A COMMON FIXED POINT THEOREM FOR A FAMILY OF SELFMAPPINGS SATISFYING A GENERAL CONTRACTIVE CONDITION OF OPERATOR TYPE

CIHANGIR ALACA

Department of Mathematics, Faculty of Science and Arts, Sinop University, 57000 Sinop, Turkey cihangiralaca@yahoo.com.tr

ABSTRACT. In this paper, we prove a common fixed point theorem for a family of selfmappings satisfying a general contractive condition of operator type.

1. Introduction

The class of generalized contraction mappings, introduced and studied by Ćirić in [6], is very significant in a fixed point theory. As noted by Gornićki and Rhoades [8], a contractive condition (2.1) on a pair of generalized contractions. Jungck [9] proved a fixed point theorem for commuting maps generalizing the Banach's fixed point and further he [10] introduced more generalizing commutativity, so called compatibility, which is more general than that of weak commutativity defined by Sessa [12]. Lately, Branciari [4] obtained a fixed point results for a single mapping satisfying an analogue of Banach's contraction principle (see [3] and [5]) for an integral type inequality. Rhoades [11] proved two fixed point theorems involving more general contractive conditions. Vijayaraju et al. [13] established a general principle, which maked it possible to proved many fixed point theorems for a pair of maps of integral type. Aliouche [1] gave a common fixed point theorem for selfmappings of a symmetric space under a contractive condition of integral type. Altun and Turkoglu [2] proved a fixed point theorem for mappings satisfying a general contractive of operator type.

The main purpose of this paper is to give a common fixed point theorem for a family of selfmappings satisfying a general contractive condition of operator type.

2. Preliminaries

Let X be a nonempty set and let $\{T_{\alpha}\}_{{\alpha}\in J}$ be a family of selfmappings on X and J indexing set. A point $u\in X$ is called a common fixed point for a family

 $^{2000\} Mathematics\ Subject\ Classification.$ 47H10, 54E50, 58J20. Key words and phrases. Common fixed point, contractive condition of operator type.

 $\{T_{\alpha}\}_{{\alpha}\in J}$ iff for each T_{α} . The following theorem was given by Ćirić [7] for a family of generalized contraction.

Theorem 1. Let (X,d) be a complete metric space and let $\{T_{\alpha}\}_{{\alpha}\in J}$ be a family of selfmappings of X. If there exists fixed $\beta \in J$ such that for each $\alpha \in J$:

(2.1)
$$d(T_{\alpha}x, T_{\beta}y) \leq \lambda \max \left\{ \begin{array}{l} d(x, y), d(x, T_{\alpha}x), d(y, T_{\beta}y), \\ \frac{1}{2} \left[d(x, T_{\beta}y) + d(y, T_{\alpha}x) \right] \end{array} \right\}$$

for some $\lambda = \lambda(\alpha) \in (0,1)$ and all $x, y \in X$, then all T_{α} have a unique common fixed point, which is a unique fixed point of each T_{α} , $\alpha \in J$.

The following theorem was given by Branciari [4] was to analyze the existence of fixed points for mappings of f defined on a complete metric space (X,d) satisfing a contractive condition of integral type.

Theorem 2. Let (X,d) be a complete metric space, $c \in (0,1)$ and $f: X \to X$ be a mapping such that for each $x, y \in X$ one has

$$\int\limits_{0}^{d(fx,fy)}\varphi(t)dt\leq c\int\limits_{0}^{d(x,y)}\varphi(t)dt$$

where $\varphi:[0,+\infty)\to[0,+\infty)$ is a Lebesgue-integrable mapping which is summable (i.e. with finite integral) on each compact subset of $[0, +\infty)$, non-negative and such that for each $\varepsilon > 0$, $\int_{0}^{\varepsilon} \varphi(t)dt > 0$; then f has a unique fixed point $a \in X$ such that for each $x \in X$, $\lim_{n \to \infty} f^n x = a$.

The following concept of O(f; .) and its examples was given by Altun and Turkoglu [2].

Let $F([0,\infty))$ be class of all function $f:[0,\infty)\to[0,\infty]$ and let Θ be class of all operators

$$O(\bullet; .): F([0, \infty)) \to F([0, \infty)), f \to O(f; .)$$

satisfying the following conditions:

- (i) O(f;t) > 0 for t > 0 and O(f;0) = 0,
- (ii) $O(f;t) \le O(f;s)$ for $t \le s$,
- (iii) $\lim_{n \to \infty} O(f; t_n) = O\left(f; \lim_{n \to \infty} t_n\right),$ (iv) $O(f; \max\{t, s\}) = \max\{O(f; t), O(f; s)\}$ for some $f \in F([0, \infty)).$

Example 1. If $f:[0,\infty)\to[0,\infty)$ is a Lebesque integrable mapping which is finite integral on each compact subset of $[0,\infty)$, non-negative and such that for each t>0, $\int_0^t f(s)ds > 0$, then the operator defined by

$$O(f;t) = \int_0^t f(s)ds$$

satisfies the conditions (i)-(iv).

Example 2. If $f:[0,\infty)\to[0,\infty)$ non-decreasing, continuous function such that f(0) = 0 and f(t) > 0 for t > 0, then the operator defined by

$$O(f;t) = \frac{f(t)}{1 + f(t)}$$

satisfies the conditions (i)-(iv).

Example 3. If $f:[0,\infty)\to [0,\infty)$ non-decreasing, continuous function such that f(0)=0 and f(t)>0 for t>0, then the operator defined by

$$O(f;t) = \frac{f(t)}{1 + \ln(1 + f(t))}$$

satisfies the conditions (i)-(iv).

3. A COMMON FIXED POINT THEOREM AND IT'S RESULTS

Now, we prove a common fixed point theorem for a family of selfmappings satisfying a general contractive condition of operator type in complete metric spaces.

Theorem 3. Let (X,d) be a complete metric space and $\{T_{\alpha}\}_{{\alpha}\in J}$ be a family of selfmappings of X. If there exists a fixed $\beta\in J$ such that for each $\alpha\in J$:

(3.1)
$$O\left(f;d\left(T_{\alpha}x,T_{\beta}y\right)\right) \leq \lambda O\left(f;m(x,y)\right)$$

where $O(\bullet; .) \in \Theta$ and

(3.2)
$$m(x,y) = \max \left\{ d(x,y), d(x,T_{\alpha}x), d(y,T_{\beta}y), \frac{1}{2} \left[d(x,T_{\beta}y) + d(y,T_{\alpha}x) \right] \right\}$$

for some $\lambda = \lambda(\alpha) \in (0,1)$ and all $x, y \in X$, then all T_{α} have a unique common fixed point, which is a unique fixed point of each T_{α} , $\alpha \in J$.

Proof. Let $\alpha \in J$ and $x \in X$ be arbitrary. Consider a sequence, defined inductively by

$$x_0 = x$$
, $x_{2n+1} = T_{\alpha}x_{2n}$, $x_{2n+2} = T_{\beta}x_{2n+1}$, $(n \ge 0)$.

For each integer $n \ge 0$, from (3.1),

(3.3)
$$O(f; d(x_{2n+1}, x_{2n+2})) = O(f; d(T_{\alpha}x_{2n}, T_{\beta}x_{2n+1}))$$

$$\leq \lambda O(f; m(x_{2n}, x_{2n+1})).$$

Using (3.2), we have

$$m(x_{2n}, x_{2n+1}) = \max \{d(x_{2n}, x_{2n+1}), d(x_{2n+1}, x_{2n+2})\}.$$

Substituting into (3.3) and (iv), one obtains

(3.4)
$$O(f; d(x_{2n+1}, x_{2n+2}))$$

$$\leq \lambda O(f; \max \{d(x_{2n}, x_{2n+1}), d(x_{2n+1}, x_{2n+2})\})$$

$$= \lambda \max \{O(f; d(x_{2n}, x_{2n+1})), O(f; d(x_{2n+1}, x_{2n+2}))\}.$$

If $O(f; d(x_{2n+1}, x_{2n+2})) \ge O(f; d(x_{2n}, x_{2n+1}))$, then from (3.4) we have

$$O(f; d(x_{2n+1}, x_{2n+2})) \le \lambda O(f; d(x_{2n+1}, x_{2n+2}))$$

which is a contradiction $(\lambda < 1)$. Thus $O\left(f; d\left(x_{2n+1}, x_{2n+2}\right)\right) < O\left(f; d\left(x_{2n}, x_{2n+1}\right)\right)$ and so from (3.4) one obtains

$$O(f; d(x_{2n+1}, x_{2n+2})) \le \lambda O(f; d(x_{2n}, x_{2n+1})).$$

Similarly, we get that

$$O(f; d(x_{2n}, x_{2n+1})) \le \lambda O(f; d(x_{2n-1}, x_{2n})).$$

Thus, for any $n \ge 1$ we have

$$(3.5) O(f; d(x_n, x_{n+1})) \leq \lambda O(f; d(x_{n-1}, x_n))$$

$$\leq \lambda^2 O(f; d(x_{n-2}, x_{n-1}))$$

$$\vdots$$

$$< \lambda^n O(f; d(x_0, x_1)).$$

Taking the limit of (3.5), as $n \to \infty$, we have

$$\lim_{n \to \infty} O\left(f; d\left(x_n, x_{n+1}\right)\right) = 0,$$

which, from (i), implies that

$$\lim_{n \to \infty} d(x_n, x_{n+1}) = 0.$$

Therefore, $\{x_n\}$ is Cauchy sequence. (Similarly, see [2]). Since X is complete, there is a $p \in X$ such that

$$\lim_{n\to\infty} x_n = p.$$

From (3.1) we have,

$$O(f; d(x_{2n+1}, T_{\beta}p)) = O(f; d(T_{\alpha}x_{2n}, T_{\beta}p))$$

$$\leq \lambda \max \left\{ \begin{array}{l} d(x_{2n}, p), d(x_{2n}, T_{\alpha}x_{2n}), d(p, T_{\beta}p), \\ \frac{1}{2} \left[d(x_{2n}, T_{\beta}p) + d(p, T_{\alpha}x_{2n}) \right] \end{array} \right\}.$$

Taking the limit as $n \to \infty$ we get

$$O(f; d(p, T_{\beta}p)) \leq \lambda O(f; d(p, T_{\beta}p)),$$

which implies that

$$O(f; d(p, T_{\beta}p)) = 0,$$

which from (i), implies that $d(p, T_{\beta}p) = 0$; hence $T_{\beta}p = p$.

Now we show that p is a fixed point of all $\{T_{\alpha}\}_{{\alpha}\in J}$. Let ${\alpha}\in J$ be arbitrary. Then from (3.1) with $x=y=p=T_{\beta}p$ we have

$$\begin{split} O\left(f;d\left(T_{\alpha}p,p\right)\right) &= O\left(f;d\left(T_{\alpha}p,T_{\beta}p\right)\right) \leq \lambda(\alpha)O\left(f;m(p,p)\right) \\ &\leq \lambda(\alpha)\max\left\{ \begin{array}{c} O\left(f;d(p,p)\right),O\left(f;d(p,T_{\alpha}p)\right),O\left(f;d(p,T_{\beta}p)\right),\\ \frac{1}{2}\left[O\left(f;d(p,T_{\beta}p)\right)+O\left(f;d(p,T_{\alpha}p)\right)\right] \end{array} \right\} \\ &= \lambda(\alpha)\max\left\{O\left(f;d(p,T_{\alpha}p)\right),\frac{1}{2}O\left(f;d(p,T_{\alpha}p)\right)\right\}. \end{split}$$

Therefore, we get

$$O(f; d(T_{\alpha}p, p)) \le \lambda(\alpha)O(f; d(p, T_{\alpha}p))$$

which implies that

$$O\left(f;d\left(T_{\alpha}p,p\right)\right)=0,$$

which, from (i), implies that $d(T_{\alpha}p, p) = 0$ or $T_{\alpha}p = p$. Thus, all T_{α} have a common fixed point.

Now we prove the uniqueness of the fixed point p. Suppose that q is another a fixed point of T_{β} . Then it follows, as above, that q is a common fixed point of all $\{T_{\alpha}\}_{{\alpha}\in J}$. Thus, from (3.1) we have

$$O(f; d(p,q)) = O(f; d(T_{\alpha}p, T_{\beta}q))$$

$$\leq \lambda O(f; m(p,q))$$

$$= \lambda O(f; d(p,q)),$$

which implies that

$$O\left(f;d\left(p,q\right) \right) =0,$$

which, from (i), implies that d(p,q) = 0. Hence p = q. Thus, p is a unique common fixed point of all $\{T_{\alpha}\}_{{\alpha}\in J}$.

Remark 1. It is clear that Theorem 3 is a generalization of Theorem 1 in [2].

Remark 2. We can have new result, if we combine Theorem 3 and some examples for O(f; .).

Remark 3. Theorem 3 is a generalization of Theorem 1, in fact letting f = I (identity map) and O(f;t) = t in (3.1) (it is obvious that $O(f;t) \in \Theta$) one has

$$d(T_{\alpha}x, T_{\beta}y) = O\left(f; d\left(T_{\alpha}x, T_{\beta}y\right)\right) \le \lambda O\left(f; m(x, y)\right) = \lambda m(x, y),$$

thus Ćirić's [6,7] generalized contraction also satisfies.

References

- [1] A. Aliouche, A common fixed point theorem for weakly compatible mappings in symmetric spaces satisfying a contractive condition of integral type, J. Math. Anal. Appl., 322 (2) (2006) 796 802.
- [2] I. Altun and D. Turkoglu, A fixed point theorem for mappings satisfying a general contractive condition of operator type, J. Comput. Anal. Appl., 9 (1) (2007) 9 – 14.
- [3] S. Banach, Sur les opérations dans les ensembles abstraits et leur application aux équations intégrales, Fund. Math., 3 (1922) 133 181.
- [4] A. Branciari, A fixed point theorem for mappings satisfying a general contractive condition of integral type, Internat. J. Math.&Math. Sci. 29 (9) (2002) 531 – 536.
- [5] R. Caccioppoli, Un teorema generale sull'esistenza di elementi uniti in una trasformazione funzionale, Rend. Accad. dei Lincei, 11 (1930) 794 – 799.
- [6] Lj. B. Ćirić, Generalized contractions and fixed point theorems, Publ. Inst. Math., 12 (26) (1971) 19 26.
- [7] Lj. B. Ćirić, On a family of contractive maps and fixed points, Publ. Inst. Math., 17 (31) (1974) 45-51.
- [8] J. Gornicki, B. E. Rhoades, A general fixed point theorem for involutions, Indian J. Pure Appl. Math. 27 (31) (1996) 45 – 51.
- [9] G. Jungck, Commuting maps and fixed points, Amer. Math. Monthly, 83 (1976) 261 263.
- [10] G. Jungek, Compatible mappings and common fixed points, Internat. J. Math. Math. Sci., 9 (1986) 771 – 779.
- [11] B. E. Rhoades, Two fixed point theorems for mappings satisfying a general contractive condition of integral type, Internat. J. Math. Math. Sci., 63 (2003) 4007 4013.
- [12] S. Sessa, On Weak Commutativity Condition of Mappings in Fixed Point Considerations, Publ. Inst. Math., 32 (46) (1982) 149 – 153.
- [13] P. Vijayaraju, B. E. Rhoades and R. Mohanraj, A fixed point theorem for a pair of maps satisfying a general contractive condition of integral type, Internat. J. Math. Math. Sci., 15 (2005) 2359 – 2364.