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OSCILLATION OF NONAUTONOMOUS SECOND ORDER
NEUTRAL DELAY DYNAMIC EQUATIONS ON TIME SCALES

H. A. AGWO

Abstract. In this paper, we establish some new oscillation criteria for nonau-

tonomous second order neutral delay dynamic equation with several delays

(x(t)− r(t)x(τ(t)))44 + H(t, x(h(t))) + G(t, x(g(t))) = 0,

on a time scale T. The results not only can be applied on neutral differential

equations when T = R, neutral delay difference equations when T = N and for

neutral delay q− difference equations when T =qN for q > 1, but also improved
most previous results.

1. Introduction

A time scale T is an arbitrary nonempty closed subset of the real numbers R.
On any time scale T, we defined the forward and backward jump operators by

(1.1) σ(t) := inf{s ∈ T : s > t} and ρ(t) := sup{s ∈ T : s < t},
A point t ∈ T, t > inf T is said to be left-dense if ρ(t) = t, right-dense if

t > sup T and σ(t) = t, left-scattered if ρ(t) < t and right-scattered if σ(t) > t. The
graininess function µ : T → [0,∞), is defined by µ(t) := σ(t) − t. For the function
f : T → R the (delta) derivative is defined by

(1.2) f4(t) :=
f(σ(t))− f(t)

σ(t)− t
,

f is said to be differentiable if its derivative exists. A useful formula is

(1.3) fσ := f(σ(t)) = f(t) + µ(t)f4(t),

If f, g are differentiable, then fg and the quotient f
g (where ggσ 6= 0) are differen-

tiable with

(1.4) (fg)4 = f4g + fσg4 = fg4 + f4gσ,

and

(1.5)
(

f

g

)4
:=

f4g − fg4

ggσ
.

If f4(t) ≥ 0, then f is nondecreasing.
A function f : [a, b] → R is said to be right-dense continuous if it right contin-

uous at each right-dense point and there exists a finite left limit at all left-dense
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points. The set of all right-dense continuous functions is denoted by Crd . A
function f : T → R is called regressive, if 1 + µ(t)f(t) 6= 0 for all t ∈ T. The
set of all functions f : T → R which are regressive and rd−continuous will be
denoted by R. We define the set R+ of all positively regressive elements of R by
R+ = {f ∈ R : 1 + µ(t)f(t) 6= 0, t ∈ T}. A function F with F4 = f is called an
antiderivative of f and then we define

(1.6)
∫ b

a

f(t)4t = F (b)− F (a),

where a, b ∈ T. It is well known that rd-continuous functions possess antiderivatives.
A simple consequence of formula (2.3) is

(1.7)
∫ σ(t)

t

f(s)4s = µ(t)f(t),

and infinite integrals are defined as

(1.8)
∫ ∞

a

f(t)4t = lim
b→∞

∫ b

a

f(t)4t.

In the recent years, the theory of time scales has received a lot of attention
which was introduced by Stefan Hilger in his Ph.D. thesis in 1988 in order to unify
continuous and discrete analysis (see [10]). In fact there has been much activities
concerning the oscillation and nonoscillation of solutions of dynamic equations on
time scales (or measure chains). We refer the reader to recent papers [1-3, 7, 11,
13-18] and the references cited therein. A book on the subject of time scales, by
Bohner and Peterson [5] summarizes and organizes much of time scales calculus,
see also the book by Bohner and Peterson [4] for advances in dynamic equations
on time scales. For oscillation of first-order neutral delay dynamic equations with
a negative coefficient on the neutral term, Mathsen et. al. [14] considered the
equation

(1.9) (x(t)− r(t)x(τ(t)))4 + α(t)x(h(t)) = 0.

and the authors posed the following question. What can be said about even order

equations

(x(t)− r(t)x(τ(t)))4
2n

+ α(t)x(h(t)) = 0

and various generalization?. Recently Saker in [16] considered the equation

(1.10) (x(t)− r(t)x(τ(t)))44 + α(t)x(h(t)) = 0.

Also, recently Liu et. al. [13] considered the equation

(1.11) (x(t)− r(t)x(τ(t)))4 + H(t, x(h(t))) + G(t, x(g(t))) = 0

on a time scale T and established some oscillation criteria, which in the special case
when T = R involve some oscillation criteria for neutral delay differential equations.
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In this paper, we are concerned with the oscillation of the second-order nonlinear
dynamic equation

(1.12) (x(t)− r(t)x(τ(t)))44 + H(t, x(h(t))) + G(t, x(g(t))) = 0

on a time scale T. Since we are interest in asymptotic behavior of solutions, we
will suppose that the time scale T under consideration is not bounded above, i.e.
it is a time scale interval of the form [t0,∞)T = [t0,∞) ∩ T. Through this paper,
we assume that:

(H1) r ∈ Crd(T, R+), h and g ∈ Crd(T, T), τ(t) < t, h(t) < t, g(t) < t ,
lim

t→∞
τ(t) = ∞, lim

t→∞
h(t) = ∞, lim

t→∞
g(t) = ∞ and 0 ≤ r(t) ≤ r < 1, Crd(T, S)

denotes the set of all functions f : T → S -( S is a time scale)- which are right-dense
continuous on T.

(H2) H(t, u), G(t, v) ∈ C(T× R, R) for each t ∈ T which are nondecreasing in u
and v, uH(t, u) > 0 for u 6= 0 and vG(t, v) > 0 for v 6= 0.

(H3) |H(t, u)| ≥ α(t) |u|λ and |G(t, v)| ≥ β(t) |v|λ , where α(t), β(t) ≥ 0 and
0 ≤ λ = p

q ≤ 1 with p, q are odd integers.
By a solution of equation (1.12), we mean a nontrivial real value function x(t)

which has the properties (x(t) − r(t)x(τ(t)) ∈ C2
rd[tx,∞), tx > t0 and satisfying

equation (1.12) for all t > tx. Our attention is restricted to those solutions of
equation (1.12) which exist on some half line [tx,∞) and satisfy sup{|x(t)| : t >
t1} > 0 for any t1 > tx.

A solution x(t) of (1.12) is said to be oscillatory if it is neither eventually positive
nor eventually negative. Otherwise it is called nonoscillatory. The equation itself
is called oscillatory if all its solutions are oscillatory.

Note that if T = R, we have σ(t) = ρ(t) = t, f∆(t) = f
′
(t), and (1.10), (1.12)

become respectively, the second-order neutral delay differential equations

(1.13) [x(t)− r(t)x(τ(t)]
′′

+ α(t)x(h(t)) = 0

and

(1.14) [x(t)− r(t)x(τ(t)]
′′

+ H(t, x(h(t))) + G(t, x(g(t))) = 0.

For oscillation of equation (1.13) Graef et.al. [8] proved that , if α > 0, 0 ≤
r(t) < 1 and

(1.15)
∫ ∞

t0

α(s)ds = ∞

then every unbounded solution of (1.13) oscillates. Note that condition (1.15) can
not be applied for the second order neutral equation

[x(t)− r(t)x(τ(t)]
′′

+
γ

(t− h)2
x(t− h) = 0,

where γ > 0, 0 ≤ r(t) < 1. Also, Dzurina and Mihalikova in [6] considered the
equation (1.5) when r(t) = r where r is constant and gave the following oscillation
criteria. If
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(1.16)
∫ ∞

t0

(α(s)h(s)
1− rn+1

1− r
− 1

4h(s)
)ds = ∞,

then, every solution of equation (1.13) oscillates.
If T = Z, we have σ(t) = t + 1, µ(t) = 1, f∆ = ∆f, and (1.12) becomes the

second-order neutral delay difference equation

(1.17) ∆2 [x(t)− r(t)x(τ(t))] + H(t, x(h(t))) + G(t, x(g(t))) = 0.

If T =hZ, h > 0, we have σ(t) = t + h, µ(t) = h, f∆ = ∆hf = f(t+h)−f(t)
h and

(1.4) becomes the second-order neutral delay difference equation

(1.18) ∆2
h [x(t)− r(t)x(τ(t))] + H(t, x(h(t))) + G(t, x(g(t))) = 0.

If T=qN = {t : t = qn, n ∈ N, q > 1}, we have σ(t) = qt, µ(t) = (q − 1)t,
x∆

q (t) = x(qt)−x(t)
(q−1)t , and (1.3) becomes the second order q−neutral delay difference

equation

(1.19) ∆2
q [x(t)− r(t)x(τ(t))] + H(t, x(h(t))) + G(t, x(g(t))) = 0.

This paper is organized as follows: In Section 2, we establish some new sufficient
conditions for oscillation of (1.12). In Section 3, we present some illustrative ex-
amples to show that our results are not only new but also improved many previous
results.

2. Main results

In this section, we establish some sufficient conditions for the oscillation of equa-
tion (1.12). For the remainder of the paper we assume that δ−1(t) is the inverse of
the function δ(t) exists and satisfies δ−(n+1)(t) = t + nδ

Theorem 2.1. Assume that H1−H3 hold. Then every solution of (1.12) oscil-
lates, if

(2.1)
∫ ∞

t5

{α(s)(r(h(s))τ(h(s)))λ + β(s)(r(g(s))τ(g(s)))λ}4s = ∞.

Proof. Suppose to the contrary that equation (1.12) has a nonoscillatory solu-
tion x(t). We may assume without loss of generality that there exists t1 ≥ t0 such
that x(t) > 0, x(τ(t)) > 0 and x(δ(t)) > 0 where δ = min{h, g} for all t > t1. Set

(2.2) y(t) = x(t)− r(t)x(τ(t)),

Then, it follows from equation (1.12) we have

(2.3) y44(t) = −H(t, x(h(t)))−G(t, x(g(t))) for all t > t1.

Now (H2) with x(δ(t)) > 0 implies that y∆∆(t) < 0. Thus y∆(t) is strictly decreas-
ing. Now, we prove that y∆(t) > 0 on the interval [t1, ∞)T. Assume not. Then
there exists t2 ≥ t1 such that y∆(t2) = C < 0. Then, since y∆∆(t) < 0, we have

(2.4) y∆(t) ≤ y∆(t2) = C, for t ≥ t2,

and therefore

(2.5) y∆(t) ≤ C for all t ≥ t2.
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Integrating the last inequality from t2 to t, we obtain

(2.6) y(t) = y(t2) +
∫ t

t2

y∆(s)∆s ≤ y(t2) + C(t− t2),

and consequently y(t) → −∞ as t → ∞ which implies that there exists c > 0 and
t3 ≥ t2 such that y(t) < −c for t ≥ t3. Then, we have from (3.2) that

(2.7) x(t) < −c + r(t)x(τ(t)) ≤ −c + rx(τ(t)), for t ≥ t3,

which implies that x(δ−1(t3)) < −c + rx(t3). Thus

(2.8) x(δ−(n+1)(t3)) ≤ −c
n∑

i=0

ri + rn+1x(t3) ≤ −c + rn+1x(t3),

and so x(δ−(n+1)(t3)) < 0 for large n, which contradicts the fact that x(t) > 0
for all t ≥ t1. Hence y∆(t) > 0 and this implies that y(t) is strictly increasing on
[t1,∞). We prove now that y(t) > 0 for t ≥ t2 where t2 is large enough. Suppose
not. Then there exists a t3 ≥ t1 with y(t3) < 0. Now, since y(t) is strictly increasing
then y(t) > 0 for t ≥ t3 (for if there exists a t4 > t3 with y(t4) > 0, then y(t) > 0
for t ≥ t4, but we are assuming that y(t) > 0 for t large enough is not true). Then
from (2.2) that x(t) < rx(τ(t)), for t ≥ t3. Thus x(τ−1(t)) ≤ rx(t) and this implies
after iteration that x(δ−(n+1)(t)) ≤ rn+1x(t) → 0 for large n, since 0 < r < 1 and
so x(δ−(n+1)(t)) < 0 again, which contradicts the fact that x(t) > 0 for all t ≥ t1.
Then, we have

(2.9) y(t) > 0, y∆(t) > 0, y∆∆(t) < 0 for t ≥ t1.

Since y∆∆(t) < 0 and y(t) > 0, then

y(t) = y(t4) +
∫ t

t4

y4(s)4s > (t− t4)y4(t) > kty4(t) for t >
t4

(1− k)
:= t5,

0 < k < 1.

Now y(t) > 0 implies that y(t) < x(t) and x(t) > r(t)x(τ(t)).Since H(t, x) and
G(t, x) are nondecreasing in x , we get

0 = y∆∆(t) + H(t, x(h(t))) + G(t, x(g(t)))

≥ y∆∆(t) + H(t, r(h(t))x(τ(h(t)))) + G(t, r(g(t))x(τ(g(t))))

≥ y∆∆(t) + H(t, r(h(t))y(τ(h(t)))) + G(t, r(g(t))y(τ(g(t))))

≥ y∆∆(t) + α(t)(r(h(t))y(τ(h(t))))λ + β(t)(r(g(t))y(τ(g(t))))λ

≥ y∆∆(t) + α(t)(kr(h(t))τ(h(t))y4(τ(h(t))))λ

+β(t)(kr(g(t))τ(g(t))y4(τ(g(t))))λ

From nondecreasing property of τ(t), we have τ(h(t)) < τ(t) < t and nonincreasing
of y4(t) implies that

y4(τ(h(t))) ≥ y4(τ(t)) ≥ y4(t).
and

y4(τ(h(t))) ≥ y4(τ(t)) ≥ y4(t).
Hence,
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0 ≥ y∆∆(t) + α(t)(kr(h(t))τ(h(t))y4(τ(h(t))))λ

+ β(t)(kr(g(t))τ(g(t))y4(τ(g(t))))λ

≥ y∆∆(t) + [α(t)(kr(h(t))τ(h(t)))λ + β(t)(kr(g(t))τ(g(t)))λ](y4(t))λ.

(2.10)

Then

α(t)(kr(h(t))τ(h(t)))λ + β(t)(kr(g(t))τ(g(t)))λ ≤ − y44(t)
(y4(t))λ

.

Integrating the above inequality from t5 to ∞, we get

∫ ∞

t5

{α(s)(r(h(s))τ(h(s)))λ + β(s)(r(g(s))τ(g(s)))λ}4s

≤ −
∫ ∞

t5

y44(s)
(y4(s))λ

4s.

= lim
t→∞

∫ y4(t)

y4(t5)

4s

sλ

=
∫ 0

y4(t5)

4s

sλ
< ∞.

But ∫ ∞

t5

{α(s)(r(h(s))τ(h(s)))λ + β(s)(r(g(s))τ(g(s)))λ}4s = ∞,

so, equation (1.12) has no eventually positive solution. Similarly, we can prove
that equation (1.12) has no eventually negative solution. Thus equation (1.12) is
oscillatory.

Theorem 2.2. Assume that H1−H3 hold. Then every solution of (1.12) oscil-
lates, if the inequality

(2.11) z4(t) + [α(t)(kr(h(t))τ(h(t)))λ + β(t)(kr(g(t))τ(g(t)))λ]zλ(τ(t)) ≤ 0,

has no eventually positive solution.
Proof. Assume to the contrary that equation (1.12) has a nonoscillatory solu-

tion x(t). Following the same steps used in the proof of Theorem 2.1, until to get
(1.10). Putting z(t) = y4(t) in (2.10) we get (2.11) which have a positive solu-
tion. Consequently if (2.11) has no eventually positive solution, then all solutions
of (1.12) are oscillatory. This completes the proof of the theorem.

Theorem 2.2 reduces the question of oscillation of (1.12) to that of the absence
of eventually positive solutions of the dynamic inequality (2.11).

Theorem 2.3 Assume that H1−H2 hold and |H(t, u)| ≥ α(t) |u| and |G(t, v)| ≥
β(t) |v| ,where α(t), β(t) ≥ 0. If

(2.12)
∫ ∞

t5

{α(s)(r(h(s))τ(h(s))) + β(s)(r(g(s))τ(g(s)))}4s = ∞.

Then , every solution of
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(2.13) (x(t)− r(t)x(τ(t)))44 + α(t)x(h(t)) + β(t)x(g(t)) = 0

is oscillatory.
Proof. The proof follows directly from the Theorem 2.1. So we omitted it.

3. Examples

In this section, we give some examples to illustrate our main results.

Example 3.1. Consider the following second order neutral delay dynamic equa-
tion

(3.1) (x(t)− 1
c
x(γ1t))44 +

(2 + sin t)
tα

xλ(γ2t) +
(3 + cos t)

tβ
xλ(γ3t) = 0, t ∈ T,

where T is a time scale, with c > 1, 0 ≤ λ = p
q ≤ 1 , p, q are odd integers, α1, α2 ∈

[λ, λ + 1] and γ1, γ2, γ3 ∈ (0, 1). In equation (1.12) r(t) = 1
c , τ(t) = γ1t, h(t) =

γ2t, g(t) = γ2t, H(t, x(h(t)) = (2+sin t)
tα1 xλ(h(t)) and G(t, x(g(t)) = (3+cos t)

tα2 xλ(g(t)).
(i.e. α(t) = (2+sin t)

tα1 and β = (3+cos t)
tα2 ). Then we have∫ ∞

t5

{α(s)(r(h(s))τ(h(s)))λ + β(s)(r(g(s))τ(g(s)))λ}4s

=
∫ ∞

t5

{ (2 + sin s)
sα1

((
1
c
)(γ1γ2s))λ +

(3 + cos s)
sα2

((
1
c
)(γ1γ3s))λ}4s

≥
∫ ∞

t5

{ 1
sα1

((
1
c
)(γ1γ2s))λ +

1
sα2

((
1
c
)(γ1γ3s))λ}4s

= (
γ1γ2

c
)λ

∫ ∞

t5

4s

sα1−λ
+ (

γ1γ3

c
)λ

∫ ∞

t5

4s

sα2−λ
= ∞ for α1, α2 ∈ [λ, λ + 1].

Hence, by Theorem (2.1) every solution of equation (3.1) oscillates.
Example 3.2. Consider the following second order neutral delay dynamic equa-

tion

(3.2) (x(t)− e−
1
λ (t−τ)x(t− τ))44 + xλ(t− h1) +

1
e−t + 1

xλ(t− h2) = 0, t ∈ T,

where T is a time scale, where 0 ≤ λ = p
q ≤ 1 , p, q are odd integers, τ, h1, h2 > 0,

r(t) = e−
1
λ (t−τ), τ(t) = t − τ, h(t) = t − h1, g(t) = t − h2,H(t, x(h(t)) = xλ(h(t))

and G(t, x(g(t)) = 1
e−t+1xλ(g(t)). (i.e. α(t) = 1 and β = 1

e−t+1 ). Then we have∫ ∞

t5

{α(s)(r(h(s))τ(h(s)))λ + β(s)(r(g(s))τ(g(s)))λ}4s

=
∫ ∞

t5

{e− 1
λ (t−τ−h1)(t− τ − h1)}λ4s

+
∫ ∞

t5

1
e−s + 1

(e−
1
λ (t−τ−h2)(t− τ − h2))λ}4s

≥ 3
2
(
λ

e
)λ

∫ ∞

t5

4s = ∞.
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Therefore, by Theorem (2.1), equation (3.2) is oscillatory.
Example 3.3. Consider the following specific second order neutral delay dy-

namic equation

(3.3) (x(t)− 1
2
x(t− τ))44 +

γ

(t− h)2
xλ(t− h) = 0, t ∈ T,

where T is a time scale, where τ, h > 0, r(t) = 1
2 , τ(t) = t − τ, h(t) = t −

h, H(t, x(h(t)) = x(h(t)) and G(t, x(g(t)) = 0.(i.e. α(t) = γ
(t−h)2 , γ > 0 and

β(t) = 0). Then we have

∫ ∞

t5

{α(s)(r(h(s))τ(h(s))) + β(s)(r(g(s))τ(g(s)))}4s

=
∫ ∞

t5

γ(s− τ − h)
2(s− h)2

4s

=
γ

2

∫ ∞

t5

1
s− h

(1− τ

s− h
)4s = ∞.

Hence, by Theorem 2.3, every solution of equation (3.3) is oscillatory. This example
shows that the results by Dzurina and Mihalikova [6] in the case when T = R, is
not sharp, since by choosing n = ∞, we have

∫ ∞

t0

[
α(s)h(s)

1− rn+1

1− r
− 1

4h(s)

]
ds =

∫ ∞

t0

[
γ

s− h
(

1
1− 1

2

)− 1
4(s− h)

]
ds

=
∫ ∞

t0

[
2γ − 1

4

(s− h)

]
ds = ∞, if γ >

1
2
.

Also, the result by Saker not sharp for equation (3.3). For, in his results [Example
2.2, 16 ], it was proved that this equation is oscillatory if γ > 1

4 and Graef et. al.
[8] condition (1.15) can not be applied. Therefore our results are not only new but
also improve some previous results.
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