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Abstract. Nishiyama introduced a lattice theoretic classification of the el-
liptic fibrations on a K3 surface. In a previous paper we used his method to
exhibit 52 elliptic fibrations, up to isomorphisms, of the singular K3 surface of
discriminant −12. We prove here that the list is complete with a 53th fibra-
tion, thanks to a remark of Elkies and Schütt. We characterize the fibration
both theoretically and with a Weierstrass model.
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1. Introduction

In a previous paper [BGHLMSW], the authors gave a classification, up to au-
tomorphisms, of the elliptic fibrations on the singular K3 surface X whose tran-
scendental lattice is isometric to 〈6〉 ⊕ 〈2〉. This classification was derived from the
Kneser-Nishiyama method. Each elliptic fibration was given with the Dynkin dia-
grams characterizing its reducible fibers, the rank and torsion of its Mordell-Weil
group. Hence 52 elliptic fibrations were obtained.

Later on, Elkies and Schütt informed us that we missed an elliptic fibration.
More precisely, Elkies said how he discovered the lack [El]: "while tabulating some
information about the lattices in this genus (positive-definite even lattice of rank
18 and discriminant 12)... I had already done the smaller discriminants), including
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the sizes of their automorphism groups, and calculated their total mass (=sum of
1/|Aut(G)|) which added up to less than the prediction of the mass formula. The
discrepancy was a fraction 1/N so I guessed that just one lattice, with N automor-
phisms, was missing, and eventually figured out where I lost the 53rd lattice."

This paper intends to complete the gap.
Let us recall briefly the context. Given E an elliptic fibration on X, we define

its trivial lattice by T(E) := U ⊕ (WE)root where WE denotes its frame lattice,
that is the orthogonal complement of U in the Neron-Severi group NS(X). The
Mordell-Weil group of E is encoded in the frame

(1) MW (E) = WE/(WE)root.

Thus

(2) rk(MW (E)) = rk(WE)− rk(WE)root (MW (E))tors = (WE)root/(WE)root.

The Kneser-Nishiyama’s method provides a determination of the frame. Starting
from the transcendental lattice of X

TX =

(
6 0
0 2

)
,

denote T the root lattice T = A5 ⊕ A1, orthogonal complement of TX(−1) in the
root lattice E8. Take a Niemeier lattice L, that is a unimodular lattice of rank 24,
with root lattice Lroot, often written L = N(Lroot). Consider a primitive embedding
φ : T ↪→ L. The orthogonal complement of φ(T ) in L is the frame of an elliptic
fibration on X and since T is a root lattice [BGHLMSW], it suffices to consider all
the primitive embeddings of T in Lroot to obtain all the elliptic fibrations on X.
Denote

W = (φ(A5 ⊕A1))⊥L and N = (φ(A5 ⊕A1))⊥Lroot

and observe that Wroot = Nroot. Moreover the trivial lattice of the elliptic fibration
provided by φ satisfies T (E) = U ⊕Wroot and we can apply formulae (1) and (2).

Now given two points P and Q of the Mordell-Weil group, we can define a height
pairing. The Mordell-Weil group, up to its torsion subgroup, equipped with this
height pairing, is the Mordell-Weil lattice MWL(X) which satisfies

MWL(X) = W/Wroot.

Thus we recover more than the rank and torsion but also torsion and infinite sections
of the elliptic fibration.

To list all the primitive embeddings of A5 ⊕A1 in the various Niemeier lattices,
the authors of [BGHLMSW] used Nishiyama’s tables [Nis] p.309 and p.323. They
noticed two primitive embeddings of A5 in D6, not isomorphic by the Weyl group
of D6, namely

i1(A5) = (d5, d4, d3, d2, d1) and i2(A5) = (d6, d4, d3, d2, d1)

but p.323, Nishiyama missed the orthogonal complement in D6 of i1(A5). That
is the origin of the gap which concerns the primitive embeddings of A5 ⊕ A1 in
L = N(D4

6) and L = N(A2
9D6).

The paper is divided in two parts. In the first part we prove that the two
primitive embeddings of A5 in D6 give two primitive embeddings of A5 ⊕ A1 in
N(D4

6) isomorphic by an element of Aut(N(D4
6)) so lead to just one elliptic fibration

up to isomorphism. On the contrary, these embeddings i1 and i2 give rise to two non
isomorphic primitive embeddings in N(A2

9D6) thus exactly to two elliptic fibrations
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and not only one as listed in [BGHLMSW]. Hence we obtain the 53th fibration
denoted by #40 bis. We also explain the determination of the Mordell-Weil lattices.

In the second part we show how to derive the corresponding elliptic fibrations
from the fibration #50 of [BGHLMSW] with Weierstrass equation (10) and its
associated graph. We set also the correspondence between the results found in the
first part of the paper and those coming from the graph.

Acknowledgement 1. We are grateful to N. Elkies and M. Schütt for pointing
out a missing fibration in the classification [BGHLMSW].

2. Some facts concerning Niemeier lattices and their automorphisms

Concerning the definitions and properties of the irreducible root lattices An,
Dn, En and their dual lattices we refer to [BGHLMSW] or [BL] and use Bourbaki’s
notations, as in the Dynkin diagram of D6 (see section 3).

Let L a Niemeier lattice i.e. a unimodular lattice of rank 24. We define its
root lattice Lroot = {α ∈ L/ < α, α >= −2} where < ., . > denotes the Z-bilinear
form on L. We recall that a Niemeier lattice L is, up to an isomorphism, entirely
determined by its root lattice Lroot; thus it is denoted L = N(Lroot). It can be
realized as a sublattice of the dual lattice (Lroot)

∗ of Lroot. Thus N(Lroot)/Lroot is
a finite abelian group, called the “glue code” or the set of “glue vectors”. Writing
Lroot = L1 ⊕ L2... ⊕ Lk where the Li are irreducible root lattices of type An, Dn

or En, a typical glue vector of L can be written [CS],

(3) z = [y1, y2, ..., yk]

where yi is a member of the dual lattice L∗i . Any yi can be altered by adding
a vector of Li so we may suppose that yi belongs to a standard system of repre-
sentatives for the cosets of Li in L∗i . It is usual to choose the glue vectors to be of
minimal length in their cosets.

The various vectors z of (3) must have integral inner products with each other
and be closed under addition modulo L1 ⊕ ...⊕ Lk. This process is called “gluing”
the components L1, ... Lk.

2.1. The automorphism group Aut(Lroot). In the sequel we denote X o Y a
split extension of a group Y by a group X. We recall that

Aut(Lm) = W (Lm) oG1(Lm)

where W (Lm) is the Weyl group of Lm and G1(Lm) the subgroup of Aut(Lm)
consisting of all Dynkin diagram automorphisms of Lm.

Set G0(Lroot) :=
∏k
m=1W (Lm), G1(Lroot) :=

∏k
m=1G1(Lm) and K(Lroot)

the following subgroup of Aut(Lroot)

K(Lroot) := {τ ∈ Aut(Lroot)/τ(Lm) = Lm ∀ m, 1 ≤ m ≤ k}.
The group G0(Lroot) is called the Weyl group of Lroot and is a normal subgroup of
K(Lroot). The group G1(Lroot) is a subgroup of K(Lroot) and we have the relation

K(Lroot) =

k∏
m=1

Aut(Lm) = G0(Lroot) oG1(Lroot).

For each 1 ≤ i < j ≤ k such that Li ' Lj , denote tij the transposition between the
entries i and j and set

G2(Lroot) := 〈tij/1 ≤ i < j ≤ k Li ' Lj〉
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the subgroup of Aut(Lroot) of all permutations of the concerned entries. Finally we
get

Aut(Lroot) = K(Lroot) oG2(Lroot) = (G0(Lroot) oG1(Lroot)) oG2(Lroot).

2.2. The automorphism group Aut(L). Since the spanning set ∆ = {α ∈
L/ 〈α, α〉 = −2} of Lroot is stable under the action of Aut(L), it follows that
Lroot is stable under Aut(L) and we get a group homomorphism

Aut(L) → Aut(Lroot)
τ 7→ τ |Lroot

.

Set G0(L) := G0(Lroot) ; it is a normal subgroup of Aut(L). Define the subgroup
of Aut(L), G1(L) := Aut(L) ∩G1(Lroot). They satisfy the relation

K(Lroot) ∩Aut(L) = G0(L) oG1(L).

Defining the subgroupH(L) of Aut(L) byH(L) := Aut(L)∩(G1(Lroot)oG2(Lroot)),
it follows Aut(L) = G0(L) oH(L). Define the subgroup G2(L) of G2(Lroot) by

G2(L) := {τ ∈ G2(Lroot)/τ1τ ∈ H(L) for some τ1 ∈ G1(Lroot)}.

From this definition we get a surjective homomorphism π2

π2 : H(L) → G2(L)
τ 7→ τ2

and the exact sequence

(4) 1→ G1(L)→ H(L)→ G2(L)→ 1.

Because Aut(L) is a subgroup of Aut(Lroot), we get the induced action of Aut(L)
on the “glue code” L/Lroot. Moreover this action is the identity if and only if the
element τ of Aut(L) belongs to G0(L). Finally we observe that H(L) is identical
to the subgroup of G0(Lroot) oG1(Lroot) consisting of the elements preserving the
“glue code”.

For more details explaining how Aut(L) is obtained from Aut(Lroot) and how
we can construct an automorphism of L, we refer to [IS1] and [IS2].

3. The Niemeier lattice N(D4
6)

Recall first the glue vectors of D6. They are denoted [0], [1], [2], [3] by Conway
and Sloane [CS] and δ6, δ̄6, δ̃6 in [BGHLMSW] with the following correspondence

[1] = δ6 = 1
2 (d1 + 2d2 + 3d3 + 4d4 + 2d5 + 3d6)

[2] = δ̄6 = d1 + d2 + d3 + d4 + 1
2 (d5 + d6)

[3] = δ̃6 = 1
2 (d1 + 2d2 + 3d3 + 4d4 + 3d5 + 2d6),

and satisfy [1] + [3] = [2].

d6 d4 d3 d1d2

d5

Also Aut(D6) = W (D6) oG1(D6) with G1(D6) ' Z/2Z which interchanges the
glue vectors [1] and [3].

Moreover
N(D4

6) = Z{D6 ⊕D6 ⊕D6 ⊕D6, glue code}.
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The glue code, i.e. the set of glue vectors is given by all the even permutations
of [0, 1, 2, 3] where i denotes, by abuse of notation, the glue vector [i]. Thus A4 is
contained in Aut(N(D4

6)). More explicitly the glue code is

(5)

[0, 0, 0, 0], [0, 1, 2, 3], [0, 3, 1, 2], [0, 2, 3, 1],
[1, 1, 1, 1], [1, 0, 3, 2], [1, 3, 2, 0], [1, 2, 0, 3],
[2, 2, 2, 2], [2, 0, 1, 3], [2, 3, 0, 1], [2, 1, 3, 0],
[3, 3, 3, 3], [3, 0, 2, 1], [3, 1, 0, 2], [3, 2, 1, 0].

Lemma 1. Up to an isomorphism of the Weyl group W (D6), there are two primi-
tive embeddings of A5 in D6, namely

i1(A5) = (d5, d4, d3, d2, d1)

i2(A5) = (d6, d4, d3, d2, d1).

These two embeddings are interchanged by the element g ∈ G1(D6) interchanging
d5 and d6. Moreover g acts on the glue vectors of D6:

g([1]) = [3], g([2]) = [2], g([3]) = [1].

Proof. It follows straightforward from the definitions. �

Theorem 1. Let y be any glue vector of N(D4
6), y = [a, b, c, d]. Define the ap-

plication of g on the glue code as g(y) = [g(a), g(b), g(c), g(d)]. Denote by τ any
transposition of two components. Then τ ◦ g ∈ Aut(N(D4

6)).

Proof. Consider any permutation of two elements, for example take for τ the trans-
position of the two last components. Observe first that τ and g commute; it follows
(τ ◦g)2 = Id. This allows us to present the action of τ ◦g on the glue code as below:

[0, 0, 0, 0] [0, 1, 2, 3] [0, 2, 3, 1] [1, 1, 1, 1] [1, 3, 2, 0]
τ ◦ g l l l l l

[0, 0, 0, 0] [0, 3, 1, 2] [0, 2, 3, 1] [3, 3, 3, 3] [3, 1, 0, 2]

[2, 2, 2, 2] [2, 0, 1, 3] [2, 1, 3, 0] [1, 0, 3, 2] [1, 2, 0, 3]
τ ◦ g l l l l l

[2, 2, 2, 2] [2, 0, 1, 3] [2, 3, 0, 1] [3, 0, 2, 1] [3, 2, 1, 0].

Since τ ◦ g is bijective on the glue code it belongs to Aut(N(D4
6)). The same

conclusion is obtained if τ is an arbitrary transposition.

Remark 1. The well-known isomorphism G1(N(D4
6))oG2(N(D4

6)) ' S4 [CS] can
be given explicitly as

S4 → Aut(N(D4
6))

σ 7→ σ ◦ ge(σ)

where e(σ) = 0 if σ is even and 1 otherwise.

Remark 2. Moreover if τ permutes the two last components, τ ◦ g fixes the glue
vectors having their two first components made with 0 or 2, permutes the glue vectors
beginning by 0 on one side and the glue vectors beginning by 2 on the other side;
also it transforms the glue vectors beginning by 1 into the glue vectors beginning by
3.

�
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Corollary 1. The two primitive embeddings of A5 ⊕A1 in N(D4
6) given by

(i1(A5), d6, 0, 0) and (i2(A5), d5, 0, 0) are isomorphic by an element of Aut(N(D4
6)).

Proof. We take for τ the transposition of the two last components. We get that
τ ◦ g interchanges the two embeddings and by the previous theorem belongs to
Aut(N(D4

6)). �

4. The Niemeier lattice N(A2
9D6)

Aside the glue vectors of D6 defined in the previous section, the glue group of
A9 is cyclic, generated by α, see for example [BL] or [CS]:

α =
1

10
[9a1 + 8a2 + 7a3 + 6a4 + 5a5 + 4a6 + 3a7 + 2a8 + a9].

By abuse of notation we write 1 for the class of α in A∗9/A9 and more generally i
for the class of iα. We recall that

Aut(A9) = W (A9) oG1(A9),

where W (A9) denotes the Weyl group and G1(A9) consists in the automorphisms
of the Dynkin diagram of A9 forming a group of order 2 exchanging ai and a10−i
for all 1 ≤ i ≤ 9 and therefore i and 10− i according to the above convention. This
automorphism acting on the first (resp. second) factor A9 of Lroot will be denoted
γ1 (resp. γ2). It follows

G1(Lroot) = G1(A
(1)
9 A

(2)
9 D6) ' Z/2Z× Z/2Z× Z/2Z,

G2(Lroot) ' Z/2Z = 〈h〉,
where h exchanges the two copies of A9.

Set γ = γ1γ2, h1 = γ1g and h2 = γ2g.

Proposition 1. (1) The subgroup G1(L) = Aut(L) ∩ G1(Lroot) ' Z/2Z is
generated by γ.

(2) The automorphism h of G2(A
(1)
9 A

(2)
9 D6) is an automorphism of G2(L) =

G2(N(A
(1)
9 A

(2)
9 D6)); moreover h1h and h2h belong to Aut(L). Hence the

subgroup G2(L) is generated by h.
(3) The subgroup H(L) = (G1(Lroot)oG2(Lroot))∩Aut(L) is generated by h1h

and h2h.

Proof. Recall, [CS], that the glue code is generated by

[2, 4, 0], [5, 0, 1], [0, 5, 3],

and that G1(L) ' Z/2Z and G2(L) ' Z/2Z.
(1) We verify that γ belongs to G1(Lroot), preserves the glue code and is of

order 2.
(2) According to 2.2, it suffices to exhibit an element h1 ∈ G1(Lroot) such that

h1h ∈ (G1(Lroot)oG2(Lroot))∩Aut(L), i.e. preserving the glue code of L.
We verify easily h1h([2, 4, 0]) = [6, 2, 0] = 3×[2, 4, 0], h1h([5, 0, 1]) = [0, 5, 3]
and h1h([0, 5, 3]) = [5, 0, 1]. Thus h ∈ Aut(L) and generates G2(L) since
G2(L) ' Z/2Z.

(3) This follows from the previous item and the isomorphisms G1(L) ' Z/2Z
and G2(L) ' Z/2Z [CS].

�
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Table 1. Contributions for the height pairing

fiber IV ∗ III∗ In n > 1 I∗n
Dynkin diagram E6 E7 An−1 Dn+4

i = j 4/3 3/2 i(n− i)/n

{
1 i = 1

1 + n/4 i = 2, 3

i < j 2/3 – i(n− j)/n

{
1/2 i = 1

1/2 + n/4 i = 2, 3

Corollary 2. The two primitive embeddings of A5 in D6, namely i1 and i2, corre-
spond to at most two elliptic fibrations of X, non isomorphic by an automorphism
of N(A

(1)
9 A

(2)
9 D6).

Proof. From the proposition we deduce that the fibration obtained with the em-
beddings A1 = a1 in A

(1)
9 and i1(A5) in D6 is isomorphic by the automorphism

h2h to A1 = a9 embedded in A
(2)
9 and i2(A5) in D6. Similarly, the fibration ob-

tained with the embeddings A1 = a1 in A(2)
9 and i1(A5) in D6 is isomorphic by the

automorphism of h1h to A1 = a9 embedded in A(1)
9 and i2(A5) in D6.

�

5. From primitive embeddings to Mordell-Weil lattices

Let X the K3-surface of discriminant −12 studied in [BGHLMSW]. To each
primitive embedding of A5 ⊕ A1 in Lroot for L Niemeier lattice, corresponds an
elliptic fibration of X. Define W = (A5 ⊕ A1)⊥L and N = (A5 ⊕ A1)⊥Lroot . First
observe that Wroot = Nroot. Then the configuration of singular fibers in the cor-
responding elliptic fibration is encoded in the trivial lattice T (X) of the elliptic
fibration given by

T (X) = U ⊕Wroot.

The torsion group is given by Wroot/Wroot.
The Mordell-Weil lattice MWL(X), that is the Mordell-Weil group modulo its

torsion subgroup equipped with the height pairing is given by

MWL(X) = W/Wroot,

where the bar means the primitive closure. The height pairing of two points P and
Q of the Mordell-Weil group is given by the Shioda’s formulae

(6) 〈P,Q〉 = 2 + P̄ .Ō + Q̄.Ō − P̄ .Q̄−
∑
v

contrv(P,Q)

and the height of P by

(7) h(P ) = 〈P, P 〉 = 4 + 2P̄ .Ō −
∑
v

contrv(P )

where O denotes the zero, the bar their associated sections and v runs through the
singular fibers. If Θv,i is a component of the singular fiber Θv and if P (resp. Q)
intersects Θv,i (resp. Θv,j), i < j, we recall the table of their contributions, Table
1.
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Recall that the single components of an I∗n fiber, n > 0, are distinguished into
the near component Θ1 which intersects the same double component as the zero
component and the far components Θ2, Θ3.

5.1. Defining sections of our fibrations. In each class of W/N we choose a
representative in order to form either a torsion or an infinite section of the fibration.
The section V is defined as

V = kF +mO + ω,

F being the generic fiber, O the zero section, ω a well chosen glue vector in a coset
of W/N . Since V has to satisfy V.F = 1, it follows m = 1. The rational integer k
can be obtained from the relation V.V = −2, since ω.ω is even. Finally the glue
vector ω is chosen so that V cuts each singular fiber in exactly one point. Then we
test if the section cuts or not the zero section in order to apply the height formula
(7). Sections with height 0 are torsion sections. Moreover we have to determine
infinite sections with a height matrix giving the discriminant of the K3 surface,
that is in our case 12, according to the formula [ScSh]

(8) disc(NS(X)) = (−1)rankE(K)disc(T (X))disc(MWL(X))/(#E(K)tors)
2.

6. The elliptic fibration from L = N(D4
6)

Take the unique, up to Aut(L), primitive embedding of A5 ⊕ A1 in L given by
φ(A5 ⊕A1) = (i1(A5), d6, 0, 0). We get

(i1(A5))⊥D6 = z6 = 2δ6 = 2[1],

(A1)⊥D6 = 〈d5〉 ⊕ 〈x3 := d5 + d6 + 2d4 + d3, d3, d2, d1〉 = A1 ⊕D4,

N := ((i1(A5)⊕A1)⊥Lroot = (〈z6〉, A1 ⊕D4, D6, D6)

and Nroot = (0, A1 ⊕D4, D6, D6). Since detN = 12× 43, detW = 12, it follows

W/N ' (Z/2Z)
3
.

An elliptic fibration is characterized by its torsion sections, infinite sections and
where these sections cut the singular fibers of the fibration. All these data are
encoded in W/N and so we shall first compute these groups.

Observing that [2] and [3] do not belong to i1(A5)
⊥D∗

6 , the elements of the glue
code (5) belonging to W/N are only those beginning by 0 or 1, precisely

[0, 0, 0, 0] [0, 1, 2, 3] [0, 3, 1, 2] [0, 2, 3, 1]
[1, 1, 1, 1] [1, 0, 3, 2] [1, 3, 2, 0] [1, 2, 0, 3].

Among them only those beginning by 0 belongs to W root. Thus torsion sections
can be realized only from the glue vectors

[0, 0, 0, 0], [0, 1, 2, 3], [0, 3, 1, 2], [0, 2, 3, 1].

Moreover we must choose in them elements belonging to W root. Since, in the
coset [3], δ̃6 satisfies

2δ̃6 = d1 + 2d2 + d3 + 2x3 + d5 ∈ D4 ⊕A1

and in coset [2],
2δ̄6 = 2d1 + 2d2 + d3 + x3 ∈ D4

Albanian J. Math. 11 (2017), no. 1, 13-33.
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Table 2. Contributions

Contr. on Contr. on Contr. on Contr. on
D4 A1 D6 D6

δ̄6 ∈ [2] 1 0 1 1
δ̃6 ∈ [3] 1 1/2 1+1/2 1+1/2
δ − d3 − d4 − d6 ∈ [1] 1 1/2 1+1/2 1+1/2
δ ∈ [1] 1 0 1+1/2 1+1/2

Table 3. Contributions and heights of the sections from N(D4
6)

Contr. Contr. Contr. Contr. ht.
D4 A1 D6 D6

Q1 0 + 2F + [0, 2, 3, 1] 1 0 3/2 3/2 0
Q3 0 + 2F + [0, 3, 1, 2] 1 1/2 3/2 1 0
Q2 0 + 2F + [0, 1−d3−d4−d6, 2, 3] 1 1/2 1 3/2 0
W1 0 + 2F + [1, 0, 3, 2] 0 0 3/2 1 3/2

W1+Q1 0 + 2F + [1, 2, 0, 3] 1 0 0 3/2 3/2
W1+Q3 0 + 2F + [1, 3, 2, 0] 1 1/2 1 0 3/2
W1+Q2 0 + 3F + [1, 1−d3−d4−d6, 1, 1] 1 1/2 3/2 3/2 3/2

it is possible to write torsion sections from [0, 3, 1, 2], [0, 2, 3, 1] and [0, 0, 0, 0]. It
remains to find in the coset [1] an element with the same property, that is δ− d3−
d4 − d6, since

2δ6 − 2d3 − 2d4 − 2d6 = d1 + 2d2 + x3 + d5 ∈ D4 ⊕A1.

The Mordell-Weil lattice being W/Wroot, the infinite sections can be realized
from the classes

[1, 0, 3, 2], [1, 2, 0, 3], [1, 3, 2, 0], [1, 1− d3 − d4 − d6, 1, 1].

The various contributions to the singular fibers can be derived from Table 1.
Taking in account the different values δ2

6 = δ̃2
6 = (δ6 − d3 − d4 − d6)2 = −3/2

and δ̄2
6 = −1, we can draw a table with the various contributions to height for the

different sections in Table 3.
It is easily derived that the torsion group of the elliptic fibration is isomorphic

to Z/2Z × Z/2Z and the Mordell-Weil lattice is generated by a section of height
3/2, in concordance with the formula (8),

−12 = discNS(X) = −4× 4× 4× 2× 3

2
× 1

42
.

Thus we have proved the following result.

Proposition 2. The elliptic fibration on the K3-surface X derived from Niemeier
lattice L = N(D4

6) has singular fibers of type A1 (I2), D4 (I∗0 ), D6 (I∗2 ), D6 (I∗2 ).
Its Mordell-Weil group has rank 1 and torsion part isomorphic to Z/2Z×Z/2Z. Its
Mordell-Weil lattice is generated by an infinite section of height 3/2.
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7. The elliptic fibrations from L = N(A2
9D6)

Let L be the Niemeier lattice with L = N(A
(1)
9 A

(2)
9 D6). By [CS] we know that

L is obtained from the following glue vectors

L/Lroot = 〈[2, 4, 0], [5, 0, 1], [0, 5, 3]〉,

where 1 denotes the coset in A∗9/A9 of α = 1
10 (9a1 + 8a2 + 7a3 + 6a4 + 5a5 + 4a6 +

3a7 + 2a8 + a9). From Corollary 2 we know that we have at most two elliptic
fibrations coming from the Niemeier lattice L = N(A2

9D6) non isomorphic by an
automorphism of L. We shall prove that we have effectively two.

7.1. First embedding in D6. We embed A1 in A(1)
9 by φ(A1) = 〈a(1)

1 〉 and A5 in
D6 by i1(A5) = (d5, d4, d3, d2, d1). As computed in [BGHLMSW], we obtain

N = (φ(A1)⊕ i1(A5))
⊥Lroot = [〈a1 + 2a2, a3, ..., a9〉, A9, 〈z6〉]

with z6 = d1 + 2d2 + 3d3 + 4d4 + 2d5 + 3d6 and det(〈a1 + 2a2, a3, ..., a9〉) = 2× 10;
thus det(N) = 2× 10× 10× 6. It follows Nroot = [〈a3, ..., a9〉, A9, 0] ' A

(1)
7 ⊕ A

(2)
9

and W/N = 〈[2, 4, 0], [5, 0, 1]〉 ' Z/10Z. Since there is no integer k satisfying
k([2, 4, 0]) ∈ Nroot and no integer k′ with k′([5, 0, 1]) ∈ Nroot, we deduce that
Wroot/Wroot = (0) so the corresponding elliptic fibration has trivial torsion and
rank 2.

Now we want to determine the Mordell-Weil lattice of the fibration, in our case

MWL(X) = W/Wroot 'W/Wroot.

The infinite sections are derived from elements of the glue code of W/N , namely
from

[2, 4, 0], [4, 8, 0], [6, 2, 0], [8, 6, 0], [0, 0, 0]
[5, 0, 1], [7, 4, 1], [9, 8, 1], [1, 2, 1], [3, 6, 1].

We define sections as explained in 5.1 so we search in each coset j an element
αj satisfying αj .aj = 1 and αj .ai = 0. We obtain a unique solution

−αj := jα− (j − 1)a1 − (j − 2)a2...− aj−1.

We observe that αj ∈ W for all j but j = 1. Thus we choose in the coset of α1

an element in W and cutting A7 = 〈a3, a4, ..., a9〉 in exactly one point, namely
−ᾱ1 = α − a1 − a2. The elements (α1, α2, ..., α9) are in fact the dual elements
(a∗1, a

∗
2, ..., a

∗
9). So their Gram matrix is minus the inverse matrix of the Gram

matrix of the ai, namely
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Table 4. Height and pairing-First embedding

I8 I10 <Vi,V1> <Vi,V2> ht(Vi) order

V1 O+2F+[α9,α8,1] 7 8 61
40

1
20

61
40 10 V1

V2 O+2F+[α8,α6,0] 6 6 1
20

1
10

1
10 5 V2

V3 O+3F+[α7,α4,1] 5 4 63
40

3
20

69
40 10 V1 + V2

V4 O+2F+[α6,α2,0] 4 2 1
10

1
5

4
10 5 2V2

V5 O+2F+[α5,0,1] 3 0 13
8

1
4

17
8 2 V1 + 2V2

V6 O+2F+[α4,α8,0] 2 8 3
20

3
10

9
10 5 3V2

V7 O+3F+[α3,α6,1] 1 6 67
40

7
20

109
40 10 V1 + 3V2

V8 O+2F+[α2,α4,0] 0 4 1
5

2
5

8
5 5 4V2

V9 O+2F+[α1−a1−a2,α2,1] 1 2 59
40

−1
20

61
40 10 V1 − V2

V11 O+2F+[−a1−2a2−a3,0,0] 2 0 −1
4

−1
2

5
2 0 −5V2

V12 O+3F+[0,0,2δ6] 0 0 3 0 6 0 2V1 − V2

(9)



9
10

4
5

7
10

3
5

1
2

2
5

3
10

1
5

1
10

4
5

8
5

7
5

6
5 1

4
5

3
5

2
5

1
5

7
10

7
5

21
10

9
5

3
2

6
5

9
10

3
5

3
10

3
5

6
5

9
5

12
5 2

8
5

6
5

4
5

2
5

1
2 1

3
2 2

5
2 2

3
2 1

1
2

2
5

4
5

6
5

8
5 2

12
5

9
5

6
5

3
5

3
10

3
5

9
10

6
5

3
2

9
5

21
10

7
5

7
10

1
5

2
5

3
5

4
5 1

6
5

7
5

8
5

4
5

1
10

1
5

3
10

2
5

1
2

3
5

7
10

4
5

9
10


We read directly on the above matrix

α2
1 = α2

9 = − 9

10
, α2

2 = α2
8 = −8

5
, α2

3 = α2
7 = −21

10
, α2

4 = α2
6 = −12

5
, α2

5 = −5

2

and we compute ᾱ1
2 = − 9

10 .
Hence we obtain the nine non zero sections Vi, 1 ≤ i ≤ 9, quoted in the Table

4. Using the entries of the matrix (9) we obtain their contributions to the singular
fibers, their heights and the various 〈Vi, V1〉 and 〈Vi, V2〉, according to formulae
(6) and (7). Moreover the determinant of the height matrix of V1, V2 is equal
to 3

20 fitting with the formula (8). These data allow in turn to express Vj for
j ≥ 3 as a linear combination of V1 and V2. For example, looking for a relation
V3 = aV1 + bV2, we compute 〈V3, Vk〉 = a〈V1, Vk〉 + b〈V2, Vk〉 with k = 1, 2. Thus
we get two equations in a, b and solving the system it follows a = b = 1.

Finally the order in the Table 4 refers to the order of the element in W/N of the
corresponding section.
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Theorem 2. The Mordell-Weil lattice can be generated by the section V2 and an-
other section whose class in W/N is of order 10 or 2 (V1, V3, V7, V9 or V5). It also
can be generated by V1 and V3 or V9.

The rational quadratic forms associated to these various height matrices are all
equivalent to the quadratic form Q(x, y) = 1

40 (61x2 + 4xy + 4y2).
The sublattice of index 10, N/Nroot of W/Nroot, is generated by V11 = −5V2 and

V12 with < V11, V12 >= 0.

Proof. We observe that the nine first sections are not in the same class modulo
Nroot.

The rational quadratic form Q(x, y) associated to the height matrix of (V1, V2)
is Q(x, y) = 1

40 (61x2 + 4xy + 4y2).
Other properties are simple transcriptions of the base change which can be de-

rived from the last column of Table 4. For example the rational quadratic form
associated to the height matrix of (V1, V9) is equivalent to Q(x, y) since1 0

1 −1

 61
40

1
20

1
20

1
10

1 1

0 −1

 =

 61
40

59
40

59
40

61
40



Finally we verify that the height matrix of (V11, V12), namely

 5
2 0

0 6

, has de-

terminant 15 = 102 3
20 . Moreover there exists a sublattice of index 2 generated by

V2 and V12 with < V2, V12 >= 0.
�

7.2. Second embedding in D6. We embed A1 in A(1)
9 by φ(A1) = 〈a(1)

1 〉 and A5

in D6 by i2(A5) = (d6, d4, d3, d2, d1). We obtain

N = (φ(A1)⊕ i1(A5))
⊥Lroot = [〈a1 + 2a2, a3, ..., a9〉, A9, 〈z̃6〉]

with z̃6 = d1 + 2d2 + 3d3 + 4d4 + 3d5 + 2d6 and det(〈a1 + 2a2, a3, ..., a9〉) = 2× 10;
thus det(N) = 2× 10× 10× 6. It follows Nroot = [〈a3, ..., a9〉, A9, 0] ' A

(1)
7 ⊕ A

(2)
9

and W/N = 〈[2, 4, 0], [0, 5, 3]〉 ' Z/10Z. Since there is no integer k satisfying
k([2, 4, 0]) ∈ Nroot and no integer k′ with k′([0, 5, 3]) ∈ Nroot, we deduce that
Wroot/Wroot = (0) so the corresponding elliptic fibration has trivial torsion and
rank 2.

Theorem 3. The Mordell-Weil lattice can be generated by the section Z2 and an-
other section whose class in W/N is of order 10 or 2 (Z1, Z3, Z7, Z9 or Z5). It also
can be generated by Z1 and Z3 or Z9. The rational quadratic forms associated to
these various height matrices are all equivalent to the quadratic form 1

10 (x2 +15y2).
The sublattice of index 10, N/Nroot, is generated by Z11 = −5Z2 and Z12.

Proof. The proof is similar to the previous proof.
�

Corollary 3. The Mordell-Weil lattices for the first i1 and second i2 embeddings
are not isomorphic. Thus they lead to two distinct elliptic fibrations.
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Table 5. Height and pairing-Second embedding

I8 I10 <Z1,Zi> <Z2,Zi> ht(Zi) o.

Z1 O+3F+[α4,α3,3] 2 3
12
5

3
10

12
5 10 Z1

Z2 O+2F+[α8,α6,0] 6 6
3
10

1
10

1
10 5 Z2

Z3 O+2F+[α2,α9,3] 0 9
27
10

2
5

31
10 10 Z1 + Z2

Z4 O+2F+[α6,α2,0] 4 2
3
5

1
5

2
5 5 2Z2

Z5 O+2F+[0,α5,3] 0 5
3
2 0

3
2 2 Z1 − 3Z2

Z6 O+2F+[α4,α8,0] 2 8
9
10

3
10

9
10 5 3Z2

Z7 O+2F+[α8,α1,3] 6 1
9
5

1
10

8
5 10 Z1 − 2Z2

Z8 O+2F+[α2,α4,0] 0 4
6
5

4
10

8
5 5 4Z2

Z9 O+3F+[α6,α7,3] 4 7
21
10

1
5

19
10 10 Z1 − Z2

Z11 O+2F+[−a1−2a2−a3,0,0] 2 0
−1
4

−1
2

5
2 0 −5Z2

Z12 O+3F+[0,0,δ̃6] 0 0 3 0 6 0 2Z1−6Z2

Proof. According to the previous theorems, the Mordell-Weil lattice for the first
(resp. second) embedding can be generated by the sections V1 and V2 (resp. Z2

and Z5) with height matrix

 61
40

1
20

1
20

1
10

 (resp.

 1
10 0

0 3
2

).

As we can prove easily that these two matrices are not equivalent, since there is

no matrix

a b
c d

 with integer entries satisfying

a b
c d

 1
10 0

0 3
2

a c
b d

 =

 a2

10 + 3
2b

2 ac
10 + 3

2bd

ac
10 + 3

2bd
c2

10 + 3
2d

2

 =

 61
40

1
20

1
20

1
10

 ,

for there are no integers a and b satisfying 4(a2 + 15b2) = 61. �

8. Weierstrass equations

In this second part we obtain the Weierstrass equations of the unique, up to
automorphism of the Niemeier lattice N(D4

6), elliptic fibration denoted #36 as in
[BGHLMSW] and of the two elliptic fibrations, non isomorphic by an automorphism
of the Niemeier lattice N(A2

9D6), numbered #40 as in [BGHLMSW] and #40 bis.
These fibrations are given with their torsion and infinite sections and their Mordell-
Weil lattices so we can easily see the parallelism between the theoretic results of
the first part and the new ones coming from the Weierstrass equations.

8.1. Background and method. We start from fibration #50 of ([BGHLMSW])
with Weierstrass equation

(10) Eu : y2 + (u2 + 3)yx+ (u2 − 1)2y = x3,

which is the universal elliptic curve with torsion structure (Z/2Z)
2 × Z/3Z.
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The points A2 = (− 1
4 (u2 − 1)2, 0), A22 = (−(u + 1)2, (u + 1)3) and A23 =

(−(u − 1)2, (u − 1)3) are 2-torsion points and the point P3 = (0, 0) is a 3-torsion
point.

The singular fibers are of type I6 for u = 1,−1,∞ and I2 for 3,−3, 0.
The components of an In fiber are numbered cyclically, Θi,j being the j−th

component of the singular fiber above u = i and the component Θi,0 intersecting
the zero section.

8.2. The graph Γ. The vertices of the graph Γ are the twelve torsion sections and
the 24 components Θi,j . Two vertices are linked by an edge if they intersect. To
make it easily visible, only some parts of this graph are drawn on the following
figures.

Recall first that two torsion sections do not intersect.
Then, we compute for a set of generating sections, which component of singular

fibers are intersected, derived for example from the method given in [Cr] or in [Si].
For the other torsion sections, we use the algebraic structure of the Néron model
or the height of sections as explained below.

Recall that the height of a torsion point P is 0 involving conditions on contrv (P )
since from formula (7) and Table 1 it follows 4 =

∑
v contrv (P ). For example, the

only possible sum of contributions for the 3-torsion point P3 is 2×4
6 + 2×4

6 + 2×4
6 +

0+0+0, and for a two-torsion point 3×3
6 + 3×3

6 +0+ 1
2 + 1

2 +0. Since the sum of two
2−torsion points is also a 2−torsion point, only one 2−torsion point intersects the
component Θi,0, for a given reducible fiber. These remarks allow us to construct Γ.

Let us now summarize useful results. The point P3 intersects the component
Θi,2 (by convention Θi,2 not Θi,4 ) of the I6 fibers and the component Θi,0 of the
I2 fibers. The point A2 intersects the components Θ∞,0 and Θ0,0, the point A22

intersects the components Θ1,0 and Θ−3,0 . These two points intersects Θi,3 for the
others I6 fibers and Θi,1 for the other I2 fibers.

8.3. Method for building elliptic fibrations from fibration #50. Recall that
it is sufficient to identify a divisor D on the surface that has the shape of a singular
fiber from Kodaira’s list and an irreducible curve C with C.D = 1 to find an elliptic
fibration with D as a singular fiber and C as a section. The fibration is induced by
the linear system |D|.

Moreover, if we can draw two divisors D and D′ on the graph Γ with D.D′ = 0
it is easier to determine a new fibration. We must define a function, called elliptic
parameter, with divisor D′ − D. Moreover if D and D′ are subgraph of Γ we use
the elliptic curve Eu. The method and computations are explicited for the fibration
#36.

9. Fibration #36

9.1. Weierstrass equation. We consider the divisors drawn in black (double cir-
cle) for D′ and green (dashed circle) for D on the graph (Figure 1) namely

D = Θ−1,1 + 2Θ−1,0 + Θ−1,5 + 2(0) + 2Θ1,0 + Θ1,1 + Θ1,5

D′ = (P3) + Θ∞,5 + 2Θ∞,4 + 2Θ∞,3 + 2Θ∞,2 + Θ∞,1 + (2P3).

The divisors D and D′ correspond to two singular fibers of type I∗2 of the same
fibration since D.D′ = 0.

We see also that Θ−1,3,Θ1,3 and A2 in blue are a part of another singular fiber.
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0

P3

2P3

A2

Θ∞,0

Θ∞,3

Θ∞,5

Θ∞,4Θ∞,2

Θ∞,1

Θ−1,0

Θ−1,3Θ−1,1

Θ−1,2

Θ−1,4

Θ−1,5

Θ1,0

Θ1,3 Θ1,1

Θ1,2

Θ1,4

Θ1,5

Θ−3,0 Θ−3,1

Θ3,0 Θ3,1

Figure 1. Fibration #36

Let w be a parameter for the new fibration such that w =∞ on D and 0 on D′.
So the divisors D and D′ correspond to the same element in the Néron-Severi

group NS(X). Let D = δ + ∆ and D′ = δ′ + ∆′ where δ, δ′ are sums of sections,
δ = 2(O) and δ′ = (P3) + (2P3), while ∆, ∆′ are sums of components of singular
fibers. It follows from the equality δ = δ′ in the group NS(X)/T (X) that δ − δ′ =
2(0) − (P3) − (2P3) is the divisor of a function on the elliptic curve Eu, precisely
the function x. The parameter w is then equal to x.f (u) . We compute f (u) using
three blow- up to get a pole of order 1 on Θ1,1,Θ−1,5,Θ∞,1 and obtain

w =
x

(u2 − 1)
2 .

Eliminating x in the equation of Eu and setting y = (u2 − 1)2z, u = 1 + U it
follows a quartic equation in z, U,w. All the transformations are summarized in
the birational transformation φ : (X,Y,w) 7→ (x, y, u) leading to the following
Weierstrass equation Ew
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Θ−1,1 Θ−1,0 0 Θ1,0 Θ1,5

w =∞

Θ−1,5

Θ−1,4

Θ1,1

Θ−1,2

Θ1,4

Θ1,2
P3 +A22

2P3 +A22

2P3 +A23

P3 +A23

Θ∞,1 Θ∞,2 Θ∞,3 Θ∞,4 2P3
w = 0

P3 Θ∞,5

Θ3,1A2Θ−3,1

Θ−1,3

Θ1,3

w = −1/4

Figure 2. Fibration 36

(11) Ew : Y 2 = X (X − w (1 + 4w))
(
X + w2 (1 + 4w)

)
with

x =
w (1 + 4w)

2 (
X + 4w3

)2
(2Y +X (2w + 1))

2

(Y −Xw − 2w3 (1 + 4w))
4

y = −
(1 + 4w)

3
X
(
X + 4w3

)4
(2Y +X (2w + 1))

2

(Y −Xw − 2w3 (1 + 4w))
6

u =
(1 + 4w)

(
X + 4w3

)
Y −Xw − 2w3 (1 + 4w)

+ 1.

The singular fibers are of type I∗2 for w = 0,∞, I∗0 for w = −1/4, I2 for w = −1.
We compute that the function w + 1/4 is equal to 0 on Θ±3,1, giving thus with

A2 and Θ±1,3 a complete description of the singular fiber I∗0 .
The component Θ0,1 is a component of the singular fiber I2 obtained for w = −1

and does not intersect the new 0 section. The second component is the curve with
the parametrization

u = −2
−3 + z2

3 + z2

x = −9
(z − 1)

2
(3 + z)

2
(z − 3)

2
(z + 1)

2

(3 + z2)
4 y = 27

(3 + z)
2

(z − 1)
2

(z + 1)
4

(z − 3)
4

(3 + z2)
6 .

This component gives a quadratic section on Eu and can be used to construct
other fibrations.

9.2. Sections of the fibration #36. Denote Q1 = (0, 0), Q2 = (w(4w + 1), 0),
Q3 = (−w2(4w + 1), 0) the two-torsion sections and W1 = (−4w3,−2w3(2w + 1))
an infinite section of Eu.

On the Figures 1 and 2, in red bullets, can be viewed the following sections of
the new fibration:

Θ1,2,Θ1,4,Θ−1,2,Θ−1,4
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Table 6. Heights for sections of fibration #36

Contr. on Θ1,4 Θ1,2 Θ−1,2 Θ−1,4 P3+A22 2P3+A22 P3+A23 2P3+A23

I∗2 w=0 0 3
2

3
2 0 1 3

2 1 3
2

I∗2 w=∞ 0 1 3
2

3
2

3
2

3
2 0 1

I∗0 w= −1
4 0 0 1 1 1 1 1 1

I2 w=−1 0 0 0 0 1
2

1
2

1
2

1
2

height 0 3
2 0 3

2 0 3
2

3
2 0

0 W1 Q1 Q1+W1 Q2 Q2+W1 Q3+W1 Q3

and also

P3 +A23, 2P3 +A23, P3 +A22, 2P3 +A22.

The correspondence between sections of fibrations #50 and #36 can be settled by
the transformation φ. Recall that the components Θi,j are obtained by blowing up.
For example the section P3 = (x = 0, y = 0) intersects the component Θ1,2, so this
component defined by x = (u − 1)2x2, y = (u − 1)2y2 satisfies y2 = 0. It follows
that the point W1 corresponds to Θ1,2 and the 0 section of the new fibration to
Θ1,4. For all results see Table 6.

9.3. Heights of sections. The heights of sections of the new fibration are com-
puted with the help of the graph. For example, we can see on Figure 2 that the
section 2P3 + A22 intersects Θ1,4 (the zero section), Θ∞,1 (I∗2 for w = 0), Θ−1,1

(I∗2 for w =∞), Θ−3,1 (I∗0 for w = − 1
4 ) and Θ0,1 (I2 for w = −1). The respective

contributions are then computed with Table 1 and from formula (7) it follows

h(2P3 + 2A22) = 4 + 2− (3/2 + 3/2 + 1 + 1/2) = 3/2.

Since the height of this section is equal to 3
2 , according to formula (8), it generates

the Mordell-Weil lattice. The results are summarized on Table 6.

10. Fibration #40

The two divisors

D = A2 + Θ−1,3 + Θ−1,2 + P3 + Θ∞,2 + Θ∞,1 + (A23 + 2P3) + Θ−3,1

D′ = Θ1,4 + Θ1,5 + Θ1,0 + 0 + Θ−1,0 + Θ−1,5 + (P3 +A22) + Θ∞,5 + Θ∞,4 + 2P3

can be viewed as two singular fibers of an elliptic fibration with elliptic parameter
p determined as explained in 9.1.

First we search on Eu a function g with three simple poles at 0, (2P3) and P3+A22

and three zeros at P3, A2 and A23 + 2P3. Taking

g = r +
y − yP3

x− xP3

+ s
y − y2P3+A22

x− x2P3+A22
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0

P3

2P3

A2

A23 + 2P3

P3 +A22

Θ∞,0

Θ∞,3 = ω

Θ∞,5

Θ∞,4Θ∞,2

Θ∞,1

Θ−1,0

Θ−1,3Θ−1,1

Θ−1,2

Θ−1,4

Θ−1,5

Θ1,0

Θ1,3 Θ1,1

Θ1,2

Θ1,4

Θ1,5

Θ−3,0 Θ−3,1

A23
2P3 +A22

Figure 3. Fibration 40

and choosing r and s satisfying g (A2) = g (A23 + 2P3) = 0, we get r = −u+ 1, s =
−u−1
u+1 . Finally to insure poles on D′ set p = g

u−1 so

p =

(
2x+

(
u2 − 1

)2)
y −

(
u2 − 1

)
x2

(u2 − 1)x
(
x+ (u+ 1) (u− 1)

2
) .

We can remark that p can also be obtained from the fibration #36 and the
parameter

p =
−Y

w (X − w (1 + 4w))
.

The usual transformations leading to a Weierstrass equation are summarized in
the birational map φ : ((x, y,p) 7→ (x, y, u) with
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x =
−G2

3G
2
4

p2x (x2 − p (p2 + 4p− 1) x− 4p3)
4 y =

−G2G
2
4G

3
3

p2x (x2 − p (p2 + 4p− 1) x− 4p3)
6

u =
−G1

p (x2 − p (p2 + 4p− 1) x− 4p3)

where

G1 =
(
x− 2p2

)
y + p2

(
p2 + 1

)
x− 4p4,G2 = (p+ 1) y + x2 − p2 (p+ 3) x,

G3 =
(
2p2 − x

)
y− px2 + 2p2 (2p− 1) x + 8p4,G4 =

(
2p2 − x

)
y + px2 − 2p3 (p+ 2) x.

We find then the following Weierstrass equation

(12) y2 −
(
p2 + 1

)
yx + 4p2y = x

(
x− p2

) (
x− 4p2

)
.

We denote V1 = (2p (p− 1) , 2p (p− 1)) and V2 =
(
0,−4p2

)
.

The first and last line of Table 7 are computed using φ and also ω = Θ∞,3 the
zero of the new fibration.

From the graph (Figure 3) we obtain the index of the component of the singular
fibers (I8 and I10) which a given section S meets (line 2 and 3 of Table 7). Then we
compute the heights as explained in 9.3. From formula (6), it follows < Θ1,1, 2P3 +
A22 >= 1

20 . Thus the height matrix of Θ1,1 and 2P3 +A22 has determinant 3/20.;
we recover the result:

The two sections V1 and V2 generate the Mordell-Weil lattice.

11. Fibration #40 bis

The two divisors

D = Θ∞,1 + Θ∞,2 + Θ∞,3 + Θ∞,4 + Θ∞,5 + (P3 +A22) + Θ0,1 + (A23 + 2P3)

D′ = Θ−1,2 + Θ−1,3 +A2 + Θ1,3 + Θ1,4 + Θ1,5 + Θ1,0 + 0 + Θ−1,0 + Θ−1,1

define two singular fibers of an elliptic fibration with elliptic parameter

t =
1

2

2y + (u− 3) (u− 1)x− (u− 1)
3

(u+ 1)
2

(u2 − 1)
(
x+ 1

4 (u2 − 1)
2
) ,

and Weierstrass equation

y2 + 2
(
t2 − 1

)
yx− 2t2y = x

(
x + t2

) (
x + 4t2

)
with the following birational transformations

Table 7. Heights for sections of fibration #40

sect. Θ1,1 Θ1,2 Θ1,3 Θ−1,1 Θ3,1 Θ0,1 A22 A23 2P3+A22 2P3+A2

I8 2 7 4 6 4 2 5 3 1 3

I10 4 8 2 6 8 8 4 6 2 0

ht
1
10

61
40

4
10

1
10

4
10

9
10

69
40

69
40

61
40

17
8

V2 V1−V2 −2V2 −V2 2V2 −3V2 V1−2V2 V1+V2 V1 V1−3V2
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0

P3

2P3

A2

A23 + 2P3

P3 +A22

Θ∞,0

Θ∞,3

Θ∞,5

Θ∞,4Θ∞,2

Θ∞,1

Θ−1,0

Θ−1,3Θ−1,1

Θ−1,2

Θ−1,4

Θ−1,5

Θ1,0

Θ1,3 Θ1,1 = ω

Θ1,2

Θ1,4

Θ1,5

Θ0,0 Θ0,1

P3 +A2

Θ3,0 Θ3,1

Figure 4. Fibration 40 bis

(x, y, t) 7→ (x, y, u)

x = −8
y(x + 1)2(x + 4t2)H2

1

((2t+ 1)y + (x + 4t2)(x− t))4

y = 16
(x + 1)2(x + 4t2)(2y + 4t2x + x2)H4

1

((2t+ 1)y + (x + 4t2)(x− t))6

u = − (2t+ 1)y− (x + 4t2)(x + 2 + t)

(2t+ 1)y + (x + 4t2)(x− t)
where

H1 = −(2t+ 1)y + (t+ 1)(x + 4t2).

Notice also the relations

u− 1 =
2H1

(2t+ 1)y + (x + 4t2)(x− t)
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Table 8. Heights for sections of fibration #40 bis

sect Θ1,1 Θ1,2 Θ−1,4 Θ−1,5 Θ3,0 Θ3,1 P3 2P3 P3+A2 2P3+A2

I8 0 2 0 2 0 2 6 4 6 4

I10 0 7 5 2 1 6 4 8 9 3

ht 0 12
5

3
2

9
10

31
10

1
10

1
10

4
10

8
5

19
10

0 3Z1−Z5 Z5 3Z1 4Z1−Z5 −Z1 Z1 2Z1 Z1−Z5 2Z1−Z5

and

u+ 1 =
2(x + 1)(x + 4t2)

(2t+ 1)y + (x + 4t2)(x− t)
.

Let Z1 = (0, 0) and Z5 = (−1, (2t− 1) (t+ 1)).
It follows from the previous formulae that the 0 section of the new fibration

corresponds to u = 1 and looking at x/(u − 1) and at the graph we find that the
0 section corresponds to Θ1,1. The correspondence between the sections of the two
fibrations can be also derived and is shown on Table 8. On the same table are
quoted the contributions and the heights of sections computed with the graph.

Moreover we find < Θ−1,4, P3 >= 2+Θ1,1 ·P3+Θ1,1 ·Θ−1,4−Θ−1,4 ·P3− 5×4
10 = 0.

Thus the height matrix of the two sections Θ−1,4 and P3 is diagonal with deter-
minant 3

20 , so Z1 and Z5 generate the Mordell-Weil lattice.
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