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TORIC FIBRATIONS AND MIRROR SYMMETRY

ARTUR ELEZI

Abstract. The relation between the quantum D-modules of a smooth variety
X and a toric bundle is studied here. We describe the relation completely when

X is a semi-ample complete intersection in a toric variety. In this case, we

obtain all the relations in the small quantum cohomology ring of the bundle.

1. Introduction and Goals

For a smooth, projective variety Y we denote by Yk,β the moduli stack of rational
stable maps of class β ∈ H2(Y,Z) with k-markings (Fulton et al [8]) and [Yk,β ] its
virtual fundamental class (Behrend et al [3], Li et al [13]). Genus zero Gromov-
Witten invariants are defined as appropriate integrals over [Yk,β ]. We let e : Y1,β →
Y be the evaluation map, ψ - the first chern class of the cotangent line bundle on
Y1,β and ft : Y1,β → Y0,β - the forgetful morphism.
The formal completion of an arbitrary ring R along the semigroup MY of the
rational curves of Y is defined to be

R[[qβ ]] := {
∑
β∈MY

aβq
β , aβ ∈ A, β − effective}.(1)

where β ∈ H2(Y,Z) is effective if it is a positive linear combination of rational
curves. For each β, the set of α such that α and β − α are both effective is finite,
hence R[[qβ ]] behaves like a power series. Alternatively, we may define

qβ := qd11 · ... · q
dk

k = exp(t1d1 + ...+ tkdk)

where {d1, d2, ..., dk} are the coordinates of β relative to the dual of a nef basis
{p1, ..., pk} of H2(Y,Q)..
Let ∗ denote the small quantum product of Y . The small quantum cohomology
ring

(QH∗sY, ∗)
is a deformation of the cohomology ring (H∗(Y,Q[qβ ]),∪). Its structural constants
are three point Gromov-Witten invariants of genus zero. Let ~ be a formal variable
and

Jβ(Y ) := e∗

(
[Y1,β ]

~(~− ψ)

)
=
∞∑
k=0

1
~2+k

e∗(ψk ∩ [Y1,β ]).
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The sum is finite for dimension reasons. For t = (t0, t1, ..., tk), let

tp := t0 +
k∑
i=1

tipi.

The D-module for the quantum differential equation of Y

1 ≤ i ≤ k, ~∂/∂ti = pi∗,
is generated by (Givental [10])

J(Y ) = exp
(
tp

~

) ∑
β∈H2(Y,Z)

qβJβ(Y )

where we use the convention J0 = 1. The generator J(Y ) encodes all of the genus
zero, one marking Gromov-Witten invariants and gravitational descendants of Y .
The generator J(Y ) is an element of the completion H∗(Y,Q)[t][[qβ ]] that may be
used to produce relations in QH∗sY in the following way: let

P(~, ~∂/∂ti, qi)
be a polynomial differential operator where qi and ~ act via multiplication and
qi = eti are on the left of derivatives. If

P(~, ~∂/∂ti, qi)J(Y ) = 0

then
P(0, pi, qi) = 0

is a relation in the small quantum cohomology ring QH∗sY.
If Y is a complete intersection in a toric variety, J(Y ) is related to an explicit hy-
pergeometric series I(Y ) via a change of variables (Givental [8], Lian et al [12],[13]).
Furthermore, if Y is Fano then the change of variables is trivial, i.e.

J(Y ) = I(Y ).

Since I(Y ) is known explicitly, this yields two immediate benefits.
(1) The one point Gromov-Witten invariants and gravitational descendants of

Y are determined completely.
(2) Differential operators that annihilate I(Y ) are easy to find, hence producing

relations in the small quantum cohomology ring of Y .

In this paper we seek to relativize these results for Fano toric bundles, hence ex-
tending the results of the papers Elezi [6],[7]

2. Toric Bundles and Mirror Theorems

Toric varieties and bundles. We follow the approach and the terminology of
Oda [15]. Let M ' Zm be a free abelian group of rank m, N = Hom(M,Z) its
dual, and <,>: M×N 7→ Z the pairing between them. Let Y be an m-dimensional
smooth, toric variety determined by a fan Σ ⊂ N⊗ R. Denote by

Σ(1) = {ρ1, ..., ρm, ρm+1, ..., ρr=m+k}
the one dimensional cones of Σ and D1, ..., Dr the corresponding toric divisors. Let
vi = (vi1, ..., vim) be the first lattice point along the ray ρi. Let

{a1, a2, ..., ak}



TORIC FIBRATIONS AND MIRROR SYMMETRY 225

with aj := (a1j , a2j , ..., amj , am+1j , ..., arj) be a basis of the lattice of relations Λ
between v1, ..., vr. There is a short exact sequence

(2) 0→ Λ→ ZΣ(1) h→ N→ 0,

where h(c1, c2, ...cr) = c1v1 + ... + crvr. The lattice Λ may be identified with
Hom(Am−1(Y ),Z) ' H2(Y,Z). Under this isomorphism, aij is the intersection
of aj , when interpreted as a two dimensional cycle, with the toric divisor Di. We
choose aj so that {a1, ..., ak} is a generating set for the Mori cone of classes of
effective curves. Then ai1, ..., aik are the coordinates of Di with respect to the nef
basis {p1, ..., pk} dual to {a1, ..., ak}.
Assume that ρ1, ..., ρm generate a maximal dimensional cone in Σ. Since Y is
smooth, {v1, v2, ..., vm} forms a Z-basis of N and the absolute value of the matrix

(aij); i = m+ 1, ..., r; j = 1, 2, ..., k

is 1.
The cohomology ring H∗(Y,Z) is generated by the divisors D1, ..., Dr subject to
the following two types of relations:
Type One: Whenever {ρj1 , ..., ρjs} do not generate a cone in Σ, the intersection

(3) Dj1 · ... ·Djs = 0.

Type Two: For each 1 ≤ i ≤ m,

(4) Di =
k∑
j=1

aijpj

From the short exact sequence (2) we obtain

(5) 0→ Tk α→ Tr β→ Tm → 0,

where the maps are defined as follows:

α(t1, t2, ...tk) = (
k∏
i=1

ta1i
i , ...,

k∏
i=1

tari
i ), β(t1, ...tr) = (

r∏
i=1

tvi1
i , ...,

r∏
i=1

tvim
i ).

Let Z(Σ) ⊂ Cr be the variety whose ideal is generated by the products of those
variables which do not generate a cone in Σ. The toric variety Y is the geometric
quotient (Cox [5])

Cr − Z(Σ)//Tk

where the torus acts as follows

(6) t · x =

(
k∏
i=1

ta1i
i x1, ...,

k∏
i=1

tari
i xr

)
.

The short exact sequence (5) yields an action of the quotient T := Tm on Y .
The first chern class of the tangent bundle to Y is equal to

r∑
i=1

Di =
k∑
i=1

nipi.

The toric variety Y is Fano iff ni > 0 for all i.
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We relativize the previous construction as follows. Consider the principal T-bundle

E := ⊕mi=1(Li − {0})→ X,

where Li are line bundles over a smooth, projective variety X. Let T act fibrewisely
on E and the diagonally on the first m-homogeneous coordinates of Y . The quotient
space

Y (E) := E×T Y

is a toric bundles over X with fiber isomorphic to Y . The bundle Y (E) inherits a
T-action.
There is a projection map π : Y (E) → Y . The maximal cone generated by
{ρ1, ρ2, ..., ρm} determines a T fixed point q in Y whose homogeneous coordinates
are (0, 0, ..., 0, 1, 1, ...1). In the relativized setting, the T-equivariant inclusion

q ↪→ Y

yields a map

q(E) ' X s
↪→ Y (E)

which is a section of π. This is also a fixed point component for the action of T on
Y (E). The other T-fixed points of Y yield sections of π and these are all the fixed
point components.
Toric divisors lift to divisors in Y (E); these liftings will be denoted by the same
letter in this paper. It was shown in Sankaran and Uma [17] that the two types of
relations (3) and (4) lift in a natural way in H∗(Y (E),Z); namely

Dj1 · ... ·Djs = 0

whenever {ρj1 , ..., ρjs} do not generate a cone in Σ, and

Di =
k∑
j=1

aijpj + c1(Li)

for each 1 ≤ i ≤ m, where as in the case of H∗(Y,Z) the divisors

p1, ..., pk

generate freely H∗(Y (E),Z). In fact, there is a simple relation between the T-
equivariant cohomology of Y and the cohomology of Y (E) which will be used
throughout this paper. Recall, that the rational cohomology of the classifying
space BT is Q[λ1, ...λm] where λi is the first chern class of the equivariant line
bundle corresponding to the character

νi : T→ C∗ νi(t1, ..., tm) = ti.

A relation in the equivariant cohomology ring of Y becomes a relation in H∗(Y (E))
after substituting c1(Li) for λi.

We may assume that Li = OX , i > m without loss of generality. This is due to the
fact that ρ1, ..., ρm generate a maximal cone in Σ.

The quantum D-module structure of a toric bundle. The generator J of a
quantum D-structure is weighted by the lattice points of the Mori cone. Hence we
first study the relation between the Mori cones of Y and Y (E).
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Lemma 1. If L∗i are generated by global sections, then the liftings of the nef
divisors p1, ..., pk in Y (E) are also nef. Furthermore, the Mori cone of Y (E) is a
direct sum of the Mori cone of X, embedded via the section s, and the Mori cone
of the fiber Y .

Proof. In toric varieties, every nef divisor p is generated by global sections (Oda
[14]). Let x1, x2, ..., xr be homogeneous coordinates in Y . The vector space of
global sections H0(O(p)) has a monomial basis

r∏
i=1

xmi
i .

Let {φij} be a collection of generating sections for the line bundles L∗i . The “mono-
mials”

r∏
i=1

(xiφij)mi

are generating sections the line bundle
r∏
i=1

(O(Di)⊗ (L∗i ))
mi

which is isomorphic to O(p) in Y (E). Thus p lifts to a nef divisor in Y (E).
This shows that the addition of p1, ..., pk to a nef basis {pk+1, ..., pl} of X yields a
nef basis

{p1, ..., pl}
of Y (E). Now for a curve C ⊂ Y (E) we have

π∗ ([C]− s∗(π∗([C]))) = 0.

Notice that the restrictions of the divisors p1, p2, ..., pk in the section q(E) are all
zero since they may be written as Z-linear combinations of Dm+1, ..., Dm+k. Hence
∀i = 1, 2, ..., k, pi · ([C]− s∗(π∗([C]))) ≥ 0 and we have a unique decomposition

[C] = s∗(π∗([C])) + [C ′],

where [C ′] and π∗([C]) are curve classes respectively in the fiber of π and X. �

We introduce a “mixed” I(Y (E)) that admits contributions from both J(X) and
an E-twisted J(Y ). Let (ν, d) denote a curve class in the Mori cone of Y (E), with
ν a curve class in the fiber of π and d a curve class in X.
Define

I(Y (E)) := exp
(
tp

~

)∑
(d,ν)

q1
νq2

d
m∏
i=1

∏∞
m=0(Di +m~)∏Di(ν,d)
m=0 (Di +m~)

π∗(Jd(X)).

If X is a point then Y (E) = Y . Furthermore, as mentioned in the introduction
J(Y ) = I(Y ) if Y is a Fano toric variety. In this paper we show that the same
holds for the relativized Y (E).

Proposition 1. If X is a semi-ample complete intersection in a toric variety,
and both Y and Y (E) are Fano, then J(Y (E)) = I(Y (E)).
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Proposition 1 will follow as a corollary of another statement which we now formulate
and prove.
Let Z be a toric variety, L̃i, i = 0, 1, ..., n toric line bundles over Z and Ẽ = ⊕ni=0L̃i.
The bundle

π : Y (Ẽ)→ Z

is also a toric variety (Oda [15]). The edges of the fan for Y (Ẽ) corresponds to the
liftings B1, ..., Br to Y (E) of the toric base divisors b1, ..., br and the divisors Di

from Y .
Let La : a = 1, 2, ..., l be globally generated line bundles over Z and X the zero
locus of a generic section s of

V = ⊕la=1La.
Such an X will be called a semi-ample complete intersection. Denote by Li and E
the restrictions of L̃i and Ẽ to X. The total space of Y (E) is easily seen to be the
zero locus of the section π∗(s) of the pull back bundle π∗(V ).

Assume that the line bundles L̃∗i are globally generated and −KZ −
∑l
a=1 c1(La) +∑n

i=0 c1(L̃i) is ample. (This will ensure that the conditions of Proposition 1 for the
bundle Y (E) over X are satisfied.)

Let Vd be the bundle on Z1,d whose fiber over the moduli point (C, x1, f) is
⊕aH0(f∗(La)). Denote by sV its canonical section induced by s, i.e.

sV ((C, x1, f)) = f∗(s).

The stack theoretic zero section of sV is the disjoint union

(7) Z(sV ) =
∐

i∗(β)=d

X1,β .

The map i∗ : H2X → H2Z is not injective in general, hence the zero locus Z(sV )
may have more then one connected component. An example is the quadric surface
in P3. The sum of the virtual fundamental classes [X1,β ] is the refined top Chern
class of Vd with respect to sV .
Let Ṽν,d and s̃V be the pull backs of Vd and sV via the stack morphism

Y (Ẽ)1,(ν,d) → Z1,d.

The zero section of s̃V is the disjoint union

z(s̃V ) =
∐

i∗(β)=d

Y (E)1,(ν,β).

It follows that ∑
i∗(β)=d

[Y (E)1,(ν,β)] = ctop(Ṽν,d) ∩ [Y (Ẽ)1,(ν,d)].

Recall that the nef basis {p1, p2, ..., pk, pk+1, ...pl} of Y (E) is obtained by complet-
ing a nef basis {pk+1, ..., pl} of X. We will use tp to denote both

∑l
i=1 tipi and∑l

i=k+1 tipi. The difference will be clear from the context.
Consider the following generating functions

JV (Y (Ẽ)) = exp
(
tp

~

)∑
(ν,d)

q1
νq2

de∗

(
ctop(Ṽν,d) ∩ [Y (Ẽ)1,(ν,d)]

~(~− c)

)
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and

ĨV (Y (Ẽ)) = exp
(
tp

~

)∑
(ν,d)

qν1 q2
d Ων,d π∗e∗

(
ctop(Vd) ∩ [Z1,d]

~(~− c)

)
,

where

Ων,d =
m∏
i=1

∏∞
m=0(Di +m~)∏Di(ν,d)
m=0 (Di +m~)

.

Proposition 2. If −KY −
∑l
a=1 c1(La)−

∑n
i=0 c1(L̃i) is ample then

JV ((Ẽ)) = ĨV (Y (Ẽ))

Proof. Let

IVd (Z) =
∏
a

∏La(d)
m=−∞(La +m~)∏0
m=−∞(La +m~)

∏
i

∏0
m=−∞(Bi +m~)∏Bi(d)
m=−∞(Bi +m~)

.

From Givental [9], Lian et al [12], Lian et al [13] we know that JV (Y (Ẽ)) is related
via a mirror transformation to

IV (Y (Ẽ)) = exp
(
tp

~

)
·
∑

q1
νq2

dΩν,dIVd (Z).

Likewise

JV (Z) = exp
(
tp

~

)∑
q2
de∗

(
ctop(Vd) ∩ [Z1,d]

~(~− c)

)
is related to

IV (Z) = exp
(
tp

~

)∑
q2
dIVd (Z).

Since −KY (Ẽ) −
∑
a c1(La) and −KZ −

∑
a c1(La) are ample, the mirror transfor-

mations are particularly simple. Indeed, both series can be written as power series
of ~−1 as follows:

IV (Y (Ẽ)) = 1 +
P1(q1, q2)

~
+ o(~−1), IV (Z) = 1 +

P2(q2)
~

+ o(~−1),

where P1(q1, q2), P2(q2) are both polynomials supported respectively in

Λ1 := {(ν, d) | (−KY (Ẽ) −
∑

c1(La)) = 1; Dj ≥ 0, ∀j; Bi ≥ 0, ∀i},

and
Λ2 := {d | (−KZ −

∑
c1(La)) = 1;Bi ≥ 0 ∀i}.

Then

JV (Y (Ẽ)) = exp
(
−P1(q1, q2)

~

)
IV (Y (Ẽ))

and

JV (Z) = exp
(
−P2(q2)

~

)
IV (Z).

Simple algebraic manipulations show that
• c1(L̃j) · d = 0,∀d ∈ Λ2,∀j = 1, 2, ..., n
• Λ1 = {(0, d) | d ∈ Λ2}.
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It follows that Ω0,d = 1,∀d ∈ Λ2 hence P1(q1, q2) = P2(q2). Notice also that if we
expand

exp
(
−P2(q2)

~

)
=
∑
α

cαq
α
2

then
c1(L̃j) · α = 0,∀j = 1, 2, ..., n.

Hence for each (ν, d) ∈MP(Ṽ ) we have Ων,d = Ων,d+α. Now the proposition follows
easily. �

Proof. of Proposition 1. We know return to the proof of Proposition 1. Recall that
the map

(8) i∗ : H2(X)→ H2(Z)

is not necessarily injective in general. If it is, then

[X1,β ] = ctop(Vi∗(β)) ∩ [Y1,i∗(β)]

and
[Y (E)1,(ν,β)] = ctop(Ṽν,i∗(β)) ∩ [Y (Ẽ)1,(ν,i∗(β))].

In this case one can easily show that

i∗(Jν,β(Y (E))) = JVν,i∗(β)(Y (Ẽ))

and
i∗(Iν,β(Y (E))) = ĨVν,i∗(β)(Y (Ẽ)).

Proposition 2 shows that Proposition 1 holds for complete intersection in toric
varieties for which the map (8) is injective.

�

3. Lifting the Quantum Cohomology Structure

In this section we use Proposition 1 to study small quantum cohomology ring of
Y (E). As explained in the introduction, some of the relations in the small quantum
cohomology ring come from differential operators.

Proposition 3. Whenever Proposition 1 holds, quantum differential operators
of X may be lifted in Y (E), while the quantum differential operators of the fiber
Y may be extended to Y (E). Both types of operators produce relations in the
quantum cohomology QH∗sY (E).

Proof. Recall that Di =
∑
aijpj . Let

c1(Li) =
l∑

j=k+1

cijpj , i = 0, 1, ..., n.

Recall that the nef basis {p1, p2, ..., pk, pk+1, ...pl} of H2(Y (E),Z) is obtained by
completing a nef basis {pk+1, ..., pl} of X. Let

P(~, ~∂/∂tk+1, ..., ~∂/∂tl, q2) =
∑
α∈Λ

qα2Pα
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be a polynomial differential operator with Λ a finite subset of the Mori cone of X.
Suppose that

0 = PJ(X) =
∑
α∈Λ

qα2
∑
β

Pα
(

exp(
pt

~
)qβ2

)
Jβ(X)

=
∑
α∈Λ

qα2
∑
β

cα,β exp(
pt

~
)qβ2 Jβ(X) = exp(

pt

~
)
∑
α∈Λ,β

qα+β
2 cα,βJβ(X).

Let

δα =
n∏
i=1

−Li·α−1∏
ri=0

(
k∑
j=1

aij~
∂

∂tj
+

l∑
j=k+1

cij~
∂

∂tj
− ri~), P̃ =

∑
α∈Λ

qα2 δαPα,

with the convention that if
Li(α) = 0,

the factors of δα corresponding to Li are missing. Notice that

Ln+1(α) = ... = Lm(α) = 0

since we have chosen Li to be trivial for i > n. We compute

P̃J(Y (E)) =
∑
α∈Λ

qα2 δα
∑
ν,β

Pα
(
qβ2 exp(

pt

~
)
)
qν1 Ων,βJβ =

∑
α∈Λ

qα2 δα
∑
ν,β

cα,β exp(
pt

~
)qν1 q

β
2 Ων,βJβ .

One can easily show that

δα

(
exp(

pt

~
)qν1 q

β
2 Ων,β

)
= exp(

pt

~
)qν1 q

β
2 Ων,α+β .

It follows that

P̃J(Y (E)) = exp(
pt

~
)
∑
ν

qν1
∑
α∈Λ,β

cα,βq
α+β
2 Ων,α+βJβ(X) = 0.

Hence the relation P(0, pk+1, ..., pl, q2) = 0 in QH∗sX lifts into the relation

P(0, pk+1, ..., pl, q2

n∏
i=1

Di) = 0

in QH∗sY (E), where (
n∏
i=1

Di

)α
:=

n∏
i=1

D
−Li(α)
i ,∀α ∈MX.

For a curve class ν in the fiber of π, consider the following differential operator

∆ν(~
∂

∂t1
, ..., ~

∂

∂tl
, qj) :=

∏
i:Di(ν)>0

Di(ν)−1∏
m=0

(
k∑
j=1

aij~
∂

∂tj
−

l∑
j=k+1

cij~
∂

∂tj
+m~)

−qν
∏

i:Di(ν)<0

−Di(ν)−1∏
m=0

(
k∑
j=1

aij~
∂

∂tj
−

l∑
j=k+1

cij~
∂

∂tj
+m~).
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It is easy to show that it satisfies

∆νJ(Y (E)) = 0.

It follows that
∆ν(p1, ..., pl, qj) = 0

in QH∗sY (E), i.e.
r∏
i=1

D
Di(ν)
i = qν .

These are precisely the extensions to Y (E) of the small quantum cohomolgy rela-
tions of the fiber Y .

�

Sometimes all the relations in QH∗sX come from quantum differential operators,
hence QH∗sX pulls back to QH∗sY (E). This is the case when X is a Fano toric
variety. The results of this section yield a complete description of QH∗Y (E) which
generalizes previous results of Costa et al [4] and Qin et al [15] and Givental [9].

4. The General (Nontoric) Case

We believe that Proposition 1 holds for any X. On one end, the equality of the
d = 0 terms in J(Y (E)) = I(Y (E)) is easy to establish. Indeed, the relative Gromov-
Witten theory of the Y -bundle over BT associated with the universal bundle ET 7→
BT is precisely the T-equivariant GW theory of Y (Astashkevich and Sadov [1]).
The latter pulls back under the classifying map X 7→ BT to the relative GW theory
of Y (E) over X. It follows that the restriction of J(Y (E)) to ν = 0 is obtained by
substituting c1(Li) for λi in JT(Y ). Since Y is assumed to be Fano, the generator
JT(Y ) is known (see for example [8]) and the substitution c1(Li) 7→ λi is easily seen
to yield the desired equality. At the other end, the ν = 0 equality follows as an
application of the equivariant quantum Lefshetz principle for the action of a torus
on the fibers of Y (E). The fixed point component relevant for the equivariant and
localization considerations ([12]) consists of the maps that land in the section s(X).
The top chern class of the virtual normal bundle for this component is that of the
H1-bundle for ⊕mi=1Li. Calculations are easy to carry out (see for example Elezi
[7]).
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