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1. Introduction

1.1. A Hopf algebra has the dual Chevalley property if the tensor prod-
uct of two simple comodules is semisimple, or equivalently if its coradical
is a (cosemisimple) Hopf subalgebra. These Hopf algebras are interesting
by various reasons, among them the Lifting Method for their classifica-
tion [AS]. Particular classes are the pointed (the coradical is a group
algebra) and copointed (the coradical is the algebra of functions on a
finite or reductive group) Hopf algebras. However few examples out of
these classes has been discussed in the literature [CDMM, Mom]. The
purpose of this paper is to present explicit examples of Hopf algebras
with the dual Chevalley property.

1.2. In this paper the underlying field k is algebraically closed of charac-
teristic 0. Then the coradical of a finite-dimensional Hopf algebra with
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the dual Chevalley property is a semisimple Hopf algebra. Let us con-
sider the problem of constructing (and eventually classifying) finite-di-
mensional Hopf algebras A whose coradical A0 is isomorphic to a fixed
semisimple Hopf algebra H. For this, we need to address three problems:

(a) To find (classify) the Yetter–Drinfeld modules V ∈ H
HYD such that

the dimension of the Nichols algebra B(V ) is finite. Then A(V ) =
B(V )#H is a finite-dimensional Hopf algebra with A(V )0 ' H.

(b) To find (classify) the deformations, or liftings, of A(V ); that is,
Hopf algebras A such that grA (the graded Hopf algebra with
respect the coradical filtration) is isomorphic to A(V ).

(c) If A is a finite-dimensional Hopf algebra with A0 ' H, then prove
that there exists V such that grA ' A(V ).

1.3. Two fusion categories C and D are Morita-equivalent if there exists
an indecomposable C-module category M such that D is tensor equiv-
alent to EndC(M) [Mü]; equivalently, if their centers are equivalent as
braided tensor categories [ENO, Theorem 3.1]. In this case we write
C ∼Mor D.

Two semisimple Hopf algebras K and H are Morita-equivalent (de-
noted by K ∼Mor H) iff RepK ∼Mor RepH, iff K

KYD and H
HYD are

equivalent as braided tensor categories. (This is not the same as being
Morita-equivalent as algebras.) When this is the case, the braided equiv-
alence F : KKYD → H

HYD preserves Nichols algebras, i.e. F(B(V )) '
B(F(V )). In consequence, if Problem (a) above is solved for K, then so
is for H. Also, Problem (c) is equivalent to: if B � B(V ) is a finite-
dimensional pre-Nichols algebra in K

KYD, then necessarily B ' B(V ).
Therefore, if Problem (c) above is solved for K, then so is for H.

In this paper we construct Hopf algebras with the Chevalley property
over a semisimple Hopf algebra H that is Morita-equivalent to a group
algebra K = kG, G a finite group, provided we know examples, or even
better the classification, of V ∈ K

KYD with dimB(V ) <∞.

1.4. Let G be a finite group. The characterization of all semisimple
Hopf algebras Morita-equivalent to kG follows from [Os] as we briefly
recall now.

◦ Duals. If H is a semisimple Hopf algebra, then H∗ ∼Mor H – just take
M = vec k. In particular vecG ∼Mor RepkG, where vecG is the category
of finite-dimensional G-graded vector spaces.

◦ Group-theoretical Hopf algebras. Let F,Γ < G be such that G = FΓ –
but F ∩Γ may be nontrivial. Given a suitable pair (α, β) ∈ H2(F,k×)×
H2(Γ,k×), cf. Definition 2.1, there is a corresponding Hopf algebra
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HG
αβ(F,Γ) such that HG

αβ(F,Γ) ∼Mor kG. The collection (F, α,Γ, β)
is called a group-theoretical datum for G. These are all Hopf alge-
bras arising from fiber functors of all fusion categories Morita-equivalent
to vecG [Os], therefore all H ∼Mor kG are like this. See Subsection 2.2
for more details. Notice however that to decide when two of these Hopf
algebras are isomorphic is not evident.

We describe next some particular instances of this notion.

◦ Twistings. Two finite-dimensional Hopf algebras H and H ′ are twist-
equivalent if and only if RepH and RepH ′ are tensor equivalent [EG2,
Sc1]. Therefore, if J ∈ kG ⊗ kG is a twist, then (kG)J ∼Mor kG.
Furthermore, if U is a pointed Hopf algebra with G(U) ' G, then J ∈
U ⊗U is a twist and the Hopf algebra UJ , with coradical (kG)J , has the
dual Chevalley property. Hence, if Problem (b) is solved for kG, then so
is for (kG)J .

◦ Abelian extensions [Ka, Ta]. Assume that G = FΓ is an exact factor-
ization (i.e., F,Γ < G with G = FΓ, F ∩ Γ = 1) and that H fits into an
exact sequence

(1.1) 1 // kΓ �
� ι // H

π // // kF // 1,

associated to this factorization. Let (σ, τ) ∈ Opext(kΓ,kF ) be the corre-
sponding pair of 2-cocycles. Thus H = kΓ τ#σkF is a bicrossed product.
Let ω ∈ Z3(G,k×) be the 3-cocycle arising from (σ, τ) in the Kac exact
sequence; we say that H has 3-cocycle ω. Albeit RepkG and RepH
are not necessarily tensor-equivalent, D(H) is isomorphic to a twist
of Dω(kG) [Nat2, Theorem 1.3]. Hence, if ω = 1, then H ∼Mor kG
by [ENO, Theorem 3.1].

1.5. As is well-known, the Nichols algebra B(V ) depends essentially
only on the underlying braided vector space to the Yetter–Drinfeld mod-
ule V . Here we shall not consider braided vector spaces of diagonal type
– except for Yetter–Drinfeld modules over some dihedral groups, see Ta-
ble 8 in Section 9. We focus on braided vector spaces of rack type, see e.g.
[AG1] or [AFGV]. For more examples with braided vector spaces of di-
agonal type see [CDMM, Mom]. Let (X,q) be a pair where X is a rack
and q a 2-cocycle, let V be the associated braided vector space and as-
sume that B(V ) is finite-dimensional, cf. [HLV]. We consider a group G
such that V is realized in kG

kGYD. We then compute all group-theoretical
data (F, α,Γ, β) for G. Consequently, H = HG

αβ(F,Γ) ∼Mor kG and

there is V ′ ∈ H
HYD such that B(V ′) ' B(V ), as algebras and coalge-

bras. We summarize our computations in Table 1.
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(X,q) dimB(V ) Reference G H∼Mor kG
D3, −1 12 [MS] C3oC6 Prop. 3.1

(Q5,2,−1), (Q5,3,−1) 1280 [AG1] C5o2C20 Table 3

(O4
2,−1), (O4

2, χ), (O4
4,−1) 576 [FK, MS] S4 Table 4

(O5
2,−1), (O5

2, χ) 8294400 [FK, Gr2, GG] S5 Table 5

(T ,−1) 72 [Gr1] A4×C2 Table 6

(Q7,3,−1), (Q7,5,−1) 326592 [Gr2] C7o3C6 Prop. 8.1

Table 1.

We describe new examples in Theorems 3.2, 4.3, 5.3, 6.2, 7.3, 8.2,
and 9.5.

Remark 1.1. (i) There are groups G that admit a finite-dimensional
Nichols algebra but no non-trivial H with H ∼Mor kG. For instance
(D3,−1) corresponds to some V ∈ kS3

kS3
YD but H ∼Mor kS3 implies H '

kS3 or kS3 , Section 3. Also, (Q5,2,−1) corresponds to some V ∈ kG
kGYD,

where G = k(C5 o2 C4); but H ∼Mor kG implies H ' kG or kG,
Section 4.

(ii) Let G be as in Table 1 or a dihedral group Dn. By Lemma 2.2(ii),
there is no group G′ 6' G with kG′ ∼Mor kG.

(iii) If J ∈ kG ⊗ kG is a twist and U is a pointed Hopf algebra
with G(U) ' G, then the Hopf algebra UJ , with coradical (kG)J , has a
rather concrete description. Otherwise, if H ∼Mor kG , then the braided
equivalence F : kG

kGYD → H
HYD is not quite explicit. In this way, neither

the structure of the Yetter–Drinfeld module F(V ) nor the defining re-
lations of B(F(V )) are not known, and the description of the liftings is
problematic. Notice that a direct relation between liftings of B(V )#kG
and liftings of B(F(V ))#H is not expected. For instance, if G = S3

and B(V ) is the 12-dimensional Nichols algebra, then B(V )#kS3 has
exactly one non-trivial lifting [AG2]; whereas B(V )#kS3 has infinitely
many non-isomorphic liftings [AV].

We use GAP (see [GAP]) for some of the computations with finite
groups. For most of the computations of finite group cohomology, we
use the GAP package HAP and the natural isomorphism Hn(−,k×) ∼=
Hn+1(−,Z).

Acknowledgements. We thank Graham Ellis for helping us to use
the GAP package HAP, Leandro Vendramin and Cristian Vay for kindly
answering some questions, and Agust́ın Garćıa Iglesias for very useful
conversations.
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1.6. Preliminaries and notations. As customary we refer to group
algebras and their duals as trivial Hopf algebras. We denote by 1 the
identity element of a group. If n ∈ N, then Cn is a cyclic group of
order n. If G is a group, then the notation F < G means that F is
a subgroup of G, while F C G means that F < G is normal. If . is
an action of a group G on a set F , then we denote by FG the subset
of F of points fixed by .. The dihedral group of order 2n is denoted
by Dn. We denote multiplicatively the cohomology groups Hn(G,k×).
Occasionally, we denote by the same letter an element in Hn(G,k×) and
any of its representatives. Let a, b ∈ Z, the lowest common multiple of a
and b is denoted by [a, b] and the greatest common divisor of a and b is
denoted by (a, b). We denote by Gn = {z ∈ k× : zn = 1}, n ∈ N, and
by G′n the primitive ones.

One says that α ∈ Z2(G,k×) is non-degenerate if and only if the
twisted group algebra kαG is simple; see e.g. [Da, Mov]. Note that this
definition only depends on the cohomology class of α.

If A is an abelian group and T ∈ AutA, then A is a rack (called
affine) with x . y = (id−T )x + Ty, x, y ∈ A. This is denoted by QA,T ;
or Qq,b when A ' Fq, where q is a prime power, and T ∈ AutFq,
T (x) = bx, x ∈ Fq, b ∈ F×q ' Cq−1. Suppose that the order of b
divides q − 1. Then the rack Qq,b can be realized as a conjugacy class
of the group Cq ob Cq−1, where the subscript b describes the action.
Another exception to the notation is Dn = QCn,T , where T (x) = −x,
x ∈ Cn (the so-called dihedral rack). Also T = Q4,b, b ∈ F4 irreducible,
is called the tetrahedral rack. Meanwhile, Onj is the conjugacy class of
j-cycles in Sn.

2. Semisimple Hopf algebras

Let G be a finite group.

2.1. Twists. Twists in kG are classified, up to gauge equivalence, by
conjugacy classes of pairs (S, α), where S < G and α ∈ H2(S,k×) is
non-degenerate [Mov, EG1]. Hence S is solvable and |S| is a square.

2.2. Group-theoretical Hopf algebras. Let ω ∈ Z3(G,k×). The
tensor category of finite-dimensional G-graded vector spaces with as-
sociativity constraint given by ω is denoted by vecωG. The tensor cate-
gories vecωG and vecνG are tensor equivalent iff f∗(ω) = ν in H3(G,k×) for
some f ∈ AutG. If F < G and α ∈ C2(F,k×) such that dα = ω|F×F×F ,
then the twisted group algebra kαF is associative in vecωG. The cat-
egory C(G,ω;F, α) of kαF -bimodules in vecωG is a fusion category and
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C(G,ω;F, α) ∼Mor vecωG. By Tannaka duality, to describe the semisimple
Hopf algebras H such that CorepH is tensor equivalent to C(G,ω;F, α)
is tantamount to describe the fiber functors from C(G,ω;F, α) to veck,
that is contained in the more general description of indecomposable mod-
ule categories over C(G,ω;F, α) [Os, Corollary 3.1]. These Hopf algebras
are called group-theoretical. By [Sc2], the centers of C(G,ω;F, α) and
vecωG are equivalent as braided tensor categories.

We are interested in group-theoretical Hopf algebras H ∼Mor kG, i.e.
with ω = 1. Concretely, we introduce the following terminology.

Definition 2.1. A group-theoretical datum forG is a collection (F, α,Γ, β)
where F,Γ < G, α ∈ H2(F,k×), and β ∈ H2(Γ,k×), satisfy

• G = FΓ;
• α|F∩Γ · β|F∩Γ

−1 is non-degenerate in F ∩ Γ.

Let (F, α,Γ, β) be a group-theoretical datum for G and choose rep-
resentatives α, β. By [Os], there is a Hopf algebra H = HG

αβ(F,Γ)

with CorepH tensor equivalent to C(G, 1;F, α), and a fortiori H ∼Mor

kG; we say that H is a group-theoretical Hopf algebra over G. Up
to isomorphisms, H only depends on α and β; so we loosely denote
H = HG

αβ(F,Γ). Conversely, every Hopf algebra H with H ∼Mor kG is

isomorphic to HG
αβ(F,Γ) for some group-theoretical datum (F, α,Γ, β)

for G by [Os], as sketched above.
Let θ ∈ AutG and γ ∈ H2(G,k×). If (F, α,Γ, β) is a group-theo-

retical datum for G, then (θ(F ), θ∗(αγ|F ), θ(Γ), θ∗(βγ|Γ)) is again one.
Here θ∗(αγ|F ) is the pushforward cocycle, i.e. θ∗(αγ|F )(θ(a), θ(b)) =
α(a, b)γ(a, b), for a, b ∈ F and analogously for θ∗(βγ|Γ). Thus AutG n
H2(G,k×) acts on the set of group-theoretical data; we say that two
group-theoretical data are equivalent if they belong to the same orbit of
this action.

Lemma 2.2. Let (F, α,Γ, β) be a group-theoretical datum for G.

(i) If θ ∈ AutG and γ ∈ H2(G,k×), then as Hopf algebras

HG
αβ(F,Γ) ' HG

θ∗(αγ|F ) θ∗(βγ|Γ)(θ(F ), θ(Γ)).

That is, equivalent group-theoretical data produce isomorphic Hopf
algebras.

(ii) HG
αβ(F,Γ) is cocommutative (resp. commutative) iff FCG is abelian

and α∈H2(F,k×)adG(resp. ΓCG is abelian and β∈H2(Γ,k×)adG).
If H=HG

αβ(F,Γ) is cocommutative then kG(H) ∼Mor kG and ev-

ery G′ such that kG′ ∼Mor kG arises in this way.
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(iii) HG
αβ(F,Γ)∗ ' HG

β α(Γ, F ).

(iv) HG
α 1(F,G) is a twisting of kG and every twisting is of this form.

(v) If F ∩ Γ = 1, then HG
αβ(F,Γ) is an abelian extension of kF by kΓ:

kF �
� // HG

αβ(F,Γ) // // kΓ.

Proof: (i) Let H = HG
αβ(F,Γ), C = vecG, A = kαF , and B = kβΓ.

Clearly H is the Tannakian reconstruction of the fiber functor

ACA // End(ACB) '⊗ veck .

If (θ, γ) ∈ AutG n Z2(G,k×), then it induces a tensor automorphism
(θ∗, γ) : vecG → vecG by

kg � // kθ(g), γkg,kh := γ(g, h) idkθ(gh)
: kθ(g) ⊗ kθ(h)

// kθ(gh).

The object θ∗(A) = ⊕g∈Fkθ(g) is an algebra in C with multiplication
uθ(g)uθ(h) = γ(g, h)θ(g, h)uθ(gh). The tensor automorphism (θ∗, γ) in-
duces a tensor equivalence (θ∗, γ) : ACA → θ∗(A)Cθ∗(A) such that the fol-
lowing diagram of tensor functors commutes:

(2.1)

ACA

θ∗

��

// End(ACB)

Id

��
θ∗(A)Cθ∗(A)

// End(θ∗(A)Cθ(B)).

The Tannakian reconstruction of θ(A)Cθ(A) → End(θ(A)Cθ(B)) is

HG
θ(F ) θ(Γ)(θ∗(αγ|F ), θ∗(βγ|Γ),

so by Tannakian formalism and the commutativity of (2.1), the Hopf
algebras HG

αβ(F,Γ) and HG
θ(F ) θ(Γ)(θ∗(αγ|F ), θ∗(βγ|Γ) are isomorphic.

(ii) A semisimple Hopf algebra H is cocommutative, respectively com-
mutative, if and only if CorepH, respectively RepH, is pointed. By [Na,
Theorem 3.4], C(G, 1;F, α) is pointed if and only if F is a normal abelian
subgroup of G and α is adG-invariant. This implies the claim.

(iii) Let (F, α,Γ, β) be a group-theoretical datum for G. We have as-
sociated two fusion categories kαF (vecG)kαF , kβΓ(vecG)kβΓ, and the bi-

module category of rank one kαF (vecG)kβΓ. The Hopf algebra HG
αβ(F,Γ)

(resp. HG
β α(Γ, F )) is by definition the Tannaka reconstruction of

kαF (vecG)kαF (resp. kβΓ(vecG)kβΓ) respect to the fiber functor defined
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by the left (resp. right) module category kαF (vecG)kβΓ. Now, it follows

by [Ya, Appendix C] that HG
αβ(F,Γ)∗ ' HG

β α(Γ, F ).

(iv) The fusion category

RepHG
α 1(F,G) ' CorepHG

1α(G,F ) ' C(G, 1;G, 1) = kG(vecG)kG

is tensor equivalent to RepG. Then HG
α 1(F,G) is twist equivalent to kG.

Conversely, if H ' (kG)J , then RepH ' RepG ' C(G, 1;G, 1). Thus
H ' HG

α 1(F,G) for some F < G and α ∈ Z2(F,C×) non-degenerate.

(v) Let A be any extension of kF by kΓ with 3-cocycle ω. By [Sc3,
Lemma 6.3.1], AJ(β) and Aα are extensions of kF by kΓ with 3-cocycle ω.

Now by [Nat2, Remark 4.6], H = HG
αβ(ω, F,Γ) ' AJ(β)

α = (AJ(β))α; no-

tice that AGα,β(ω,Γ, F ) ' H∗, because of the convention in [Nat2] that

RepAGα,β(ω,Γ, F ) is tensor equivalent to C(G,ω;F, α). Hence H is an ex-

tension of kF by kΓ with 3-cocycle ω, applying twice [Sc3, Lemma 6.3.1].
Since the split extension kF#kΓ has 3-cocycle 1, HG

αβ(F,Γ) turns out
to be an abelian extension.

We shall compute all group-theoretical data of some specific groups
and then determine the isomorphism classes of the corresponding group-
theoretical Hopf algebras. We present now some auxiliary results for this
end.

Remark 2.3. Let (F, α,Γ, β) be a group-theoretical datum for G. If
γ ∈ H2(G,k×), such that γ|F = α−1, then (F, α,Γ, β) and (F, 1,Γ, βγ|Γ)
are equivalent, so HG

αβ(F,Γ) ' HG
1 βγ|Γ(F,Γ). Similarly with Γ instead

of F .

Lemma 2.4. Let (F, α,Γ, β) be a group-theoretical datum, H=HG
αβ(F,Γ),

K = {g ∈ NG(F )/F : [α] = [αg]}. Then G(H) fits into an exact se-
quence

(2.2) 1 // F̂ �
� // G(H) // // K // 1.

Proof: Since G(H) is isomorphic to the group of invertible objects in the
tensor category CorepH ' C(G, 1;F, α), the claim follows from [GN].

The action and the cocycle in (2.2) are explicitly given in [GN]. In

particular, if α = 1, then G(H) ' F̂ oNG(F )/F .
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Lemma 2.5. Let G′ be a finite group. Let (F, α,Γ, β) and (F ′, α′,Γ′, β′)
be group-theoretical data for G and G′ respectively. Then RepHG

αβ(F,Γ)

and RepHG′

α′ β′(F
′,Γ′) are equivalent as tensor categories if and only if

there is an invertible vecG-vecG′-bimodule category X such that

X �vecG′ M(Γ′, β′) 'M(Γ, β)

as vecG-module categories, whereM(Γ′, β′) andM(Γ, β) are the module
categories associated to the pairs (Γ′, β′) and (Γ, β).

Proof: Using RepHG
αβ(F,Γ) '⊗ C(G, 1; Γ, β) and RepHG′

α′ β′(F
′,Γ′) '⊗

C(G′, 1; Γ′, β′), then [GP, Proposition 5.1] applies.

3. Group-theoretical Hopf algebras over G = C3 o C6

The group S3 has a Yetter–Drinfeld module V with dimB(V ) = 12
[MS], but there is no non-trivial group-theoretical Hopf algebra over S3.
Indeed, the classification of the Hopf algebras of dimension 6 = |S3|
is known: kC6, kS3, and kS3 . Hence the only group-theoretical Hopf
algebras over S3, up to Morita-equivalence, are kS3 and kS3 .

However the braided vector space V can be realized as a Yetter–Drin-
feld module over Gm = C3 o C2m, m ∈ N, see [GV, Section 4]. Here
we deal with the group-theoretical Hopf algebras over C3 o C6. Notice
that the classification of the semisimple Hopf algebras of dimension 18
is known [Ma].

Let ξ ∈ G3, L = C2 = 〈x〉, N = C3 × C3 = 〈a〉 × 〈b〉. The Hopf
algebra A18,ξ, defined in [Ma, 1.2], is the abelian extension associated
to the matched pair (L,N) with . : N × L → L trivial, / : N × L → N
given by aibj / x = aib−j and cocycles σ : L × L → (kN )× trivial and
τ : N × N → (kL)× given by τ(aibj , arbs) = δ1 + ξjrδx. Accordingly,
G = C3 o C6 = 〈x, a, b〉. Also, A18,ξ ' A18,η ⇐⇒ |ξ| = |η| [Ma, 1.5].

Proposition 3.1. The non-trivial group-theoretical Hopf algebras over G
are A18,ξ and (A18,ξ)

∗, ξ ∈ G′3.

Proof: Since |G| = 2 × 32, the unique non-trivial subgroup with a non-
degenerated 2-cocycle is N ' C3 × C3. Let M = 〈x, b〉 ' S3. Let
(F, α,Γ, β) be a group-theoretical data for G; then F ∩ Γ is either 1
or N .

Case 1: F ∩ Γ = 1. Up to conjugation, either (F,Γ) or (Γ, F ) is one of

(L,N)(3.1)

(〈b〉, 〈x, a〉)(3.2)

(〈a〉,M)(3.3)

(〈ab〉,M)(3.4)
(〈ab〉, 〈x, a〉).(3.5)
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If (F,Γ) is as in (3.2), (3.3), FCG hence HG
αβ(F,Γ) is cocommutative,

cf. Lemma 2.2(ii). If (F,Γ) is as in (3.4), F 6 G and Γ is non-abelian,
hence HG

αβ(F,Γ) is non-trivial. If (F,Γ) is as in (3.5), F,Γ 6 G, hence

HG
αβ(F,Γ) is non-trivial. If (F,Γ) is as in (3.1), F 6 G, H2(N, k×) ' C3

and H2(N, k×)adG = 1, then HG
1 β(G,N), β 6= 1, is non-trivial. More-

over, these cocycles give rise to isomorphic Hopf algebras.

Case 2: F ∩Γ = N , so that (F,Γ) is either (N,G) – denoted by (3.6) – or
else (G,N). Since H2(N, k×) ' C3 and H2(N, k×)adG = 1, HG

1 β(G,N),
β 6= 1, is non-trivial. Further, these cocycles give rise to isomorphic Hopf
algebras.

So we have the following possibilities:

# F α Γ β G(H) G(H∗)

(3.1) L ' C2 1 N ' C3 × C3 6= 1 C6 C3 × C3

(3.4) 〈ab〉 ' C3 1 M ' S3 1 C3 × C3 C6

(3.5) 〈ab〉 1 〈x, a〉 ' C6 1 C3 × C3 C6

(3.6) N 6= 1 G 1 C3 × C3 C6

Table 2.

By [Ma, 2.3, 2.5], since |G(H)| = 9, (3.1)
∗ ' (3.4) ' (3.5) ' (3.6) '

A18,ξ; since |G(H)| = 6, (3.1) ' (3.4)
∗ ' (3.5)

∗ ' (3.6)∗ ' (A18,ξ)
∗.

Thus A18,ξ ' (3.6) is a twisting of kG.

Theorem 3.2. The Hopf algebras A18,ξ and (A18,ξ)
∗ have a non-zero

Yetter–Drinfeld module V with dimB(V ) <∞. By bosonization, we get
new Hopf algebras with the dual Chevalley property of dimension 216.

The liftings of B(V )#kG, where V is as above, are classified in [GV,
Theorem 6.2]. Indeed, let (xj)06j62 be the basis of V as in loc. cit. Let

S = {(λ1, λ2) ∈ k2 satisfying [GV, (29), (33)]}.
For (λ1, λ2) ∈ S, let H(λ1, λ2) be T (V )#kG modulo the ideal generated
by

x2
0 − λ1(1− g2

0) and x0x1 + x1x2 + x2x0 − λ2(1− g0g1).

Then

• H(λ1, λ2) is a lifting of B(V )#kG,
• any lifting of B(V )#kG is isomorphic to H(λ1, λ2) for some

(λ1, λ2) ∈ S,
• H(λ1, λ2) ' H(λ′1, λ

′
2) iff there exists µ ∈ k× such that (λ1, λ2) =

µ(λ′1, λ
′
2).
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Remark 3.3. The classification of all liftings of B(V )#A18,ξ follows from
[GV, Theorem 6.2]. Namely, let J ∈ kG⊗ kG such that A18,ξ ' (kG)J .
Then

• H(λ1, λ2)J is a lifting of B(V )#A18,ξ, for every (λ1, λ2) ∈ S,
• any lifting of B(V )#A18,ξ is ' to H(λ1, λ2)J for some (λ1, λ2) ∈ S,
• H(λ1, λ2)J ' H(λ′1, λ

′
2)J iff there is µ ∈ k× such that (λ1, λ2) =

µ(λ′1, λ
′
2).

4. Group-theoretical Hopf algebras over G = C5 o2 C20

The group G = C5 o2 C4 has two Yetter–Drinfeld modules Vj , j =
2, 3, with dimB(Vj) = 1280 [AG1]; Vj has braided vector space with
rack Q5,j and cocycle −1, and V2 ' V ∗3 in kG

kGYD. But a group-theoretical
Hopf algebra over C5 o2 C4 ' C5 o3 C4 is trivial. Indeed, a non-trivial
subgroup of C5 o2 C4 does not admit a non-degenerated 2-cocycle, (al-
ternatively, there is no triangular Hopf algebra of dimension 20 [Ge,
Nat1]). Thus such a group-theoretical Hopf algebra would be an abelian
extension, hence trivial.

However the braided vector spaces Vj , j = 2 or 3, can be realized
as Yetter–Drinfeld modules over C5 o2 C4m ' C5 o3 C4m, m ∈ N [GV,
Section 4]. Here we deal with group-theoretical Hopf algebras over C5o2

C20.

Proposition 4.1. The non-trivial group-theoretical Hopf algebras over
G = C5 o2 C20 are given by the group-theoretical data in Table 3.

Question 4.2. Is it true that 4.a ' 4.d ' 4.f ' 4.h?

# F α Γ β G(H)

4.a 〈x〉 ' C4 1 N ' C5 × C5 6= 1 C20

4.b N 6= 1 〈x〉 1 C5 × C5

4.c 〈ab〉 ' C5 1 〈b, x〉 ' C5 o C4 1 C5 × C5

4.d 〈b, x〉 1 〈ab〉 1 C20

4.e 〈ab〉 ' C5 1 〈x3a2〉 ' C20 1 C5 × C5

4.f 〈x3a2〉 1 〈ab〉 1 C20

4.g N ' C5 × C5 6= 1 G 1 C5 × C5

4.h G 1 N 6= 1 C20

Table 3. Group-theoretical data for C5 o2 C20.
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Proof: Let G = 〈a, b, x〉, where |a| = |b| = 5, |x| = 4, a is central, and
xbx−1 = b2. Then N = 〈a, b〉 ' C5 × C5 is a normal 5-Sylow subgroup.
Since G has no subgroup isomorphic to C2 × C2, the unique non-trivial
subgroup with a non-degenerate 2-cocycle is N . Let (F, α,Γ, β) be a
group-theoretical data for G; then F ∩ Γ is either 1 or N .

Case 1: F ∩ Γ = 1. Up to conjugation, either (F,Γ) or (Γ, F ) is one of

(〈x〉, N)(4.1)

(〈b〉, 〈x3a2〉)(4.2)

(〈a〉, 〈b, x〉)(4.3)

(〈ab〉, 〈b, x〉)(4.4)
(〈ab〉, 〈x3a2〉).(4.5)

If (F,Γ) is as in (4.1), F 6 G, H2(Γ,k×)adG=1, and H2(Γ,k×) ' C5,
then HG

1 β(F,Γ), β 6= 1, is non-trivial. Moreover, these cocycles give rise

to isomorphic Hopf algebras, denoted by 4.a. If (F,Γ) is as in (4.2), (4.3),
F C G hence HG

αβ(F,Γ) is cocommutative, cf. Lemma 2.2(ii). If (F,Γ)

is as in (4.4), F 6 G and Γ is non-abelian, then HG
αβ(F,Γ) is non-

trivial, giving 4.c. If (F,Γ) is as in (4.5), F,Γ 6 G hence HG
αβ(F,Γ) is

non-trivial, thus 4.e.

Case 2: F ∩Γ = N . Up to conjugation, either (F,Γ) or (Γ, F ) is (N,G).
Since H2(Γ,k×)adG = 1 and H2(Γ,k×) ' C5, HG

1 β(F,Γ), β 6= 1, is
non-trivial. Moreover, these cocycles give isomorphic Hopf algebras,
i.e. 4.g.

Observe that 4.g is a twisting of kG.

Theorem 4.3. The Hopf algebras from Table 3 have two dual non-
zero Yetter–Drinfeld module V with dimB(V ) = 1280. By bosonization,
we get new Hopf algebras with the dual Chevalley property of dimen-
sion 128000.

The liftings of B(V )#kG, where V is as above, are classified in [GV,
Theorem 6.4, Theorem 6.5]. Indeed, let (xj)06j64 be the basis of V as
in loc. cit. Let

S = {(λ1, λ2, λ3) ∈ k2 satisfying [GV, (29), (33)]}.

For (λ1, λ2, λ3) ∈ S, let H(λ1, λ2, λ3) be T (V )#kG modulo the ideal
generated by

x2
0 − λ1(1− g2

0), x0x1 + x2x0 + x3x2 + x1x3 − λ2(1− g0g1), and

x1x0x1x0 + x0x1x0x1 − sX − λ3(1− g2
0g1g2),
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for

sX = λ2(x1x0 + x0x1) + λ1g
2
1(x3x0 + x2x3)

− λ1g
2
0(x2x4 + x1x2) + λ2λ1g

2
0(1− g1g2);

or by

x2
0 − λ1(1− g2

0), x1x0 + x0x2 + x2x3 + x3x1 − λ2(1− g0g1), and

x0x2x3x1 + x1x4x3x0 − s′X − λ3(1− g2
0g1g3),

for

s′X = λ2(x0x1 + x1x0)− λ1g
2
1(x3x2 + x0x3)

− λ1g
2
0(x3x4 + x1x3) + λ1λ2(g2

1 + g2
0 − 2g2

0g1g3).

Then

• H(λ1, λ2, λ3) is a lifting of B(V )#kG,
• any lifting of B(V )#kG is' toH(λ1, λ2, λ3) for some (λ1, λ2, λ3) ∈
S,
• H(λ1, λ2, λ3) ' H(λ′1, λ

′
2, λ
′
3) iff there exists µ ∈ k× such that

(λ1, λ2, λ3) = µ(λ′1, λ
′
2, λ
′
3).

Remark 4.4. Let H be the Hopf algebra corresponding to 4.g. The
classification of all liftings of B(V )#H follows from [GV, Theorem 6.4,
Theorem 6.5]. Namely, let J ∈ kG⊗ kG such that H ' (kG)J . Then

• H(λ1, λ2, λ3)J is a lifting of B(V )#H, for every (λ1, λ2, λ3) ∈ S,
• any lifting of B(V )#H is' toH(λ1, λ2, λ3)J for some (λ1, λ2, λ3)∈
S,
• H(λ1, λ2, λ3)J ' H(λ′1, λ

′
2, λ
′
3)J iff there is µ ∈ k× such that

(λ1, λ2, λ3) = µ(λ′1, λ
′
2, λ
′
3).

5. Group-theoretical Hopf algebras over S4

The classification of the finite-dimensional pointed Hopf algebras
over S4 was completed in [GG]; there are exactly three non-zero Yetter–
Drinfeld modules over kS4 whose Nichols algebra is finite-dimensional
and all admit non-trivial deformations. The underlying rack and cocy-
cle are (O4

2,−1), (O4
2, χ), or (O4

4,−1). Here we deal with the group-
theoretical Hopf algebras over G = S4; since OutS4 = 1, we need to
describe all group-theoretical data for G up to conjugacy, cf. Lemma 2.2.

Proposition 5.1. The classification of the non-trivial group-theoretical
Hopf algebras over S4 is given by the group-theoretical data in Table 4.
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# F α Γ β G(H)

5.a 〈(34), (13)(24)〉 ' D4 1 〈(243)〉 ' C3 1 C2 × C2

5.b 〈(243)〉 ' C3 1 〈(34), (13)(24)〉 ' D4 1 S3

5.c 〈(12), (34)〉 ' C2 × C2 6= 1 S4 1 D4

5.d S4 1 〈(12), (34)〉 6= 1 C2

Table 4. Group-theoretical data for S4.

Proof: Since |S4| = 23 × 3, every non-trivial subgroup that admits a
non-degenerated 2-cocycle is isomorphic to C2×C2. Let (F, α,Γ, β) be a
group-theoretical data for S4; then F∩Γ is either trivial or else ' C2×C2.

Case 1: Assume that F∩Γ = 1, i.e. (F,Γ) is an exact exact factorization.
Up to conjugation, either (F,Γ) or (Γ, F ) is one of

(〈(34)〉, 〈(13)(24), (243)〉) ' (C2,A4),(5.1)

(〈(243)〉, 〈(34), (13)(24)〉) ' (C3, D4),(5.2)

(〈(1324)〉, 〈(34), (243)〉) ' (C4,S3),(5.3)

(〈(14)(23), (13)(24)〉, 〈(34), (243)〉) ' (C2 × C2,S3).(5.4)

If (F,Γ) is as in (5.4), 〈(14)(23), (13)(24)〉 C S4 hence HS4

αβ(F,Γ) is co-

commutative. If (F,Γ) is as in the remaining cases, F is not normal in S4,

A4 is non-abelian and the others Γ are not normal, hence HS4

αβ(F,Γ)

is non-trivial, cf. Lemma 2.2(ii). Also HS4

αβ(F,Γ) ' HS4
1 1(F,Γ) by Re-

mark 2.3.

Case 2: Assume that F ∩Γ ' C2×C2. Up to conjugation, either (F,Γ)
or (Γ, F ) is one of

(〈(12), (34)〉, G) ' (C2 × C2,S4),(5.5)

(〈(14)(23), (13)(24)〉, G) ' (C2 × C2,S4),(5.6)

(〈(14)(23), (34)〉, 〈(13)(24), (243)〉) ' (D4,A4).(5.7)

If (F,Γ) is as in (5.6), H = HS4
α 1(F,S4) is cocommutative by Lem-

ma 2.2(ii); but if it is as in (5.5), then H (a twist of kS4) is non-trivial
since F 6 S4.

We next deal with (F,Γ) as in (5.7). If α ∈ H2(D4,k×) ' C2 '
H2(A4,k×) 3 β, then α|F∩Γ · β|F∩Γ

−1 6= 1 iff either α 6= 1 and β = 1,
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or vice versa. By Lemma 2.2(ii), HS4
α 1(F,Γ) and HS4

1 β(F,Γ) are non-

trivial, since F and A4 are non-abelian. By Remark 2.3, HS4
α 1(F,Γ) '

HS4

1 β(F,Γ).

If (Γ, F ) is as in any of the cases (5.1), . . . , (5.7) above, thenHS4

β α(Γ, F )

is dual to H = HS4

αβ(F,Γ) by Lemma 2.2(iii). In conclusion, we have the

following non-trivial Hopf algebras (with a slight abuse of notation):

(5.1) : HS4
1 1(C2,A4), (5.1)

∗
:HS4

1 1(A4, C2);

(5.2) : HS4
1 1(C3, D4), (5.2)

∗
:HS4

1 1(D4, C3);

(5.3) : HS4
1 1(C4,S3), (5.3)

∗
:HS4

1 1(S3, C4);

(5.5) : HS4
α 1(C2 × C2,S4), (5.5)

∗
:HS4

1 β(S4, C2 × C2);

(5.7) : HS4

1 β(D4,A4), (5.7)
∗

:HS4
α 1(A4, D4).

By Lemma 5.2 below, the Hopf algebras (5.1), (5.2)∗, and (5.7) are
twist-equivalent, but since C(S4, 1; 〈(234)〉, 1) admits a unique fiber func-
tor, then all of them are isomorphic – this gives 5.a, with dual 5.b. Sim-
ilarly, by Lemma 5.2, the Hopf algebras (5.3) and (5.5) are twist-equiva-
lent, hence isomorphic because kS4 admits a unique non-trivial twisting
– this gives 5.c, with dual 5.d. The computation of the various G(H) is
performed via Lemma 2.4; hence the Hopf algebras in Table 4 are not
isomorphic to each other.

Lemma 5.2. (i) C(S4, 1; 〈(34), (243)〉, 1)∼=⊗ C(S4, 1;S4, α)∼=⊗Rep S4,
where α ∈ H2(S4,k×).

(ii) C(S4, 1; 〈(234)〉, 1) ∼=⊗ C(S4, 1;A4, β), where β ∈ H2(A4,k×).

Proof: Let us recall some results related with invertible bimodules over
pointed fusion categories and the tensor product of their module cate-
gories:

If X is an invertible vecG-bimodule category then as right vecG-mod-
ule category X ∼=M(A,α), whereACG is abelian and α∈H2(A,k×)adG,
cf. [GP, Corollary 7.11]. In the case of G = S4, there are invert-
ible bimodule categories X such that as right vecS4

-module category
X = M(N,α), where N is the Klein normal subgroup of S4, cf. [NR,
Subsection 8.2].

The rank of M(F, α) �vecS4
M(Γ, β) can be calculated as follows:

Let X := F\G and Y := G/Γ the right and left transitive G-sets
associated. The groups G acts on X × Y as g · (x, y) = (xg−1, gy).
Let {(xi, yi)}i∈F\G/Γ be a set of representatives of the orbits of G
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in X × Y (the set of G-orbits is in correspondence with the (F,Γ)-dou-
ble cosets), then there is a bijective correspondence between simple
objects in M(F, α) �vecS4

M(Γ, β) and irreducible representations of

kαi StabG(xi, yi), where αi are certain 2-cocycles associated with α
and β, cf [GP, Theorem 7.15, Corollary 7.16].

(i) By Lemma 2.5 we have to see that there is an invertible vecS4
-bi-

module category X such that

X �vecS4
M(〈(34), (243)〉, 1) ∼=M(S4, α),

since C(S4, 1;S4, α) ∼=⊗ Rep S4 for all α ∈ H2(S4,k×).
Let X be an invertible bimodule categories such that as right vecS4-

module category X =M(N,α), where N is the Klein normal subgroup
of S4. The rank of M(N,α) �vecS4

M(〈(34), (243)〉, 1) is one, since N

and 〈(34), (243)〉 are an exact factorization of S4.
The module categoriesM(S4, α) are characterized as the vecS4-module

categories of rank one. So, X �vecS4
M(〈(34), (243)〉, 1) ∼=M(S4, α).

(ii) Again, let X be an invertible bimodule categories such that as
right vecS4

-module category X =M(N,α), where N is the Klein normal
subgroup of S4. Then rankM(N,α)�vecS4

M(〈〈(234)〉)〉, 1) is two, since

there are only two (〈(234)〉, N)-double cosets and their stabilizers are
trivial.

The module categoriesM(A4, β) are characterized as the vecS4
-mod-

ule categories of rank two. So, X �vecS4
M(〈(234)〉, α) ∼=M(A4, β).

Then the Hopf algebra associated to 5.c is a twisting of kS4.

Theorem 5.3. The group-theoretical Hopf algebras in Table 4 have ex-
actly 3 non-zero Yetter–Drinfeld modules whose Nichols algebra is finite-
dimensional. By bosonization, we get new Hopf algebras with the dual
Chevalley property of dimension 13824.

The liftings of B(V )#kS4, where V is as above, are classified in [GG,
Proposition 5.3]. Indeed, for the ql-data [GG, Definition 3.5]

• Q−1
4 [t] = (S4,O4

2, 1, ·, ι, {0,Λ,Γ}),
• Qχ4 [λ] = (S4,O4

2, χ, ·, ι, {0, 0, λ}), and

• D[t] = ((S4,O4
4, 1, ·, ι, {Λ, 0,Γ})),

where Λ,Γ, λ ∈ k, t = (Λ,Γ), let H(Q−1
4 [t]), H(Qχ4 [λ]), and H(D[t]),

respectively, be the algebras presented by generators and relations
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• {ai, Hr : i ∈ O2
4, r ∈ S4},

He = 1, HrHs = Hrs, r, s ∈ S4,

Hjai = −ajijHj , i, j ∈ O4
2,

a2
(12) = 0,

a(12)a(34) + a(34)a(12) = Γ(1−H(12)H(34)),

a(12)a(23) + a(23)a(13) + a(13)a(12) = Λ(1−H(12)H(23));

• {ai, Hr : i ∈ O4
2, r ∈ S4},

He = 1, HrHs = Hrs, r, s ∈ S4,

Hjai = χi(j)ajijHj , i, j ∈ O4
2,

a2
(12) = 0,

a(12)a(34) − a(34)a(12) = 0,

a(12)a(23) − a(23)a(13) − a(13)a(12) = λ(1−H(12)H(23));

• {ai, Hr : i ∈ O4
4, r ∈ S4},

He = 1, HrHs = Hrs, r, s ∈ S4,

Hjai = −ajijHj , i ∈ O4
4, j ∈ O4

2,

a2
(1234) = Γ(1−H(13)H(24)),

a(1234)a(1432) + a(1432)a(1234) = 0,

a(1234)a(1243) + a(1243)a(1423) + a(1423)a(1234) = Γ(1−H(12)H(13)).

Then

• these algebras are liftings of B(V )#kS4,

• any lifting is isomorphic to one of these algebras,

• H(Q−1
4 [t]) ' H(Q−1

4 [t′]) iff t 6= 0 and t = t′ ∈ P1
k or if t = t′ =

(0, 0), and the same holds forH(D[t]); H(Qχ4 [λ]) ' H(Qχ4 [1]), ∀ λ ∈
k× and H(Qχ4 [1]) 6' H(Qχ4 [0]), [GG, Lemma 6.1].

Remark 5.4. Let H be the Hopf algebra corresponding to 5.c. The clas-
sification of all liftings of B(V )#H follows from [GG, Proposition 5.3].
Namely, let J ∈ kS4 ⊗ kS4 such that H ' (kS4)J . Then

• H(Q−1
4 [t])J , H(Qχ4 [λ])J , and H(D[t])J are liftings of B(V )#H,

• any lifting of B(V )#H is' toH(Q−1
4 [t])J ,H(Qχ4 [λ])J , orH(D[t])J,
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• H(Q−1
4 [t])J ' H(Q−1

4 [t′])J iff t 6= 0 and t = t′ ∈ P1
k or if t = t′ =

(0, 0), and the same holds for H(D[t])J ; H(Qχ4 [λ])J ' H(Qχ4 [1])J ,
∀ λ ∈ k×, and H(Qχ4 [1])J 6' H(Qχ4 [0])J .

6. Group-theoretical Hopf algebras over S5

The classification of the finite-dimensional Nichols algebras over S5

is unknown; there are two non-zero Yetter–Drinfeld modules over kS5

with finite-dimensional Nichols algebra [FK, Gr2, GG] and one open
case [AFGV]. The underlying rack and cocycles are (O5

2,−1) or (O5
2, χ).

Here we deal with the group-theoretical Hopf algebras over G = S5 (up
to conjugacy because OutG = 1, cf. Lemma 2.2).

Proposition 6.1. The classification of the non-trivial group-theoretical
Hopf algebras over S5 is given by the group-theoretical data in Table 5.

# F α Γ β G(H)

6.a 〈(45)〉 ' C2 1 〈(12345), (345)〉 ' A5 1 C2 × S3

6.b 〈(12345), (345)〉 1 〈(45)〉 1 C2

6.c 〈(12345)〉 ' C5 1 〈(345), (2435)〉 ' S4 1 C5 o C4

6.d 〈(345), (2435)〉 1 〈(12345)〉 1 C2

6.e 〈(345), (45)〉 ' S3 1
〈(12345), (2354)〉
' C5 o C4

1 C2 × C2

6.f 〈(12345), (2354)〉 1 〈(345), (45)〉 1 C4

6.g 〈(12)(345)〉 ' C6 1
〈(12345), (2354)〉
' C5 o C4

1 D6

6.h 〈(12345), (2354)〉 1 〈(12)(345)〉 1 C4

6.i
〈(23)(45), (24)(35)〉
' C2 × C2

6=1 S5 1 (C2×C2)oνS3

6.j S5 1 〈(23)(45), (24)(35)〉 6=1 C2

6.k 〈(45), (23)〉'C2×C2 6=1 S5 1 D4

6.l S5 1 〈(45), (23)〉 6=1 C2

6.m 〈(45), (24)(35)〉'D4 6=1 A5 1 C2 × C2

6.n A5 1 〈(45), (24)(35)〉 6=1 C2

Table 5. Group-theoretical data for S5.
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Proof: Since |S5| = 23 × 3× 5, every non-trivial subgroup that admits a
non-degenerated 2-cocycle is isomorphic to C2×C2. Let (F, α,Γ, β) be a
group-theoretical data for S5; then F∩Γ is either trivial or else ' C2×C2.

Case 1: Assume that F ∩ Γ = 1, i.e. (F,Γ) is an exact exact factoriza-
tion. Up to conjugation, (F,Γ) is either of 6.a, 6.c, 6.e, or 6.g, or their
transposes 6.b, 6.d, 6.f, or 6.h. Since A5 is non-abelian and the others
subgroups in this list are not normal, then HS5

αβ(F,Γ) is non-trivial by

Lemma 2.2(ii). Also HS5

αβ(F,Γ) ' HS5
1 1(F,Γ) by Remark 2.3.

Case 2: Assume that F ∩ Γ ' C2 × C2. Up to conjugation, either
(F,Γ) or (Γ, F ) is 6.i, 6.k, or 6.m. By Lemma 2.2(ii), since in the

first two cases F 6 S5, then HS5
α 1(F,S5) is non-trivial. We next deal

with (F,Γ) as in 6.m. If α ∈ H2(D4,k×) ' C2 ' H2(A5,k×) 3 β,
then α|F∩Γ · β|F∩Γ

−1 6= 1 iff either α 6= 1 and β = 1, or vice versa.

By Lemma 2.2(ii), HS5
α 1(F,A5) and HS5

1 β(F,A5) are non-trivial, since F

and A5 are non-abelian. By Remak 2.3, HS5
α 1(F,A5) ' HS5

1 β(F,A5).

If (Γ, F ) is as in any of the cases 6.a, 6.c, 6.e, 6.g, 6.i, 6.k, and 6.m,

then HS5

β α(Γ, F ) is dual to H = HS5

αβ(F,Γ) by Lemma 2.2(iii). The

computation of the various G(H) is performed via Lemma 2.4; hence
the Hopf algebras in Table 5 are not isomorphic to each other.

Theorem 6.2. The Hopf algebras from Table 5 have two non-zero Yet-
ter-Drinfeld modules V with dimB(V )<∞. By bosonization, we get new
Hopf algebras with the dual Chevalley property of dimension 995328000.

7. Group-theoretical Hopf algebras over G = A4 × C2

The classification of the finite-dimensional Nichols algebras over G =
A4×C2 is not known, but there is V ∈ kG

kGYD with dimB(V ) = 72 [Gr1];
the underlying rack is T and the cocycle is −1. The group AutG is
isomorphic to S4, via ϕ : S4 → AutG given by ϕ(a)(b, i) = (aba−1, i), for
all a ∈ S4, b ∈ A4, i ∈ C2 = {1, x}. Let M < G,

M := 〈((13)(24), 1), ((12)(34), 1), (1, x)〉 ' C2 × C2 × C2.

Proposition 7.1. The non-trivial group-theoretical Hopf algebras over
G = A4 × C2 correspond to the group-theoretical data in Table 6.

Question 7.2. Is it true that 7.a ' 7.d ' 7.e ' 7.g ' 7.i ' 7.k?
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# F α Γ β G(H)

7.a
〈((12)(34), x)〉
' C2

1 A4 × 1 1 C2×C2×C2

7.b A4 × 1 1 〈((12)(34), x)〉 1 C6

7.c 〈((123), 1)〉
' C3

1 M
/∈H2(F, k×)adG

α|F∩Γ 6= 1
C6

7.d M
/∈H2(F, k×)adG

α|F∩Γ 6= 1
〈((123), 1)〉 1 C2×C2×C2

7.e

〈((14)(23), 1),

((12)(34), x)〉
' C2 × C2

1 〈((123), x)〉
' C6

1 C2×C2×C2

7.f 〈((123), x)〉 1
〈((14)(23), 1),

((12)(34), x)〉
1 C6

7.g

〈((13)(24), 1),

((12)(34), 1)〉
' C2 × C2

6= 1 G 1 C2×C2×C2

7.h G 1
〈((13)(24), 1),

((12)(34), 1)〉
6= 1 C6

7.i

〈((13)(24), x),

((12)(34), 1)〉
' C2 × C2

6= 1 G 1 C2×C2×C2

7.j G 1
〈((13)(24), x),

((12)(34), 1)〉
6= 1 C6

7.k M
/∈H2(F, k×)adG

α|F∩Γ 6= 1
A4 × 1 1 C2×C2×C2

7.l A4 × 1 1 M
/∈H2(Γ, k×)adG

β|F∩Γ 6= 1
C6

Table 6. Group-theoretical data for G = A4 × C2.

Proof: Since |G| = 23×3, every non-trivial subgroup that admits a non-
degenerated 2-cocycle is isomorphic to C2 × C2. Let (F, α,Γ, β) be a
group-theoretical data for S5; then F∩Γ is either trivial or else ' C2×C2.
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Case 1: Assume that F∩Γ = 1, i.e. (F,Γ) is an exact exact factorization.
Up to automorphism, the exact factorizations (F,Γ) of A4×C2 are either

(1× C2,A4 × 1) ' (C2,A4),(7.1)

(〈((12)(34), x)〉,A4 × 1) ' (C2,A4),(7.2)

(〈((123), 1)〉,M) ' (C3, C2 × C2 × C2),(7.3)

(〈((14)(23), 1), ((12)(34), 1)〉, 〈((123), x)〉) ' (C2 × C2, C6),(7.4)

(〈((14)(23), 1), ((12)(34), x)〉, 〈((123), x)〉) ' (C2 × C2, C6),(7.5)

or their transposes. If (F,Γ) as in (7.1) or (7.4), then HG
αβ(F,Γ) is

cocommutative. If (F,Γ) is as in (7.2), F 6 G and Γ is non-abelian,
hence HG

αβ(F,Γ) is non-trivial. If (F,Γ) is as in (7.5), then HG
αβ(F,Γ) is

non-trivial, since F,Γ 6 G. We next deal with (F,Γ) as in (7.3). There
are six elements in H2(M,k×)−H2(M, k×)adG and 〈ada〉 < AutG where
a ∈ G − M , acts transitively on H2(M, k×) − H2(M,k×)adG, so we
get isomorphic Hopf algebras. For such an β, HG

1 β(F,Γ) is non-trivial,
as F 6 G.

Case 2: F ∩ Γ ' C2 × C2. Up to automorphism, either (F,Γ) or (Γ, F )
is one of

(〈((13)(24), 1), ((12)(34), 1)〉, G) ' (C2 × C2, G),(7.6)

(〈(1, x), ((12)(34), 1)〉, G) ' (C2 × C2, G),(7.7)

(〈((13)(24), x), ((12)(34), 1)〉, G) ' (C2 × C2, G),(7.8)

(M,A4 × 1) ' (C2 × C2 × C2,A4).(7.9)

If (F,Γ) is as in (7.6) then HG
α 1(F,G) is cocommutative. If (F,Γ) is

as in (7.7) or (7.8), F 6 G, hence HG
α 1(F,G) is non-trivial. We next deal

with (F,Γ) as in (7.9). For α ∈ X, HG
α 1(M,A4×1) is not cocommutative;

and is not commutative, since A4 × 1 is non-abelian. HG
1 β(M,A4 × 1)

is cocommutative. In conclusion, we have the non-trivial Hopf algebras
described by the group-theoretical data in Table 6.

Here 7.g and 7.i are twistings of kG.

Theorem 7.3. The Hopf algebras from Table 6 have a non-zero Yetter–
Drinfeld module V with dimB(V ) = 72. By bosonization, we get new
Hopf algebras with the dual Chevalley property of dimension 1728.
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The liftings of B(V )#kG, where V is as above, are classified in [GV,
Theorem 6.3]. Indeed, let (xj)06j62 be the basis of V as in loc. cit. Let

S = {(λ1, λ2, λ3) ∈ k2 satisfying [GV, (29), (33)]}.

For (λ1, λ2, λ3) ∈ S, let H(λ1, λ2, λ3) be T (V )#kG modulo the ideal
generated by

x2
0 − λ1(1− g2

0), x0x1 + x1x2 + x2x0 − λ2(1− g0g1), and

x2x1x0x2x1x0 + x1x0x2x1x0x2 + x0x2x1x0x2x1 − sX − λ3(1− g3
0g

3
1),

where

sX = λ2(x2x1x0x2 + x1x0x2x1 + x0x2x1x0)− λ3
2(g0g1 − g3

0g
3
1)

+ λ2
1g

2
0(g2

3(x2x3 + x0x2) + g1g3(x2x1 + x1x3) + g2
1(x1x0 + x0x3)

− 2λ2
1g

2
0(x0x3 − x2x3 − x1x2 + x1x0)

− 2λ2
1g

2
2(x2x3 − x1x3 + x0x2 − x0x1)

− 2λ2
1g

2
1(x2x1 + x1x3 + x1x2 − x0x3 + x0x1)

+ λ2λ1(g2
2x0x3 + g2

1x2x3 + g2
0x1x3)

+ λ2
2g0g1(x2x1 + x1x0 + x0x2 − λ1)

− λ2λ
2
1(3g3

0g3 − 2g0g
3
1 − g2

0g2 − 2g3
0g1 + g2 − g2

1 + g2
0)

− λ2(λ1−λ2)(λ1g
2
0(g2

3 + g1g3 + g2
1 + 2g0g

3
1)+x2x1 + x1x0 + x0x2).

Then

• H(λ1, λ2, λ3) is a lifting of B(V )#kG,

• any lifting of B(V )#kG is' toH(λ1, λ2, λ3) for some (λ1, λ2, λ3) ∈
S,

• H(λ1, λ2, λ3) ' H(λ′1, λ
′
2, λ
′
3) iff there exists µ ∈ k× such that

(λ1, λ2, λ3) = µ(λ′1, λ
′
2, λ
′
3).

Remark 7.4. Let H be the Hopf algebra corresponding either to 7.g or
to 7.i. The classification of all liftings of B(V )#H follows from [GV,
Theorem 6.3]. Namely, let J ∈ kG⊗ kG such that H ' (kG)J . Then
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• H(λ1, λ2, λ3)J is a lifting of B(V )#H, for every (λ1, λ2, λ3) ∈ S,

• any lifting of B(V )#H is' toH(λ1, λ2, λ3)J for some (λ1, λ2, λ3)∈
S,

• H(λ1, λ2, λ3)J ' H(λ′1, λ
′
2, λ
′
3)J iff there is µ ∈ k× such that

(λ1, λ2, λ3) = µ(λ′1, λ
′
2, λ
′
3).

8. Group-theoretical Hopf algebras over G = C7 o3 C6

The classification of the finite-dimensional Nichols algebras over G
is not known, but there are V3, V5 ∈ kG

kGYD with dimB(Vj) = 326592,
j = 3, 5, see [Gr1]. The underlying racks are Q7,j , j = 3, 5; in both
cases, the cocycle is −1. Note that C7 o3 C6 ' C7 o5 C6.

There are two non-trivial semisimple Hopf algebras of dimension 42,
A7(2, 3) and A7(3, 2) ' A7(2, 3)∗; G(A7(3, 2)) ' G(A7(2, 3)) ' C6 and
as coalgebras, A7(2, 3) ' kC6 ⊕ (M3(k)∗)4, while A7(3, 2) ' kC6 ⊕
(M2(k)∗)9. See [Nat3, Chapter 10].

Proposition 8.1. The non-trivial group-theoretical Hopf algebras over G
are A7(2, 3) and A7(3, 2).

Proof: Let (F, α,Γ, β) be a group-theoretical data for G; then F ∩ Γ
is trivial. Up to conjugation, either (F,Γ) or (Γ, F ) is isomorphic to
(C2, C7 o C3), (C3, D7), or (C6, C7). By Lemma 2.2(ii), HG

1 1(C6, C7)
is trivial, while H := HG

1 1(C2, C7 o C3) and H ′ := HG
1 1(C3, D7) are

non-trivial.
Now H∗ fits into kC7oC3 �

� // H∗ // // kC2. Since kC7oC3 ' kC3 ⊕
(M3(k)∗)2 as coalgebras, H∗'A7(2, 3); then H'A7(3, 2). Also, H ′∗ fits

into kD7 �
� // H ′∗ // // kC3 . As coalgebras, kD7 ' kC2 ⊕ (M2(k)∗)3.

Hence H ′∗ ' A7(3, 2); therefore H ′ ' A7(2, 3).

Theorem 8.2. Each one of A7(2, 3) and A7(3, 2) has two non-zero
Yetter–Drinfeld modules V with dimB(V ) = 326592. Thus we get new
Hopf algebras with the dual Chevalley property of dimension 13716864.

9. Group-theoretical Hopf algebras over Dn

Let Dn = 〈r, s : rn = s2 = 1, srs = r−1〉 be the dihedral group
of order 2n. The classification of the finite-dimensional pointed Hopf
algebras over Dn is known only when n = 4t > 12, t ∈ N [FG]. Here we
deal with the group-theoretical Hopf algebras over G = Dn for every n >
3. We summarize below some well-known facts about Dn:
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n odd n even

Z(Dn) 1 〈rn/2〉

AutDn {φk,l : (k, n) = 1, 0 6 l < n}; φk,l(r) = rk, φk,l(s) = srl

Subgroups 〈rd〉, d|n; 〈rd, rks〉, d|n, 0 6 k < d

Subgroups

up to AutDn
〈rd〉, d|n; 〈rd, s〉, d|n

Normal

subgroups
〈rd〉, d|n 〈rd〉, d|n; 〈r2, s〉; 〈r2, sr〉

[Dn, Dn] 〈r〉 〈r2〉

D̂n C2 C2 × C2

H2(Dn,C×) 1 C2

Table 7.

In Table 7, when n is even, a representative of the non-trivial class is
fχ ∈ Z2(Dn,k×), fχ(risj , rksl) = χ(rk)j , j ∈ {0, 1}, where χ : 〈r〉 → k×
is a character of order n. Note that χ(r

n
2 ) = −1.

9.1. Group-theoretical Hopf algebras over G = Dn, n odd.

Proposition 9.1. Every group-theoretical Hopf algebra over G is trivial.

Proof: Clearly H2(〈rd〉,k×) = 1 = H2(Dn/d,k×). Let (F, α,Γ, β) be a
group-theoretical data for Dn; then F ∩ Γ = 1. By routine arguments,
using that n is odd, and Lemma 2.2, we see that HDn

1 1 (F,Γ) is trivial.

9.2. Group-theoretical Hopf algebras over G = Dn, n even.

Proposition 9.2. The classification of the non-trivial group-theoretical
Hopf algebras over G is given by the group-theoretical data in Table 8.

Question 9.3. Is it true that 9.a ' 9.c ' 9.e?

Proof: Let (F, α,Γ, β) be a group-theoretical datum for G. Then F ∩ Γ
is either 1 or else M = 〈rn/2, s〉 ' C2 × C2, up to equivalence of group-
theoretical data.
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# F α Γ β Condition G(H)

9.a

〈rd, rks〉,
d|n,

06k<d,
{d 6=2 or

(d 6=n and d 6= n
2

)}

1

〈re, s〉,
e|n,

{e 6= 2 or

(e 6= n and e 6= n
2

)}

1
(d, e) = 2,

[d, e] = n,

rk /∈ 〈r2〉

For d = 2,

(C2×C2)oC2

if n
2

is even,

C2 × C2

if n
2

is odd.

For d 6= 2,

C2 × C2

if n
d

is even,

C2 if n
d

is odd.

9.b

〈re, s〉,
e|n,

{e 6= 2 or

(e 6= n and e 6= n
2

)}

1

〈rd, rks〉,
d|n,

06k<d,
{d 6=2 or

(d 6=n and d 6= n
2

)}

1
(d, e) = 2,

[d, e] = n,

rk /∈ 〈r2〉

the same as

before for e

9.c 〈rn/2, s〉 6=1 Dn 1 n 6= 4

C2 × C2

if n
2

is even,

C2 if n
2

is odd.

9.d Dn 1 〈rn/2, s〉 6=1 n 6= 4 C2 × C2

9.e

〈rd, rks〉,
d|n, d 6=1,

06k<d,
{d 6=2 or

(d 6=n and d 6= n
2

)}

6=1

〈re, s〉,
e|n,
e 6= 1,

{e 6= 2 or

(e 6=n and e 6= n
2

)}

1

(d, e) = 1,

[d, e] = n
2
,

rk ∈ 〈rd〉

For d = 2,

(C2×C2)oνC2

if n
2

is even,

C2 × C2

if n
2

is odd.

For d 6= 2,

C2 × C2

if n
d

is even,

C2 if n
d

is odd.

9.f

〈re, s〉,
e|n,
e 6= 1,

{e 6= 2 or

(e 6=n and e 6= n
2

)}

1

〈rd, rks〉,
d|n, d 6=1,

06k<d,
{d 6=2 or

(d 6=n and d 6= n
2

)}

6=1

(d, e) = 1,

[d, e] = n
2
,

rk ∈ 〈rd〉

the same as

9.a for e

Table 8. Group-theoretical data for Dn, n even.

Case 1: F ∩ Γ = 1, i.e. (F,Γ) is an exact factorization. If F = 〈rd〉 and

Γ = 〈re, rks〉, then (d, e) = 1, so de = n, and HDn
1 1 (F,Γ) is cocommu-

tative. Thus, we may assume that F = 〈rd, rks〉 and Γ = 〈re, s〉, up
to equivalence of group-theoretical data. We claim that this is an exact
factorization iff

(9.1) (d, e) = 2, [d, e] = n, rk /∈ 〈r2〉.
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First, F∩Γ =
(
〈rd〉∪〈rd〉rks

)
∩
(
〈re〉∪〈re〉s

)
= 〈r[d,e]〉∪

(
〈rd〉rks∩〈re〉s

)
.

So F ∩Γ = 1 iff n|[d, e] and rk /∈ 〈rd〉〈re〉 = 〈r(d,e)〉. If (F,Γ) is an exact
factorization, then 2n = |F ||Γ| = 2n

d ·
2n
e , i.e. 2n = de, and [d, e] = 2n

or n. But [d, e] = 2n implies (d, e) = 1 and rk ∈ 〈r〉, a contradiction.
Thus (9.1) holds. Conversely, if (9.1) holds, then F ∩ Γ = 1 and

FΓ = 〈rd〉〈re〉 ∪ 〈rd〉〈re〉s ∪ 〈rd〉rks〈re〉 ∪ 〈rd〉rks〈re〉s

= 〈r2〉 ∪ 〈r2〉s ∪ 〈r2〉rks ∪ 〈r2〉rk = Dn since k is odd.

Finally, F CDn iff d = 2; F is abelian iff d = n or d = n
2 ; the same

for Γ. So, we must suppose that d 6= 2 or (d 6= n and d 6= n
2 ) and e 6= 2 or

(e 6= n and e 6= n
2 ). So, HDn

αβ (F,Γ) is non-trivial. Now, using Lemma 9.4

HDn
αβ (F,Γ) ' HDn

1 1 (F,Γ) this gives 9.a.

Case 2: F ∩ Γ = M . If (F,Γ) = (〈rn/2, s〉, Dn), then F CDn iff n = 4.

By Lemma 2.2(ii), HDn
α 1 (F,Γ), n 6= 4, is non-trivial, this gives 9.c.

Now, we may assume that F = 〈rd, rks〉 and Γ = 〈re, s〉. We claim
that this is a factorization such that F ∩ Γ = M if and only if

(9.2) (d, e) = 1, [d, e] =
n

2
, rk ∈ 〈rd〉.

We have that F ∩Γ = 〈rn/2, s〉 iff [d, e] ≡ n
2 mod n and rk ∈ 〈r(n2 ,d)〉.

If (F,Γ) is a factorization such that F ∩ Γ = M , then 2n = |F |·|Γ|
|F∩Γ| =

1
4

2n
d

2n
e , i.e. de = n

2 , and [d, e] = n
2 , (d, e) = 1. Thus (9.2) holds. Con-

versely, if (9.2) holds, then F ∩ Γ = M and

FΓ = 〈r(d,e)〉 ∪ 〈r(d,e)〉s ∪ 〈r(d,e)〉rks ∪ 〈r(d,e)〉rk

= 〈r〉 ∪ 〈r〉s ∪ 〈r〉rks ∪ 〈r〉rk = Dn.

If 1 6= α ∈ H2(Dn/d,k×) ' C2 ' H2(Dn/e,k×) 3 β 6= 1, then

α|F∩Γ 6= 1, β|F∩Γ 6= 1 by Lemma 9.4 below. Further, HDn
αβ (F,Γ), d 6= 2

or (d 6= n and d 6= n
2 ) and e 6= 2 or (e 6= n and e 6= n

2 ), is non-trivial,
this gives 9.e.

Then the Hopf algebra associated to 9.c is a twisting of kDn.

Lemma 9.4. Let n be even. If F = 〈rd, rks〉, d|n, 0 6 k < d, n
d even,

then the restriction map Res: H2(Dn,C×)→ H2(F,C×) is non-trivial.

Theorem 9.5. Let be n = 4t, t > 3. The Hopf algebras from Ta-
ble 8 admit families of finite-dimensional Yetter–Drinfeld modules V with
B(V ) = Λ(V ). Hence we get new finite-dimensional Hopf algebras with
the dual Chevalley property.
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The liftings of B(V )#kG, where V is as above, are classified in [FG,
Theorem B]. Indeed, the Hopf algebras

• B(MI)#kDn with I = {(i, k)} ∈ I, k 6= n,
• B(ML)#kDn with L ∈ L,
• AI(λ, γ) with I ∈ I, |I| > 1 or I = {(i, n)} and γ ≡ 0,
• BI,L(λ, γ, θ, µ) with (I, L) ∈ K, |I| > 0, and |L| > 0,

are liftings of B(V )#kDn and any lifting is isomorphic to one of these
algebras. For the definitions see [FG, Definitions 2.6, 2.9, 2.14, 3.9,
3.11]. For the isomorphism classes of these families of Hopf algebras see
[FG, Lemmas 3.16, 3.17].

Remark 9.6. Let be n = 4t, t > 3, and H be the Hopf algebra cor-
responding to 9.c. The classification of all liftings of B(V )#H follows
from [FG, Theorem B]. The idea is the same as in Remarks 3.3, 4.4, 5.4,
and 7.4.
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