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AN UPPER BOUND FOR THE X-RANKS OF POINTS OF P" IN
POSITIVE CHARACTERISTIC

E. BALLICO

ABSTRACT. Let X C P™ be an integral and non-degenerate m-dimensional
variety. For any P € P™ the X-rank rx (P) is the minimal cardinality of S C X
such that P € (S). Here we study the pairs (X, P) such that rx (P) > n+2—m,
i.e. 7x(P) =mn+2—m. These pairs exist only in positive characteristic, with
X strange and P a strange point of X.

1. INTRODUCTION

Fix an integral and non-degenerate variety X C P" defined over an algebraically
closed field K. For any P € P™ the X-rank rx(P) of P is the minimal cardinality
of a finite set S C X such that P € (S), where ( ) denote the linear span.
Hence rx(P) = 1 if and only if P € X. Since X is non-degenerate, the X-
ranks are defined and rx(P) < n+ 1 for all P € P*. For any integer r > 0 let
0%(X) C P denote the the union all (r — 1)-dimensional linear spaces spanned
by r points of X. Let 0,.(X) denote the closure of ¢%(X) in P (sometimes called
the (r — 1)-secant variety of X). The border X-rank of a point P € P" is the
minimal integer r such that P € o,(X). Each o,(X) is irreducible. An easy
estimate gives that either o,.(X) = P" or dim(o,4+1(X)) > dim(o,.(X)) ([1], 1.2).
Hence 0,(X) = P", where z := n — dim(X). Moreover, either o,,1(X) = P™ or
dim(o,41(X)) > 2 + dim(o-(X)) ([1], Corollary 1.4). Even if 0,(X) = P™ there
may be points with X-rank > x. The main concern of this paper is to extend the
basic estimate rx (P) < n —dim(X) made in [15], Proposition 5.1, in characteristic
zero to the case p := char(K) > 0, listing some exceptional pairs (X, P) for which
rx(P)=n—dim(X)+1 (e.g. take (n,m,p) =(2,1,1), as X a smooth conic and
as P its strange point ([10], Example IV.3.8.2); in this example every line through
P intersects X in a unique point and hence we need 3 points of X to span a linear
space containing P).

It is believed that the concept of X-rank may be useful for “real world appli-
cations”. In the applications when X is a Veronese embedding of P™ the X-rank
is also called the “structured rank” (this is related to the virtual array concept
encountered in sensor array processing ([2], [8])). On this topic there was the 2008
AIM workshop Geometry and representation theory of tensors for computer science,
statistics and other areas. In [15] a book in preparation is quoted ([14]). Up to
now the applied part was toward engineering. All theory was done in characteristic
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zero. Our dream is to use these ideas together with specialists of computer algebra
for real applications in coding theory. A preliminary step to fulfil this dream is to
check the theory at least over an algebraically closed field with positive character-
istic. Up to now the only general result on the X-rank (i.e. a result which does
not use specific properties of very particular varieties X)) is [15], Proposition 5.1.
Hence its extension to positive characteristic seemed to be the first step needed to
fulfil our dream. The aim of this paper is to prove that [15], Proposition 5.1, is not
true in positive characteristic, but that it is “almost always true” and when it is
not true it is “almost true” (it fails by +1). We also give a reasonable description
of the projective varieties for which it is not true. The embedded variety X C P™
is said to be strange if there is O € P™ such that O € T X (the embedded tangent
space in P") for all Q € X,.4 (or, equivalently, for a general @ € X) ([4]). If X
is strange, a point as above is called a strange point of X. The set of all strange
points of X is either empty or a linear subspace of dimension at most dim(X) — 1
(unless X = P"). If char(K) = 0, then X is strange if and only if it is a cone and
in this case the set of all strange points is its vertex (with the convention that a
linear space is a cone with itself as its vertex). If X is strange with O as one of its
strange points, but not a cone with vertex containing O, then p := char(K) > 0. If
p is a large prime, then also deg(X) must be large (e.g. deg(X) > p(n —m)) (see
Proposition 3). We first prove the following result.

Theorem 1. Let X C P" be an integral and non-degenerate m-dimensional variety.
Fiz P € P".

(a) If P is not a strange point of X, then rx(P) <n+1—m.

(b) If P is a strange point of X, then rx(P) <n+2—m.

See Remark 4 for an example of an integral, non-degenerate and m-dimensional
(m > 2) variety X C P with as strange points an (m — 1)-dimensional linear space
V and rx(P) = n—m+ 2 for all P € V\N, where N is a hyperplane of V' and
NcCX.

The proof of Theorem 1 is very elementary. To prove Theorem 1 we just follow
the proof of [15], Proposition 5.1 (the case char(K) = 0 of Theorem 1), analysing
the only missing piece in positive characteristic (a use of Bertini’s theorem). In the
one-dimensional case we are able to improve Theorem 1. A non-degenerate curve
X C P is said to be very strange if its general hyperplane section is not in linearly
general position ([18]). A very strange curve is strange ([18], Lemma 1.1).

Definition 1. Let X C P™, n > 2, be a non-degenerate strange curve and let O
be its strange point. Let £o : P"\{O} — P"~! be the linear projection from O and
T C P! the closure of /o(Y\{O}). Thus T is non-degenerate and

(1) deg(X) = p°s - deg(T) + p,

where p is the multiplicity of X at O, while s and p°® are the separable and the
inseparable degree of £p|X, respectively ([4], Theorem 2.3). Now assume n > 3,
w=0 (e O¢ X)and s =1. We say that X is flat or flat with respect to its

strange point O or a flat strange curve if for any S C X such that §(5) < n we have
dim((S)) = dim({£o(5)))-

The proofs that e > 0 in the set-up of Definition 1 and that (1) holds are given in
[4], §2 (see [4], eq. (2.1.1) and Theorem 2.3); the integer p° is shown to be equal to
the intersection multiplicity of T X with X at @), where @ is a general point of X
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(the so-called Generic Order of Contact Theorem proved in [9], 3.5, for embedded
varieties with arbitrary dimension). See [12] for a very useful survey. For related
details, see the proof of Proposition 3.

Notice that if g = 0, then (1) gives deg(X) =0 mod p.

Remark 1. Take the set-up of Definition 1.

(a) Since a strange curve (not a line) has a unique strange point, the point
O is uniquely determined by X. Hence we do not need to specify it to check if a
strange curve is flat or not.

(b) The assumption (p,s) = (0,1) implies that £o|X is generically injective.
Flatness implies that £p|X is injective, but it is far stronger. We have rx (0) > 2 if
and only if O ¢ X. We have rx(0O) > 3 if and only if O ¢ X and ¢p|X injective. If
p = 0, then the flatness of a strange curve is equivalent to rx(O) = n+ 1 (use that
rx(P) <mn+1 for any P € P" and any non-degenerate reduced subset X C P™ and
that for any finite S C X we have dim((¢p(5))) < dim((S)) if and only if O € (S)).

(c) Part (b) shows that the “if” part of the following theorem is just the
definition of flatness of a strange curve. It also gives the “only if” part if we first
prove that X is a strange point of X with invariants (u,s) = (0, 1).

Theorem 2. Let X C P™ be an integral and non-degenerate curve and P € P™.
We have rx(P) > n+1 (i.e. rx(P) =mn+1) if and only if X is a flat strange
curve and P is the strange point of X.

V. Bayer and A. Hefez gave explicit equations for all plane strange curves in terms
of the invariants p, s and p® introduced in Definition 1 ([4]). Later we extended the
construction to strange varieties with a fixed strange point O, fix integers pu, s, p°
and a fixed image T C P"~! with respect to the linear projection from O ([3]).
All strange curves X such that O ¢ X, s = 1 and ¢p(X) is a rational normal
curve (where O is the strange point of X) are flat (Proposition 2). These curves
are explicitely described by one equation in a Hirzebruch surface F,_; ([3]). The
other flat strange curves are very strange (Proposition 1) and we know only one
example of these flat curves (see Example 1, i.e. [18], Example 1.2). See Remark
2 for another reason to say that the flat curves X with £o(X) a rational normal
curve are “almost maximally linearly independent from the set-theoretic point of
view”.

The topic considered in [15] is very active (see also [7], [6], [5] and references
therein). We stress that [15] and the other quoted papers are over C: none of their
statements and proofs is affected by the examples given here.

2. PROOFS AND RELATED RESULTS

Proof of Theorem 1. If P € X, then rx(P) = 1. Hence to prove parts (a)
and (b) we may assume P ¢ X. First assume m = 1. Assume rx(P) > n + 1.
Hence for a general hyperplane H containing P the set (X N H),eq does not span
H. Since X is connected, the cohomology exact sequence of the exact sequence

0 —)IX —>Ix(1) —)IXQH(l) —0

gives that the scheme X N H spans H. Thus X N H is not reduced. Since P ¢ X
and H is general among the hyperplanes containing P, H N Sing(X) = @. Hence
the non-reducedness of X N H and the generality of H implies that X is a strange
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curve with P as its strange point. In the case m = 1 we have rx(P) < n+1 for all
P, because X spans P" proving parts (a) and (b) in the case m = 1.

Now assume m > 2 and that Theorem 1 is true for varieties of dimension m — 1.
Assume the existence of P € P™ such that rx (P) > n+2—m, but P is not a strange
point of X. Fix a general hyperplane H containing P. Let ¢p : P"\{P} — P!
be the linear projection from P. Since P ¢ X, £p|X is a finite morphism. Bertini’s
theorem gives that X N H is geometrically integral ([11], part 4) of Th. 1.6.3). Fix
a general Q) € (X N H),cy. For general H we may take as ) a general point of X.
Hence P ¢ ToX. Hence P ¢ (ToX)NH =To(X N H). Thus P is not a strange
point of X N H. The inductive assumption gives rxng(P) < (n—1)—(m—-1)4+1=
n —m + 1. Since rx (P) < rxnu(P), we proved part (a) for all m, X, P.

Now assume that P is a strange point of X. Since we proved part (b) in the case
m = 1, we may assume m > 2. Fix an integer k£ > 3 and a general Q) € X, 4. Let Y
be the intersection of X with a general degree k hypersurface W such that Q € W.
The scheme Y\{Q} is geometrically integral by the characteristic free version of
Bertini’s theorem for very ample linear systems on non-complete varieties ([11], part
4) of Th. 1.6.3). Since k > 3, it is easy to find W such that ¥ = X N W is smooth
at Q. Hence Y is geometrically integral and @) € Y,4. Since £ > 3, we may find W
as above such that P ¢ ToW. Hence P ¢ ToW NToX = TY. Hence P is not a
strange point of Y. Part (a) applied to Y gives rx (P) < ry(P) <n—(m—-1)+1. O

Proof of Theorem 2. By part (c) of Remark 1 it is sufficient to prove the
“only if” part. Fix X, P such that rx(P) > n+ 1. The case m = 1 of Theorem 1
implies rx(P) = n+ 1 and that P is a strange point of X. Call p, s and p® the
invariants of X with respect to the linear projection £p from P. Since rx(P) > 2,
P ¢ X, ie p=0. Notice that s = 1 if and only if £p|X has separablle degree
1, i.e. it is generically injective. Since rx(P) > 3, we have £((X N D)yeq) < 1 for
every line D such that P € D. Thus ¢p|X in injective. Thus s = 1. As observed
in part (c) of Remark 1 if (i, s) = (0,1) and P is the strange point of X, then the
definition of flatness is equivalent to rx (P) > n + 1. O

Proposition 1. Let X C P*, n > 3, be a non-degenerate and flat strange curve
with O as its strange point. Then either X is very strange or £o(X) is a rational
normal curve.

Proof. Let O be the strange point of X. Set d := deg({o(X)). If d = n — 1, then
£o(X) is a rational normal curve. Now assume d > n. By assumption g = 0 and
s = 1. Fix a general S C X such that §(S) = n — 1. Hence $(¢o(S)) =n — 1 and
£o(S) spans a hyperplane of P*~1. Since d > n, there is U € £o(X)\lo(S) such
that U € (€p(S)). Fix V € X such that {p(V) = U. Hence (S U{V}) =n. Since
X is flat, V' € (S). Since this is true for a general S C X such that §(5) =n — 1,
X satisfies the definition of a very strange curve. O

Proposition 2. Let X C P, n > 2, be a non-degenerate and strange curve with
O as its strange point and invariants 4 = 0 and s =1, i.e. assume O ¢ X and that
Lo|X is generically injective. If either n = 2 or £o(X) is a rational normal curve
of P71 (i.e. if deg(X) = (n — 1)p¢, where p® is the inseparable degree of Lo|X ),
then X is flat.

Proof. Fix S C X such that §(S) < n. Let u : C' — X be the normalization map.
By assumption £o(X) = P! (even if n = 2). Since lp|X : X — T = P! is purely
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inseparable, C' = P!. Since s = 1, the morphism /p|X o u : P! — P! is purely
inseparable. Hence it is injective. Thus the morphism ¢p|X is injective, not just
generically injective. Hence #(£o(S)) = #(S5) < n. Since any n points of a rational
normal curve of P"~! are linearly independent, we get dim({¢o(S5))) = #(S)—1. O

Remark 2. Take X as in Proposition 2. The proof of Proposition 2 gives that
every S C X such that §(5) < n is linearly independent, i.e. X has no codimension
2 multisecant linear subspace from the set-theoretical point of view (but of course
every tangent line of X at one of its smooth points contains a length p© subscheme of
X). We stress again that all curves X as in Proposition 2 are explicitely constructed
in [3]. The rational normal curves of P" are the only integral curves for which no
hyperplane contains n + 1 points of the curve, i.e. for which the reduction of every
codimension 1 linear section is linearly independent.

Example 1. Here we check that the example of a very strange curve given in [18],
Example 1.2, is a flat strange curve. Fix an integer n > 3, a prime p and a p-power
q. Here ¢ = p° is the inseparable degree of the linear projection from the strange
point. Fix homogeneous coordinates zg, .. ., z,, of P" and homogeneous coordinates
Ty Ty of PP7L Set A := (0;...;0;1;0) and O := (1;0;...;0;0). We recall that
every point of the vertex of a cone T is a strange point of T. An integral hypersurface
{f(zo,...,z,) = 0} has O as one of its strange points if and only if in each monomial
of f with a non-zero coefficient the variable xy appears with exponent divisible by p.
Let X be the scheme with equations zf —z124~1 2{ —zozd=1 ... 2? ,—x, 12971
The point O is a strange points of the n — 1 hypersurfaces with these equations (the
latter n—2 hypersurfaces are cones with vertex containing O). Set X' := X N{x,, #
0}. We have (X N{z,, = 0})rea = {A}. Since X is given by n — 1 equations, each
irreducible component of X,..4 has dimension at least 1. Hence A is in the closure
of X'. Set t := xo/x,. The scheme (X');..q has a rational parametrization

(2) tes (6,29,49 10,

because in X’ we have x;/x, = (v;-1/x,)? for every i € {1,...,n — 1}. Hence
(X")req is integral, smooth, rational and its closure X,.q in P™ has O as its strange
point. Since deg(X,eq) = ¢! and X,.q is set-theoretically the intersection of
n — 1 hypersurfaces of degree ¢, the algebraic set X,..q4 is the complete intersection
of these hypersurfaces, outside finitely many points. Hence the scheme X is a
complete intersection and it is reduced outside finitely many points. Since X is a
complete intersection, each local ring Ox g, @ € X,eq, is Cohen-Macaulay. Hence
X has no embedded component and it is generically reduced. Thus it is reduced.
We have O ¢ X. Set YV = (o(X) C P»1, Y/ := Y n{z, # 0} and A" :=
(0;...;1;0) = Lo(A) € Y. Since Lo((t;t%;...;t9" ;1)) = (t9;...;t9" ;1) for all
t € K, the curve Y’/ has a parametrization

n—1

(3) Z (z,zqw..,zq"fz),

where z = t9. Hence £p|X’ : X' — Y is injective and purely inseparable with insep-
arable degree ¢. Thus X has parameters (p, s,p¢) = (0,1, q). The parametrization
(3) shows that Y’ is smooth, that Y is strange with O” := (1;0;...;0;0) as its
strange point and that Y\Y’ = {A’}. Fix linearly independent Py,..., P, € X'
and set S := {P1,...,P,} and M := (S). The parametrization (2) shows that
(MO X )pea = {PL+ar1(Po — P1) + -+ an—1(P, — P1)}, where each a; is
an arbitrary element of F,. Since §((M N X')eq) = ¢ = deg(X), we get
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that this is a scheme-theoretic intersection and that M N (X\X’) = 0. Since
MNX = (MnNX')req scheme-theoretically and O € Tp, X, we have O ¢ M, i.e.
dim(¢o(M)) = n — 1. Recall that X\ X' = {A}. Fix S1 C X such that 4(51) = n,
A € 57 and S is linearly independent. Let M; be the hyperplane spanned by
Si. Set Sy := S1\{A} and write Sy = {Pi,...,Pn_1}. Set Q; = Lo(P),
1 <i<n-—1. We proved that §(£o(S2)) =n — 1, £o(S2) C Y’ and that £o(S2)
is linearly independent. Set My := (£p(S2)). Since A’ = £p(A), to conclude the
proof of the flatness of X it is sufficient to prove A’ ¢ M,. Let E C P"~! the set
{Q14+a1(Q2—Q1)+ -+ an—2(Qn_1—Q1)}, where each a; is an arbitrary element
of F,. Since Py +a1(Py— Py)+ -+ an—2(P,—1 — P1) € X' for all a; € F,, we have
E C MyN{o(X'). Since £o| X’ is injective, we have §(E) = ¢" 2 = deg(Y). Thus
E=M;NY and (Y\lo(X')) N My = 0. Since {A'} = Y\lo(X'), we get A’ ¢ M.
Thus X is flat.

Remark 3. A theorem of Luiss’ says that there is a unique smooth strange curve
(if we exclude the lines): a smooth plane conic in characteristic 2 ([13], Proposition
3, or [10], Theorem IV.3.9). If p = 2 a smooth plane conic is obviously flat.
This example shows that if n = 2 and p = 2 the ranks of the rational normal
curves of P™ are not as in characteristic zero (see [7], [15], 4.1, or [5], 3.1). This
phenomenon does not occur when n = 3. Let C' C P3 be a rational normal curve.
Let TC := UgecToC C P? denote the tangent developable of C. If P € C, then
ro(P) = 1. If P ¢ TC, then ro(P) = 2, because P? is the secant variety of C' ([1],
Remark 1.6). Fix P € TC\C, say P € ToC\{Q} with Q € C. Assume rg(P) =2
and take Py, P, € C such that P, # P, and P € ({Py, P»}). Since any length 3
scheme Z C C spans a plane, Q ¢ ({P1,P2}). Since P € ToC N ({P1, P2}), the
linear space M = (ToC U {Pi, P»}) is a plane and length(M N C) > 4. Since
deg(C) > 3, we get a contradiction. Hence ro(P) > 3. Since C' is not strange,
Theorem 1 gives r¢(P) = 3. Hence the stratification by ranks of C' is the same as
in characteristic zero.

Fix an integer m > 2. Here we construct m-dimensional examples of pairs (X, P)
such that rx(P) = n+ 2 — m, i.e. such that the inequality in part (b) of Theorem
1 is an equality. Just taking cones we get an m-dimensional example from any one-
dimensional example with the same codimension in an ambient projective space.
This is the only example we know of pairs (X, P) with m > 2 and rx (P) = n+2—m,
i.e. a pair for which part (b) of Theorem 1 is sharp. Are there other examples?

Remark 4. Fix integers n > m > 2, an (n —m+ 1)-dimensional linear subspace M
of P™ and an (m—2)-dimensional linear subspace N of P such that MNN =0, i.e. a
complementary subspace. For any variety Y C M let C(N,Y’) C P™ denote the cone
with vertex N and Y as its basis. Hence for each O € M the scheme C'(N, O) is an
(m — 1)-dimensional linear subspace of P". We claim that ro(y vy (P) = ry(O) for
every P € C(N,O)\N. Fix P € C(N,O)\N. Take an (n—m+1)-dimensional linear
subspace M’ of P" such that P € M’ and NNM' = (). The linear projection from N
induces an isomorphism of pairs (C(N,Y)NM’, P) = (Y, O) as pairs of subvarieties,
respectively of M’ and of M. Thus rovy)(P) < rev,yynm (P) = ry(0). To
prove the reverse inequality we fix P € C(N,0) and S C C(N,Y) computing
rev,y)y(P). The image S” C M of the linear projection of S from N is a set
such that §(S") < #(S) = rov,y)(P). Since O € ('), we get ry(0) < §(5') <
ron,y)(P). Taking as Y a flat curve with strange point O, X = C(N,Y) and
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V = C(N, O) we get the existence (for all n > m > 2) of an integral, non-degenerate
and m-dimensional variety X C P" with as set of its strange points an (m — 1)-
dimensional linear space V and rx(P) =n —m+ 2 for all P € VAN, where N is
an (m — 2)-dimensional linear space and N C X.

Proposition 3. Let X C P" be an integral and non-degenerate m-dimensional
variety. Fix O € P"* and assume that O is a strange point of X, but that X is not
a cone with vertex containing O. Then deg(X) > p- (n —m).

Proof. Fix A € P"\{O} and take any integral quasi-projective variety £ C P"\{O}
such that A € E,.4. Set 2 := dim(F). The inclusion j : E C P™ induces an inclusion
between the abstract tangent spaces ©g 4 of I/ at A and the abstract tangent space
Oprn 4 of P* at A. As usual in projective geometry we “complete” these vector
spaces O, 4 and Op= 4 to projective spaces, respectively of dimension z and 7, and
call them T4 E and T4P™ = P". Since A # 0, the submersion {o : P"\{O} — P~}
induces a linear surjective map of K-vector spaces po(A) : Opr 4 — Opn-1 g,(4)-
Since po(A) is surjective, its kernel is one-dimensional. If we identify ©4P" with
an affine n-dimensional open subset of T4yP" = P™, then the closure of this kernel
is the line ({0, A}) (in the case z = 1, see [13], lines 3—4 of p. 215). Thus the
differential of {p|E at A is injective if and only if O ¢ T4 E. Thus the differential
of £o|E at a general point of E is injective if and only if the closure £ C P" of E
is not strange with O as one of its strange points.

Let T C P"~! denote the closure of £o(X\{O}). Since X is not a cone with ver-
tex containing O, £o|X\{O} is a generically finite morphism. Hence dim(7") = m.
Since T spans P"~!, we have deg(T) > n—m. Since £o|X\{O} is generically finite,
the function field K(X) of X is a finite extension of the function field K(T). Since
O is a strange point of X, this extension of fields is not separable (use the geometric
interpretation of po(A) just given and the differential criterion of separability, i.e.
[17], Theorem 26.6, or [16], Th. 59 at p. 191, quoted in [10], Theorem II.8.6 ).
Call p¢, e > 1, the inseparable degree of this extension of fields. A general fiber of
20| X\{O} is a disjoint union of finitely many connected zero-dimensional schemes,
each of them with degree p¢. Hence deg(X) > p® - deg(T) > p(n — m). O

In the set-up of Proposition 3 if O € X, then deg(X) > p- (n —m). Proposition
3 is very weak, but we are unable to make a substantial improvement of it. In the
case of a strange curve X the formula (1) relates deg(X) to other data. Nothing
more can be said in the one-dimensional case. Indeed, the construction of [3] shows
that we may take an arbitrary T spanning P*~! and then find a solution X with
arbitrary e > 1 and p > 0. Formula (1) is very useful to check if a curve X is
strange. We observed after Definition 1 that if deg(X)/p ¢ Z, then either X is not
strange or its strange point belongs to X. If X is strange, we also see that the
image curve T has much lower degree and hence it should be easier.

It seems to be very difficult to construct very strange curves. We know only
the examples given in [18]. We expect that if they exist, then they have very large
degree, at least p”~! in P".
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