, we get in particular

ε(a) = ψ−1(a(2))ψ
−1(a(3))h(a(4)S

−1(a(1))).

If S4 = id, then ψ ∗ ψ convolution commutes with idA, hence we indeed
see from the previous identity that ψ ∗ ψ = ε, and the last identities
follow directly.

Remark 6.3. The last condition in the lemma does not hold in general.
For example it does not hold for Oq(SL2(C)) if q 6= ±1.

Proposition 6.4. Let V , W be Yetter–Drinfeld modules over the cosemi-
simple Hopf algebra A satisfying S4 = id, let i : W → V be an injective
morphism of Yetter–Drinfeld modules, and let r : V →W be an A-linear
map such that ri = idW . Then there exists a morphism of Yetter–
Drinfeld modules r̃ : V →W such that r̃i = idW .

Proof: Let h be the Haar integral on A. Recall that for any A-comod-
ules V and W , we have a surjective averaging operator

M : Hom(V,W ) −→ HomA(V,W )
f 7−→M(f), M(f)(v) = h(f(v(0))(1)S(v(1)))f(v(0))(0)

with f ∈ HomA(V,W ) if and only if M(f) = f . We put r̃ = M(r),
and it is straightforward to check that r̃i = idW . It remains to check
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that r̃ is A-linear. We have, using the Yetter–Drinfeld condition and the
A-linearity of r,

r̃(v · a) = h(r((v · a)(0))(1)S((v · a)(1)))r((v · a)(0))(0)

= h(r(v(0) · a(2))(1)S(S(a(1))v(1)a(3)))r(v(0) · a(2))(0)

= h((r(v(0)) · a(2))(1)S(S(a(1))v(1)a(3)))(r(v(0)) · a(2))(0)

= h(S(a(2))r(v(0))(1)a(4)S(S(a(1))v(1)a(5)))r(v(0))(0) · a(3)

= h(S(a(2))r(v(0))(1)a(4)S(a(5))S(v(1))S
2(a(1)))r(v(0))(0) · a(3)

= h(S(a(2))r(v(0))(1)S(v(1))S
2(a(1)))r(v(0))(0) · a(3).

Thus, if S4 = id, Lemma 6.2 ensures that

r̃(v · a) = h(S(a(2))r(v(0))(1)S(v(1))S
2(a(1)))r(v(0))(0) · a(3)

= h(r(v(0))(1)S(v(1)))r(v(0))(0) · a
= r̃(v) · a

and hence r̃ is A-linear.

Proof of Theorem 6.1: We already know that cd(A) ≤ cdGS(A), and to
prove the equality we can assume that m = cd(A) is finite. Consider a
resolution of the trivial Yetter–Drinfeld module

· · · −→ Pn −→ Pn−1 −→ · · · −→ P1 −→ P0 −→ C

by projective Yetter–Drinfeld modules over A. These are in particular
projective as A-modules, so since m = cd(A), a standard argument, once
again, yields an exact sequence of Yetter–Drinfeld modules over A

0 −→ K
i−→ Pm −→ Pm−1 −→ · · · −→ P1 −→ P0 −→ C

together with r : Pm → K, an A-linear map such that ri = idK . The pre-
vious proposition yields a morphism of Yetter–Drinfeld module r̃ : Pm →
K such that r̃i = idK . We thus obtain, since a direct summand of a
projective is projective, a length m resolution of C by projective Yetter–
Drinfeld modules over A, and we conclude that cdGS(A) ≤ m, as re-
quired.

We get the following generalization of [8, Corollary 5.11], with the
same proof.

Corollary 6.5. Let A and B be cosemisimple Hopf algebras such that
there exists an equivalence of linear tensor categories MA '⊗ MB. If
the antipode of A satisfies S4 = id, then we have cd(A) ≥ cd(B), and if
the antipodes of A and B both satisfy S4 = id, then cd(A) = cd(B).
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Example 6.6. As an application of Theorem 6.1, consider, for m,n ≥ 1,
the (m+ n)× (m+ n) matrix

Im,n =

(
Im 0
0 −In

)
.

We have S4 = id for the Hopf algebra H(Im,n), since I2
m,n = Im+n, and

S2 6= id. For q satisfying q2 − (m− n)q + 1 = 0, we have MH(Im,n) '⊗
MH(q). Hence H(Im,n) is cosemisimple if |m− n| ≥ 2, and in this case
we have

cd(H(Im,n)) = cdGS(H(Im,n)) = cdGS(H(q)) = 3

while Im,n is not an asymmetry if n is odd.

To conclude, it is interesting to note that the question of a generaliza-
tion of Corollary 6.5 (positive answer to Question 1.1 in [8]) is studied
as well in the recent paper [52], in the setting of Hopf algebras having
an homological duality, with interesting partial positive answers.
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