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Abstract. There is a question attributed to Irving Kaplansky concerning the

solvability of the quadratic equation x2 − py2 = a in the case that the prime
p = a2 + (2b)2. This question was answered in the affirmative by Mollin

[1], although according to [3], this result is implicit in the work of Gauss and

Legendre. The proof appearing in [1] was later simplified in [4], and it was also
shown therein that Kaplansky’s question was a special case of a more general

result. Using the method of proof in [4], Mollin [2] has recently extended the

results of [4], but upon further consideration, it appears that there is a more
general phenomenon occurring, and also, that one of the assumptions in the

main theorem of [2] is unnecessary. In this paper we prove this generalization,

and eliminate one of the assumptions stated in the main result of [2]. The
proof is again based on the method described in [4].

1. Introduction

In an earlier article [4], the author generalized a result of Mollin, and at the
same time, simplified the method of proof. Recently, Mollin has used this same
elementary approach to further the results of [4]. The purpose of this present
paper is to extend the results of [2]. The method remains the same as in [4], with
the appropriate modifications described in [2] in order to deal with parity issues.

Theorem 1.1. Let d ≡ 1 (mod 4) be a positive integer, and assume that n =
a2 + db2 for positive integers a, b with a odd and (n, a) = 1. Assume further that
there is a positive integer c, with (a, c) = 1 for which the equation

X2n− Y 2d = c2

is solvable in coprime positive integers X,Y . Then there exists a (possibly trivial)
factorization rs of nd, and a divisor f of σc, for which the equation

rx2 − sy2 = af

is solvable in positive integers x, y, where σ = 2 if n is odd and c is even, and σ = 1
otherwise.
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For simplicity, Theorem 1 only deals with the case d ≡ 1 (mod 4). A similar state-
ment holds for the other cases, which we leave as an exercise for the reader.

We note that Theorem 1 not only extends the result of [2], which dealt with the
particular case d = 1, but moreover removes an unnecessary assumption contained
in the statement of the main theorem in [2]. Specifically, it is assumed therein that
the quadratic equation X2 − nY 2 = −1 is solvable. As the conclusion of the main
theorem in [2] does not place any restriction on the constructed factors r and s of n,
there is no need, during the course of the proof, to multiply by a unit of norm −1.
Therefore, we do not need to include an analogous assumption (that the quadratic
equation x2n − y2d = 1 be solvable in positive integers x, y) in the statement of
Theorem 1 above.

2. Proof of Theorem 1

Let (T,U) be coprime positive integers which satisfy T 2n − U2d = c2, and let
α be defined α = T

√
n + U

√
d. Let β =

√
n + b

√
d, and define integers u, by

u = Tn+ Ubd, v = Tb+ U . Then

αβ = (Tn+ Ubd) + (Tb+ U)
√
nd = u+ v

√
nd

is an element in Z[
√
nd] with norm a2c2.

Let g = (u, v), then clearly g divides c2, but in fact, g divides c. We provide the
details for this assertion, as the reasoning in [2] appears to be flawed. Suppose
that p is a prime dividing g, with pµ properly dividing g (µ > 0), and such that
pµ does not divide c. Note that p divides c because pµ divides c2. It follows that
pµ divides both u and v, hence p2µ divides u2 − v2nd = a2c2. By assumption, p2µ

does not divide c2, and so p must divide a, contradicting the fact that (a, c) = 1.
We conclude that g divides c, and from the equation u2 − v2nd = a2c2, we deduce
that

(1) (u/g)2 − a2(c/g)2 = ((u/g) + a(c/g))((u/g)− a(c/g)) = (v/g)2nd.

We now break up the argument into three cases, depending on the relative parities
of n and c. We note that n and c cannot both be even, as this would contradict
either (n, a) = 1 or (T,U) = 1.

Case 1: c even, n odd.

In this case, as n, a and d are odd, and n = a2 + db2, it follows that b is even. Also,
the assumption that c is even implies that T and U are odd (as they are coprime),
whence it follows that both u and v are odd, which by equation (1) implies that
there are integers A,B, r, s, with v/g = AB and nd = rs, satisfying

(u/g) + a(c/g) = A2r, (u/g)− a(c/g) = B2s,

from which it follows that
A2r −B2s = af,

with f = 2(c/g).

Case 2: c odd, n even.



ON A QUESTION OF KAPLANSKY II 5

In this case, since d ≡ 1 ( mod 4) and (a, b) = 1, it follows that n ≡ 2 ( mod 4), and
that b is odd. By considering the equation T 2n− U2d = c2 modulo 4, it is readily
verified that both T and U are odd. We conclude that u = Tn + Ubd is odd, and
that v = Tb+ U is even. Therefore, there are integers A,B, r, s, with nd = rs and
v/g = 2AB, satisfying

(u/g) + a(c/g) = 2A2r, (u/g)− a(c/g) = 2B2s,

from which it follows that
A2r −B2s = af,

with f = c/g.

Case 3: c odd and n odd.

Since d ≡ 1 (mod 4), it follows that n ≡ 1 (mod 4), and again by considering the
equation T 2n − U2d = c2 modulo 4 we deduce that T is odd and that U is even.
Therefore, in this case we find again that u = Tn+Ubd is odd and that v = Tb+U
is even, and the rest of the proof for this case follows as in the previous case.
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