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1. Introduction

Nonlinear problems involving fractional diffusions appear in several
areas of applied mathematics, as described by Caffarelli in [8, 9] and
by Vázquez in [42, 43]. Indeed, many recent papers are devoted to
problems involving fractional and nonlocal operators, and concerning
models in optimization, finance, continuum mechanics, phase transition
phenomena, population dynamics, and game theory. Several contribu-
tions have also been given for nonlinear fractional Schrödinger equations,
fractional porous medium equations, and general nonlinear problems of
any type. For a recent survey on some up-to-date developments we refer
to the recent survey [39].

In particular, the paper deals with stationary fractional Kirchhoff p-
Laplacian equations, involving critical nonlinearities, a topic of great ap-
peal after the publication of the paper [22] due to Fiscella and Valdinoci.
We refer e.g. to [2, 10, 16, 29, 30, 32, 36, 37] and the references
therein for details. But the equations treated here contain also Hardy
terms, which make the analysis more delicate and quite interesting. For
related problems we just mention [5, 10, 11, 21] and the references cited
in there.
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Since we are interested in nonnegative entire solutions for applica-
tions in geometry and physics, the first equation we treat is of critical
p-fractional Hardy Schrödinger Kirchhoff type, that is

(1.1) M(‖u‖p)[(−∆)spu+ V (x)|u|p−2u]− γ |u|
p−2u

|x|ps

= λf(x, u) + g(x, u) +K(x)(u+)p
∗
s−1 in RN ,

where γ and λ are real parameters, 0 < s < 1 < p < ∞, sp < N ,
and u+ = max{u, 0}. The operator (−∆)sp is the fractional p-Laplacian,

which for every function ϕ ∈ C∞0 (RN ) may be defined, up to normaliza-
tion factors, as

(−∆)spϕ(x) = 2 lim
ε→0+

∫
RN\Bε(x)

|ϕ(x)− ϕ(y)|p−2[ϕ(x)− ϕ(y)]

|x− y|N+ps
dy

for all x ∈ RN , where Bε(x) = {y ∈ RN : |x − y| < ε}. The exponent
p∗s = Np/(N − ps) is critical in the sense of Sobolev, while the nonlinear
terms f and g are subcritical. For all ϕ ∈ C∞0 (RN )

(1.2)

‖ϕ‖p = [ϕ]ps,p + ‖ϕ‖pp,V , ‖ϕ‖pp,V =

∫
RN

V (x)|u(x)|p dx,

[ϕ]ps,p =

∫∫
R2N

|ϕ(x)− ϕ(y)|p

|x− y|N+ps
dx dy.

Throughout the paper the weights K and V satisfy

(K) K ≥ 0 a.e. in RN and K ∈ L∞(RN ),
(V ) V ∈ C(RN ) and V (x) ≥ V0 > 0 for all x ∈ RN , where V0 is a

positive constant,

while the main Kirchhoff function M verifies the condition

(M) M : R+
0 → R+

0 is a nonnegative continuous function and there ex-
ists θ ∈ [1, N/(N − ps)) such that tM(t) ≤ θM (t) for any t ∈ R+

0 ,

where M (t) =
∫ t

0
M(τ) dτ .

Note that ‖ · ‖p,V is a uniformly convex norm on the weighted Lebesgue
Banach space Lp(RN , V ) by (V ).

Problem (1.1) is fairly delicate due to the intrinsic lack of compact-
ness, which arise from the Hardy term and the nonlinearity with critical
exponent p∗s. For this reason we assume that (1.1) is non-degenerate,
that is

(1.3) inf
t∈R+

0

M(t) = a > 0.
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Stationary non-degenerate Kirchhoff problems have been extensively
studied in the last decades, but usually under the request that M is
nondecreasing in R+

0 , as in [22, 33, 35] and the reference therein. As
in [2, 10, 36] the monotonicity assumption is replaced by (M). In par-
ticular, as shown in [2, 36], the Kirchhoff function M(t) = (1 + t)k +
(1 + t)−1, k ∈ (0, 1), verifies both (M) and (1.3), but is not monotone.
Indeed, inft∈R+

0
M(t) = a > 0, with a = k−k/(k+1)(1 + k) < M(0) = 2,

and (M) is satisfied, with θ = k+1 and k so small that k < sp/(N−sp).
The main framework for (1.1) is the space E, defined as the com-

pletion of C∞0 (RN ) with respect to the norm ‖ · ‖, introduced in (1.2).
Denote by Ds,p(RN ) the p-fractional Beppo–Levi space, that is the com-
pletion of C∞0 (RN ) with respect to Gagliardo semi-norm [ · ]s,p. Theo-
rems 1 and 2 of [31] give

‖u‖pp∗s ≤ CN,p
s(1− s)

(N − ps)p−1
[u]ps,p, ‖u‖pH ≤ CN,p

s(1− s)
(N − ps)p

[u]ps,p,

‖u‖pH =

∫
RN

|u(x)|p

|x|ps
dx

for all u ∈ Ds,p(RN ), where CN,p is a positive constant depending only
on N and p. Thus, the fractional Sobolev embedding Ds,p(RN ) ↪→
Lp
∗
s (RN ) and the fractional Hardy embeddingDs,p(RN ) ↪→Lp(RN, |x|−ps)

are continuous, but not compact. It is also evident that E ↪→ Ds,p(RN ).
Let us introduce the best fractional critical Sobolev and Hardy constants
S = S(N, p, s) and H = H(N, p, s) given by

(1.4) S = inf
u∈Ds,p(RN )

u6=0

[u]ps,p
‖u‖pp∗s

, H = inf
u∈Ds,p(RN )

u6=0

[u]ps,p
‖u‖pH

.

Of course, the numbers S and H are strictly positive. We refer to Theo-
rem 1.1 of [23] for the sharp Hardy constant H. Throughout the paper
we require the following structural assumptions on f and g.

(F) f : RN × R → R is a Carathéodory function and there exists an
exponent q ∈ (θp, p∗s) such that either

(f1) f(x, t) = w(x)(t+)q−1 for a.a. x ∈ RN and all t ∈ R, where
w > 0 a.e. in RN and w ∈ L℘(RN ), with ℘ = p∗s/(p

∗
s − q), or

(f2) f verifies both assumptions
(a) there exists a positive function w of class L∞(RN ) such

that w(x) = o(1) as |x| → ∞ and |f(x, t)| ≤ w(x)|t|q−1

for a.a. x ∈ RN and all t ∈ R,
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(b) for a.a. x ∈ RN it results 0 < qF (x, t) ≤ t f(x, t) for all
t ∈ R+ and 0 ≤ qF (x, t) ≤ t f(x, t) for all t ∈ R−0 , where

F (x, t) =

∫ t

0

f(x, τ) dτ .

(G) g : RN × R → R is a Carathéodory function and there exist expo-
nents r and µ in (θp, p∗s) such that for all ε > 0 there exists Cε > 0
and

|g(x, t)| ≤ θpε|t|θp−1 + rCε|t|r−1

for a.a. x ∈ RN and all t ∈ R, and either

(i) θp < µ < q and µG(x, t) ≤ t g(x, t) for a.a. x ∈ RN and all

t ∈ R, where G(x, t) =
∫ t

0
g(x, τ) dτ , or

(ii) q ≤ µ < p∗s and 0 ≤ µG(x, t) ≤ t g(x, t) for a.a. x ∈ RN and
all t ∈ R.

For examples of subcritical nonlinear terms which satisfy conditions (F)
and (G) we refer to [10]. The condition, assumed in [36], namely
inf{G(x, t) : x ∈ RN , |t| = 1} > 0, is no longer required here and
in [10] thanks to the possible presence of the nontrivial nonlinearity f .

For the next main existence result for (1.1), because of the possible
presence of g, we assume also

(V) There exists R > 0 such that for any c > 0

lim
|y|→∞

meas({x ∈ BR(y) : V (x) ≤ c}) = 0.

Condition (V) is weaker than the property V (x)→∞ as |x| → ∞ usually
required in Schrödinger problems. Assumption (V) was originally intro-
duced by Bartsch and Wang in [6] to overcome the lack of compactness
in problems defined in the entire space RN .

In harmony with [10], we define κ = κ(q, µ,M) by

(1.5) κ =
a(τ − θp)
θ(τ − p)

, τ = min{q, µ}.

Clearly κ ∈ (0, a], being θ ≥ 1 and p ≤ θp < τ by assumptions (F)
and (G). There are cases, besides the obvious one M ≡ a, in which
κ = a, that is θ = 1 in (M), as shown in Section 2 of [10].

Thanks to the variational nature of (1.1), under the above structural
assumptions, (weak) solutions of (1.1) are exactly the critical points of
the underlying functional Jγ,λ, which satisfies the geometry of the moun-
tain pass lemma. The solutions constructed for problem (1.1) are given
in terms of critical points uγ,λ of Jγ,λ determined at special mountain
pass levels. These solutions are briefly called mountain pass solutions.
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Theorem 1.1. Suppose that (1.1) is non-degenerate, i.e., that (1.3)
holds, and that (M), (V ), (V), (F), and (G) are satisfied. Then for
every γ ∈ (−∞, κH) problem (1.1) admits a nontrivial mountain pass
solution uγ,λ for any λ > 0, whenever ‖K‖∞ = 0, and uγ,λ satisfies the
asymptotic behavior

(1.6) lim
λ→∞

‖uγ,λ‖ = 0.

While if ‖K‖∞ > 0, then there exists λ∗ = λ∗(γ) > 0 such that for
any λ ≥ λ∗ problem (1.1) admits a nontrivial mountain pass solu-
tion uγ,λ which satisfies again (1.6).

Moreover, if g ≡ 0, then the assertion above continues to hold assum-
ing only condition (V ) on the potential V .

Finally, if f , g : RN × R → R are Carathéodory functions, with the
property that for a.a. x ∈ RN

(1.7)
f(x, t) = g(x, t) = 0 for all t ∈ R−0 ,

f(x, t) > 0 and g(x, t) ≥ 0 for all t ∈ R+,

and if h is a nonnegative perturbation term of class Lν
′
(RN ), where

ν′ is the conjugate exponent of some fixed ν ∈ [p, p∗s], then the non-
homogeneous equation associated with (1.1), that is

(1.8) M(‖u‖p)[(−∆)spu+ V (x)|u|p−2u]− γ |u|
p−2u

|x|ps

= λf(x, u) + g(x, u) +K(x)(u+)p
∗
s−1 + h(x) in RN ,

admits only nonnegative solutions in RN, provided that λ≥0 and γ<aH.

Therefore, every nontrivial mountain pass solution uγ,λ constructed in
the first part of Theorem 1.1 is nonnegative in RN , being γ < κH ≤ aH,
whenever also (1.7) holds. Theorem 1.1 extends in several directions, for
example, Theorem 1.1 of [13], Theorem 1.1 of [16], Theorem 1.1 of [19],
Theorem 1.3 of [21], Theorems 1.1 and 1.2 of [25], Theorem 1.2 parts (2)
and (3) of [30], Theorem 1.1 of [36], and [12, 18, 24, 29, 40, 45].

The last part of Theorem 1.1, that is when g ≡ 0 in (1.1), takes
somehow inspiration from the paper [41] and covers also the interesting
case in which V is a positive constant. See also Theorem 1.1 of [10].
Theorem 1.1 completes the picture given in Theorem 1.1 of [20].

As in [10], we can study equation (1.1), requiring only (V ) on the
potential V , but including the term g, provided that K, V , f , and g are
radial functions in x.
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Theorem 1.2. Let N ≥ 2 and let (1.3) hold. Assume that (M), (V ),
(F), and (G) are satisfied and that K, V , f , and g are radial functions
in x. Then for every γ ∈ (−∞, κH) problem (1.1) admits a nontrivial
radial mountain pass solution uγ,λ for any λ > 0 and uγ,λ satisfies the
asymptotic behavior (1.6), whenever ‖K‖∞ = 0. While if ‖K‖∞ > 0,
then there exists λ∗ = λ∗(γ) > 0 such that for any λ ≥ λ∗ problem (1.1)
admits a nontrivial radial mountain pass solution uγ,λ, which satisfies
again (1.6).

Theorem 1.2 extends in several directions the existence results ob-
tained in [17, 26, 27, 44] and the references cited therein.

The second problem we consider comes from the equation

(1.9) M(‖u‖p)[(−∆)spu+ V (x)|u|p−2u]− γ |u|
p−2u

|x|ps

= λw(x)(u+)q−1 +K(x)(u+)p
∗
s−1 + h(x) in RN ,

where the parameters satisfy the previous assumptions, and f(x, t) =
w(x)(t+)q−1 is as in (F)-(f1), that is q ∈ (θp, p∗s), the weight w > 0
a.e. in RN and of class L℘(RN ), with ℘ = p∗s/(p

∗
s − q). The func-

tion h can be viewed again as a nonnegative perturbation term and h is
assumed in the second part of the paper to be nontrivial, nonnegative
and of class Lν

′
(RN ), where ν′ is the conjugate exponent of some fixed

ν ∈ [p, p∗s].
For problem (1.9) we also assume for simplicity that K > 0 a.e.

in RN and crucially that M is in standard form, that is there exists
θ ∈ [1, N/(N − ps)) such that

(1.10) M(t) = a+ b θ tθ−1, a > 0, b ≥ 0,

for all t ∈ R+
0 . Clearly, condition (1.10) is stronger than the previous

assumption (M).

Theorem 1.3. Suppose that (V ) and (1.10) hold. Then for all γ in
(−∞, aH) and λ > 0 there exists δ = δ(γ+, λ) > 0 such that for all

nontrivial nonnegative perturbations h ∈ Lν′(RN ), with 0 < ‖h‖ν′ ≤ δ,
problem (1.9) admits a nontrivial nonnegative solution uγ,λ, provided
that either θ = 1 in (1.10), or θ > 1 and γ ≤ 0. Furthermore, the
solution uγ,λ satisfies (1.6).

Theorem 1.3 extends Theorem 1.1 of [36], the existence result to
obtain the first solution of Theorem 1.3, as well as Theorem 1.4 parts (2)
and (3) of [30].
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A very natural appealing open problem is to prove existence of non-
trivial solutions for problems (1.1), (1.8), and (1.9) in the degenerate
case, that is when M(0) = 0 and M(t) > 0 for all t > 0.

The paper is organized as follows. In Section 2 we prove the existence
Theorem 1.1 for the Hardy Schrödinger Kirchhoff problem (1.1) and the
asymptotic behavior (1.6). Section 3 deals with the proof of Theorem 1.3.
Finally, in Section 4 we extend Theorems 1.1 and 1.3 to settings having
wider applications, replacing the fractional p-Laplacian operator by a
general nonlocal integro-differential operator, generated by a singular
kernel K, satisfying the natural assumptions described by Caffarelli, e.g.,
in [8]. See also [39].

2. The non-degenerate Hardy–Schrödinger–Kirchhoff
equation (1.1)

Here we prove the existence result for problem (1.1) and we recall
that throughout this section (M), (K), (V ), and (1.3) hold. First, by
Theorem 6.7 and Corollary 7.2 of [15] we have the following embedding
result for the uniformly convex Banach space E defined in the intro-
duction. The fact that E is a uniformly convex Banach space can be
easily derived following the main arguments of Proposition A.9 of [3], or
Lemma 10 of [36], or Lemma A.6 of [37].

Lemma 2.1. If ν ∈ [p, p∗s], then the embeddings E ↪→ W s,p(RN ) ↪→
Lν(RN ) are continuous. In particular, there exists a constant Cν > 0
such that ‖u‖ν ≤ Cν‖u‖ for all u ∈ E.

Let Lq(RN , w) be the weighted Lebesgue space, endowed with the
norm

‖u‖qq,w =

∫
RN

w(x)|u|q dx.

The Banach space Lq(RN , w) = (Lq(RN , w), ‖ · ‖q,w) is uniformly con-
vex by Proposition A.6 of [3]. Furthermore, by Lemma 2.1 of [10],
which combines some ideas of Lemma 2.3 of [3], Lemma 2.2 of [4],
and Lemma 2.6 of [38], see also Lemma 2.3 of [37], the embedding
Ds,p(RN ) ↪→ Lq(RN , w) is compact, with

(2.1) ‖u‖q,w ≤ Cw[u]s,p for all u ∈ Ds,p(RN ),

and Cw = S−1/p‖w‖1/q℘ > 0.
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We say that u ∈ E is a (weak) solution of (1.1) if u satisfies the
identity

(2.2) M(‖u‖p)〈u, ϕ〉− γ〈u, ϕ〉H =λ

∫
RN

f(x, u(x))ϕ(x) dx

+

∫
RN

g(x, u(x))ϕ(x) dx+〈u+, ϕ〉p∗s ,K

for any ϕ ∈ E, where 〈u, ϕ〉 = 〈u, ϕ〉s,p + 〈u, ϕ〉p,V ,

〈u, ϕ〉s,p =

∫∫
R2N

|u(x)− u(y)|p−2[u(x)− u(y)] · [ϕ(x)− ϕ(y)]

|x− y|N+ps
dx dy,

〈u, ϕ〉p,V =

∫
RN

V (x)|u(x)|p−2u(x)ϕ(x) dx,

〈u, ϕ〉H =

∫
RN

|u(x)|p−2u(x)ϕ(x)

|x|ps
dx,

〈u+, ϕ〉p∗s ,K =

∫
RN

K(x)(u+(x))p
∗
s−1ϕ(x) dx.

Problem (1.1) has a variational structure and Jγ,λ : E → R, defined by

Jγ,λ(u) =
1

p
[M (‖u‖p)− γ‖u‖pH ]−Hλ(u),

Hλ(u) = λ

∫
RN

F (x, u) dx+

∫
RN

G(x, u) dx+
1

p∗s
‖u+‖p

∗
s

p∗s ,K
,

‖u+‖p
∗
s

p∗s ,K
=

∫
RN

K(x)(u+(x))p
∗
s dx,

is the underlying functional associated with (1.1). Indeed, Jγ,λ is well
defined in E, since if u ∈ E, then also u+ ∈ E and u− ∈ E, being

|u+(x)− u+(y)| ≤ |u(x)− u(y)| and |u−(x)− u−(y)| ≤ |u(x)− u(y)|

for a.a. x, y ∈ RN . Essentially, as shown in Lemmas 4.2 of [10], the
functional Jγ,λ is of class C1(E).

Condition (1.3) gives that M(t) > 0 for any t ∈ R+
0 and (M) yields

that t 7→ t−θM (t) is nonincreasing in R+. Consequently, for all t0 > 0

(2.3) tθ0M (t) ≤M (t0)tθ for any t ≥ t0.

Now, as in Lemmas 2.2 and 4.3 of [10], we prove that the functional Jγ,λ
has the geometric features required to apply the mountain pass theorem
of Ambrosetti and Rabinowitz of [1]. To this aim, let us note that the



Critical p-Kirchhoff Equations 11

assumption (G) implies

(2.4) |G(x, t)| ≤ ε|t|θp + Cε|t|r for a.a. x ∈ RN and all t ∈ R.

Lemma 2.2. Fix γ ∈ (−∞, aH) and λ > 0. Then there exists a radial
function e ∈ C∞0 (RN ), with e ≥ 0 in RN , ‖e‖ ≥ 2, and Jγ,λ(e) < 0,
which depends only on γ−, when K > 0 a.e. in RN . Furthermore, there
exist α = α(γ+, λ) > 0 and ρ = ρ(γ+, λ) ∈ (0, 1] such that Jγ,λ(u) ≥ α
for all u ∈ E, with ‖u‖ = ρ.

Proof: Fix γ ∈ (−∞, aH) and λ > 0. Take a radial function v of
class C∞0 (RN ), with v ≥ 0 in RN and ‖v‖ = 1. As shown in the proof of
Lemma 4.3 of [10], for a.a. x ∈ RN the functions t 7→ t−qF (x, tv(x)) and
t 7→ t−µG(x, tv(x)) are nondecreasing in R+ by (F) and by (G), in both
cases (i) and (ii). Moreover,

∫
RN F (x, v) dx > 0 by (F) and the fact that

v ∈ C∞0 (RN ), v ≥ 0 in RN , and ‖v‖ = 1. Hence, as t→∞

(2.5)

∫
RN

F (x, tv) dx ≥ tq
∫
RN

F (x, v) dx→∞.

While (G), in both cases (i) and (ii), implies that

(2.6)

∫
RN

G(x, tv) dx ≥ tµ
∫
RN

G(x, v) dx for all t ≥ 1.

Consequently, by (2.3) for all t ≥ 1

Jγ,λ(tv)≤ M (1)

p
tθp +

γ−

p
‖v‖pHt

p − λ
∫
RN

F (x, tv) dx

−
∫
RN

G(x, tv) dx−
‖v+‖p

∗
s

p∗s ,K

p∗s
tp
∗
s

≤ M (1)

p
tθp +

γ−

p
‖v‖pHt

p −
‖v+‖p

∗
s

p∗s ,K

p∗s
tp
∗
s

−


(
λtq
∫
RN
F (x, v) dx+tµ

∫
RN
G(x, v) dx

)
under (G)-(i)

λtq
∫
RN
F (x, v) dx under (G)-(ii)

→−∞

as t → ∞, since p ≤ θp < min{q, µ} ≤ max{q, µ} < p∗s by (F), (G),
and (2.5), even if K = 0 a.e. in RN . Choosing e = τ0v, with τ0 > 0 large
enough, we get at once that e is regular, radial, e ≥ 0 in RN , ‖e‖ ≥ 2,
and Jγ,λ(e) < 0. Clearly e depends on γ−. Furthermore, e can be taken
independent of λ, whenever K > 0 a.e. in RN , otherwise e could depend
also on λ, as claimed.
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By (K), (V ), (1.3), (1.4), (2.4), and the fact that E ↪→ Ds,p(RN ),
there exists a positive constant Kw by (F), such that for all u ∈ E, with
‖u‖ ≤ 1,

Jγ,λ(u) ≥ a

p
‖u‖p − γ

p
‖u‖pH − λKw‖u‖q − ε‖u‖θpθp − Cε‖u‖

r
r −
‖u+‖p

∗
s

p∗s ,K

p∗s

≥
(
a

p
− γ+

pH
− εCθpθp

)
‖u‖p − λKw‖u‖q − CεCrr‖u‖r − SK‖u‖p

∗
s

≥ β‖u‖p − λKw‖u‖q − CεCrr‖u‖r − SK‖u‖p
∗
s ,

since ‖u‖θp ≤ ‖u‖p, being p ≤ θp and ‖u‖ ≤ 1. Here

SK =
‖K‖∞
p∗sS

p∗s/p
, ε =

aH − γ+

2pHCθpθp
> 0, β =

1

2p

(
a− γ+

H

)
> 0,

since γ < aH. The function

ηγ,λ(t) = βtp − λKwt
q − CεCrr tr − SKtp

∗
s , t ∈ [0, 1],

admits a maximum at some ρ ∈ (0, 1] small enough, that is

max
t∈[0,1]

ηγ,λ(t) = ηγ,λ(ρ) > 0,

since β > 0 and p ≤ θp < min{q, r} ≤ max{q, r} < p∗s by (M), (F),
and (G). Put α = ηγ,λ(ρ). Consequently, Jγ,λ(u) ≥ α > 0 for all u ∈ E,
with ‖u‖ = ρ.

From the proof of Lemma 2.2 it is apparent that if e is the nontrivial
nonnegative radial function determined for some γ ∈ (−∞, aH) and
λ0 > 0, then e is such that Jγ,λ(e) < 0 for all λ ≥ λ0 and ‖e‖ ≥ 2 > ρ =
ρ(γ+, λ), being ρ ∈ (0, 1].

We recall in passing that, if X is a real Banach space, a C1(X) func-
tional J satisfies the Palais–Smale condition at level c ∈ R if any Palais–
Smale sequence (un)n at level c, that is any sequence (un)n, with the
property that

(2.7) J(un)→ c and J ′(un)→ 0 in X ′ as n→∞,
admits a strongly convergent subsequence in X.

Fix γ ∈ (−∞, aH), λ > 0 and put

cγ,λ = inf
ξ∈Γ

max
t∈[0,1]

Jγ,λ(ξ(t)),

Γ = {ξ ∈ C([0, 1], E) : ξ(0) = 0, ξ(1) = e}.
Obviously, cγ,λ > 0 thanks to Lemma 2.2.
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We are going to prove that Jγ,λ satisfies the Palais–Smale condition
at level cγ,λ in E. To this aim, we show an asymptotic property of the
levels cγ,λ. This crucial idea is strongly related to Lemma 2.3 of [10]
(see also Lemma 4.3 of [21] and Lemma 6 of [22] for a somehow similar
fractional non-degenerate Kirchhoff Dirichlet problem in bounded regu-
lar domains). The next lemma indeed is useful to obtain (1.6) and, most
importantly, to defeat the lack of compactness due to the presence of a
Hardy term and a critical nonlinearity. In order to get the Palais–Smale
condition at level cγ,λ in E, the presence of g forces to also assume (V)
on the potential V , as we shall see in the proof of the main Lemma 2.4.

Lemma 2.3. For all γ ∈ (−∞, aH) it results

lim
λ→∞

cγ,λ = 0.

Proof: Fix γ ∈ (−∞, aH) and λ0 > 0. Let e ∈ C∞0 (RN ) be the non-
trivial nonnegative regular radial function obtained in Lemma 2.2, de-
pending on γ− and possibly on λ0. Hence the functional Jγ,λ satisfies
the mountain pass geometry at 0 and e for all λ ≥ λ0. In particular,
there exists tγ,λ > 0 such that Jγ,λ(tγ,λe) = maxt≥0 Jγ,λ(te). Therefore,
〈J ′γ,λ(tγ,λe), e〉E′,E = 0, that is

(2.8) 0 = 〈J ′γ,λ(tγ,λe), e〉E′,E = M(tpγ,λ‖e‖
p)〈tγ,λe, e〉 − γtp−1

γ,λ ‖e‖
p
H

− tp
∗
s−1
γ,λ ‖e‖

p∗s
p∗s ,K

− λ
∫
RN

f(x, tγ,λe)e dx−
∫
RN

g(x, tγ,λe)e dx

for all λ ≥ λ0.
We claim that {tγ,λ}λ≥λ0 is bounded in R. To this aim let us define

Λ = {λ ≥ λ0 : tγ,λ ≥ 1}. Then for all λ ∈ Λ, by (M), (F), (G), (1.4),
(2.3), (2.5), and (2.6)

tθp−1
γ,λ

(
θM (1) +

γ−

H

)
‖e‖θp

≥ tp−1
γ,λ

(
M(tpγ,λ‖e‖

p)‖e‖p − γ‖e‖pH
)

≥ λtq−1
γ,λ q

∫
RN

F (x, e) dx+ tµ−1
γ,λ µ

∫
RN

G(x, e) dx+ t
p∗s−1
γ,λ ‖e‖

p∗s
p∗s ,K

≥ tq−1
γ,λ λ0q

∫
RN
F (x, e) dx+

t
µ−1
γ,λ µ

∫
RN
G(x, e) dx under (G)-(i)

0 under (G)-(ii)
,

since
∫
RN F (x, e) dx > 0 and ‖e‖ ≥ 2. This implies at once the bounded-

ness of {tγ,λ}λ∈Λ, since θp < q by (F) and q < µ in the case (G)-(i). In
particular, this shows that {tγ,λ}λ≥λ0 is bounded and proves the claim.
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Fix a sequence (λk)k ⊂ [λ0,∞) such that λk → ∞ as k → ∞. Ob-
viously (tγ,λk)k is bounded in R. Hence, there exists a subsequence
of (λk)k, still relabeled (λk)k, and a number ` ≥ 0 such that tγ,λk → `
as k →∞. Assume by contradiction that ` > 0. Then, by (F), (G), and
the Lebesgue dominated convergence theorem, we obtain

lim
k→∞

∫
RN

f(x, tγ,λke)e dx =

∫
RN

f(x, `e)e dx > 0,

lim
k→∞

∫
RN

g(x, tγ,λke)e dx =

∫
RN

g(x, `e)e dx,

since e ≥ 0 in RN and ‖e‖ ≥ 2. Hence, (2.8) and the argument above
gives

`θp−1

(
θM (1) +

γ−

H

)
‖e‖θp ≥ lim

k→∞

(
λk

∫
RN

f(x, tγ,λke)e dx

)
+

∫
RN

g(x, `e)e dx =∞,

which is the desired contradiction. In conclusion, ` = 0, being the se-
quence (λk)k, with λk →∞, arbitrary.

Consider now the path ξ(t) = te, t ∈ [0, 1], belonging to Γ. By
Lemma 2.2, (F), and (2.6)

0<cγ,λ ≤ max
t∈[0,1]

Jγ,λ(t e) ≤ Jγ,λ(tγ,λe) ≤
1

p
M (tpγ,λ‖e‖

p)+
γ−

p
‖e‖pHt

p
γ,λ

+ tµγ,λ

[∫
RN

G(x, e) dx

]−
.

Moreover, M (tpγ,λ‖e‖p)→ 0 as λ→∞, by the continuity of M and the

fact that tγ,λ = o(1) as λ→∞. This completes the proof of the lemma,
since e is independent of λ ≥ λ0.

Now, following the key idea of the proof of Lemmas 2.4 and 4.5 in [10],
we prove the validity of the Palais–Smale condition for Jγ,λ at level cγ,λ
in E. The crucial argument also appears in the proof of Lemma 4.5
in [21], given for Dirichlet problems in bounded domains, when M ≡ 1
and p = 2. Let us recall that κ is the constant given in (1.5).

Lemma 2.4. Assume also (V) and let γ ∈ (−∞, κH) be fixed. If
‖K‖∞ = 0, then Jγ,λ satisfies the Palais–Smale condition at level cγ,λ
for all λ > 0. While if ‖K‖∞ > 0, then there exists λ∗ = λ∗(γ) > 0 such
that Jγ,λ satisfies the Palais–Smale condition at level cγ,λ for any λ ≥ λ∗.
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Proof: Fix γ < κH, λ > 0, and let (un)n ⊂ E be a Palais–Smale
sequence of Jγ,λ at level cγ,λ. Assume first that θp < µ < q, so that
τ = min{q, µ} = µ in (1.5). Thus, by (M), (F), (G)-(i), and (1.3) we
get

Jγ,λ(un)− 1

µ
〈J ′γ,λ(un), un〉E′,E ≥

(
1

θp
− 1

µ

)
M(‖un‖p)‖un‖p

− γ
(

1

p
− 1

µ

)
‖un‖pH−λ

∫
RN

F (x, un) dx+
λ

µ

∫
RN

f(x, un)un dx

−
∫
RN

G(x, un) dx+
1

µ

∫
RN
g(x, un)un dx+

(
1

µ
− 1

p∗s

)
‖u+

n ‖
p∗s
p∗s ,K

≥ a
(

1

θp
− 1

µ

)
‖un‖p −

γ+

H

(
1

p
− 1

µ

)
‖un‖p

− λ
∫
RN
F (x, un) dx+

λ

q

∫
RN
f(x, un)un dx+

(
1

µ
− 1

p∗s

)
‖u+

n ‖
p∗s
p∗s ,K

≥
[
a

(
1

θp
− 1

µ

)
− γ+

H

(
1

p
− 1

µ

)]
‖un‖p +

(
1

µ
− 1

p∗s

)
‖u+

n ‖
p∗s
p∗s ,K

.

Similarly, if q ≤ µ < p∗s, so that τ = min{q, µ} = q in (1.5), replacing
now (G)-(i) by (G)-(ii), we have

Jγ,λ(un)− 1

q
〈J ′γ,λ(un), un〉E′,E ≥ a

(
1

θp
− 1

q

)
‖un‖p

− γ+

H

(
1

p
− 1

q

)
‖un‖p−λ

∫
RN
F (x, un) dx+

λ

q

∫
RN

f(x, un)un dx

−
∫
RN

G(x, un) dx+
1

µ

∫
RN

g(x, un)un dx+

(
1

q
− 1

p∗s

)
‖u+

n ‖
p∗s
p∗s ,K

≥
[
a

(
1

θp
− 1

q

)
− γ+

H

(
1

p
− 1

q

)]
‖un‖p +

(
1

q
− 1

p∗s

)
‖u+

n ‖
p∗s
p∗s ,K

.

Therefore, by (2.7) there exists σγ,λ > 0 such that as n→∞

(2.9)

cγ,λ + σγ,λ‖un‖+ o(1) ≥ µγ‖un‖p,

µγ = a

(
1

θp
− 1

τ

)
− γ+

H

(
1

p
− 1

τ

)
> 0,

since γ < κH, where κ is given in (1.5). Therefore, (un)n is bounded
in E. By the uniform convexity of the space E, Lemma 2.1, and (1.4),
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there exists uγ,λ ∈ E such that, going if necessary to a subsequence,

(2.10)

un ⇀ uγ,λ in E, ‖un‖ → αγ,λ,

un ⇀ uγ,λ in Lp
∗
s (RN ,K), un ⇀ uγ,λ in Lp(RN , |x|−ps),

‖un − uγ,λ‖H → ıγ,λ, un → uγ,λ a.e. in RN ,

u+
n → u+

γ,λ a.e. in RN , u−n → u−γ,λ a.e. in RN ,

since |u+
n (x)−u+

γ,λ(x)|≤|un(x)−uγ,λ(x)| and similarly |u−n (x)−u−γ,λ(x)|≤
|un(x)− uγ,λ(x)| for a.a. x ∈ RN . Therefore, by (2.10) and the unique-
ness of the weak limit, we deduce at once that

(2.11) u+
n ⇀ u+

γ,λ in Lp
∗
s (RN ,K) and u−n ⇀ u−γ,λ in Lp

∗
s (RN ,K),

going to a further subsequence, if necessary.
Turning to (2.7), we have shown that

(2.12) cγ,λ + o(1) ≥ µγ‖un‖p +

(
1

τ
− 1

p∗s

)
‖u+

n ‖
p∗s
p∗s ,K

,

where µγ is given in (2.9) and τ in (1.5).
First, we assert that

(2.13) lim
λ→∞

αγ,λ = 0.

Otherwise, lim supλ→∞ αγ,λ = αγ > 0. Hence there is a sequence (λk)k,
with λk ↑ ∞ such that αγ,λk → αγ as k →∞. Then, letting k →∞ we
get from (2.12) and Lemma 2.3 that

0 ≥ µγαpγ > 0.

This contradiction proves the assertion (2.13). Moreover, ‖uγ,λ‖ ≤ αγ,λ,
since un ⇀ uγ,λ, and so (K), (1.4), and (2.13) implies that

(2.14) lim
λ→∞

‖u+
γ,λ‖p∗s ,K = lim

λ→∞
‖uγ,λ‖p∗s ,K = lim

λ→∞
‖uγ,λ‖H = lim

λ→∞
‖uγ,λ‖=0.

Let us prove that (un)n, up to a possibly further beyond subsequence,
converges strongly to uγ,λ in E. As shown in the proof of Lemma 2.4
of [10], by (2.10) the sequence (Un)n, defined in R2N \Diag(R2N ) by

(x, y) 7→ Un(x, y) =
|un(x)− un(y)|p−2[un(x)− un(y)]

|x− y|(N+ps)/p′
,

is bounded in Lp
′
(R2N ) as well as Un → Uγ,λ a.e. in R2N , where

Uγ,λ(x, y) =
|uγ,λ(x)− uγ,λ(y)|p−2[uγ,λ(x)− uγ,λ(y)]

|x− y|(N+ps)/p′
.
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Thus, going if necessary to a further subsequence, we get that Un ⇀ Uγ,λ
in Lp

′
(R2N ) as n → ∞. Furthermore, |un|p−2un ⇀ |uγ,λ|p−2uγ,λ in

Lp
′
(RN , V ) by Proposition A.8 of [3]. Hence,

(2.15) 〈un, ϕ〉 → 〈uγ,λ, ϕ〉

for any ϕ ∈ E, since (x, y) 7→ |ϕ(x)−ϕ(y)| · |x− y|−(N+ps)/p ∈ Lp(R2N )
and ϕ ∈ Lp(RN , V ). Similarly, by (2.10), (2.11), and by Proposition A.8

of [3] we deduce that |un|p
∗
s−2un ⇀ |uγ,λ|p

∗
s−2uγ,λ in Lp

∗
s
′
(RN ,K) and

(u+
n )p

∗
s−1 ⇀ (u+

γ,λ)p
∗
s−1 in Lp

∗
s
′
(RN ,K). In particular,

(2.16) 〈u+
n , ϕ〉p∗s ,K → 〈u

+
γ,λ, ϕ〉p∗s ,K

as n→∞.
By Lemma 4.2 of [10] we get

(2.17)

lim
n→∞

∫
RN

(f(x, un)− f(x, uγ,λ))(un − uγ,λ) dx = 0,

lim
n→∞

∫
RN

f(x, un)ϕdx =

∫
RN

f(x, uγ,λ)ϕdx

for all ϕ ∈ E.
On the other hand, Theorem 2.1 of [36] and (V) imply that

(2.18) un → uγ,λ in Lθp(RN ) and in Lr(RN ),

since p ≤ θp < r < p∗s by (G). Furthermore, using (G), with ε = 1/θp,
we have

(2.19) |g(x, t)| ≤ |t|θp−1 +Kr|t|r−1 for a.a. x ∈ RN and all t ∈ R,

where Kr = rC1/θp. Then, the Hölder inequality, (2.18), and (2.19) yield∣∣∣∣∫
RN

(g(x, un)− g(x, uγ,λ))(un − uγ,λ) dx

∣∣∣∣
≤ (‖un‖θp−1

θp + ‖uγ,λ‖θp−1
θp )‖un − uγ,λ‖θp

+Kr(‖un‖r−1
r + ‖uγ,λ‖r−1

r )‖un − uγ,λ‖r = o(1)

(2.20)

as n→∞. Similarly,

(2.21) lim
n→∞

∫
RN

g(x, un)ϕdx =

∫
RN

g(x, uγ,λ)ϕdx

for all ϕ ∈ E.
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Consequently, (2.10), (2.15)–(2.17), and (2.21) give at once that uγ,λ
satisfies the identity

M(αpγ,λ)〈uγ,λ, ϕ〉 − γ〈uγ,λ, ϕ〉H

= λ

∫
RN

f(x, uγ,λ)ϕdx+

∫
RN

g(x, uγ,λ)ϕdx+ 〈u+
γ,λ, ϕ〉p∗s ,K

for any ϕ ∈ E. Hence, uγ,λ is a critical point of the C1(E) functional

(2.22) Jαγ,λ(u) =
1

p
M(αpγ,λ)‖u‖p − γ

p
‖u‖pH − λ

∫
RN

F (x, u) dx

−
∫
RN

G(x, u) dx− 1

p∗s
‖u+‖p

∗
s

p∗s ,K
.

By the Hölder inequality we have

|〈u, v〉| ≤ ‖u‖p−1‖v‖ for all u, v ∈ E

and so, for any u ∈ E the functional 〈u, · 〉 is linear and continuous on E.
Consequently, (2.7), (2.10), (2.11), and (2.22) give as n→∞

o(1) = 〈J ′γ,λ(un)− J ′αγ,λ(uγ,λ), un − uγ,λ〉E′,E

= M(‖un‖p)‖un‖p +M(αpγ,λ)‖uγ,λ‖p

−M(‖un‖p)〈un, uγ,λ〉 −M(αpγ,λ)〈uγ,λ, un〉

− γ〈un − uγ,λ, un − uγ,λ〉H

− 〈un − uγ,λ, un − uγ,λ〉p∗s ,K + o(1)

= M(αpγ,λ)(αpγ,λ − ‖uγ,λ‖
p)− γ‖un‖pH + γ‖uγ,λ‖pH

− ‖u+
n ‖

p∗s
p∗s ,K

+ ‖u+
γ,λ‖

p∗s
p∗s ,K

+ o(1),

(2.23)

where

〈un − uγ,λ, un − uγ,λ〉H =

∫
RN

(|un|p−2un−|uγ,λ|p−2uγ,λ)(un−uγ,λ)

|x|ps
dx,

〈un−uγ,λ, un−uγ,λ〉p∗s ,K =

∫
RN
K(x)[(u+

n )p
∗
s−1−(u+

γ,λ)p
∗
s−1](un − uγ,λ) dx
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since ‖un‖ → αγ,λ as n→∞, as declared in (2.10). Furthermore, using
again (2.10), (2.11), and the celebrated Brézis and Lieb lemma of [7]

‖un‖p = ‖un − uγ,λ‖p + ‖uγ,λ‖p + o(1),

‖un‖pH = ‖un − uγ,λ‖pH + ‖uγ,λ‖pH + o(1),(2.24)

‖u+
n ‖

p∗s
p∗s ,K

= ‖u+
n − u+

γ,λ‖
p∗s
p∗s ,K

+ ‖u+
γ,λ‖

p∗s
p∗s ,K

+ o(1)

as n→∞. Hence, from (2.23) we derive that as n→∞

(2.25) M(αpγ,λ)‖un−uγ,λ‖p−γ‖un−uγ,λ‖pH−‖u
+
n −u+

γ,λ‖
p∗s
p∗s ,K

= o(1).

Now, passing if necessary to a further subsequence, still called (un)n,
there exists a number `γ,λ such that

(2.26) ‖u+
n − u+

γ,λ‖p∗s ,K → `γ,λ

as n → ∞. Hence, using the notation in (2.10) and (2.26), we have
obtained the main formula

(2.27) M(αpγ,λ) lim
n→∞

‖un − uγ,λ‖p= lim
n→∞

‖u+
n−u+

γ,λ‖
p∗s
p∗s ,K

+ γ lim
n→∞

‖un−uγ,λ‖pH =`
p∗s
γ,λ + γıpγ,λ.

Let us divide the proof in two parts.

Case ‖K‖∞ = 0. Clearly `γ,λ = 0 in (2.26) and (2.27). Assume for
contradiction that ıγ,λ > 0. Then, from (1.4) and (2.27)

M(αpγ,λ) lim
n→∞

‖un−uγ,λ‖p=γ lim
n→∞

‖un−uγ,λ‖pH < aH lim
n→∞

‖un − uγ,λ‖pH
≤M(αpγ,λ) lim

n→∞
‖un − uγ,λ‖p,

which is impossible. Hence, ıγ,λ = 0 for all λ > 0. Thus, using also (2.27)
and the fact that `γ,λ = 0, we get

lim
n→∞

‖un − uγ,λ‖ = lim
n→∞

‖un − uγ,λ‖H = 0

by (1.3). In conclusion, un → uγ,λ in E as n → ∞ for all λ > 0 as
required.

Case ‖K‖∞ > 0. By (2.12) and (2.24), we obtain as n→∞

cγ,λ + o(1)≥
(

1

τ
− 1

p∗s

)
‖u+

n ‖
p∗s
p∗s ,K

=

(
1

τ
− 1

p∗s

)[
`
p∗s
γ,λ+‖u+

γ,λ‖
p∗s
p∗s ,K

]
+o(1)

≥
(

1

τ
− 1

p∗s

)
`
p∗s
γ,λ + o(1).
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Then, Lemma 2.3 implies that

(2.28) lim
λ→∞

`γ,λ = 0.

Since γ < aH there exists c ∈ [0, 1) such that γ+ = c aH. Of course,
(2.27) can be rewritten as

(1−c)M(αpγ,λ) lim
n→∞

‖un−uγ,λ‖p+cM(αpγ,λ) lim
n→∞

‖un−uγ,λ‖p=`
p∗s
γ,λ+γıpγ,λ.

Thus, `
p∗s
γ,λ + γ+ıpγ,λ ≥ (1 − c)S‖K‖−p/p

∗
s∞ a `pγ,λ + c aHıpγ,λ for all λ > 0

by (K), (1.3), and (1.4), being c ∈ [0, 1). Therefore, since γ+ = c aH,

(2.29) `
p∗s
γ,λ ≥ (1− c)S ‖K‖−p/p

∗
s∞ a `pγ,λ.

Consequently, (2.28) and (2.29) imply at once that there exists a thresh-
old λ∗ = λ∗(γ) > 0 such that `γ,λ = 0 for all λ ≥ λ∗. In other words,

lim
n→∞

‖u+
n − u+

γ,λ‖p∗s ,K = 0

for all λ ≥ λ∗. From now on we can proceed as in the first case, and
prove that ıγ,λ = 0 for all λ ≥ λ∗. Hence, using also (2.27) and (1.3), we
get un → uγ,λ in E as n→∞ for all λ ≥ λ∗ as required. This completes
the proof.

As already noted in the introduction, besides the obvious case M ≡ a,
in which κ = a, there are several non monotone Kirchhoff functions M
for which κ = a, that is θ = 1. We refer to [10] for specific simple
examples. We also point out that in the proof of the main Lemma 2.4
we use (V) only to get (2.20) and (2.21). Therefore, if g ≡ 0, the assertion
of Lemma 2.4 continues to hold under the sole assumption (V ) on the
potential V .

Proof of Theorem 1.1: Fix γ ∈ (−∞, κH). Thanks to Lemmas 2.2
and 2.4 the functional Jγ,λ satisfies all the assumptions of the moun-
tain pass theorem for any λ > 0 when ‖K‖∞ = 0 and for any λ ≥ λ∗,
with λ∗ = λ∗(γ) > 0, if ‖K‖∞ > 0. This guarantees the existence
of a critical point uγ,λ ∈ E for Jγ,λ at level cγ,λ. Since Jγ,λ(uγ,λ) =
cγ,λ > 0 = Jγ,λ(0) we have that uγ,λ 6= 0. Moreover the asymptotic
behavior (1.6) follows directly from (2.14).

Finally, assume that f , g are Carathéodory functions, satisfying (1.7),

and that h ∈ Lν′(RN ) is nonnegative in RN , with ν′ = ν/(ν − 1) and
ν ∈ [p, p∗s]. Let γ < aH and λ ≥ 0 be fixed. Let u be a solution of (1.8)
in E. Put u = u+ − u−. It is not hard to show that for a.a. x, y ∈ RN

sign[u(x)− u(y)] · [u−(x)− u−(y)] = −|u−(x)− u−(y)|
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and, as noted in the proof of Lemma 2.4, both u+ and u− are still in E.
Combining these facts and recalling that |u−(x)−u−(y)| ≤ |u(x)−u(y)|
for a.a. x, y ∈ RN , we get at once that

〈u, u−〉s,p=

∫∫
R2N

|u(x)−u(y)|p−1sign[u(x)−u(y)] · [u−(x)−u−(y)]

|x− y|N+ps
dx dy

≤−[u−]ps,p.

Similarly, 〈u, u−〉V ≤ −‖u−‖pp,V . In conclusion, 〈u, u−〉 ≤ −‖u−‖p.
Thus, by the definition of solution for (1.8), taking as test function ϕ =
u− ∈ E, we have

−a‖u−‖p ≥ −M(‖u‖p)‖u−‖p

≥M(‖u‖p)〈u, u−〉 ≥ −γ‖u−‖pH+

∫
RN
h(x)u− dx ≥ −γ

+

H
‖u−‖p

by (1.3), (1.4), (1.7), and the fact that h ≥ 0 a.e. in RN . Hence,
‖u−‖ = 0, since γ < aH. In conclusion, u− = 0 a.e. in RN and so
u is nonnegative in RN , as required.

From the proofs of Lemmas 2.2–2.4 it is evident that in condi-
tion (F)-(f1) the function (x, t) 7→ w(x)(t+)q−1 can be replaced by
(x, t) 7→ w(x)|t|q−2t, and similarly (x, t) 7→ K(x)(t+)p

∗
s−1 by (x, t) 7→

K(x)|t|p∗s−2t. Thus existence of a nontrivial mountain pass solution of

M(‖u‖p) · [(−∆)spu+ V (x)|u|p−2u]− γ |u|
p−2u

|x|ps

= λf(x, u) + g(x, u) +K(x)|u|p
∗
s−2u

in RN , as well as the validity of (1.6), can be obtained in a similar way.
Of course, we cannot conclude any longer about its sign.

In this section we prove the main existence result for (1.1) in the radial
case. To apply the mountain pass theorem and the Ekeland variational
principle, we need the following embedding result obtained combining
Theorem II.1 of [28] with Lemma 2.1.

Lemma 2.5. Let N ≥ 2. For any p < ν < p∗s, the embedding Erad ↪→
Lν(RN ) is compact, where

Erad = {u ∈ E : u is radially symmetric with respect to 0}.

In order to avoid condition (V) we pass into the radial setting. In order
to get the compactness of the embedding E ↪→ Lν(RN ), p < ν < p∗s, we
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need to restrict the study searching solutions of (1.1) in Erad, where

Erad = {u ∈ E : u is radially symmetric with respect to 0}.
Thus, until the end of the section K, V , f , and g are assumed to be
radially symmetric functions in x, and that (M), (V ), (F), and (G) hold,
without further mentioning. Again, the geometry stated in Lemma 2.2
continues to hold. Therefore, for any γ < aH and λ > 0 we now put

cγ,λ = inf
ξ∈Γ

max
t∈[0,1]

Jγ,λ(ξ(t)),

Γ = {ξ ∈ C([0, 1], Erad) : ξ(0) = 0, ξ(1) = e},
where e ∈ Erad is the function constructed in Lemma 2.2. Then Lem-
ma 2.3 continues to hold without significant adjustments. The notable
changes now occur in the proof of Lemma 2.4.

Lemma 2.6. Let N ≥ 2 and let γ ∈ (−∞, κH) be fixed. If ‖K‖∞ = 0,
then Jγ,λ satisfies the Palais–Smale condition in Erad at level cγ,λ for
all λ > 0. While if ‖K‖∞ > 0, then there exists λ∗ = λ∗(γ) > 0 such that
Jγ,λ satisfies the Palais–Smale condition at level cγ,λ for any λ ≥ λ∗.

Proof: Fix γ < κH, λ > 0, and let (un)n ⊂ Erad be a Palais–Smale
sequence of Jγ,λ at level cγ,λ. Then we can proceed exactly as in the
proof of Lemma 2.4, replacing now Theorem 2.1 of [36] and (V) by
Theorem II.1 of [28], combined with Lemma 2.1, in order to get (2.20)
and (2.21), since 1 < p ≤ θp < min{q, µ} ≤ max{q, µ} < p∗s by (M),
(F), and (G). Indeed, Theorem II.1 of [28] and Lemma 2.1 yield that
for any exponent ν, with p < ν < p∗s, the embedding Erad ↪→ Lν(RN ) is
compact. The rest of the proof remains unchanged.

Proof of Theorem 1.2: Fix γ ∈ (−∞, κH). By Lemmas 2.2 and 2.6 the
functional Jγ,λ satisfies all the assumptions of the mountain pass theorem
in Erad for any λ > 0 when ‖K‖∞ = 0 and for any λ ≥ λ∗, with
λ∗ = λ∗(γ) > 0, if ‖K‖∞ > 0. This guarantees the existence of a critical
point uγ,λ ∈ Erad for Jγ,λ at level cγ,λ. Since Jγ,λ(uγ,λ) = cγ,λ > 0 =
Jγ,λ(0) we have that uγ,λ 6= 0. Moreover the asymptotic behavior (1.6)
follows directly from (2.14).

Up to this moment, the function uγ,λ is a solution of (1.1) only in
the Erad sense. Let us show that uγ,λ is a solution of (1.1) in the whole
space E, that is in sense of definition (2.2).

To this aim we use a version of the well known principle of sym-
metric criticality, due to Palais in [34], in the form of Proposition 3.1
of [14], which holds in reflexive strictly convex Banach spaces as proved
in Lemma 5.4 of [10].
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Let SO(N) denote the special orthogonal group, that is

SO(N) = {A ∈ RN×N : AtA = IN and detA = 1}.

Next, consider the following subgroup of linear operators of E in itself

G = {a : E → E : au = u ◦A, where A ∈ SO(N)}.

Observe that G is a subgroup of isometries of E. Indeed, fixed u in E,
for all a ∈ G

‖au‖p =

∫∫
R2N

|u(Ax)− u(Ay)|p

|x− y|N+ps
dx dy +

∫
RN

V (x)|u(Ax)|p dx

=

∫∫
R2N

|u(x′)− u(y′)|p

|x′ − y′|N+ps
dx′ dy′ +

∫
RN

V (x′)|u(x′)|p dx′ = ‖u‖p,

since |x−y| = |A(x−y)| = |Ax−Ay| = |x′−y′|, detA = 1, and since V is
a radial function. Furthermore, Erad = {u ∈ E : au = u for all a ∈ G}.
To apply Lemma 5.4 of [10] to the functional Jγ,λ, we need to show that
Jγ,λ ◦ a = Jγ,λ for all a ∈ G. Fixed u ∈ E, for all a ∈ G we have

(Jγ,λ ◦ a)(u) =
1

p
(M (‖au‖p)− γ‖au‖pH)− λ

∫
RN

F (x, u(Ax)) dx

−
∫
RN

G(x, u(Ax)) dx− 1

p∗s
‖(au)+‖p

∗
s

p∗s ,K

=
1

p
(M (‖u‖p)− γ‖u‖pH)− λ

∫
RN

F (x′, u(x′)) dx′

−
∫
RN

G(x′, u(x′)) dx′ − 1

p∗s
‖u+‖p

∗
s

p∗s ,K

= Jγ,λ(u),

since K, V , f , and g are radial functions in x. Hence, Jγ,λ satisfies
Lemma 5.4 of [10].

Now, uγ,λ is critical point of Jγ,λ|Erad
, that is

〈J ′γ,λ(uγ,λ), ϕ〉(Erad)′,Erad
= 0 for any ϕ ∈ Erad.

Then, Lemma 5.4 of [10] implies that uγ,λ is a critical point of Jγ,λ
in the whole space E. Thus, uγ,λ is a solution of (1.1) in the sense of
definition (2.2).
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3. The Schrödinger–Kirchhoff equation (1.9)

Throughout the section we assume that (M) and (V ) hold, that q ∈
(θp, p∗s), that the weight w > 0 a.e. in RN and of class L℘(RN ), with
℘ = p∗s/(p

∗
s − q). We also treat, for simplicity, the only interesting case

where K > 0 a.e. in RN . Problem (1.9) has a variational structure and
the underlying functional is Jγ,λ : E → R, given by

Jγ,λ(u) =
1

p
[M (‖u‖p)− γ‖u‖pH ]−Hλ(u),

Hλ(u) =
λ

q
‖u+‖qq,w +

1

p∗s
‖u+‖p

∗
s

p∗s ,K
+

∫
RN

h(x)u(x) dx.

Clearly, Jγ,λ is well-defined and of class C1(E). We first prove that the
geometry of the mountain pass lemma is still preserved for (1.9), provided
that the nonnegative perturbation h is sufficiently small in the ν′-norm,
as shown first in [36] and then in [10] for more general equations.

Lemma 3.1. Fix γ ∈ (−∞, aH) and λ ≥ 0. Then, there exists a
nonnegative radial function e in C∞0 (RN ), depending only on γ−, but
independent of λ ≥ 0 and h, such that ‖e‖ ≥ 2 and Jγ,λ(e) < 0. Fur-
thermore, there exist numbers α = α(γ+, λ) > 0, ρ = ρ(γ+, λ) ∈ (0, 1],
and δ = δ(γ+, λ) > 0 such that Jγ,λ(u) ≥ α for all u ∈ E, with ‖u‖ = ρ,

and for all h ∈ Lν′(RN ), with ‖h‖ν′ ≤ δ.
Moreover, for all parameters γ ∈ (−∞, aH), λ ≥ 0 and for all per-

turbations h ∈ Lν
′
(RN ), with 0 < ‖h‖ν′ ≤ δ = δ(γ+, λ), there exist a

sequence (vn)n and some nonnegative function uγ,λ in E such that for
all n

(3.1)
‖vn‖ < ρ, mγ,λ ≤ Jγ,λ(vn) ≤ mγ,λ +

1

n
,

vn ⇀ uγ,λ ∈ Bρ, vn → uγ,λ a.e. in RN , and J ′γ,λ(vn)→ 0

as n→∞, where

mγ,λ = inf{Jγ,λ(u) : u ∈ Bρ} < 0 and Bρ = {u ∈ E : ‖u‖ < ρ}.

Finally, for all γ ∈ (−∞, aH) and λ ≥ 0 any solution u ∈ E of (1.9) is

nonnegative in RN for all nonnegative perturbation h ∈ Lν′(RN ).
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Proof: Fix γ < aH and λ ≥ 0. Take a radial function v ∈ C∞0 (RN ),
with v ≥ 0 in RN and ‖v‖ = 1. By (2.3) we have for t→∞

Jγ,λ(tv)≤M (1)

p
tθp − γ

p
‖v‖pHt

p−λ
‖v‖qq,w
q

tq −
‖v‖p

∗
s

p∗s ,K

p∗s
tp
∗
s−t
∫
RN
h(x)v dx

≤M (1)

p
tθp +

γ−

p
‖v‖pHt

p −
‖v‖p

∗
s

p∗s ,K

p∗s
tp
∗
s → −∞,

since λ ≥ 0, h, and v are nonnegative in RN , K > 0 a.e. in RN and of
course p ≤ θp < p∗s. Hence, taking e = τ0v, with τ0 > 0 sufficiently large,
we obtain at once that ‖e‖ ≥ 2 and Jγ,λ(e) < 0. Clearly, e depends on
neither λ nor h.

By Lemma 2.1, (K), (1.3), and (1.4) there exists a positive con-
stant SK such that for all u ∈ E

Jγ,λ(u) ≥ a

p
‖u‖p − γ

p
‖u‖pH −

λ

q
‖u+‖qq,w −

1

p∗s
‖u+‖p

∗
s

p∗s ,K
−
∫
RN

h(x)u dx

≥
(
a

p
− γ+

pH

)
‖u‖p − λ

q
Cqw‖u‖q − SK‖u‖p

∗
s − Cν‖h‖ν′‖u‖.

Setting

(3.2) ηγ,λ(t)=

(
a

p
− γ+

pH

)
tp−1−λ

q
Cqwt

q−1−SKtp
∗
s−1 for all t ∈ [0, 1],

we get the existence of ρ = ρ(γ+, λ) ∈ (0, 1] such that maxt∈[0,1] ηγ,λ(t) =
ηγ,λ(ρ) > 0, since p ≤ θp < q < p∗s. Taking δ = η(ρ)/2Cν , we obtain
that Jγ,λ(u) ≥ α = ρηγ,λ(ρ)/2 > 0 for all u ∈ E, with ‖u‖ = ρ, and for

all perturbations h ∈ Lν′(RN ), with ‖h‖ν′ ≤ δ, as claimed.

Using the notation above, we fix h ∈ Lν′(RN ), with 0 < ‖h‖ν′ ≤ δ
and h ≥ 0 a.e. in RN . First, we claim that there exists a nonnegative
function ψ ∈ C∞0 (RN ) such that

(3.3)

∫
RN

h(x)ψ(x) dx > 0.

Since h ∈ Lν′(RN ) \ {0}, and h ≥ 0 a.e. in RN , the function

φ(x) =

{
h(x)ν

′−1 if h(x) 6= 0

0 if h(x) = 0
∈ Lν(RN ).

Then, there exists a sequence (hn)n in C∞0 (RN ) such that hn → φ
strongly in Lν(RN ) and a.e. in RN , since C∞0 (RN ) is dense in Lν(RN ).
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Hence, for n0 ∈ N large enough we get

hn0
≥ 0 a.e. in RN and ‖hn0

− φ‖ν ≤
1

2
‖h‖ν

′−1
ν′ .

Thus, by the Hölder inequality, we have∫
RN

hn0(x)h(x) dx ≥ −‖hn0 − φ‖ν‖h‖ν′ +
∫
RN
|h(x)|ν

′
dx ≥ 1

2
‖h‖ν

′

ν′ > 0,

since h 6≡ 0. The claim (3.3) is so proved, taking ψ = hn0
.

Now, putting Mρ = maxξ∈[0,ρ]M(ξp), where ρ = ρ(γ+, λ) > 0 is the
number given in the previous part of the lemma, by (3.3) we have

Jγ,λ(tψ) ≤ 1

p
M (‖tψ‖p) +

γ−‖ψ‖pH
p

tp −
λ‖ψ+‖qq,w

q
tq

−
‖ψ+‖p

∗
s

p∗s ,K

p∗s
tp
∗
s − t

∫
RN

h(x)ψ dx

≤ Mρ‖ψ‖p

p
tp +

γ−‖ψ‖pH
p

tp −
λ‖ψ‖qq,w

q
tq

−
‖ψ‖p

∗
s

p∗s ,K

p∗s
tp
∗
s − t

∫
RN

h(x)ψ dx < 0,

for t ∈ (0, 1) small enough, since 1 < p ≤ θp < q < p∗s. Thus, we obtain
that

mγ,λ = inf{Jγ,λ(u) : u ∈ Bρ} < 0,

where Bρ = {u ∈ E : ‖u‖ < ρ}. Then, by the Ekeland variational princi-

ple in Bρ and the first part of the lemma, there exists a sequence (vn)n ⊂
Bρ such that

(3.4) mγ,λ ≤ Jγ,λ(vn) ≤ mγ,λ+
1

n
and Jγ,λ(v) ≥ Jγ,λ(vn)−1

n
‖v−vn‖

for all n ∈ N and for any v ∈ Bρ. Fixed n ∈ N, for all w ∈ SE , where

SE = {u ∈ E : ‖u‖ = 1}, and for all σ > 0 so small that vn + σ w ∈ Bρ,
we have

Jγ,λ(vn + σ w)− Jγ,λ(vn) ≥ −σ
n

by (3.4). Since Jγ,λ is Gâteaux differentiable in E, we get

〈J ′γ,λ(vn), w〉E′,E = lim
σ→0

Jγ,λ(vn + σ w)− Jγ,λ(vn)

σ
≥ − 1

n
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for all w ∈ SE . Hence

|〈J ′γ,λ(vn), w〉E′,E | ≤
1

n
,

since w ∈ SE is arbitrary. Consequently, J ′γ,λ(vn) → 0 in E′ as n → ∞
and clearly, up to a subsequence, the bounded sequence (vn)n weakly
converges to some uγ,λ ∈ Bρ and vn → uγ,λ a.e. in RN . Furthermore,

we assume w.l.o.g. that (v−n )n weakly converges to u−γ,λ ∈ Bρ in E and

v−n → u−γ,λ a.e. in RN , as shown in the proof of Lemma 2.4. Moreover,

by (1.3) and (1.4) as n→∞

o(1) = −〈J ′γ,λ(vn), v−n 〉E′,E = −M(‖vn‖p)〈vn, v−n 〉+ γ〈vn, v−n 〉H

≥ a‖v−n ‖p −
γ+

H
‖v−n ‖p,

since 〈vn, v−n 〉 ≤ −‖v−n ‖p, the function h ≥ 0 a.e. in RN and γ < aH.
Therefore, (v−n )n strongly converges to 0 in E and v−n → 0 a.e. in RN .
Thus u−γ,λ=0 a.e. in RN . In particular, uγ,λ≥0 in RN . This proves (3.1).

Finally, let λ ≥ 0 be fixed and let u be any solution of (1.9) in E.
Following the argument of the last part of the proof of Theorem 1.1 and
putting u = u+ − u−, we have that both u+ and u− are in E and that
〈u, u−〉 ≤ −‖u−‖p. Thus, by the definition of solution for (1.9), taking
as test function ϕ = u− ∈ E, we get by (1.3) and (1.4)

−a‖u−‖p ≥ −M(‖u‖p)‖u−‖p ≥M(‖u‖p)〈u, u−〉

= −γ‖u−‖pH +

∫
RN

h(x)u− dx ≥ −γ
+

H
‖u−‖p,

since h ≥ 0 a.e. in RN . Hence, ‖u−‖ = 0, that is u− = 0 a.e. in RN ,
since γ < aH. Thus u is nonnegative in RN , as stated.

From the proof above it is evident that, in particular, ‖e‖ ≥ 2 > ρ =
ρ(γ+, λ) = ρ(λ) for all λ > 0, whenever γ ≤ 0. The next result takes
inspiration of Theorem 1.3 of [30] and we assume that the Kirchhoff
function M is in the standard form (1.10).

Proof of Theorem 1.3. Fix γ < aH and λ > 0. Let us prove that uγ,λ,
given in (3.1) of Lemma 3.1, is actually in Bρ, so that uγ,λ is a critical
point of Jγ,λ at level mγ,λ < 0. In other words, uγ,λ is a nontrivial
nonnegative solution of (1.9).



28 P. Piersanti, P. Pucci

Clearly, Jγ,λ(uγ,λ) ≥ mγ,λ, since uγ,λ ∈ Bρ by (3.1). Going if neces-
sary to a subsequence, we may assume that

(3.5)
v+
n ⇀ uγ,λ in Lp

∗
s (RN ,K), v+

n ⇀ uγ,λ in Lp(RN , |x|−ps),
‖vn‖ → αγ,λ, vn → uγ,λ in Lq(RN , w)

as n → ∞ by Lemma 2.1 and the fact that (v−n )n strongly converges
to zero in E, as shown in the proof of Lemma 3.1. Moreover, by (1.10)
and (3.1) we have as n→∞

0 = 〈J ′γ,λ(vn), uγ,λ〉E′,E + o(1) = (a+ b θ‖vn‖p(θ−1))〈vn, uγ,λ〉
− γ〈vn, uγ,λ〉H − λ〈v+

n , uγ,λ〉q,w − 〈v+
n , uγ,λ〉p∗s ,K

−
∫
RN

h(x)uγ,λ dx+ o(1)

= (a+ b θα
p(θ−1)
γ,λ )‖uγ,λ‖p − γ‖uγ,λ‖pH − λ‖uγ,λ‖

q
q,w

− ‖uγ,λ‖
p∗s
p∗s ,K

−
∫
RN

h(x)uγ,λ dx.

(3.6)

Now (3.5) yields ‖uγ,λ‖q,w = ‖vn‖q,w+o(1), ‖uγ,λ‖ ≤ αγ,λ = ‖vn‖+o(1)
as well as ‖uγ,λ‖H ≤ ‖vn‖H and ‖uγ,λ‖p∗s ,K ≤ ‖vn‖p∗s ,K as n → ∞.
Multiplying the expression in (3.6) by 1/θp and subtracting it below,
by (3.5) and the fact that either θ = 1 or γ ≤ 0, we find as n→∞

mγ,λ ≤ Jγ,λ(uγ,λ) ≤
a+ bα

p(θ−1)
γ,λ

p
‖uγ,λ‖p −

γ

p
‖uγ,λ‖pH −

λ

q
‖uγ,λ‖qq,w

− 1

p∗s
‖uγ,λ‖

p∗s
p∗s ,K

−
∫
RN

h(x)uγ,λ dx

=
a

p

(
1− 1

θ

)
‖uγ,λ‖p −

γ

p

(
1− 1

θ

)
‖uγ,λ‖pH − λ

(
1

q
− 1

θp

)
‖uγ,λ‖qq,w

−
(

1

p∗s
− 1

θp

)
‖uγ,λ‖

p∗s
p∗s ,K

−
(

1− 1

θp

)∫
RN

h(x)uγ,λ dx

≤ a

p

(
1− 1

θ

)
‖vn‖p −

γ

p

(
1− 1

θ

)
‖vn‖pH − λ

(
1

q
− 1

θp

)
‖v+
n ‖qq,w

−
(

1

p∗s
− 1

θp

)
‖v+
n ‖

p∗s
p∗s ,K

−
(

1− 1

θp

)∫
RN

h(x)vn dx+ o(1)

= Jγ,λ(vn)− 1

θp
〈J ′γ,λ(vn), vn〉E′,E + o(1) = mγ,λ,



Critical p-Kirchhoff Equations 29

since vn ⇀ uγ,λ in Lν(RN ) by Lemma 2.1 and so

lim
n→∞

∫
RN

h(x)vn dx =

∫
RN

h(x)uγ,λ dx,

being h ∈ Lν′(RN ).
In conclusion, uγ,λ is a minimizer of Jγ,λ in Bρ and Jγ,λ(uγ,λ) =

mγ,λ < 0 < α ≤ Jγ,λ(u) for all u ∈ ∂Bρ by Lemma 3.1. Thus in
turn uγ,λ ∈ Bρ, so that J ′γ,λ(uγ,λ) = 0 and this implies that uγ,λ is a

nontrivial nonnegative solution of (1.9), as stated.
It remains to show the asymptotic behavior (1.6). Fix γ. We recall

that either θ = 1 and γ < aH, or θ > 1 and γ ≤ 0. We know that
0 < ‖uγ,λ‖ < ρ = ρ(γ+, λ), where ρ(γ+, λ) satisfies the identity

a− γ+

H
= p′

Cqw
q′
λ ρ(γ+, λ)q−p + p′SK(p∗s − 1)ρ(γ+, λ)p

∗
s−p

for all λ > 0 by (3.2) and the definition of ρ(γ+, λ). This implies at once
that

lim
λ→∞

ρ(γ+, λ) = 0,

since p < q < p∗s. This shows (1.6) and completes the proof.

4. Further results for general nonlocal operators

In this section, we show that Theorems 1.1 and 1.3 continue to hold
when (−∆)sp in (1.1), (1.8), and (1.9) is replaced by the nonlocal integro-

differential operator LK , defined, along any function ϕ ∈ C∞0 (RN ), by

LK(ϕ) = 2 lim
ε→0+

∫
RN\Bε(x)

|ϕ(x)− ϕ(y)|p−2[ϕ(x)− ϕ(y)]K(x− y) dx dy,

where the singular kernel K : RN \ {0} → R+ satisfies the following
properties:

(K1) mK ∈ L1(RN ), where m(x) = min{1, |x|p};
(K2) there exists a number K0 > 0 such that K(x) ≥ K0|x|−(N+ps) for

all x in RN \ {0}.
Obviously, the operator LK reduces to the fractional p-Laplacian

(−∆)sp, when K(x) = |x|−N−ps and usually K0 ≤ 1.

Let us denote by Ds,p
K (RN ) the completion of C∞0 (RN ) with respect

to

[u]s,p,K =

(∫∫
R2N

|u(x)− u(y)|pK(x− y) dx dy

)1/p

,
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which is well-defined by (K1). Clearly, the embedding Ds,p
K (RN ) ↪→

Ds,p(RN ) is continuous, being

[u]s,p ≤ K−1/p
0 [u]s,p,K for all u ∈ Ds,p

K (RN ),

by (K2). Similarly, EK denotes the completion of C∞0 (RN ) with respect
to the norm

‖u‖K =
(

[u]ps,p,K + ‖u‖pp,V
)1/p

.

Then EK = (EK, ‖ · ‖K) is a separable uniformly convex Banach space,
adapting the arguments of Proposition A.9 of [3].

It is clear that the embeddings EK ↪→ W s,p(RN ) ↪→ Lp
∗
s (RN ) are

continuous by the above remarks and Lemma 2.1. A similar argument as
in Lemma 2.1 of [10], combined with some ideas taken from Appendix B
of [4], shows that the embedding EK ↪→ Lq(RN , w) is compact.

A (weak) entire solution of

(4.1) M(‖u‖pK)[LK(u) + V (x)|u|p−2u]− γ |u|
p−2u

|x|ps

= λf(x, u) + g(x, u) +K(x)(u+)p
∗
s−1 in RN

is a function u ∈ EK such that

M(‖u‖pK)〈u, ϕ〉K − γ〈u, ϕ〉H = λ

∫
RN

f(x, u)ϕdx

+

∫
RN

g(x, u)ϕdx+ 〈u+, ϕ〉p∗s ,K ,

〈u, ϕ〉K = 〈u, ϕ〉s,p,K + 〈u, ϕ〉p,V ,

〈u, ϕ〉s,p,K =

∫∫
R2N

|u(x)− u(y)|p−2[u(x)− u(y)]

· [ϕ(x)− ϕ(y)]K(x− y) dx dy.

It is worth pointing out, as in [2], that it is not restrictive to assume K
to be even, since the odd part of K does not give any contribution in the
integral above. Indeed, write K = Ke +Ko, where for all x ∈ RN \ {0}

Ke(x) =
K(x) +K(−x)

2
and Ko(x) =

K(x)−K(−x)

2
.

Then, it is evident that

〈u, ϕ〉s,p,K=

∫∫
R2N

|u(x)−u(y)|p−2[u(x)−u(y)]·[ϕ(x)−ϕ(y)]Ke(x−y) dx dy

for all u and ϕ ∈ EK.
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Actually, the entire solutions of problem (4.1) correspond to the crit-
ical points of the energy functional Jγ,λ,K : EK → R, for all u ∈ EK
defined by

Jγ,λ,K(u) =
1

p
[M (‖u‖pK)− γ‖u‖pH ]−Hλ(u),

where u 7→ Hλ(u) is given exactly as in Section 2. Lemmas 2.2 and 2.3
continue to hold for all γ ∈ (−∞, aK0H) and all λ > 0 by (K1), with
obvious changes in their proof. Similarly, Lemma 2.4 can be proved in
almost the same way as before, provided that γ ∈ (−∞, κK0H) and
λ > 0, where κ is given in (1.5) as usually. Thus we have proved

Theorem 4.1. Suppose that (4.1) is non-degenerate, i.e., that (1.3)
holds, and that (M), (V ), (V), (F), and (G) are satisfied. Then for
every γ ∈ (−∞, κK0H) problem (4.1) admits a nontrivial mountain pass
solution uγ,λ for any λ > 0, whenever ‖K‖∞ = 0, and uγ,λ satisfies the
asymptotic behavior (1.6). While, if ‖K‖∞ > 0, then there exists a
threshold λ∗ = λ∗(γ) > 0 such that for any λ ≥ λ∗ problem (4.1) admits
a nontrivial mountain pass solution uγ,λ, satisfying again (1.6).

Moreover, if g ≡ 0, then the assertion above continues to hold assum-
ing only condition (V ) on the potential V .

Finally, if f , g : RN × R → R are Carathéodory functions, satisfy-
ing (1.7), and if h is a nonnegative perturbation term of class Lν

′
(RN ),

where ν′ is the conjugate exponent of some fixed ν ∈ [p, p∗s], then the
non-homogeneous equation associated with (4.1), that is

(4.2) M(‖u‖pK)[LK(u) + V (x)|u|p−2u]− γ |u|
p−2u

|x|ps

= λf(x, u) + g(x, u) +K(x)(u+)p
∗
s−1 + h(x) in RN ,

admits only nonnegative solutions in RN , provided that λ ≥ 0 and
γ < aK0H.

Clearly, also Theorem 1.2 continues to hold assuming in addition that
the new singular kernel K is radial, that is

Theorem 4.2. Let N ≥ 2 and let (1.3) hold. Assume that (M), (V ),
(F), and (G) are satisfied and that K, K, V , f , and g are radial functions
in x. Then for every γ ∈ (−∞, κH) problem (4.1) admits a nontrivial
radial mountain pass solution uγ,λ for any λ > 0, whenever ‖K‖∞ = 0
and uγ,λ satisfies the asymptotic behavior (1.6). While if ‖K‖∞ > 0,
then there exists λ∗ = λ∗(γ) > 0 such that for any λ ≥ λ∗ problem (4.1)
admits a nontrivial radial mountain pass solution uγ,λ, which satisfies
again (1.6).
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The results of Section 3 continue to hold for the obvious generalization
of (1.9) in RN , that is

(4.3) M(‖u‖pK)[LK(u) + V (x)|u|p−2u]− γ |u|
p−2u

|x|ps

= λw(x)(u+)q−1 +K(x)(u+)p
∗
s−1 + h(x).

In particular, Lemma 3.1 is valid for all γ ∈ (−∞, aK0H) and all λ ≥ 0.
We have so proved

Theorem 4.3. Suppose that (V ) and (1.10) hold. Then for all γ in
(−∞, aK0H) and λ > 0 there exists δ = δ(γ+, λ) > 0 such that for all

nontrivial nonnegative perturbations h ∈ Lν′(RN ), with 0 < ‖h‖ν′ ≤ δ,
problem (1.9) admits a nontrivial nonnegative solution uγ,λ, provided
that either θ = 1 in (1.10), or θ > 1 and γ ≤ 0. Furthermore, the
solution uγ,λ satisfies (1.6).
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