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Abstract. Serre’s uniformity problem asks whether there exists a bound k

such that for any p > k, the Galois representation associated to the p-torsion of
an elliptic curve E/Q is surjective independent of the choice of E. Serre showed
that if this representation is not surjective, then it has to be contained in either
a Borel subgroup, the normalizer of a split Cartan subgroup, the normalizer of
a non-split Cartan subgroup, or one of a finite list of “exceptional” subgroups.
We will focus on the case when the image is contained in the normalizer of
a split Cartan subgroup. In particular, we will show that the only elliptic
curves whose Galois representation at 11 is contained in the normalizer of a
split Cartan have complex multiplication. To prove this we compute X+

s (11)
using modular units, use the methods of Poonen and Schaefer to compute its
Jacobian, and then use the method of Chabauty and Coleman to show that
the only points on this curve correspond to CM elliptic curves.

1. Introduction

It is a classical result that the points of an elliptic curve E over a number field
K (a smooth projective genus one curve with at least one K-rational point) can be
given the structure of an abelian group. In fact, it is known from the Mordell-Weil
theorem, that this group is finitely generated. Therefore, we have that

E(K) ∼= Etor(K)× ZrK

where Etor(K) is the torsion subgroup of E(K) and r = rK is the rank of E(K).
There are many interesting questions about the rank of an elliptic curve that are
still open, but the focus of this paper is on the torsion part of E(K).

Let p be a prime number, and let E[p] be the Fp-vector space of p-torsion points
on E(K), where K is a fixed algebraic closure of K. The natural Galois action
of Gal(K/K) on E[p] induces a Galois representation Gal(Q/Q)→ GL(E[p]), and
if we choose a Z/pZ-basis of E[p], then we obtain a Galois representation ρE,p :
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Gal(Q/Q) → GL2(Z/pZ). The image of ρE,p was extensively studied by Serre in
[15].

Theorem 1.1. [15] If E is an elliptic curve over Q that does not have complex
multiplication, then there exists a constant CE > 0 such that for every prime p >
CE, the mod-p Galois representation ρ : Gal(Q/Q)→ GL2(Z/pZ) is surjective.

Serre asked the next natural question: can the constant CE be chosen indepen-
dently of E?

Question 1.2 (Serre’s Uniformity Problem, [15], §4.3). Does there exist a con-
stant C > 0 such that ρE,p is surjective for all p > C and all E without complex
multiplication?

In [15], Serre also shows that there are five possible cases for what the image of
ρE,p could be. There is an Fp-basis of E[p] such that one of the following happens:

(1) ρE,p is surjective;
(2) The image of ρE,p is contained in a Borel subgroup of GL2(Z/pZ);
(3) The image of ρE,p is contained in the normalizer of a split Cartan subgroup

of GL2(Z/pZ);
(4) The image of ρE,p is contained in the normalizer of a non-split Cartan

subgroup of GL2(Z/pZ);
(5) The image of ρE,p is contained in one of a finite list of “exceptional” sub-

groups.
Serre showed the exceptional groups, as in case (5) above, are not subgroups of

GL2(Z/pZ) for p greater than 13. The uniformity question in case (2) was proven
by Mazur [11] where he showed that if p is greater than 37, and E does not have
CM, then the image of ρE,p cannot be contained in a Borel subgroup. Bilu, Parent,
and Bilu, Parent, and Rebolledo [3] (also using results of Momose [12]) have shown
that if p ≥ 11, p 6= 13, and E is not CM, then case (3) cannot occur. This just
leaves the case when the image of ρE,p is contained in the normalizer of a non-split
Cartain subgroup of GL2(Z/pZ). In this case, the arguments used by Mazur [11],
and Bilu and Parent [2], fail and a different tactic must be taken. The focus of this
paper is on the split case for the case of p = 11.

Theorem 1.3 (Theorem 5.5, Corollary 5.6). Any elliptic curve defined over Q
whose associated Galois representation at 11 has image contained in the normalizer
of a split Cartan subgroup of GL2(Z/11Z) has complex multiplication.

As mentioned above, Theorem 1.3 has already been proven. It is the simplest
case of [13, Theorem 1.1] and in fact was probably even known before that. Here,
the main goal is to prove the result by analyzing completely the arithmetic of the
modular curve, X+

s (11), that parametrizes elliptic curves over Q with ρE,11 having
split Cartan image. In the proof of Parent, the author shows a bound on the height
of the j-invariant of any elliptic curve in the split case (3) above, and then run
an exhaustive calculation that proves that none of the curves up to that bound
have split Cartan image and are not CM, therefore proving the desired result. Our
methods work directly on X+

s (11), in that we calculate all the rational points on
X+
s (11), and in doing so, we compute the structure of the jacobian of the modular

curve, and determine its rational points.
More concretely, the main theorem of this article is the following.
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Theorem 1.4. Let X be the modular curve X+
s (11) and let J be its associated

jacobian variety. Then:
(1) X has a model y2 = x6 − 6x5 + 11x4 − 8x3 + 11x2 − 6x+ 1, and the j-map

X → P
1(Q) can be calculated explicitly.

(2) X(Q) contains exactly 6 points, two of which are points at infinity ∞+ and
∞−, and one is a cusp (0,−1). The points, together with the j-invariant
of the elliptic curve associated to each non-cuspidal point are given in the
following table:

P (0, 1) (0,−1) (1, 2) (1,−2) ∞+ ∞−
j(P ) 8000 cusp −3375 16581375 −884736 −88473600

(3) J(Q) ∼= Z/5Z × Z. The torsion subgroup of J(Q) is generated by [(0, 1) −
∞−], while [∞+ −∞−] is a generator of infinite order.

Another main goal of this paper is to illustrate several important techniques in
the computation of rational points on (hyperelliptic) curves. First, a model for
X = X+

s (11) is computed using Siegel functions and modular units and compute
the j-map that gives the j-invariant of the elliptic curve associated to each non-
cuspidal point on the curve. The method used to compute a model for X should
readily generalize to other modular curves of prime level. In order to be able to
apply the method of Chabauty and Coleman to find a bound on the number of
rational points on X, we first need to determine the rank of the jacobian variety
(in particular, one needs to show that the rank of J(Q) less than the genus of X,
which is 2). The jacobian is studied by performing a 2-descent via the methods
of Poonen, Schaefer, and Stoll, that allows us to determine the structure of J(Q),
and in particular show that the free rank is 1, less than the genus of X, as desired.
The method of Chabauty and Coleman now produces a bound of 8 rational points
on X, but a naive search for points only yields the 6 points listed in Theorem 1.4.
Finally, we find several automorphisms of X(Q) that allows us to conclude that if
there was an additional point beyond the 6 we list, then there would be at least
10 points on X, contradicting the bound of 8. Hence, the ones we list are all the
rational points on X.

The paper is organized as follows. In Section 2 Siegel functions, and modular
units are defined. In Section 3 we construct a model for X+

s (11) using modular
units built out of Siegel functions, and in Section 3.5 we go on to compute the
j-map. The 2-descent on the jacobian variety is described in Section 4. Finally, the
method of Chabauty and Coleman is summarized in Section 5 and Theorem 1.3 is
proved in Section 5.4.

1.1. Acknowledgments. Much of the contents of this paper were originally writ-
ten in partial fulfillment of the requirements for the degree of doctor of philosophy
at the University of Connecticut in 2013. Without the help and guidance of my
thesis advisor, Álvaro Lozano-Robledo, this paper would not have been possible.

2. Klein Forms, Siegel Functions, and Modular Units

2.1. Klein Forms and Siegel Functions. In this Section we follow the notation
and terminology laid out in Section 1 and 2 of Chapter 2 of [10]. In these sections,
the authors give explicit methods for computing units in the function field of the
modular curve X(N). These functions are units because they only have poles and
zeros at the cusps, and so when we consider the functions only on the non-cuspidal
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points, they are invertible. Before diving in, we need to recall the definition of what
it means to be modular for a given congruence subgroup.

Definition 2.1. A modular function for a congruence subgroup Γ is a meromorphic
function on the compact Riemann surface Γ\H ∗.

Often, modular functions are considered as meromorphic functions on H ∗ that
are invariant under the action of Γ. From this perspective a modular function for
Γ is a function that satisfies the following conditions:

(1) f(τ) is invariant under the Γ. That is, f(γτ) = f(τ) for all γ ∈ Γ;
(2) f(τ) is meromorphic in H ;
(3) f(τ) is meromorphic at the cusps.
Let L be a lattice in the complex plane and let f(z, L) be the Klein form attached

to L (see [10]). This is a function which takes a complex variable z and a lattice L
as its arguments. These functions are homogeneous of degree 1; that is to say that
f(λz, λL) = λf(z, L) for λ ∈ C.

Let W =
(
ω1
ω2

)
∈ C2 such that ω1

ω2
6∈ R. Take L = L(W ) = Zω1 + Zω2, and

let z = z(a, w) = a1ω1 + a2ω2 with a = (a1, a2) ∈ R2. Now, we can create a
new function that takes as its arguments a vector a ∈ R2 instead of z ∈ C and a
vectorW ∈ C2 whose entries are linearly independent over R by fa(W ) = f(z, L). In
[10, Chapter 2], the authors show that these functions have the following properties:

K0. fa(λW ) = λfa(W ).
K1. For α ∈ SL2(Z), fa(αW ) = faα(W ).
K2. If b = (b1, b2) ∈ Z2, then fa+b(W ) = ε(a,b)fa(W ), where

ε(a,b) = (−1)b1b2+b1+b2e−πi(b1a2−b2a1).

K3. If α ∈ Γ(N), and a = (a1, a2) ∈ Q2 such that the denominators of a1 and
a2 divide N , then

fa(αW ) = faα(W ) = εa(α)fa(W )
where εa(α) is a 2Nth root of unity. If we let a =

(
r
N ,

2
N

)
, ε(α) is given by

εa(α) = −(−1)(
a−1
N r+ c

N s+1)( bN r+ d−1
N s+1)e2πi(br2+(b−1)rs−cs2)2N2

.

Definition 2.2. For α =
(
a b
c d

)
∈ SL2(Z) and τ ∈ H , let j(α, τ) be the factor

of automorphy given by
j(α, τ) = cτ + d.

The Klein functions may be considered as functions on the upper half plane, as

follows: let τ ∈H and define fa(τ) = fa(Wτ ), where Wτ =
(
τ
1

)
.

Proposition 2.3. For α ∈ SL2(Z)
faα(τ) = j(α, τ)fa(ατ).

Proof: Using properties K0 and K1 we see that for

faα(τ) = faα(Wτ ) = fa(αWτ ) = fa

((
aτ + b
cτ + d

))
= fa

(
(cτ + d)

(
aτ+b
cτ+d

1

))
= j(α, τ)fa(ατ).
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Definition 2.4. The Siegel function associated to a ∈ R2, ga(τ), is a function on
H defined by

ga(τ) = fa(τ)η(τ)2,

where η(τ)2 = q
1

12
∏∞
n=1(1− qn)2 is the Dedekind eta function and q = e2πiτ .

Notice that property K2 says that if we are normalizing our functions to have
leading coefficient 1, then a ∈ R2 only matters modulo Z. That is, we can actually
take a ∈ (R/Z)2. In fact, for the rest of the paper we are going to restrict ourselves,
for the sake of simplicity, to considering functions where a ∈ (Q/Z)2.

Before we continue, let us recall a theorem about the Dedekind eta function.

Proposition 2.5. [1, page 51] If α ∈ SL2(Z), then

η(ατ) = ξ(α) ·
√
j(α, τ)η(τ),

where ξ(α) is a 24th root of unity.

Remark 2.6. The observant reader might ask about how the square root above is
chosen and whether the choice depend on τ . We will ignore this question for now
and see in the proof of 2.8 that this ambiguity can be ignored.

For our purposes, we will only be interested in a = (a1, a2) ∈ (Q/Z)2 and we let
z = a1τ + a2 and qz = e2πiz.

Theorem 2.7. [10, p. 29] For each a ∈ (Q/Z)2, the Siegel function ga(τ) can be
given by the following q-expansion:

ga(τ) = −q(1/2)B2(a1)
τ e2πia2(a1−1)/2(1− qz)

∞∏
n=1

(1− qnτ qz)(1− qnτ /qz)

where B2(x) = x2 − x+ 1
6 is the second Bernoulli polynomial.

Theorem 2.8. If α ∈ SL2(Z) as above and a ∈ (Q/Z)2, then
ga(ατ) = ζ(α) · gaα(τ)

where ζ(α) is a 12th root of unity that depends only on α.

Proof: Using Propositions 2.3 and 2.5 we have,
ga(ατ) = fa(ατ)(η(ατ))2

= j(α, τ)−1faα(τ)
(
ξ(α) ·

√
j(α, τ)η(τ)

)2

= ξ(α)2faα(τ)η(τ)2 = ζ(α)gaα(τ).

Here ζ(α) = ξ(α)2 and since ξ(α) is a 24th root of unity, ζ(α) is a 12th root of
unity and since

√
j(α, τ) appears inside the square, which square root we choose

doesn’t matter.

In [10], Kubert and Lang develop sufficient conditions for products of the ga’s to
be modular of level N . These conditions are more difficult to state if N is not prime
to 6, and also not of interest to us, so we will only state conditions for (N, 6) = 1.

Theorem 2.9. [10, Chapter 3, Theorem 5.2] Let N ∈ N such that (N, 6) = 1. Let
A be the set of all a =

(
r1
N ,

r2
N

)
∈
( 1
NZ
)2 and a 6∈ Z2. Let

g(τ) =
∏
a∈A

gm(a)
a (τ).
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Then g is modular of level N if and only if the family {m(a)} satisfies the following:
(1)

∑
a∈A

m(a)r2
1 ≡

∑
a∈A

m(a)r2
2 ≡

∑
a∈A

m(a)r1r2 ≡ 0 mod N , and

(2)
∑
a∈A

m(a) ≡ 0 mod 12.

In general, we will always assume that an element a = (a1, a2) ∈ (Q/Z)2 is
normalized so that 0 ≤ a1 < 1 and 0 ≤ a2 < 1. If we wish to remove this assumption
then we will always use the notation 〈a1〉 and 〈a2〉 to mean the fractional part of
a1 and a2.

Lemma 2.10. [10, p. 31] For a = (a1, a2) ∈ (Q/Z)2 we have

ordqτ ga(τ) = ordi∞ ga(τ) = 1
2B2

(
〈a1〉

)
.

With this lemma we will be able to compute the divisor of any Siegel function
we want. This will be important when we start to use these functions along with
the Riemann-Roch theorem to compute models of curves.

2.2. Modular Units for Congruence subgroups of Level p. In this section we
generalize the methods used in [6] to find a class of explicitly computable modular
units for an arbitrary congruence subgroup of prime level p 6= 2, 3. For the rest of
this section let Γ be a congruence subgroup of level p 6= 2, 3. Let Γ∗(p) = 〈−I2,Γ(p)〉
if −I2 ∈ Γ, otherwise let Γ∗(p) = Γ(p). Next, let Ω = Γ/Γ∗(p), and let Ω be a fixed
set of representatives of Ω in Γ.

Remark 2.11. Notice that Ω and Ω are finite since Γ is a congruence subgroup of
level p.

Now that we have defined these basic objects, we can define the basic functions
that we are going to be interested in:

Definition 2.12. For a ∈
(

1
pZ/Z

)2
with a 6∈ Z2 let

va(Γ, τ) = va(τ) = Θa(Ω)
∏
γ∈Ω

gaγ(τ)

where Θa(Ω) ∈ C× is defined so that the leading term of the q-expansion of va(τ)
is 1. Also, let

ua(Γ, τ) = ua(τ) = va(Γ, τ)c = Θa(Ω)c
∏
γ∈Ω

gaγ(τ)c

where c is the smallest positive integer such that c ·#Ω ≡ 0 mod 12. In each case,
when the congruence subgroup is obvious, we will use the notation that omits Γ.

Lemma 2.13. For δ ∈ Γ∗(p), a ∈
(

1
pZ/Z

)2
, a 6∈ Z2, we have gaδ(τ) = εa(δ)ga(τ),

where εa(δ) is the 2p-th root of unity in K3.

Proof: Suppose δ ∈ Γ(p) and a is as above, then

gaδ(τ) = faδ(τ)(η(τ))2 K3= εa(δ)fa(τ)(η(τ))2 = εa(δ)ga(τ).
Now, recall that

−I2τ = −1 · τ + 0
0τ − 1 = −τ

−1 = τ,
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and j(−I1, τ) = 0τ − 1 = −1. This means

ga·(−I2)(τ) = j(−I2, τ)ga(−I2 · τ) = −ga(τ).

Thus, for any element of the form −δ with δ ∈ Γ(P ),

ga(−δ)(τ) = ga(−I2·δ)(τ) = g(a(−I2))·δ(τ) = εa(δ)ga(−I2)(τ) = −εa(δ)ga(τ),

and since εa(δ) is a 2p-th root of unity, so is −εa(δ) and the result follows.

Proposition 2.14. Let Ω = {γi}#Ω
i=1 and Ω′ = {γ′i}

#Ω
i=1 be two different choices of

lifts for Ω ordered so that there exists a δi ∈ Γ∗(p) such that γi = γ′iδi. Then
#Ω∏
i=1

gaγi(τ) = κ ·
#Ω∏
i=1

gaγ′
i
(τ)

where κ =
#Ω∏
i=1

εaγ′
i
(δi). Further,

Θa(Ω′) = Θa(Ω) · κ.

Proof: Suppose that Ω and Ω′ are as above. For any a ∈
(

1
pZ/Z

)2
such that

a 6∈ Z2, we have
#Ω∏
i=1

gaγi(τ) =
#Ω∏
i=1

gaγ′
i
δi(τ) =

#Ω∏
i=1

εaγ′
i
(δi)gaγ′

i
(τ) =

#Ω∏
i=1

εaγ′
i
(δi) ·

#Ω∏
i=1

gaγ′
i
(τ) = κ ·

#Ω∏
i=1

gaγ′
i
(τ).

Therefore, we get that, if we choose a different set of lifts, we simply change our
normalization constant by κ, more specifically, Θa(Ω′) = Θa(Ω) · κ.

Corollary 2.15. The q-expansion va is independent of choice of the representatives
of Ω and thus so it the q-expansions of ua(τ).

Proof: Follows immediately from Proposition 2.14

Theorem 2.16. Let a ∈
(

1
pZ/Z

)2
, with a 6∈ Z2, then for any α ∈ Γ,

va(ατ) = ζ(α)#Ωε1(a, α)va(τ),

where ε1(a, α) is an explicitly computable 2pth-root of unity that depends on a and
α and ζ(α) is the 12th root of unity in Theorem 2.8. Further, ε1(a, α) = 1 if and
only if the product of Siegel functions defining va satisfies condition (1) of Theorem
2.9. Similarly, ζ(α)#Ω is 1 if and only if the product of Siegel functions defining
va satisfies condition (2) of Theorem 2.9.

Proof: Recall that Ω = Γ/Γ∗(p) and that Ω is a fixed set of lifts of Ω to Γ. Fix
α ∈ Γ, α its reduction to Ω. Let σ be the permutation of Ω given by σ(β) = β · α.
For any γ ∈ Γ, we can write γα = γσ · δ(γ, α) where γσ is the unique lift of σ(γ)
into Ω and δ(γ, α) ∈ Γ∗(p). By abuse of notation, we can let σ be a permutation
of Ω by γ 7→ γσ. Therefore,

gaγα(τ) = gaγσδ(γ,α)(τ) = εaγσ (γ, α)gaγσ (τ),
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where εaγσ (α, γ) is the 2p-th root of unity from Lemma 2.13 that depends on a and
δ(γ, α). Let ε1(a, α) =

∏
γ∈Ω

εaγ(γ, α). Then

va(ατ) = Θa(Ω)
∏
γ∈Ω

gaγ(ατ) = Θa(Ω)
∏
γ∈Ω

ζ(α) · gaγα(τ) = Θa(Ω) · ζ(α)#Ω
∏
γ∈Ω

εaγ(γ, α)gaγσ (τ)

= Θa(Ω) · ζ(α)#Ωε1(a, α)
∏
γ∈Ω

gaγσ (τ) = ζ(α)#Ωε1(a, α)va(τ),

where the last equality follows from the fact that σ is a permutation of Ω, so the
terms are simply being reordered.

Finally, we note that the content of the proof of [10, Chapter 3, Theorem 5.2] is
exactly showing that ε1(a, α) = 1 if and only if our product satisfies condition (1)
of Theorem 2.9, while condition (2) ensures that ζ(α)#Ω would be 1.

Definition 2.17. For a = (a1, a2) =
(
r1
p ,

r2
p

)
∈
(

1
pZ/Z

)2
and α ∈ SL2(Z), let

(aα)1 and (aα)2 be the integers such that aα =
(

(aα)1
p , (aα)2

p

)
.

Proposition 2.18. For each a = (a1, a2) =
(
r1
p ,

r2
p

)
∈
(

1
pZ/Z

)2
such that∑

γ∈Ω
c(aγ)2

1 ≡
∑
γ∈Ω

c(aγ)2
2 ≡

∑
γ∈Ω

c(aγ)1(aγ)2 ≡ 0 mod p,

ua(τ) is modular for Γ. Further, in this case ε1(a, α) = 1 for all α ∈ Γ, where
ε1(a, α) is as defined in Theorem 2.16.

Proof: Suppose that a ∈
(

1
pZ/Z

)2
such that∑

γ∈Ω
c(aγ)2

1 ≡
∑
γ∈Ω

c(aγ)2
2 ≡

∑
γ∈Ω

c(aγ)1(aγ)2 ≡ 0 mod p.

This means that the function ua(τ) is modular for Γ∗(p) from Theorem 2.9. This
implies ua(δτ) = ua(τ) for all δ ∈ Γ∗(p), but by the definition ua(τ), this means
that ε1(a, γ) is also 1 since the product that defines it only depends on the δ(γ, α)’s
which are elements in Γ∗(p). Therefore, for all α ∈ Γ,

ua(ατ) =
(
ζ(α)#Ωε1(a, α)va(τ)

)c = ζ(α)#Ω·c · 1c · va(τ)c = va(τ)c = ua(τ),
and ua(τ) is modular for Γ.

3. The modular Curve X+
s (11)

3.1. Modular curves associated to Normalizers of Split Cartan Subgroups.
We start this section by defining the basic groups that we will be interested in.

Definition 3.1. A split Cartan subgroup of GL2(Z/pZ) is a conjugate of the group
of diagonal matrices;

Cs(p) =
{(

a 0
0 b

)
: a, b ∈ (Z/pZ)×

}
.

The normalizer of Cs(p) is given by

C+
s (p) =

{(
a 0
0 b

)
,

(
0 c
d 0

)
: a, b, c, d ∈ (Z/pZ)×

}
.
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The congruence subgroup, Γ+
s (p), is the inverse image of C+

s (p)∩SL2(Z/pZ) under
the standard reduction map SL2(Z)→ SL2(Z/pZ).

With these definitions we are now ready to define the modular curve X+
s (p).

Definition 3.2. Let X+
s (p) be the Riemann surface given by Γ+

s (p)\H ∗.

Theorem 3.3. [7, p. 4] For p > 3, the genus of the curve X+
s (p) is given by

g+
s (p) = 1

24

(
p2 − 8p+ 11− 4

(
−3
p

))
.

Example 3.4.

p 5 7 11 13 17 19 23 29 31 37 41 43 47
g+
s (p) 0 0 2 3 7 9 15 26 30 45 57 63 77

3.2. Curves of Genus Two. Using Theorem 3.3, we can see that the genus of
X+
s (11) is equal to 2. Before we start looking at this curve in particular it would

be worth it to better understand general genus 2 curves.

Proposition 3.5. Every smooth projective curve of genus two, C, is birationally
equivalent to a curve of the form:

y2 + yh(x) = f(x),

with deg(h) ≤ 3 and deg(f) ≤ 5.

Proposition 3.5 tells us that every genus two curve is hyperelliptic. In fact, if
the base field of C is not of characteristic two, then C is birationally equivalent to
a curve of the form y2 = f(x) where deg(f) = 5 or 6. This model is obtained by
completing the square on the left hand side and doing a change of variables.

Remark 3.6. Here we notice that it is impossible to embed a smooth genus two
curve into P2. Indeed, if C is a smooth curve given as the vanishing set of a
degree d homogeneous polynomial then its genus must be g = (d−1)(d−2)

2 . A quick
check shows that this formula never equals two since it is impossible for (d−1)(d−
2) to be 4. Therefore in regular projective space the models of these curves are
always singular. To combat this, when we consider a genus two curve given by a
hyperelliptic equation, we are really thinking about them in weighted projective
space. More specifically, we give x and z weight 1 and y weight 3. Therefore,
when the models are homogenized they become Y 2 + Y h(X,Z) = f(X,Z) where
deg(h) = 3 and deg(f) = 6, or Y 2 = f(X,Z) with deg(f) = 6.

3.3. Modular Units for X+
s (11). Now, we aim to find a model for X+

s (11) using
a technique similar to the proof of Proposition 3.5. We start noticing that in this
case #Ω = 12 and so c = 1. Therefore in this case, have that ua = va. To ease
notation, we let

wa,b = va

vb
.

Using SAGE, we check that for every a ∈
( 1

11Z/Z
)2 the product defining va satisfies

the condition in Proposition 2.18 and we compute the divisors of the modular units
of the form wa,b. Doing so gives us the following table:
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0/∞ 1 2 3 4 5
w(1/11,1/11),(0/11,1/11) −5 1 3 1 0 0
w(3/11,1/11),(0/11,1/11) −5 1 0 3 1 0
w(2/11,1/11),(0/11,1/11) −5 3 0 0 1 1
w(5/11,1/11),(0/11,1/11) −5 0 1 0 3 1
w(4/11,1/11),(0/11,1/11) −5 0 1 1 0 3

w(1/11,1/11),(3/11,1/11) 0 0 3 −2 −1 0
w(3/11,1/11),(2/11,1/11) 0 −2 0 3 0 −1
w(2/11,1/11),(5/11,1/11) 0 3 −1 0 −2 0
w(5/11,1/11),(4/11,1/11) 0 0 0 −1 3 −2
w(4/11,1/11),(1/11,1/11) 0 −1 −2 0 0 3

w(4/11,1/11),(3/11,1/11) 0 −1 1 −2 −1 3
w(1/11,1/11),(2/11,1/11) 0 −2 3 1 −1 −1
w(3/11,1/11),(5/11,1/11) 0 1 −1 3 −2 −1
w(2/11,1/11),(4/11,1/11) 0 3 −1 −1 1 −2
w(5/11,1/11),(1/11,1/11) 0 −1 −2 −1 3 1

Remark 3.7. From Theorem 2.7 we know that the field of definition of the functions
defined in Section 2.2 is the p-th cyclotomic field. In practice, the field of definition
might actually be a subfield of the p-th cyclotomic field. In fact, using the Riemann-
Roch Theorem, one can show that all of the functions above are actually defined
over the maximal real subfield of Q(ζ11), usually denoted Q(ζ11)+.

Example 3.8. Using SAGE, one can compute that the first few terms of the q-
expansion of
w(2/11,1/11),(0/11,1/11)(τ) are given by

q−5 + (−ζ9
11 − ζ2

11 + 1)q−4 + (ζ8
11 + ζ7

11 + ζ6
11 + ζ5

11 + ζ4
11 + ζ3

11 + 4)q−3+
(−2ζ9

11 − 2ζ2
11 + 4)q−2 + (−2ζ9

11 + ζ8
11 + ζ7

11 + ζ6
11 + ζ5

11 + ζ4
11 + ζ3

11 − 2ζ2
11 + 9)q−1+

(−4ζ9
11 + ζ8

11 + 2ζ7
11 + ζ6

11 + ζ5
11 + 2ζ4

11 + ζ3
11 − 4ζ2

11 + 12)+
(−5ζ9

11 + 2ζ8
11 + 2ζ7

11 + 2ζ6
11 + 2ζ5

11 + 2ζ4
11 + 2ζ3

11 − 5ζ2
11 + 20)q+

(−8ζ9
11 + 2ζ8

11 + 2ζ7
11 + 2ζ6

11 + 2ζ5
11 + 2ζ4

11 + 2ζ3
11 − 8ζ2

11 + 27)q2+
(−9ζ9

11 + 5ζ8
11 + 5ζ7

11 + 5ζ6
11 + 5ζ5

11 + 5ζ4
11 + 5ζ3

11 − 9ζ2
11 + 43)q3+

(−16ζ9
11 + 5ζ8

11 + 5ζ7
11 + 5ζ6

11 + 5ζ5
11 + 5ζ4

11 + 5ζ3
11 − 16ζ2

11 + 57)q4+
(−19ζ9

11 + 7ζ8
11 + 7ζ7

11 + 7ζ6
11 + 7ζ5

11 + 7ζ4
11 + 7ζ3

11 − 19ζ2
11 + 84)q5 +O(q6)

If we have any hope to use these functions to compute a model for X+
s (11), we

somehow have to use these functions to construct new functions that are defined
over Q and apply the argument from Proposition 3.5 to them.

Proposition 3.9. Let K/Q be a number field of degree n and let {e1, e2, . . . , en}
be a Z-basis for OK . Let Gal(K/Q) = {σi}ni=1. Let Γ be a congruence subgroup
of SL2(Z) such that the cusp of X(Γ) at infinity is rational. Further, let f(τ) =
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k

ak q
k be the q-expansion of a modular function for Γ with coefficients in K. Let

ak = ak,1e1 + · · · + ak,nen with ai,j ∈ Q. Then the function fk(τ) =
∑
i ak,j q

k is
also modular for Γ. In particular, there are constants, bj ∈ K depending on k, such

that fk =
n∑
j=1

bj σj(f(τ)).

Proof: Using the fact that every element σ ∈ Gal(K/Q) is a field automorphism
that fixes Q, for any α = α1 e1 + · · ·+ αn en ∈ K we get

(3.1)


σ1(e1) σ1(e2) . . . σ1(en)
σ2(e1) σ2(e2) . . . σ2(en)

...
...

. . .
...

σn(e1) σn(e2) . . . σn(en)



α1
α2
...
αn

 =


σ1(α)
σ2(α)

...
σn(α)

 .

For convenience let A be the matrix on the left hand side of (3.1), and let Ai be
the matrix obtained from replacing the i-th row of A with the column vector on
the right hand side of (3.1). Applying Cramer’s rule we get that αi = detAi/detA.
Now, if we let Aji be the matrix obtained by deleting the j-th row and i-th column
of Ai, we can compute the determinant of Ai by looking at the cofactor expansion
of Ai along the i-th column. Doing this shows that:

αi = detAi
detA = 1

detA

n∑
j=1

(−1)j+iσj(α) detAji.

Letting bj = (−1)j+i detAji
detA we have that αi =

∑n
j=1 bj σj(α). Notice that the

definition of bj does not depend on α because both determinants are polynomials
in the σi(ek)’s.

Now, if we assume that X(Γ) has a rational cusp at infinity, then Gal(K/Q)
acts on the q-expansion of a modular form f =

∑
k ak q

k simply by acting on the
coefficients. Since the bj ’s don’t depend on anything other than the choice of basis
for OK , we get that

fk(τ) =
n∑
j=1

bj σj(f(τ)),

and the modularity of fj(τ) follows from the modularity of σj(f(τ)).

Looking at the first 5 functions on our table, we see that they all have poles of or-
der 5 at infinity and no where else. Now, since ordp is a non-archemedian valuation
on the functions of X+

s (11), and ∞ is a rational point, we know that taking linear
combinations of the Galois conjugates won’t introduce any other poles. With this
in mind we let X = [w(2/11,1/11),(0/11,1/11)(τ)]1, Y = [w(1/11,1/11),(0/11,1/11)(τ)]2,
Z = [w(3/11,1/11),(0/11,1/11)(τ)]0, where the subscript indicates which coefficients we
are using to create the q-expansions. The important thing is that ord∞(X) = −3,
ord∞(Y ) = −4, and ord∞(Z) = −5 and these functions don’t have any other poles.

3.4. Computing a Model for X+
s (11). Now that we have computed some func-

tions whose poles are concentrated at infinity, we need to find a polynomial rela-
tionship between them.
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Proposition 3.10. Let C be a smooth genus 2 curve. Let X, Y , and Z be in K(C)
the function field of C with poles of order 3, 4, and 5 respectively at ∞ and nowhere
else. Then C can be mapped into P2(K) as the vanishing set of a polynomials of
degree at most 7.

Proof: We start by noticing that all the monomials of degree d > 0 in X, Y , and
Z are contained in L (5d∞). Using the Riemann-Roch theorem, we know that the
dimension of this space is

`(5d(∞)) = deg(5d(∞))− g + 1 = 5d− 1.

The number of three variable monomials of degree d is given by
(
d+ 2

2

)
.

So we build a table and see when the number of monomials of degree d becomes
greater than the dimension of L (5d · ∞).

d 1 2 3 4 5 6 7

`(5d · ∞) 4 9 14 19 24 29 34(
d+ 2

2

)
3 6 10 15 21 28 36

The table above shows that there must be a polynomial, p, of degree at most 7
such that p(X,Y, Z) = 0.

Lemma 3.11. Let C be a genus g curve. The only function without any poles and
a zero at infinity is the zero function.

Proof: Let f be a function that has no poles and a zero at ∞. This means that
f is in L (−∞), but by the Riemann-Roch Theorem, we know that `(−∞) = 0.
Thus, f must be the zero function.

Now, we notice that since X, Y , and Z are functions whose only poles are at
∞, any polynomial in X, Y , and Z can also only have a pole at infinity. Thus,
by Lemma 3.11, if we can find a polynomial in X, Y , and Z that has a zero at
infinity, it must in fact be zero. Computing the q-expansions of X, Y , and Z to a
reasonable precision, it is easy to show that

0 = p(X,Y, Z) = 3X2Y 3 +X2Y 2Z −X2Y Z2 + 2XY 4 − 2XY 2Z2 + 2XY Z3+
XZ4 − Y 5 + 3Y 4Z − Y 3Z2 − Y 2Z3 +O(qN ).

for some N ≥ 1 depending on the initial precision that was used to calculate X, Y ,
and Z. Unfortunately, this is not in the best model for the modular curve. First of
all it is singular, and secondly it isn’t written in hyperelliptic form.
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A quick check show that if we use the change of variables

X1 = Y 2Z4 + 1
2Y Z

5,

Y1 = 3
2XY

5Z12 − 3
2Y

6Z12 + 2XY 4Z13 + 1
2Y

5Z13 + 3
8XY

3Z14 + 5
8Y

4Z14

− 3
8XY

2Z15 − 1
2Y

3Z15 − 1
8XY Z

16 + 1
4Y

2Z16 + 1
2Y Z

17 + 1
8Z

18,

Z1 = Y 2Z4 − 1
2Y Z

5 − 1
2Z

6.

and x1 = X1/Z1 and y1 = Y1/Z
3
1 , then we see that X+

s (11) is isomorphic to the
hyperelliptic curve given by

y2
1 + (x3

1 + x2
1 + x1 + 1)y1 = −2x5

1 + 2x4
1 − 3x3

1 + 2x2
1 − 2x1.

Here we note that we are working in weighted projective space where x1 and z1
have weight one and y1 has weight three. While this model is minimal, it will not
be the most convenient for us to use. Instead we will use its simplified model:

X+
s (11) : y2 = x6 − 6x5 + 11x4 − 8x3 + 11x2 − 6x+ 1.

Here the change of variables from the initial curve is given by

X2 = Y 2Z4 + 1/2Y Z5,

Y2 = −3XY 5Z12 − Y 6Z12 − 4XY 4Z13 − Y 5Z13 − 3
4XY

3Z14 + 3
4Y

4Z14

+ 3
4XY

2Z15 + 1
4XY Z

16 − 5
4Y

2Z16 − 3
4Y Z

17 − 1
8Z

18,

Z2 = Y 2Z4 − 1/2Y Z5 − 1/2Z6,

and again x = X2/Z2 and y = Y2/Z
3
2 . This model has bad reduction at two and

eleven, but the extra prime of bad reduction will not cause any problems.

Remark 3.12. The minimal and simplified models for X+
s (11), along with the

changes of variables, were found using Magma and checked to work by hand.

3.5. Computing the j-map for X+
s (11). The last task for this section is to

compute the map from X+
s (11) to Q that takes a point on X+

s (11) and returns
the j-invariant of the corresponding elliptic curve. Since we know that j must be a
function in the function field of X+

s (11), it must be a rational function in x and y.
Therefore, we know that there is a rational combination of the q-expansions of x
and y that will give us the q-expansion of the j function. Recall, we are using the
nonstandard notation q = e

2πiτ
11 , then

j(τ) = q−11 + 744 + 196884q11 + 21493760q22 + 864299970q33 +O(q44).

Since x and y satisfy a hyperelliptic relationship, y2 = f(x) we know that the
highest powers of y that can occur in numerator and denominator of our rational
function is one. Further, if the denominator of our rational function is C ′y + D′

with C ′ and D′ in Q[x], we can multiply both the numerator and denominator by
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C ′y−D′ to get the denominator to be completely in Q[x]. Therefore we know that
there must be A, B, and C in Q[x] such that

j = Ay +B

C
.

This is equivalent to finding a solution to Cj = Ay + B. We do this by cre-
ating two vector spaces, one spanned by vectors made of the coefficients of the
q-expansions of V1 = {j, x · j, x2 · j, . . . , xn · j}, and the other spanned by V2 =
{1, x, xy, x2, x2y, . . . , xn, xny} for various values of n. Then we look at the inter-
section of these two vector spaces, increasing n until there is a one dimensional
intersection and we can use this to find j as a rational combination of x and y.

In the end, we find that A is a polynomial of degree 63, B is a polynomial of
degree 66, and C is a polynomial of degree 66. Their explicit formulas can be found
in the appendix to this section.

3.6. Appendix. Throughout this section we will be using the nonstandard nota-
tion q = e

2πiτ
11 .

The functions that give the singular model of X+
s (11).

X = 1
q3 + 1

q
+ 1 + 2q + 2q2 + 5q3 +O(q4)

Y = 1
q4 + 1

q3 + 2
q2 + 3

q
+ 6 + 7q + 10q2 + 14q3 +O(q4)

Z = 1
q5 + 1

q4 + 3
q3 + 4

q2 + 8
q

+ 11 + 18q + 25q2 + 38q3 +O(q4)

4. The Mordell-Weil Group of the Jacobian of X+
s (11)

4.1. Introduction. Given a curve C, one can construct an associated abelian va-
riety J called its jacobian. As an abelian group, the jacobian is isomorphic to the
Picard group of C. The Mordell-Weil theorem says that for any number field K, the
K-rational points of the jacobian, J(K), form a finitely generated abelian group.
Therefore, it is non-canonically isomorphic to the product of a finite abelian group,
J(K)tors, and a free abelian group; i.e.,

J(K) ∼= J(K)tors × Zr.

for some r ∈ Z≥0. In this case we say that J(K) has rank r.
It turns out that computing J(Q)tors is not very difficult using the following

theorem.

Theorem 4.1. [9, Theorem C.1.4] Let A be an abelian variety defined over a
number field K, let v be a finite place of K at which A has good reduction, let K̃
be the residue field of v, and let p be the characteristic of K̃. Then for any m ≥ 1
with p - m, the reduction map

A(K)[m]→ A(K̃)

is injective, where A(K)[m] denotes the m-torsion of A(K). In other words, the
reduction modulo v map is injective on the prime-to-p torsion subgroup of A(K).
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The basic idea for computing the rank of J is to try and compute the F2-
dimension of the so-called weak Mordel-Weil group, J(Q)/2J(Q). This is some-
thing that is easily done if one already knows the structure of J(Q), but since we
don’t know the structure of this group we have to find another way to do this.
We describe a method below, the 2-descent method, to bound the F2-dimension of
J(Q)/2J(Q) and therefore calculate a bound on the rank of J(K). The method
of 2-descent relies on the fact that we have the following short exact sequence of
Galois modules

0 // J [2] // J
[2] // J // 0

where J [2] is the 2-torsion of J . Let Sel(2)(Q, J) be the 2-Selmer group as defined
in [9]. This gives us the following short exact sequence.

0 // J(Q)/2J(Q) // Sel(2)(Q, J) //X(Q, J)[2] // 0

Using this sequence we can get a formula that involves the rank of J(Q) and the
F2-dimensions of the other groups that we defined.

(4.1) rank J(Q) + dimF2 J(Q)[2] + dimF2 X(Q, J)[2] = dimF2 Sel(2)(Q, J).

Using equation (4.1), we get the following computable upper bound on the rank

(4.2) rank J(Q) ≤ dimF2 Sel(2)(Q, J)− dimF2 J(Q)[2].

In order to calculate this upper bound we must compute the dimension of
Sel(2)(Q, J). If it turns out that this bound is not sharp, which frequently hap-
pens, one would need to compute X(Q, J)[2]. This is a very subtle task that lies
outside of the scope of this paper. The interested reader should consult either [17]
or [16] to read about computingX(Q, J)[2] orX(Q, J) in the case thatX is elliptic
or hyperelliptic.

4.2. The Two-Descent Procedure. The notation that we use in this section
will follow that set out in [17]. Throughout the rest of this section we will focus
on computing the dimension of the 2-Selmer group of the jacobian of a smooth
projective curve, C, given by an affine equation of the form

C : y2 = f(x),

where f is squarefree and deg(f) = 6. In this case, our curve is hyperelliptic of
genus g = 2 with two points at infinity in the projective closure. Before we can
compute the dimension of the 2-Selmer group, we must define a few objects of
interest and examine some of their properties.

Remark 4.2. Almost all of what we do here will go through for deg(f) ≥ 6 with
deg(f) even. We simply limit ourselves to this case for the sake of making this
section cleaner. In fact, [14] considered the more general case of an equation of the
form yp = f(x) with p a prime dividing deg(f). This is actually more difficult than
the case when p does not divide deg(f).

Definition 4.3. For any field extension K of Q, let LK = K[T ]/(f(T )) denote the
algebra defined by f and NK denote the norm map from LK down to K.
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Remark 4.4. We can denote LK = K[θ], where θ is the image of T under the
reduction map K[T ] → K[T ]/(f(T )), and LK is a product of finite extensions of
K:

LK = LK,1 × · · · × LK,mK ,
where mK is the number of irreducible factors of f(x) in K[x]. Here, the fields LK,j
correspond to the irreducible factors of f(x) in K[x]. Here NK : LK → K is just
the product of the norms on each component. That is if α = (α1, α2, . . . , αmK ),
then NK(α) =

∏mK
i=1 NLK,i/K(αi) where NLK,i/K : LK,i → K is the typical field

norm.

When K = Q we will drop the subscripts altogether and if K = Qp, we will just
use the subscript p. This convention will apply to anything that has a field as a
subscript throughout the paper, e.g., Lp = Qp[T ]/(f(T )) and L = Q[T ]/(f(T )).

We will let OK , I(K), and Cl(K) denote the ring of integers of K, the group
of fractional ideals, and the ideal class group of K, respectively. We would like to
define analogous objects for the algebra LK , and we do so in the most natural way:

OLK = OLK,1 × · · · × OLK,mK ,
I(LK) = I(LK,1)× · · · × I(LK,mK ),

Cl(LK) = Cl(LK,1)× · · · × Cl(LK,mK ).

Definition 4.5. Let Ip(L) denote the subgroup of I(L) consisting of prime ideals
in L with support above p a prime in Q. For a finite set S of finite places, let

IS(L) =
∏

p∈Sr∞
Ip(L).

Definition 4.6. For any field extension K of Q, let
HK = ker

(
NK : L×K/(L

×
K)2K× → K×/(K×)2) .

For any place, v, of Q, we let resv : H → Hv be the map induced by the natural
inclusion Q ↪→ Qv.

Remark 4.7. Notice that the norm map is well defined on L×K/(L
×
K)2K×. Since the

deg(f) is even, the dimension of LK/K is even and N(x) = xdeg(f) is a square in
K for all x ∈ K.

Definition 4.8. Let Div×(C) denote the group of degree-zero divisors on C with
support disjoint from the principal divisor div(y).

Theorem 4.9. [4, Chapter 11] For every K we get a homomorphism

FK : Div×(C)(K)→ L×K ,
∑
P

nPP 7→
∏
P

(x(P )− θ)np ,

which induces a homomorphism
δK : J(K)→ HK .

Definition 4.10. Let
Sel(2)

fake(Q, J) = {ξ ∈ H : resv(ξ) ∈ δv(J(Qv)) for all places v}.
We will call this group the fake 2-Selmer group.
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The link between the fake 2-Selmer and the 2-Selmer group will be explained in
Corollary 4.23.

Remark 4.11. If we use this definition for Sel(2)
fake(Q, J), in order to check if ξ ∈ H

is in Sel(2)
fake(Q, J) we have to check that resv(ξ) ∈ δv(J(Qv)) for ALL places v. In

order to make this definition more tractable, we will need the following definition
and proposition.

Definition 4.12. Let K be a finitely ramified algebraic extension of Qp with max-
imal ideal pK . We let IpK (LK) be the group of ideals in LK and

IK = ker
(
N : IpK (LK)2/IpK (LK)IpK (K)→ IpK (K)/IpK (K)2) .

For all primes p in Q, let
Ip = ker

(
N : Ip(L)/(Ip(L))2Ip(Q)→ Ip(Q)/(Ip(Q))2) .

We also have maps valp : Hp → Ip. These maps, taken together, give us a map
val : H ⊂ L×/(L×)2 → I(L)/(I(L))2I(Q). We denote ṽal the canonical map
L×/(L×)2 → I(L)/(I(L))2.

Remark 4.13. The notation Ip is not breaking with the subscript convention that
we established at the beginning of this section since Ip is naturally isomorphic to

IQp = ker
(
N : Ip(Lp)/Ip(Lp)2Ip(Q)→ Ip(Qp)/Ip(Qp)2) .

Proposition 4.14. [17, Proposition 5.10] If p 6∈ S = {∞, 2} ∪ {p : p2|disc(f)},
then

J(Qp)/2J(Qp)
δp // Hp

valp // Ip // 0
is exact.

Proposition 4.15. If S = {∞, 2} ∪ {p : p2|disc(f)}

Sel(2)
fake(Q, J) = {ξ ∈ H :val(ξ) ∈ IS(L)/IS(L)2I(Q),

and resv(ξ) ∈ δv(J(Qv)) for v ∈ S}.

Proof: Since
J(Qp)/2J(Qp)

δp // Hp

valp // Ip // 0
is exact for p 6∈ S, we know that resp(ξ) ∈ δp(J(Qp)) if and only if valp(resp(ξ)) is
the trivial class for p 6∈ S. Each ξ ∈ L×/(L×)2Q× has a squarefree representative
β in OL. Fix ξ = [β] ∈ H ⊆ L×/(L×)2Q× with β normalized to be a squarefree
element of OL. Using the fact that for ξ = [β] ∈ H, resp(ξ) ∈ δp if and only if
[(β)] = [(1)] ∈ Ip. Using this we can rewrite Definition 4.10 as

Sel(2)
fake = {ξ ∈ H : resv(ξ) ∈ δv(J(Qv)) for all places v}

= {ξ ∈ H : valp(resv(ξ)) = [(1)] for p 6∈ S, and resv(ξ) ∈ δv(J(Qv)) for v ∈ S}
= {ξ ∈ H : val(ξ) ∈ IS(L)/IS(L)2IS(Q), and resv(ξ) ∈ δv(J(Qv)) for v ∈ S}.

Before exploring the relationship between Sel(2)(Q, J) and Sel(2)
fake(Q, J), we need

to figure out when the kernel of δ is exactly 2J(Q).

Definition 4.16. We say that K satisfies condition (‡), if either of the following
occurs:
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(‡.a) f(x) has a factor of odd degree in K[x], or
(‡.b) f factors as hh̄ over a quadratic extension K ′ of K, where h̄ is the Gal(K ′/K)-

conjugate of h.

Remark 4.17. Condition (‡.b) is equivalent to LK containing a quadratic extension
of K.

Lemma 4.18. [14, Theorem 11.2] The kernel of δK is 2J(K) if K satisfies con-
dition (‡), or if there is no K-rational divisor class of degree 1 on C. Otherwise,
2J(K) has index two in ker(δK).

Lemma 4.19. [17, Lemma 5.2] Condition (‡) is satisfied in each of the following
situations.

(1) K = R.
(2) K is a p-adic field, and the irreducible factors of f in K[x] all define un-

ramified extensions of K.

Lemma 4.20. [17, Lemma 5.3] Write f(x) =
6∏
j=1

(x− αj), and let

h(f) =
∏
σ

(x− (ασ(1)ασ(2)ασ(3) + ασ(4)ασ(5)ασ(6))),

where the product is over left coset representative σ ∈ S6 modulo the stabilizer of
the partition {{1, 2, 3}, {4, 5, 6}}. Then h(f) has degree 10.

(1) For a ∈ K, (‡.b) holds for f if and only if it holds for f(x+ a).
(2) If h(f) has a simple root in K, then K satisfies (‡.b).
(3) If h(f) has no root in K, then K does not satisfy (‡.b).
(4) There are at most 45 values of a ∈ K such that h(f(x+a)) is not squarefree.

Now, we answer the question about the relationship between Sel(2)(K,J) and
Sel(2)

fake(K,J) with the following theorem.

Theorem 4.21. [14, Theorem 13.2] There is an exact sequence

µ2(K) φ // Sel(2)(K,J) ε // Sel(2)
fake(K,J) // 0.

Moreover, the image of φ is trivial in Sel(2)(K,J) if and only if K satisfies (‡).

Remark 4.22. Here the map ε is a map that is closely related to a generalization of
the Weil pairing defined on J [2]×J [2]. The map φ is the connecting homomorphism
on the Galois cohomology groups induced from the short exact sequence

0 // J [2] ε // µ2(LK)/µ2(K) Norm // µ2(K) // 0.

We use φ here only because δ has already been defined. We think of µ2(K) living
inside of µ2(LK) diagonally.

Corollary 4.23. The relationship between the dimensions of Sel(2)
fake(K,J) and

Sel(2)(K,J) is as follows:

dimF2 Sel(2)(K,J) =
{

dimF2 Sel(2)
fake(K,J) if K satisfies (‡),

dimF2 Sel(2)
fake(K,J) + 1 otherwise.
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Now that we have the relationship between dim Sel(2)
fake(Q, J) and dim Sel(2)(Q, J),

we need to compute dim Sel(2)
fake(Q, J). To make this possible we need to be able

to compute the image of δK for various K. To do this, we will use a theorem that
tells us what the images of some specific divisors are.

Theorem 4.24. [14] Let K be a field extension of Q.
(1) Suppose that the points ∞± at infinity on C are K-rational. Then for a

point P ∈ C(K) not in the support of div(y), we have δK(P − ∞±) =
x(P )− θ mod (L×K)2K×.

(2) To every monic polynomial h ∈ K[x] of even degree such that h divides f ,
we can associate an element Ph ∈ J(K)[2] such that:
(a) The Ph generate J(K)[2] and satisfy

∑
j Pj = 0, if

∏
j hj = f .

(b) Let h̃ be the polynomial such that f = hh̃. Then δK(Ph) = h(θ) −
h̃(θ) mod (L×K)2K×.

(3) dim J(K)[2] = mK − 1, if all irreducible factors of f over K have even
degree, and dim J(K)[2] = mK − 2 otherwise.

Now that we know what the images of these divisors are, we want to compute
the dimensions of these F2-vector spaces. This way, we can compute the images of
“enough” divisors until we have a basis. To make things a little easier we define
the following quantities:

Definition 4.25. For any field extension K of Q, let:
• tK = 0 if all the factors of f in K[x] have even degree, and tK = 1 other-
wise,

• uK = 0 if there is a quadratic extension of K contained in LK , and uK = 1
otherwise.

For a p-adic field K, let:
• Let rK = 0 if all ramification indices of the field extensions LK,j/K are
even, and rK = 1 otherwise,

• Let sK = 0 if all the residue class degrees of the field extensions LK,j/K
are even and sk = 1 otherwise,

• Let dK = [K : Q2] if p = 2 and dK = 0 if p is odd.

With these definitions we can now compute the dimensions of most of the local
groups we are interested in.

Lemma 4.26. [17, Lemma 5.7] Let K be a p-adic field. Then
(1) dim J(K)/2J(K) = dim J(K)[2] + dKg = mK − 1− tK + dK · g.
(2) dim IK = mK − rK − sK .
(3) dimHK = 2 dim IK if p is odd.
(4) If p is odd and rK = 1, then valp : Hp → Ip is onto.

The last thing we need is to compute the dimensions of some of these same spaces
over R.

Lemma 4.27. [17, Lemma 4.8]
(1) dim J(R)/2J(R) = dim δ∞(J(R)) = dim J(R)[2]− g.
(2) δ∞(J(R)) is generated by δ∞(P + Q −∞+ −∞−) with P,Q ∈ C(R), and

δ∞(P +Q−∞+−∞−) only depends on the connected components of C(R)
contacting P and Q. Here ∞± are the two points at infinity on C.

archives.albanian-j-math.com/2015-01.pdf 21

http://albanian-j-math.com
http://archives.albanian-j-math.com/2015-01.pdf


Albanian J. Math. 9 (2015), no. 1, 3-29.

We have now translated the question of finding the dimension of Sel(2)(Q, J) to
finding the dimension of Sel(2)

fake(Q, J), a finite subspace of L×/(L×)2Q. In order to
compute Sel(2)

fake(Q, J) as a finite subspace of L×/(L×)2Q×, we consider the following
diagram. We want to define Ker, Sel1, and Sel2 so that the top and bottom row of
the diagram become exact.

1 // Ker // Sel2 //

��

Sel1 //

��

Sel(2)
fake(Q, J) //

��

1

1 // Ker // Q×/(Q×)2 // L×/(L×)2 // L×/(L×)2Q× // 1

(4.3)

In order for the bottom row to be exact, clearly we need

Ker = {d ∈ Q :
√
d ∈ L×}.

So now we need to find finite subgroups, Sel1 and Sel2, of L×/(L×)2 and Q×/(Q×)2,
respectively, that makes the top row of the diagram exact.

To determine exactly what Sel1 and Sel2 are, we need the following proposition:

Proposition 4.28. [17, Lemma 4.9] Let Gp be the image of J(Qp) in Ip (i.e.
Gp = valp ◦ δp(J(Qp))). Recall that rp = 0 if and only if all the fields Lp,j have
even ramification index. Let Sel2 be the span in Q×/(Q×)2 of {−1} ∪ S′, where

S′ = {p : rp = 0 or Gp 6= {1}}.

Define

H̃ = {ξ ∈ L×/(L×)2 : ṽal(ξ) ∈ IS′(L)/IS′(L)2 and
valp(ξ) ∈ Gp for all p ∈ S′}

where ṽalv is the canonical map from L×/(L×)2 to I(L)/I(L)2. Then H̃ is finite.
Let S = S′ ∪ {∞, 2} and set

Sel1 = {ξ ∈ H̃ : resv(ξ) ∈ δv(J(Qv)) for all v ∈ S}.

Then with these definitions of Sel1 and Sel2, the top row of diagram (4.3) is exact.

With all of this, we finally have enough information to compute Sel(2)
fake(Q, J)

and dimF2 Sel(2)(Q, J) for a specific f(x).

4.3. Explicit Computations. Now that we have laid the foundation we are ready
to perform a 2-descent. The curve we will be working with is given by the affine
equation

C : y2 = f(x) = x6 − 6x5 + 11x4 − 8x3 + 11x2 − 6x+ 1.

In the projective closure, this curve has two points at infinity, call them∞±. Using
SAGE, we compute disc(f) = −1 · 220 · 113 and that f(x) is irreducible over Q.
We let S = {p : p2|disc(f)} ∪ {2,∞} = {∞, 2, 11} and compute all of the basic
information about the local groups associated to these places.
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Using SAGE we can factor f(x) over Qp[x] to get the following table:

p mp tp up rp sp dp
2 1 0 0 0 1 1
11 2 0 0 1 1 0
∞ 3 − − − − −

From the information above and Lemmas 4.26 and 4.27 we have the following:

p dim J(Qp)/2J(Qp) dim δp(J(Qp)) dimHp dim Ip
2 2 2 ? 0
11 1 0 0 0
∞ 0 0 − −

Remark 4.29. Lemma 4.26 doesn’t give us a formula for dimH2. We could compute
it directly, but we will postpone its computation for now as we will need to compute
all of H2 later in the paper.

Next we use SAGE to compute h(f) as in Lemma 4.20 in our case and we get

h(f) = x10−7x9+76x8−696x7+2800x6−3328x5−4464x4+8256x3+3712x2−1280x−512.

Reducing h(f) mod 17 we get

x10 + 10x9 + 8x8 + x7 + 12x6 + 4x5 + 7x4 + 11x3 + 6x2 + 12x+ 15,

which is irreducible in F17. Thus we know that h(f) is irreducible in Q[x] and so
Lemma 4.20 tells us that in our case Q does not satisfy (‡). So, by Corollary 4.23,
we have that

dim Sel(2)(Q, J) = dim Sel(2)
fake(Q, J) + 1,

and we now turn our attention to determining the dimension of Sel(2)
fake(Q, J).

The first step to computing the dimension of Sel(2)
fake(Q, J) is to find the subgroups

Sel1 and Sel2 from Proposition 4.28. To do this we start by computing H̃. Recall
that

H̃ = {ξ ∈ L×/(L×)2 : ṽal(ξ) ∈ IS′(L)/IS′(L)2 and
valp(ξ) ∈ Gp for all p ∈ S′}

where S′ = {p : rp = 0 or Gp 6= {1}}. In this case we can see that we have that
S′ = {2}. Using SAGE, we find that the class number of L is one and that the
prime factorization of the ideal 2OL = p6

2 = (β2)6.
This means that IS′/IS′(L)2 = {[(1)], [(β2)]}, and so ξ is in H̃ only if it is

equivalent modulo (L×)2 to either a unit, or a unit multiple of β2. Since G2 is a
subset of I2, we only need to check if val2(β2) is in G2. The table above gives us
that G2 = {[(1)]} since it is a subgroup of I2 = {[(1)]}. Therefore, we know that
val2(β2) is not in G2, since [(β2)] 6= [(1)]. Hence the only classes modulo squares in
H̃ correspond to ones that are represented by units.

To find representatives of these classes we simply compute the fundamental units
of L. Using SAGE, we find that r1 = 0 and r2 = 3 and so by Dirchlet’s unit theorem
we know that there are r1 + r2− 1 = 2 fundamental units. Again using SAGE, one
can check that the only roots of unity in L are ±1. Therefore,

O×L /(O
×
L )2 = 〈−1, u1, u2〉
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where

u1 = 53
6455θ

5 − 1334
6455θ

4 + 1729
1291θ

3 + 70491
6455 θ

2 + 92264
6455 θ + 4485

1291 ,

u2 = 843
71005θ

5 − 21072
71005θ

4 + 132243
71005 θ

3 + 238525
14201 θ

2 + 1200429
71005 θ + 235233

71005 .

Recall that θ is the image of T under the map K[T ]→ K[T ]/(f(T )).
Before moving on we notice that with u1 and u2 defined as above, 2 = −u1u2β

6
2

and so 2 ≡ −u1u2 mod (L×)2. Thus, H̃ = 〈−1, u1, u2〉 = 〈−1, 2, u1〉. Here we
are suppressing the equivalence class notation to make things cleaner. From the
work we did in the last section and to compute the tables at the beginning of the
section, we know that Sel2 = 〈−1, 2〉 and since L does not satisfy (‡) we know that
Ker = {1}. But using the fact that

1 // 〈−1, 2〉 //
� _

��

Sel1 //
� _

��

Sel(2)
fake(Q, J) //
� _

��

1

〈−1, 2, u1〉� _

��
1 // Q×/(Q×)2 // L×/(L×)2 // L×/(L×)2Q× // 1

has exact rows, we know that Sel1 ⊇ 〈−1, 2〉. So the question becomes, is u1 in Sel1?
From Proposition 4.28, this question amounts to checking if resv(u1) ∈ δv(J(Qv))
for all v ∈ S, where S = {2, 11,∞}. We start by checking if res2(u1) is in δ2(J(Q2))
and hope that, in fact, res2(u1) 6∈ δ2(J(Q2)), and therefore we are done.

In order to do this, we need to find explicit generators for δ2(J(Q2)). From the
table above we know that dim δ2(J(Q2)) = 2, so we just start looking for points
P ∈ C(Q2) and using Theorem 4.24 to compute the images of P −∞+ under δ2.

Lemma 4.30. For f(x) = x5− 6x5 + 11x4− 8x8 + 11x2− 6x+ 1, the field Q2 does
not satisfy (‡).

Proof: To prove this we just need to show that

h(f) = x10 + 10x9 + 8x8 + x7 + 12x6 + 4x5 + 7x4 + 11x3 + 6x2 + 12x+ 15,

does not have a simple root in Q2. First, notice that since h(f) is a monic poly-
nomial, if it has a root in Q2, that root has to be in Z2. Next, if h(f) has a root
in Z2, then of course that root will reduce to a root in F2. So to show that h(f)
doesn’t have a root in Q2 it is sufficient to show that the reduction of h(f) modulo
2 doesn’t have a root in F2. The reduction of h(f) modulo 2 is

h(f) = x10 + x7 + x4 + x3 + 1.

Clearly zero isn’t a root of h(f), and a quick check shows that one isn’t a root of
h(f) as well. Therefore since h(f) doesn’t have a root in F2, we know that h(f)
doesn’t have a root in Q2.

Lemma 4.31. Two elements, a and b, in L×2 are congruent modulo (L×2 )2Q×2 if
and only if there is an r ∈ Q×2 /(Q

×
2 )2 = {±1,±2,±5,±10} such that a

br is a square
in L×2 .
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Proof: From Lemma 4.30 we know that L2 does not contain a quadratic extension
of Q2 and so we have the following exact sequence:

1 // Q×2 /(Q
×
2 )2 ψ // L×2 /(L

×
2 )2 φ // L×2 /(L

×
2 )2Q×2 // 1.

Therefore, a ≡ b mod (L×2 )2Q×2 ⇔ a
b ≡ 1 mod (L×2 )2Q×2 if and only if a

b is in the
kernel of φ. Since we know that the kernel of φ is Q×2 /(Q

×
2 )2 = {±1,±2,±5,±10}, if

we want to check if a ≡ b mod (L×2 )2Q×2 , it is sufficient to check if ab ≡ r mod (L×)2

for all representatives r of Q×2 /(Q
×
2 )2 = {±1,±2,±5,±10}. Another way to say

this is that a ≡ b (L×2 )2Q×2 if and only if there is an r ∈ {±1,±2,±5,±10} such
that a

rb is a square in L×2 .

Lemma 4.31 gives us an easy way to check if two elements are congruent modulo
(L×2 )2Q2 since Magma has a built in command that checks if an element of a field
is a square or not, so we can check these equivalencies in Magma quite easily.

First, using Hensel’s lemma, we can find that P1 = (2, 72512802334441+O(249))
is a point on C(Q2) and from Theorem 4.24, we know that δ2(P1 −∞+) = 2 − θ.
Using Lemma 4.31 we can check that 2 − θ 6≡ 1 mod (L×2 )2Q×2 . Therefore, we
only need to find one more non-trivial element in δ2(J(Q2)) that is not equivalent
to 2 − θ mod (L×2 )2Q2. Next, we search for points on C(Q2) using Magma and
find that P2 = (151123620125253 · 2 + O(250), 1) is also a point on C(Q2) and
δ2(P2 −∞+) = α − θ where α = 151123620125253 · 2 + O(250). We just need to
know if 2 − θ ≡ α − θ mod (L×2 )2Q×2 . Again using Lemma 4.31, we check this in
Magma.

Remark 4.32. Here we note that div(y) =
∑6
i=1(0, αi) where the αi’s are the roots

of f(x). Therefore none of the points we found are in the support of div(y).

Fortunately, it turns out that 2 − θ 6≡ α − θ mod (L×2 )2Q2. Thus we have two
independent elements in a 2-dimensional F2-vector space and so we have generators
for δ2(J(Q2)). One can directly check in Magma, using the same method as in
Lemma 4.31, if res2(u1) is in δ2(J(Q2)). A few calculations later we see that

res2(u1) 6≡ 2− θ mod L×/(L×)2Q
res2(u1) 6≡ α− θ mod L×/(L×)2Q
res2(u1) 6≡ (2− θ)(α− θ) mod L×/(L×)2Q.

Again, the details of this computation can be found in the appendix to this section.
Thus we have that u1 6∈ Sel1 and Sel1 = 〈−1, 2〉. Using the top row in diagram

4.3 we know that Sel1 = Sel2 = 〈−1, 2〉 and Sel(2)
fake(Q, J) = {1}. Combining this

with proposition 4.23 and equation (5.3) we get that the rank of J(Q) is less than
or equal to one.

In fact, using Magma, one can show that the divisor class of ∞+ − ∞− is of
infinity order. Further we can show that

J(X+
s (11))(Q) = 〈[(0,−1)−∞−], [∞+ −∞−]〉 ∼= Z/5Z⊕ Z.

5. Applying the Method of Chabauty and Coleman

5.1. Introduction to the method.
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Theorem 5.1 (Faltings’ Theorem). Let K be a number field and let C/K be a non-
singular curve defined over K of genus g ≥ 2. Then the set of K-rational points on
C is finite.

Faltings’ theorem tells us that there can only be finitely many rational points
on a curve of genus greater than or equal to 2, but it does not give us any way to
show that a set of points on a curve is complete. In 1941, Claude Chabauty proved
the following weaker version of Faltings’ theorem:
Theorem 5.2 (Chabauty’s Theorem [5]). Let X be a curve of genus g ≥ 2 over Q.
Let J be the jacobian of X. Let p be a prime, and let r′ = dimQp J(Q) where J(Q)
is the closure of J(Q) with the p-adic topology. Suppose r′ < g. Then X(Qp)∩J(Q)
is finite.
Corollary 5.3. If X is as in Chabauty’s theorem, then X(Q) is finite.

The corollary follows because X(Q) is inside of X(Qp) ∩ J(Q) and thus it must
be finite as well.

Clearly, Chabauty’s theorem is weaker than Faltings’ as it requires the assump-
tion that r′ < g, which is not always true.

As they are stated, neither Faltings’ theorem nor Chabauty’s theorem is effective.
In 1985 Robert Coleman was able to apply the theory of Newton polygons to
Chabauty’s theorem to come up with a method for finding an explicit bound on
the size of X(Q) in the case when r′ is less then the genus of X.
Theorem 5.4 (Coleman’s Theorem [8]). Let X, J, p, r′ be as in Theorem 5.2.
Suppose that p is a prime of good reduction for X.

a) Let ω be a non-zero 1-form in H0(XQp ,Ω1) satisfying conditions 1-3. We
scale ω by an element of Q×p so that it reduces to a nonzero 1-form ω̃ ∈
H0(XFp ,Ω1). Let m = ord

Q̃
ω̃. If m < p− 2, then the number of points in

X(Q) reducing to Q̃ is at most m+ 1.
b) If p > 2g, then

#X(Q) ≤ #X(Fp) + (2g − 2).
To apply Coleman’s method and get an upper bound on the number of points

on X+
s (Q), we will use the fact that the rank of the jacobian of X+

s (11) is one,
which is less than its genus which is two in this case. It will turn out that the
simplest bound obtained from Coleman’s method is not sharp, but utilizing some
extra structure of X+

s (11), we will be able to show that the only points on X+
s (11)

are the ones found by a naive search. That is to say that
X+
s (11)(Q) = {(0,±1), (1,±2),∞±}.(5.1)

5.2. Applying Coleman’s Theorem. We now return to the question of comput-
ing all of the points on the genus 2 modular curve
(5.2) X+

s (11) : y2 = f(x) = x6 − 6x5 + 11x4 − 8x3 + 11x2 − 6x+ 1.
We know that this curve has two points at infinity, call them ∞− and ∞+, and
a naive search yielded four other points, (1,±2), and (0,±1). Now, we have seen
that the group of rational points on the jacobian of X+

s (11) has rank 1. Thus we
can apply Theorem 5.4 to get that
(5.3) #X+

s (11)(Q) ≤ #X+
s (11)(F5) + (2 · 2− 2) = 6 + 2 = 8.
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Unfortunately this bound does not line up with the number of points that we
found, there could still be two other points that we are missing. From the moduli
interpretation, one expects that the six points in (5.1) are in fact, the only ones on
X+
s (11)(Q), but how do we show that these are the only points?
One could try studying the ηJ corresponding to the holomorphic 1-form we used

in Theorem 5.4, but this turns out to be quite difficult in this case because all six of
the points that we found are in unique residue classes for all odd p. Thus, computing
the power series of ω in local coordinates is not a straightforward task since we
cannot take our open set to be the kernel of the reduction map J(Qp)→ J(Fp).

Instead, we aim to exploit the symmetry of f(x). Looking at the affine model of
X+
s (11) given in (5.2), it becomes clear that there is a ψ ∈ Aut(X+

s (11)), given by
ψ((x, y)) =

( 1
x ,

y
x3

)
. Upon further inspection, the set

S = {∞±, (0,±1), (1,±2)}
is stable under ψ. In fact, S is also stable under the standard hyperelliptic “conju-
gation” automorphism that maps (x, y) to (x,−y).

With this in mind, we can finally prove the following theorem:
Theorem 5.5. The set of Q-rational points on X+

s (11) is S = {∞±, (0,±1), (1,±2)}.
Proof: The set S is stable under the automorphisms ψ and σ, so if P is a Q-
rational point not in S, the points P, σ(P ), ψ(P ), and σ(ψ(P )) are all not in
S.

Next we notice that the only points that are fixed by either ψ or σ have either
x-coordinate 0 or 1, or y-coordinate 0, but these points are already in S. Thus the
points P, σ(P ), ψ(P ), and σ(ψ(P )) are actually distinct.

Therefore, if there is one Q-rational point on X+
s (11) that is not in S then there

must actually be four such points. But this would mean that there are at least
ten points in X+

s (11)(Q), contradicting the upper bound of eight that we found in
equation (5.3).

We know that X+
s (11) has one rational cusp and one can check using SAGE that

there are 5 Q̄-isomorphism classes of elliptic curves with complex multiplication and
split representation at 11.
Corollary 5.6. The only elliptic curves whose Galois representation at 11 with
image contained in the normalizer of a split Cartan subgroup have complex multi-
plication. Their j-invariants are −3375, 16581375, 8000, −884736, −884736000.
Proof: Plugging the points in S into the j-map from Section 3.5 we get the fol-
lowing table.

P (0, 1) (0,−1) (1, 2) (1,−2) ∞+ ∞−
j(P ) 8000 cusp -3375 16581375 -884736 -88473600
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