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TORIC FIBRATIONS AND MIRROR SYMMETRY

ARTUR ELEZI

ABSTRACT. The relation between the quantum D-modules of a smooth variety
X and a toric bundle is studied here. We describe the relation completely when
X is a semi-ample complete intersection in a toric variety. In this case, we
obtain all the relations in the small quantum cohomology ring of the bundle.

1. INTRODUCTION AND GOALS

For a smooth, projective variety Y we denote by Y}, g the moduli stack of rational
stable maps of class § € Hy(Y,Z) with k-markings (Fulton et al [8]) and [Y} g] its
virtual fundamental class (Behrend et al [3], Li et al [13]). Genus zero Gromov-
Witten invariants are defined as appropriate integrals over [Yj g]. Welet e : Yy g —
Y be the evaluation map, 1 - the first chern class of the cotangent line bundle on
Y; 5 and ft : Y7 g — Yp 3 - the forgetful morphism.

The formal completion of an arbitrary ring R along the semigroup MY of the
rational curves of Y is defined to be

(1) R[[¢°]] == { Z agq®, ag € A, P — effective}.
BEMY

where 8 € Hy(Y,Z) is effective if it is a positive linear combination of rational
curves. For each (3, the set of « such that a and § — « are both effective is finite,
hence R[[¢”]] behaves like a power series. Alternatively, we may define

¢® =P g™ = exp(tidy + ... + trdy)

where {d;,ds,...,d} are the coordinates of ( relative to the dual of a nef basis
{p1, .y pi} of HA(Y,Q)..

Let % denote the small quantum product of Y. The small quantum cohomology
ring

(QHY, *)

is a deformation of the cohomology ring (H*(Y,Q[¢"]),U). Its structural constants
are three point Gromov-Witten invariants of genus zero. Let /i be a formal variable
and

aa) = () = > e N Y],
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The sum is finite for dimension reasons. For t = (to, t1, ..., %), let
k

tp:=to + Ztipi~
=1

The D-module for the quantum differential equation of Y
1< <k, hd/Ot; = pi*,
is generated by (Givental [10])

_ tp 5
s =ew (L) S L)
BEH2(Y,Z)
where we use the convention Jy = 1. The generator J(Y') encodes all of the genus
zero, one marking Gromov-Witten invariants and gravitational descendants of Y.
The generator J(Y) is an element of the completion H*(Y,Q)[t][[¢°]] that may be
used to produce relations in QHY in the following way: let
P(h, ﬁ@/&tz, qi)
be a polynomial differential operator where g; and & act via multiplication and
¢; = €' are on the left of derivatives. If
P(h, ha/atz, qZ)J(Y) =0
then
is a relation in the small quantum cohomology ring QH?*Y.
If Y is a complete intersection in a toric variety, J(Y) is related to an explicit hy-
pergeometric series I(Y') via a change of variables (Givental [8], Lian et al [12],[13]).
Furthermore, if YV is Fano then the change of variables is trivial, i.e.
JY)=1I(Y).
Since I(Y) is known explicitly, this yields two immediate benefits.

(1) The one point Gromov-Witten invariants and gravitational descendants of
Y are determined completely.

(2) Differential operators that annihilate 7(Y") are easy to find, hence producing
relations in the small quantum cohomology ring of Y.

In this paper we seek to relativize these results for Fano toric bundles, hence ex-
tending the results of the papers Elezi [6],[7]

2. ToriCc BUNDLES AND MIRROR THEOREMS

Toric varieties and bundles. We follow the approach and the terminology of
Oda [15]. Let M ~ Z™ be a free abelian group of rank m, N = Hom(M, Z) its
dual, and <, >: M X N + Z the pairing between them. Let ¥ be an m-dimensional
smooth, toric variety determined by a fan ¥ C N ® R. Denote by

2(1) = {p1> <05 Pmy Pm41, --~>pr:m+k}

the one dimensional cones of ¥ and Dy, ..., D, the corresponding toric divisors. Let
v; = (Vi1, .-, Vi) be the first lattice point along the ray p;. Let

{a1,a9,...,a1}
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with a; = (a1, azj, ..., @mj, Gmt1j, -, ;) be a basis of the lattice of relations A
between vy, ..., v,.. There is a short exact sequence

(2) 0—A—2Z"0 LN,

where h(cy,ca,...c;) = civ1 + ... + ¢v.. The lattice A may be identified with
Hom(A,;,—1(Y),Z) ~ Hy(Y,Z). Under this isomorphism, a;; is the intersection
of a;, when interpreted as a two dimensional cycle, with the toric divisor D;. We
choose a; so that {a1,...,ar} is a generating set for the Mori cone of classes of
effective curves. Then a;1, ..., a;; are the coordinates of D; with respect to the nef
basis {p1, ..., pr} dual to {ai,...,ar}.

Assume that py, ..., pm generate a maximal dimensional cone in 3. Since Y is
smooth, {v1,va, ..., v, } forms a Z-basis of N and the absolute value of the matrix

(ai); i=m+1,..,r j=1,2,..k

is 1.

The cohomology ring H*(Y,Z) is generated by the divisors Ds, ..., D, subject to
the following two types of relations:

Type One: Whenever {pj,, ..., p;, } do not generate a cone in X, the intersection

(3) Dj, -..-Dj;, =0.
Type Two: For each 1 <i <m,

k
(4) D; = Z a;ijP;j
j=1

From the short exact sequence (2) we obtain

(5) 0—Tr ST Z1m

where the maps are defined as follows:

k k r T
alty, ty, tx) = ([Tt [T 6, B, ) = (Tt T ™)
i=1 =1 i=1 i=1

Let Z(X) C C" be the variety whose ideal is generated by the products of those
variables which do not generate a cone in Y. The toric variety Y is the geometric
quotient (Cox [5])

C" - 2Z(%)//Tk

where the torus acts as follows

k k
(6) t-x= (Ht?”xl,...,Ht?”‘ixr> .

i=1 i=1

The short exact sequence (5) yields an action of the quotient T := T™ on Y.
The first chern class of the tangent bundle to Y is equal to

T k
Z D; = Z nip;.
i=1 i=1

The toric variety Y is Fano iff n; > 0 for all 4.
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We relativize the previous construction as follows. Consider the principal T-bundle
E:=ell (L —{0}) = X,

where L; are line bundles over a smooth, projective variety X. Let T act fibrewisely
on E and the diagonally on the first m-homogeneous coordinates of Y. The quotient
space

Y(E)=ExrY
is a toric bundles over X with fiber isomorphic to Y. The bundle Y (E) inherits a
T-action.
There is a projection map 7 : Y(E) — Y. The maximal cone generated by
{p1,p2; s pm} determines a T fixed point ¢ in ¥ whose homogeneous coordinates
are (0,0,...,0,1,1,...1). In the relativized setting, the T-equivariant inclusion

q—Y

yields a map

¢(E) ~ X < Y (E)
which is a section of 7. This is also a fixed point component for the action of T on
Y (E). The other T-fixed points of ¥ yield sections of 7 and these are all the fixed
point components.
Toric divisors lift to divisors in Y (E); these liftings will be denoted by the same
letter in this paper. It was shown in Sankaran and Uma [17] that the two types of
relations (3) and (4) lift in a natural way in H*(Y (E),Z); namely

Dj, .- Dj, =0

whenever {p;, ..., p;,} do not generate a cone in ¥, and

k
Di =" aip; + c1(Li)
i=1

for each 1 < i < m, where as in the case of H*(Y,Z) the divisors

P1,--, Dk

generate freely H*(Y(E),Z). In fact, there is a simple relation between the T-
equivariant cohomology of Y and the cohomology of Y(E) which will be used
throughout this paper. Recall, that the rational cohomology of the classifying
space BT is Q[A1,...A;,] where )\; is the first chern class of the equivariant line
bundle corresponding to the character

v; . T — C* Vi(tla ,tm) = ti.

A relation in the equivariant cohomology ring of Y becomes a relation in H*(Y (E))
after substituting ¢1(L;) for A;.

We may assume that L; = Ox,i > m without loss of generality. This is due to the
fact that py, ..., pm generate a mazximal cone in 2.

The quantum D-module structure of a toric bundle. The generator J of a
quantum D-structure is weighted by the lattice points of the Mori cone. Hence we
first study the relation between the Mori cones of Y and Y (E).
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Lemma 1. If L} are generated by global sections, then the liftings of the nef
divisors p1,...,pr in Y(E) are also nef. Furthermore, the Mori cone of Y (E) is a
direct sum of the Mori cone of X, embedded via the section s, and the Mori cone
of the fiber Y.

Proof. In toric varieties, every nef divisor p is generated by global sections (Oda
[14]). Let zq, s, ...,z be homogeneous coordinates in Y. The vector space of
global sections H°(O(p)) has a monomial basis

T

my
I |SUZ- .
i=1

Let {¢;;} be a collection of generating sections for the line bundles L. The “mono-

mials”
T

H(l’iﬁf?ij)m

=1

are generating sections the line bundle

i=1
which is isomorphic to O(p) in Y (E). Thus p lifts to a nef divisor in Y (E).
This shows that the addition of pq, ..., pg to a nef basis {px+1,...,p} of X yields a
nef basis
{pl PREES) pl}
of Y(E). Now for a curve C' C Y(E) we have

T ([C] = s4(m([C]))) = 0.

Notice that the restrictions of the divisors p1,ps, ..., pr in the section ¢(E) are all
zero since they may be written as Z-linear combinations of Dy, 11, ..., Dpmyr. Hence
Vi=1,2,..,k, pi-([C] = s«(m([C]))) > 0 and we have a unique decomposition

[C] = s.(m([C]) + [C],
where [C'] and 7.([C]) are curve classes respectively in the fiber of # and X. O
We introduce a “mixed” I(Y(E)) that admits contributions from both J(X) and
an E-twisted J(Y). Let (v,d) denote a curve class in the Mori cone of Y (E), with

v a curve class in the fiber of m and d a curve class in X.
Define

HY(®) = e (% )zq qde H";Z)DDZM;)w*ud(X)).
(d,v) m

If X is a point then Y(E) = Y. Furthermore, as mentioned in the introduction
J(Y) =I1(Y) if Y is a Fano toric variety. In this paper we show that the same
holds for the relativized Y (E).

Proposition 1. If X is a semi-ample complete intersection in a toric variety,
and both Y and Y (E) are Fano, then J(Y (E)) = I(Y(E)).
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Proposition 1 will follow as a corollary of another statement which we now formulate
and prove.
Let Z be a toric variety, I~/i, 1 =0,1,...,n toric line bundles over Z and E = EB?zOIN/Z-.
The bundle

T:Y(E)— Z
is also a toric variety (Oda [15]). The edges of the fan for Y (E) corresponds to the
liftings By, ..., B, to Y(E) of the toric base divisors by, ...,b, and the divisors D;
from Y.
Let £, : a = 1,2,...,] be globally generated line bundles over Z and X the zero
locus of a generic section s of

V=L
Such an X will be called a semi-ample complete intersection. Denote by L; and E
the restrictions of L; and E to X. The total space of Y (E) is easily seen to be the
zero locus of the section 7*(s) of the pull back bundle 7* (V).

Assume that the line bundles E;* are globally generated and —K z — 22:1 a(La) +

i oci(Li) is ample. (This will ensure that the conditions of Proposition 1 for the
bundle Y (E) over X are satisfied.)

Let V4 be the bundle on Z; 4 whose fiber over the moduli point (C,z1, f) is
@oH(f*(L,)). Denote by sy its canonical section induced by s, i.e.

sv((Cyz1, f)) = f7(s).

The stack theoretic zero section of sy is the disjoint union

(7) Z(SV) = H Xl’g.

i (B)=d
The map i, : HyX — HyZ is not injective in general, hence the zero locus Z(sy)
may have more then one connected component. An example is the quadric surface
in P2. The sum of the virtual fundamental classes [X; g] is the refined top Chern
class of V; with respect to sy .
Let f/l,,d and Sy be the pull backs of V; and sy via the stack morphism

Y(E)1,(v,a) = Z1,a-

The zero section of sy is the disjoint union

z(3v) = H Y(E)1,u,5)-
ix(8)=d
It follows that

> Y E)rws)] = ciop(Via) N [V (E)1.0))-
i (B)=d
Recall that the nef basis {p1, pa, ..., Pk, Pk+1, ...p1} of Y(E) is obtained by complet-
ing a nef basis {pgi1,...,p1} of X. We will use ¢tp to denote both 2221 t;p; and

Zé:k 41 tipi- The difference will be clear from the context.
Consider the following generating functions

JV(Y(E)) = exp (g) > aae. (cmp(v”’fg(g [YC()E)1,(U,d)]>
(v.d)
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and

P (E) = e (2 )(Vzdquqz sane, (Gt Dll),

where

Proposition 2. If —Ky — 251:1 c1(La) =iy c1(L;) is ample then
JV((E) =IV(Y(E)

Proof. Let

1o (Lo + mh) 17 [Toue oo (B + mh)
1% — m=-0 iR
i@ =11 1 (Lo +mh) H [1A0  (Bi +mh)

a m=—oo m=—oo

From Givental [9], Lian et al [12], Lian et al [13] we know that JV (Y (E)) is related
via a mirror transformation to

IV(Y(IFZ))—eXp< ) ZCh ©"Q.aly (Z).

Likewise

JV(Z) = exp (’;’;) 3 e (W)

1Y(Z) = exp ( ) > @'1Y (2

Since —Ky () — >_, ¢1(La) and =Kz — 7, ¢1(L,) are ample, the mirror transfor-
mations are particularly simple. Indeed, both series can be written as power series
of h=! as follows:

is related to

V(Y (B) =1+ qu;"”) +o(hh), 1V(2) =1+ PQ;QQ) +o(h),
where P;(¢1,42), P2(g2) are both polynomials supported respectively in

Avi={(,d) | (~Ky g — Y a1(La)) = 1; D; >0, Vj; B; >0, Vi},
and

Ayi={d | (~Kz = c1(La)) =1;B; > 0 Vi}.
Then
M (E) = exp ()Y vy (B))

and

JV(Z) = exp <132qu2)> 1V(2).

Simple algebraic manipulations show that

o ¢ (L j)-d=0,¥d € Ay,¥j=1,2,...,n
OAl—{(Od)‘dGAQ}
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It follows that Q¢ q = 1,Vd € Ay hence Pi(q1,4q2) = P2(g2). Notice also that if we

expand
_P2(qQ) a
exXp (h = gcafh

then

a(Ly)-a=0,Yj=1,2,..,n.

Hence for each (v,d) € MP(V') we have Q, 4 = ,, 44+ Now the proposition follows
easily. O

Proof. of Proposition 1. We know return to the proof of Proposition 1. Recall that
the map

is not necessarily injective in general. If it is, then

[X1,5] = crop(Vi(8)) N [Y1,i. ()]

and

Y (E)1,w,0)] = Ctop (Vi) N Y (B)1,w,i. (8-
In this case one can easily show that

i«(Los(Y (E)) = 1) () (Y (E))
and
ix(Ln,p (Y (E))) = I}, 5 (Y (E)).
Proposition 2 shows that Proposition 1 holds for complete intersection in toric

varieties for which the map (8) is injective.
(]

3. LIFTING THE QUANTUM COHOMOLOGY STRUCTURE

In this section we use Proposition 1 to study small quantum cohomology ring of
Y (E). As explained in the introduction, some of the relations in the small quantum
cohomology ring come from differential operators.

Proposition 3. Whenever Proposition 1 holds, quantum differential operators
of X may be lifted in Y (E), while the quantum differential operators of the fiber
Y may be extended to Y (E). Both types of operators produce relations in the
quantum cohomology QH!Y (E).

Proof. Recall that D; =" a;jp;. Let

l
Cl(Li) = Z CijPj, 1= 07 1, ceey N
j=k+1

Recall that the nef basis {p1,p2, ..., Pk, Pkr1, .01} of H*(Y(E),Z) is obtained by
completing a nef basis {pgy1,...,pi} of X. Let

P(h, hd /Oty s1, ... hO/Ot1, q2) = D 45 Pa
a€EN
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be a polynomial differential operator with A a finite subset of the Mori cone of X.
Suppose that

0=PIX) = TP (exp ) %)

acA

—ZQQZCMGXP 63.J5(X) = exp(5- Z‘h PeapT5(X).

aeh a€EA,B
Let

n —L;-a—1

k
b0 = 1:[1 1:[0 Z_:awhat

with the convention that if

J

l
P L P=) 80P
=k+

acA

LZ(O[) = 0,
the factors of 4, corresponding to L; are missing. Notice that
Lyyi(a) =...=Lp(a)=0

since we have chosen L; to be trivial for ¢ > n. We compute

=Y ¢50a 27’ (qg exp( )) 0/ pJ5 =

a€A

ZqQ(S angexp q1q2§2 3J3-

a€A
One can easily show that

pt Dt
da <exp( kI 0, ﬁ) exp(5-)a1 2 S ats-
It follows that
PJ(Y (E)) = exp Z q7 Z Capls ™ Va+5J5(X) = 0.
v aceN,B
Hence the relation P(0, px11, ..., p1,q2) = 0 in QH? X lifts into the relation

P(Ovpk+17 -y P15, G2 HD’L) =0

i=1
in QH?Y (E), where

(ﬁ Di> = ﬁD{Li(“),va € MX.
=1

i=1

For a curve class v in the fiber of 7, consider the following differential operator

o o D;(v)-1 g
Ay(hg,...,ﬁa,qj‘) = H H Zalj Z C?] +mh)
! ! @:D;(v)>0 m=0 j=1 j=k+1

—D;(v)—

u 0 ! 0
- I I Z%‘hg— > cih a; T
j=1 T =kt

:D;(v)<0 m=0
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It is easy to show that it satisfies
ALJ(Y(E)) =0.
It follows that

All(ph -~y DI,y qj) =0
in QH:Y (E), i.e.

[[o7 =
i=1

These are precisely the extensions to Y (E) of the small quantum cohomolgy rela-
tions of the fiber Y.
O

Sometimes all the relations in QH}X come from quantum differential operators,
hence QH;X pulls back to QH Y (E). This is the case when X is a Fano toric
variety. The results of this section yield a complete description of QH*Y (E) which
generalizes previous results of Costa et al [4] and Qin et al [15] and Givental [9].

4. THE GENERAL (NONTORIC) CASE

We believe that Proposition 1 holds for any X. On one end, the equality of the
d=0termsin J(Y(E)) = I(Y(E)) is easy to establish. Indeed, the relative Gromov-
Witten theory of the Y-bundle over BT associated with the universal bundle ET +—
BT is precisely the T-equivariant GW theory of Y (Astashkevich and Sadov [1]).
The latter pulls back under the classifying map X — BT to the relative GW theory
of Y(E) over X. It follows that the restriction of J(Y (E)) to v = 0 is obtained by
substituting ¢;(L;) for \; in J¥(Y). Since Y is assumed to be Fano, the generator
JT(Y) is known (see for example [8]) and the substitution c;(L;) +— ); is easily seen
to yield the desired equality. At the other end, the v = 0 equality follows as an
application of the equivariant quantum Lefshetz principle for the action of a torus
on the fibers of Y(E). The fixed point component relevant for the equivariant and
localization considerations ([12]) consists of the maps that land in the section s(X).
The top chern class of the virtual normal bundle for this component is that of the
H!'-bundle for & ,L;. Calculations are easy to carry out (see for example Elezi

[7)-
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