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STRANGE DUALITY ON RATIONAL SURFACES

Yao Yuan

Abstract

We study Le Potier’s strange duality conjecture on a rational
surface. We focus on the case involving the moduli space of rank
2 sheaves with trivial first Chern class and second Chern class 2,
and the moduli space of 1-dimensional sheaves with determinant
L and Euler characteristic 0. We show the conjecture for this case
is true under some suitable conditions on L, which applies to L
ample on any Hirzebruch surface Σe := P(OP1 ⊕ OP1(e)) except
for e = 1. When e = 1, our result applies to L = aG + bF with
b ≥ a+[a/2], where F is the fiber class, G is the section class with
G2 = −1 and [a/2] is the integral part of a/2.

1. Introduction

In this whole paper, X is a rational surface over the complex number
C, with KX the canonical divisor and H the polarization such that the
intersection number KX .H < 0. We use the same letter to denote both
the line bundles and the corresponding divisor classes, but we write
L1 ⊗ L2, L−1 for line bundles while L1 + L2, −L for the corresponding
divisor classes. Denote by L1.L2 the intersection number of L1 and L2.
L2 := L.L.

Let K(X) be the Grothendieck group of coherent sheaves over X.
Define a quadratic form (u, c) 7→ 〈u, c〉 := χ(u ⊗ c) on K(X), where
χ(−) is the holomorphic Euler characteristic and χ(u⊗ c) = χ(F ⊗L G)
for any F of class u, G of class c and ⊗L the flat tensor.

For two elements c, u ∈ K(X) orthogonal to each other with respect
to 〈, 〉, we have MH

X (c) and MH
X (u) the moduli spaces of H-semistable

sheaves of classes c and u respectively. If there are no strictly semistable
sheaves of classes c (u, resp.), then over MH

X (c) (MH
X (u), resp.) there

is a well-defined line bundle λc(u) (λu(c), resp.) called determinant line
bundle associated to u (c, resp.). If there are strictly semistable sheaves
of class u, one needs more conditions on c to get λu(c) well-defined (see
Ch 8 in [11]).
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Let c, u ∈ K(X). Assume both moduli spaces MX
H (c) and MX

H (u)
are non-empty and the determinant line bundles λc(u) and λu(c) are
well-defined over MX

H (c) and MX
H (u), respectively. According to [15]

(see [15] p.9), if the following (F) is satisfied,
(F) for all H-semistable sheaves F of class c and H-semistable

sheaves G of class u on X, Tori(F ,G) = 0 ∀ i ≥ 1, and H2(X,F⊗G) = 0.
then there is a canonical map

(1.1) SDc,u : H0(MX
H (c), λc(u))∨ → H0(MX

H (u), λu(c)).

The strange duality conjecture asserts that SDc,u is an isomorphism.
Strange duality conjecture on curves was at first formulated (in [3]

and [7]) and has been proved (see [16], [4]). Strange duality on surfaces
does not have a general formulation so far. There is a special formulation
due to Le Potier (see [15] or [6]). In this paper we choose u = uL :=

[OX ]− [L−1] + (L.(L+KX))
2 [Ox] with x a single point in X, and c = c2

2 :=
2[OX ] − 2[Ox]. Then (F) is satisfied and SDc,u is well-defined. We
prove the following theorem.

Theorem 1.1 (Corollary 3.15). Let X be a Hirzebruch surface Σe

and L = aG + bF with F the fiber class and G the section such that
G2 = −e. Then the strange duality map SDc22,uL

as in (1.1) is an

isomorphism for the following cases.

1) min{a, b} ≤ 1;
2) min{a, b} ≥ 2, e 6= 1, L ample;
3) min{a, b} ≥ 2, e = 1, b ≥ a + [a/2] with [a/2] the integral part of

a/2.

Although strange duality on surfaces is a very interesting problem,
there are very few cases known. Our result adds to previous work by
the author ([20], [22]) and others ([1], [5], [6], [9], [17], [18], [19]).

Especially, in [22] we proved SDc22,uL
is an isomorphism when X =

P2. The limitation of the method in [22] is that: we have used Fourier
transform on P2 which does not behave well on other rational surfaces.
In this paper we use a new strategy. Actually we show the strange
duality map SDc22,uL

is an isomorphism under a list of conditions, and

then check that all these conditions are fulfilled for cases in Theorem 1.1.
So Theorem 1.1 is an application of our main theorem (Theorem 3.13) to
Hirzebruch surfaces and there are certainly more applications to other
rational surfaces.

The structure of the paper is arranged as follows. In § 2 we give
preliminaries, including some useful properties of MH

X (c2
2) (in § 2.1 and

§ 2.3) and a brief introduction to determinant line bundles and the set-
up of strange duality (in § 2.2). § 3 is the main part. In § 3.1 and
§ 3.2 we prove the strange duality map is an isomorphism under a list of
conditions; in § 3.3 we show the main theorem (Theorem 3.13) applies
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to cases on Hirzebruch surfaces. Although the argument in § 3.3 takes
quite much space, the technique used there is essentially a combination
of those in [21] and [22].

Notations. Let F , G be two sheaves.

• ci(F) is the i-th Chern class of F ;
• χ(F) is the Euler characteristic of F ;
• hi(F) = dimH i(F);
• exti(F ,G) = dim Exti(F ,G), hom(F ,G) = dim Hom(F ,G) and
χ(F ,G) =

∑
i≥0(−1)iexti(F ,G);

• Supp(F) or CF is the support of 1-dimensional sheaf F

Acknowledgements. The author was supported by NSFC grant
11301292.

2. Preliminaries

Define uL := [OX ] − [L−1] + (L.(L+KX))
2 [Ox] ∈ K(X) with L a line

bundle on X and x a single point in X. It is easy to check uOX
= 0

and uL1 + uL2 = uL1⊗L2 . If L is nontrivially effective, i.e. L 6∼= OX
and H0(L) 6= 0, let |L| be the linear system, then uL is the class of
1-dimensional sheaves supported at curves in |L| and of Euler charac-
teristic 0.

For L nontrivially effective, denote by M(L, 0) the moduli space
MH
X (uL). In fact a sheaf F of class uL is semistable (stable, resp.)

if and only if ∀ F ′ ( F , χ(F ′) ≤ 0 (χ(F ′) < 0, resp.). Hence M(L, 0)
does not depend on the polarization H. We ask M(OX , 0) to be a single
point standing for the zero sheaf.

Let crn = r[OX ]− n[Ox] ∈ K(X) with x a single point on X. Denote
by W (r, 0, n) the moduli space MH

X (crn) (but W (r, 0, n) might depend
on H). In this paper we mainly focus on W (2, 0, 2) for X a rational
surface.

For any L, r, n, uL and crn are orthogonal with respect to the quadratic
form 〈, 〉 on K(X).

2.1. Some basic properties of W (2, 0, 2).

Definition 2.1. We say the polarization H is c2
2-general, if for any

ξ ∈ H2(X,Z) ∼= Pic(X) such that ξ.H = 0 and ξ2 ≥ −2, we have ξ = 0.

Remark 2.2. Since KX .H < 0, ξ.H = 0 ⇒ ξ2 ≤ −2 for any
0 6= ξ ∈ Pic(X). This is because H0(OX(±ξ)) = 0 by ξ.H = 0 and
H2(OX(±ξ)) = H0(OX(KX ∓ ξ))∨ = 0 by (KX ∓ ξ).H < 0, hence
χ(OX(ξ)⊕OX(−ξ)) = 2 + ξ2 ≤ 0.

Lemma 2.3. Let F be an H-semistable sheaf in class c2
2. If F is

not locally free, then it is strictly semistable and S-equivalent to Ix⊕Iy
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with x, y two single points on X. Moreover, if H is c2
2-general, then F

is H-stable if and only if F is locally free.

Proof. First assume F is not locally free, then its reflexive hull F∨∨
is locally free of class c2

i with i = 1 or 0. H2(F∨∨) ∼= H2(F) ∼=
Hom(F ,KX)∨ = 0 by KX .H < 0 and the semistability of F . Hence
dimH0(F∨∨) ≥ χ(F∨∨) = 2 − i > 0. Therefore either F∨∨ ∼= O⊕2

X or
F∨∨ lies in the following sequence

(2.1) 0→ OX
−→ F∨∨ → Ix → 0,

where Ix is the ideal sheaf of some single point x on X.
If F∨∨ lies in (2.1), then we have

(2.2) 0→ F → F∨∨ p−→ T1 → 0,

where T1 is a 0-dimensional sheaf with χ(T1) = 1 and hence T1
∼= Oy

for some single point y ∈ X. Compose maps  in (2.1) and p in (2.2),
the map p ◦  : OX → T1 is not zero because otherwise OX would be
a subsheaf of F . Therefore p ◦  is surjective with kernel isomorphic to
Iy which is a subsheaf of F destabilizing F . Hence F is not stable and
S-equivalent to Ix ⊕ Iy.

If F∨∨ ∼= O⊕2
X , then we have the following exact sequence

0→ F → O⊕2
X → T2 → 0,

where T2 is a 0-dimensional sheaf with χ(T2) = 2. We also have

0→ Ox → T2 → Oy → 0,

where x, y are two single points on X (it is possible to have x = y).
Hence we have the following diagram

0

��

0

��

0

��
0 // Ix //

��

OX //

��

Ox //

��

0

0 // F //

��

O⊕2
X

//

��

T2
//

��

0

0 // Iy //

��

OX //

��

Oy //

��

0

0 0 0 .

Hence F is S-equivalent to Ix ⊕ Iy.
Now assume H is c2

2-general. We only need to show that any semi-
stable bundle F of class c2

2 is stable. If F is strictly semistable, then we
have the following sequence

0→ IZ(ξ)→ F → IW (−ξ)→ 0,

where ξ.H = 0 and IZ , IW are ideal sheaves of 0-dimensional sub-
schemes Z,W of X such that the length len(Z) = len(W ) = 1 + ξ2/2≥ 0.
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Since H is c2
2-general, ξ = 0 and IZ is a subsheaf of F . Hence so is OX

because F is locally free, which is a contradiction since H0(F) = 0 by
semistability. Hence F is stable. The lemma is proved. q.e.d.

Denote by S the closed subset of W (2, 0, 2) consisting of non lo-
cally free sheaves, then set-theoretically S is isomorphic to the second
symmetric power X(2) of X by Lemma 2.3. S is of codimension 1 in
W (2, 0, 2). In § 2.3 we will give a scheme-theoretic structure of S and
show that it is a divisor associated to some line bundle.

Remark 2.4. If H is not c2
2-general, then all strictly semistable

vector bundle are S-equivalent to OX(ξ) ⊕ OX(−ξ) with ξ ∈ Pic(X),
ξ.H = ξ.KX = 0 and ξ2 = −2.

2.2. Determinant line bundles and strange duality. To set up the
strange duality conjecture, we briefly introduce so-called determinant
line bundles on the moduli spaces of semistable sheaves. We refer to
Chapter 8 in [11] for more details.

For a Noetherian scheme Y , we denote by K(Y ) the Grothendieck
groups of coherent sheaves on Y and K0(Y ) be the subgroup of K(Y )
generated by locally free sheaves. Then K0(X) = K(X) since X is
smooth and projective.

Let E be a flat family of coherent sheaves of class c on X parametrized
by a noetherian scheme S, then E ∈ K0(X×S). Let p : X×S → S, q :
X × S → X be the projections. Define λE : K(X) = K0(X) → Pic(S)
to be the composition of the following homomorphisms:
(2.3)

K0(X)
q∗ // K0(X × S)

.[E ] // K0(X × S)
R•p∗ // K0(S)

det−1
// Pic(S),

where q∗ is the pull-back morphism, [F ].[G ] :=
∑

i(−1)i[Tori(F ,G )],
and R•p∗([F ]) =

∑
i(−1)i[Rip∗F ]. Proposition 2.1.10 in [11] assures

that R•p∗([F ]) ∈ K0(S) for any F coherent and S-flat.
For any u ∈ K(X), λE (u) ∈ Pic(S) is called the determinant line

bundle associated to u induced by the family E . Notice that the defi-
nition we use here is dual to theirs in [11].

Let S = MH
X (c), then there is in general no such universal family

E over X ×MH
X (c), and even if it exists, there is ambiguity caused by

tensoring with the pull-back of a line bundle on MH
X (c). Thus to get

a well-defined determinant line bundle λc(u) over MH
X (c), we need look

at the good GL(V )-quotient Ω(c) → MH
X (c) with Ω(c) an open subset

of some Quot-scheme and there is a universal quotient Ẽ over X×Ω(c).
λc(u) is then defined by descending the line bundle λ

Ẽ
(u) over Ω(c).

λ
Ẽ

(u) descends if and only if it satisfies the “descent condition” (see
Theorem 4.2.15 in [11]), which implies that u is orthogonal to c with
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respect to the quadratic form 〈 , 〉. Hence the homomorphism λc is only
defined over a subgroup of K(X).

Now we focus on M(L, 0) and W (r, 0, n). As we have seen, uL is
orthogonal to crn for any L, r, n.

Let λcrn(L) be the determinant line bundle associated to uL over (an
open subset of) W (r, 0, n). We denote simply by λr(L) if r = n. By
checking the descent condition we see that λ2(L) is always well-defined
over the stable locus W (2, 0, 2)s and S, hence it is well-defined over all
W (2, 0, 2) if H is c2

2-general. If H is not c2
2-general, then λ2(L) is well-

defined over point [OX(−ξ)⊕OX(ξ)] if and only if ξ.L = 0. We denote
by W (r, 0, n)L the biggest open subset of W (r, 0, n) where λcrn(L) is

well-defined. Notice that the stable locus W (r, 0, n)s ⊂W (r, 0, n)L. By
Remark 2.4, W (2, 0, 2)L = W (2, 0, 2)L⊗KX .

On the other hand, let λL(crn) be the determinant line bundle asso-
ciated to crn over M(L, 0), then λL(crn) is always well-defined over the
whole moduli space. We have the following proposition which is analo-
gous to Theorem 2.1 in [6].

Proposition 2.5. (1) There is a canonical section, unique up to
scalars, σcrn,uL ∈ H

0(W (r, 0, n)L×M(L, 0), λcrn(L)�λL(crn)) whose zero
set is

Dcrn,uL :=
{

([F ], [G])∈W (r, 0, n)L×M(L, 0)
∣∣ h0(F⊗G) =h1(F⊗G) 6= 0

}
.

(2) The section σcrn,uL defines a linear map up to scalars

(2.4) SDcrn,uL : H0(W (r, 0, n)L, λcrn(L))∨ → H0(M(L, 0), λL(crn)).

(3) Denote by σF the restriction of σcrn,uL to {F}×M(L, 0). σF only
depends (up to scalars) on the S-equivalence class of F .

(4) If σcrn,uL is not identically zero, then by assigning F to σF we get

a rational map Φ : W (r, 0, n)L → P(H0(M(L, 0), λL(crn))). Similarly we
have a rational map Ψ : M(L, 0) → P(H0(W (r, 0, n)L, λcrn(L))). More-
over If the image of Φ is not contained in a hyperplane, then SDcrn,uL

is injective; if the image of Ψ is not contained in a hyperplane, then
SDcrn,uL is surjective.

Proof. The proof of Theorem 2.1 in [6] also applies to our case al-
though the surface may not be P2. For statement (3) and (4), one can
also see Lemma 6.13 and Proposition 6.17 in [9]. q.e.d.

The map SDcrn,uL in (2.4) is call the strange duality map, and Le
Potier’s strange duality is as follows (also see Conjecture 2.2 in [6])

Conjecture/Question 2.6. If both W (r, 0, n)L and M(L, 0) are
non-empty, then is SDcrn,uL an isomorphism?

We denote by ΘL the determinant line bundle associated to c1
0 = [OX ]

on M(L, 0). Then ΘL has a canonical divisor DΘL
which consists of



STRANGE DUALITY ON RATIONAL SURFACES 311

sheaves with non trivial global sections. Since λL is a group homo-
morphism, by Proposition 2.8 in [14], we have that λL(crn) ∼= Θ⊗rL ⊗
π∗O|L|(n) =: Θr

L(n) where π : M(L, 0) → |L| sends each sheaf to its
support.

In this paper we study the following strange duality map for X a
rational surface
(2.5)

SD2,L := SDc22,uL
: H0(W (2, 0, 2)L, λ2(L))∨ → H0(M(L, 0),Θ2

L(2)).

2.3. Scheme-theoretic structure of S on W (2, 0, 2). S consists of
non locally free sheaves in W (2, 0, 2). Recall we have a good quotient

ρ : Ω2 →W (2, 0, 2). Let S̃ = ρ−1(S).

Set-theoretically S ∼= X(2). Let ∆ ⊂ X(2) be the singular locus and

∆ ∼= X. Define So = S−∆, W (2, 0, 2)o = W (2, 0, 2)L−∆, S̃o = ρ−1(So)
and Ωo

2 = ρ−1(W (2, 0, 2)o). Let F (F o, resp.) be the universal quotient
over X×Ω2 (X×Ωo

2, resp.). We then have the following proposition due
to Abe (see Section 3.4 and Section 5.2 Proposition 3.7 and Proposition
5.2 in [1])

Proposition 2.7. (1) The second Fitting ideal Fitt2(F o) of F o

defines a smooth closed subscheme Ŝo of X × Ωo
2 supported at the set

{(x, [q : OX(−mH)⊗ V � F ])|dimk(x)Fx ⊗ k(x) > 2} ⊂ X × Ωo
2.

i.e. Ŝo consists of points (x, [q : OX(−mH) � F ]) such that Fx is not
free.

(2) We have a surjective map pΩ : Ŝo → S̃o induced by the projection

pΩ : X × Ω2 → Ω2. We give a scheme structure of S̃o by letting its

defining ideal be the kernel of OΩo
2
→ pΩ∗OŜo. Then S̃o is a normal

crossing divisor in Ωo
2 with Ŝo → S̃o the normalization.

(3) The line bundle associated to the divisor S̃o on Ωo
2 is λFo(uK−1

X
).

Proof. Sheaves in S̃o are all quasi-bundles (see Definition 2.1 in [1]),
hence Abe’s argument in Section 3.4 in [1] gives Statement (1) and (2).
Notice that our notations are slightly different from his.

For Statement (3), by Proposition 5.2 in [1] we know that OΩo
2
(S̃o) ∼=

λFo([KX ])−1 ⊗ λFo([OX ])−1. We also see that

λFo(uK−1
X

) ∼= λFo([KX ])−1 ⊗ λFo([OX ]).

But λFo([OX ]) ∼= OΩo
2

since H i(F) = 0 for i = 0, 1, 2 and F semistable

of class c2
2. Hence the proposition. q.e.d.

Corollary 2.8. Let S have the scheme-theoretic structure as the clo-
sure of So in W (2, 0, 2). Then S is a divisor associated to the line bundle
λ2(K−1

X ) on W (2, 0, 2). Moreover S is an integral scheme.
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Proof. By Proposition 2.7, So is a divisor associated to λ2(K−1
X ) re-

stricted on W (2, 0, 2)o. S is the closure of So in W (2, 0, 2)L. Since
KX .H < 0, W (2, 0, 2) is normal, Cohen-Macaulay and of pure dimen-
sion 5, hence the section given by So extends to a section of λ2(K−1

X )

on W (2, 0, 2)L with divisor S.

We have a morphism ϕ : X(2) → S sending (x, y) to Ix ⊕ Iy, which

is bijective. Hence S is irreducible. S̃o is reduced, hence so are So and
S. Thus S is an integral scheme. q.e.d.

Lemma 2.9. For any line bundle L, the map H0(S, λ2(L)|S)
ϕ∗−→

H0(X(2), ϕ∗λ2(L)) induced by λ2(L)|S → ϕ∗ϕ
∗λ2(L) is injective. More-

over H0(X(2), ϕ∗λ2(L)) ∼= (H0(X,L)⊗2)S2 ∼= S2H0(X,L) where Sn is
the n-th symmetric group.

Proof. Let ∆ ⊂ X2 be the diagonal, and I∆ is the ideal sheaf of
∆ in X2. Let pri,j be the projection from Xn to the product X2 of
the i-th and j-th factors. Then pr∗1,2I∆ ⊕ pr∗1,3I∆ gives a family of

ideal sheaves on X3 and induces a morphism ϕ̃ : X2 → W (2, 0, 2)

with image S. ϕ̃ is S2-invariant, hence factors through X2 → X(2)

and gives the map ϕ : X(2) → S. The morphism ϕ is bijective and
S is reduced, hence the map ϕ\ : OS → ϕ∗OX(2) is injective. Hence

so is the map λ2(L)|S → ϕ∗ϕ
∗λ2(L) and therefore H0(S, λ2(L)|S)

ϕ∗−→
H0(X(2), ϕ∗λ2(L)) is injective.

Obviously H0(X(2), ϕ∗λ2(L)) ∼= (H0(X2, ϕ̃∗λ2(L)))S2 . It will suffice
to show that H0(X2, ϕ̃∗λ2(L)) ∼= H0(X,L)⊗2. By the basic proper-
ties (see Lemma 8.1.2 and Theorem 8.1.5 in [11]) of the determinant
line bundle, we have ϕ̃∗λ2(L) ∼= λpr∗1,2I∆⊕pr∗1,3I∆(uL) ∼= λpr∗1,2I∆(uL) ⊗
λpr∗1,3I∆(uL) ∼= λI∆(L)�2. Obviously λI∆(L) ∼= L, so we have

H0(X2, ϕ̃∗λ2(L)) ∼= H0(X,λI∆(L))⊗2 ∼= H0(X,L)⊗2.

Hence the lemma. q.e.d.

The line bundle L�n on Xn is Sn-linearized and descends to a line
bundle on X(n), which we denote by L(n). So ϕ∗λ2(L) ∼= L(2) on X(2).

Denote also by L(n) the pullback of L(n) to X [n] via the Hilbert-Chow

morphism, where X [n] is the Hilbert scheme of n-points on X.

3. Main result on SD2,L

Let L be a nontrivially effective line bundle. Recall that SD2,L is the
following strange duality map as in (2.5):

SD2,L : H0(W (2, 0, 2)L, λ2(L))∨ → H0(M(L, 0),Θ2
L(2)).

In this section, we show that under certain conditions SD2,L is an iso-
morphism (see Theorem 3.13).
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On M(L, 0) and W (2, 0, 2)L we have the following two exact se-
quences respectively.

0→ ΘL(2)→ Θ2
L(2)→ Θ2

L(2)|DΘL
→ 0;(3.1)

0→ λ2(L⊗KX)→ λ2(L)→ λ2(L)|S → 0.(3.2)

Notice that W (2, 0, 2)L⊗KX = W (2, 0, 2)L and (3.2) is because of Corol-
lary 2.8.

Lemma 3.1. By taking the global sections of (3.1) and the dual of
global sections of (3.2), we have the following commutative diagram
(3.3)

H0(S, λ2(L)|S)∨
g∨2 //

αS

��

H0(λ2(L))∨
f∨2 //

SD2,L

��

H0(λ2(L⊗KX))∨ //

βD
��

0

0 // H0(ΘL(2))
fL

// H0(Θ2
L(2)) gL

// H0(DΘL
,Θ2(2)|DΘL

).

Proof. We only need to show that gL ◦ SD2,L ◦ g∨2 = 0. By the
definition of SD2,L, it is enough to show that the section σc22,L defined

in Proposition 2.5 is identically zero on S × DΘL
. Easy to see that

H0((Ix ⊕ Iy)⊗ G) 6= 0 for all G ∈M(L, 0) such that H0(G) 6= 0, hence
S×DΘL

⊂ Dc22,uL
and σc22,L is identically zero on S×DΘL

. The lemma

is proved. q.e.d.

3.1. On the map αS. We introduce the following condition.

Condition (CA). The strange duality map

(3.4) SDc12,uL
: H0(W (1, 0, n), λc12(L))∨ → H0(M(L, 0),ΘL(2))

is an isomorphism.

Remark 3.2. For any n ≥ 1, W (1, 0, n) ∼= X [n] and λc1n(L) ∼=
L(n). It is well-known that H0(X [n], L(n)) = SnH0(X,L) for all n and

L (see Lemma 5.1 in [8]). Therefore CA implies H0(|L|,O|L|(2)) ∼=
H0(|L|, π∗ΘL ⊗O|L|(2)).

In particular we have h0(M(L, 0),ΘL) = h0(|L|, π∗ΘL) = 1 and DΘL

is the unique divisor associated to ΘL.

Lemma 3.3. If CA is satisfied, then the map αS in (3.3) is an
isomorphism. In particular, g∨2 is injective.

Proof. By Lemma 2.9 we have a surjective map

ϕ∗∨ : H0(X(2), L2)∨ � H0(S, λ2(L)|S)∨.

By Proposition 1.2 in [8], we have HC∗∨2 : H0(X [2], L2)∨
∼=−→

H0(X(2), L2)∨ where HC2 : X [2] → X(2) is the Hilbert-Chow morphism.
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To prove the lemma, by CA it is enough to show αS ◦ϕ∗∨ ◦HC∗∨2 =
SDc12,uL

or equivalently SD2,L ◦ g∨2 ◦ ϕ∗∨ ◦HC∗∨2 = fL ◦ SDc12,uL
.

We have a Cartesian diagram

(3.5) X̂2 ĤC //

µ̂
��

X2

µ
��

X [2]
HC
// X(2),

where µ is a S2-quotient and X̂2 is the blow-up of X2 along the diagonal
∆. Then we only need to show

(3.6) ŜDL := SD2,L◦g∨2 ◦ϕ∗∨◦HC∗∨2 ◦µ̂∗∨ = fL◦SDc12,uL
◦µ̂∗∨ =: ŜDR.

There are two flat families on X × X̂2 of sheaves of class c2
2: F 1 :=

ĤC
∗
X(pr∗1,2I∆ ⊕ pr∗1,3I∆) and F 2 := µ̂∗XI2 ⊕ q∗OX , where ĤCX :=

IdX × ĤC : X × X̂2 → X3, µ̂X := IdX × µ̂, q : X × X̂2 → X and I2

is the universal ideal sheaf on X ×X [2].
F i induces a section σi of µ̂∗λc1n(L) � λL(c2

2) ∼= µ̂∗Ln � Θ2
L(2) on

X̂2 ×M(L, 0). The zero set of σi is Di := {(x,G)|H0(F i
x ⊗ G) 6= 0}.

By the definition of SDcrn,uL , we see that ŜDL is defined by the global
section σ1. On the other hand, the map fL is defined by multiplying an

element in H0(ΘL) defininig the divisor DΘL
. Therefore ŜDR is defined

by the global section σ2. Hence to show (3.6), we only need to show Di
coincide as divisors for i = 1, 2.

Let C ⊂ X×|L| be the universal curve. Then C is a divisor in X×|L|.
pi,|L| := pi × Id|L| : X2 × |L| → X × |L| with pi the projection to the

i-th factor. Denote by pM : X̂2 ×M(L, 0) → M(L, 0) the projection

to M(L, 0). Then easy to see that D1 = D2 = 2p∗MDΘL
+ ĤC

∗
p∗1,|L|C +

ĤC
∗
p∗2,|L|C. Hence the lemma. q.e.d.

Corollary 3.4. If CA is satisfied and moreover DΘL
= ∅ and H0(L⊗

K⊗nX ) = 0 for all n ≥ 1, then the map SD2,L is an isomorphism.

Proof. By Lemma 3.3, we only need to show that H0(λ2(L⊗KX)) =
0. But H0(λ2(L ⊗K⊗nX )|S) = 0 since H0(L ⊗K⊗nX ) = 0 for all n ≥ 1.

Hence H0(λ2(L ⊗ KX)) ∼= H0(λ2(L ⊗ K⊗nX )) for all n ≥ 1 and hence

H0(λ2(L⊗KX)) = 0 because λ2(K−1
X ) is effective. q.e.d.

Remark 3.5. AssumeK−1
X is effective, then for any curve C ∈ |K−1

X |,
either OC is semistable or C contains an integral subscheme with genus
> 1. Therefore we have DΘL

= ∅ ⇒ H0(L ⊗K⊗nX ) = 0 for all n ≥ 1.
This is because otherwise there must be a semistable sheaf of class uL
having nonzero global sections.
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Moreover by Proposition 4.1.1 and Corollary 4.3.2 in [20], we see that
if every curve in |L| does not contain any 1-dimensional subscheme with
positive genus and K−1

X is effective, then Corollary 3.4 applies and the
strange duality map SD2,L is an isomorphism.

We have a useful lemma as follows.

Lemma 3.6. If DΘL
6= ∅, then L⊗KX is effective.

Proof. Let F ∈ DΘL
, then Ext1(F ,KX) ∼= H1(F)∨ 6= 0. Hence there

is a non split extension

0→ KX → Ĩ → F → 0.

If for every proper quotient F � F ′′ (i.e. F 6∼= F ′′) we have h1(F ′′) =

0, then Ĩ has to be torsion-free and hence isomorphism to IZ(L⊗KX)

with Z a 0-dimensional subscheme of X. On the other hand h0(Ĩ) =
h0(F) 6= 0, therefore H0(L⊗KX) 6= 0.

If there is a proper quotient F1 of F such that h1(F1) 6= 0, then we
can assume that for every proper quotient F ′′1 of F1 we have h1(F ′′1 ) =
0. Denote by L1 the determinant of F1, then by previous argument
H0(L1 ⊗ KX) 6= 0 and hence H0(L ⊗ KX) 6= 0 because L ⊗ L−1

1 is
effective. q.e.d.

3.2. On the map βD. In this subsection we assume DΘL
6= ∅, then by

Lemma 3.6 L ⊗KX is effective. We want to prove that under certain
conditions the map βD is an isomorphism. The main technique and
notations are analogous to [22].

Let ` := L.(L + KX)/2 = χ(L ⊗ KX) − 1 and H` be the Hilbert
scheme of `-points on X which also parametrizes all ideal sheaves IZ
with colength `, i.e. len(Z) = `. If ` = 0, we say H0 is a simple point
corresponding to the structure sheaf OX . Denote by I` the universal
ideal sheaf over X ×H`.

From now on by abuse of notation, we always denote by p the pro-
jection X ×M →M and q the projection X ×M → X for any moduli
space M . If we have Y1× · · · × Yn with n ≥ 2, denote by pij (i < j) the
projection to Yi × Yj .

Define

Q1 := QuotX×H`/H`
(I` ⊗ q∗(L⊗KX), uL)

and

Q2 := QuotX×H`/H`
(I` ⊗ q∗(L⊗KX), uL⊗KX

).

Then Q1 and Q2 are the two relative Quot-schemes over H` parametriz-
ing quotients of class uL and uL⊗KX

respectively. Let ρi : Qi → H`

be the projection. Each point [f1 : IZ(L ⊗ KX) � FL] ∈ Q1 ([f2 :
IZ(L ⊗ KX) � FL⊗KX

] ∈ Q2, resp.) over IZ ∈ H` must have the
kernel KX (OX , resp.).
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Since L⊗KX is effective and X is rational, H2(L⊗KX) = 0. Hence
h0(L ⊗ KX) ≥ χ(L ⊗ KX). Therefore, for any ideal sheaf IZ with
colenght `, we have h0(IZ(L ⊗ KX)) ≥ 1 and hence ρ2 is always sur-
jective. If moreover L.KX ≤ 0, then H0(IZ(L)) 6= 0 and ρ1 is also
surjective.

We write down the following two exact sequences.

0→ KX → IZ(L⊗KX)→ FL → 0;(3.7)

0→ OX → IZ(L⊗KX)→ FL⊗KX
→ 0.(3.8)

Notice that if FL (resp. FL⊗KX
) is semi-stable, then (the class of) FL

(resp. (the class of) FL⊗KX
) is contained in DΘL

(resp. M(L⊗KX , 0)).
Let

Do
ΘL

:=

{
FL ∈ DΘL

∣∣∣∣ h1(FL) = 1, h1(FL(−KX)) = 0
and Supp(FL) is integral.

}
,

Qo1 :=

{
[IZ(L⊗KX)

f1
� FL] ∈ Q1

∣∣∣∣ h1(FL) = 1, h1(FL(−KX)) = 0
and Supp(FL) is integral.

}
,

M(L⊗KX , 0)o :=

FL⊗KX
∈M(L⊗KX , 0)

∣∣∣∣∣∣
h0(FL⊗KX

(KX)) = 0
and Supp(FL⊗KX

)
is integral.

 ,

Qo2 :=

[IZ(L⊗KX)
f2
� FL⊗KX

] ∈ Q2

∣∣∣∣∣∣
h0(FL⊗KX

(KX)) = 0
and Supp(FL⊗KX

)
is integral.

 .

Let Grr with r ≥ 1 be a locally free sheaf of class crr on X. We define
a line bundle Lr := (det(R•p∗(I` ⊗ q∗Grr (L ⊗KX))))∨ over H`. Then
we have the following lemma.

Lemma 3.7. There are classifying maps g1 : Qo1 → Do
ΘL

and g2 :

Qo2 →M(L⊗KX , 0)o, where g1 is an isomorphism and g2 is a projective
bundle. Moreover g∗1Θr

L(r) ∼= ρ∗1Lr|Qo
1

and g∗2Θr
L⊗KX

(r) ∼= ρ∗2Lr|Qo
2
.

Proof. The proof is analogous to [22]. See Lemma 4.8, Equation
(4.9), (4.10), (4.12) and (4.14) in [22]. q.e.d.

Let Ho
` := ρ1(Qo1) ∪ ρ2(Qo2). We introduce some conditions as follows.

Condition (CB). (1) Do
ΘL

is dense open in DΘL
;

(2) M(L⊗KX , 0) is of pure dimension and satisfies the “condition S2

of Serre”, and the complement of M(L⊗KX , 0)o is of codimension
≥ 2;

(3) (ρ1)∗OQo
1
∼= OHo

`
;

(4) Qo2 is nonempty and dense open in ρ−1
2 (ρ2(Qo2)).

Remark 3.8. We say a scheme Y satisfies “condition S2 of Serre”
if ∀ y ∈ Y the local ring Oy has the property that for every prime
ideal p ⊂ Oy of height ≥ 2, we have depth Oy,p ≥ 2 (also see Ch II
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Theorem 8.22A in [10]). CB-(2) implies that for every line bundle
H over M(L ⊗ KX , 0), the restriction map H0(M(L ⊗ KX , 0),H) ↪→
H0(M(L⊗KX , 0)o,H) is an isomorphism.

Lemma 3.9. If CB is satisfied, then we have an injective map for
all r > 0

jr : H0(DΘL
,Θr

L(r)|DΘL
) ↪→ H0(M(L⊗KX , 0),Θr

L⊗KX
(r)).

Moreover, j2 ◦ βD = SD2,L⊗KX
.

Proof. By CB-(1) we have an injection

(3.9) H0(DΘL
,Θr

L(r)|DΘL
) ↪→ H0(Do

ΘL
,Θr

L(r)|Do
ΘL

).

By Lemma 3.7 and CB-(3) we have

(3.10) H0(Do
ΘL
,Θr

L(r)|Do
ΘL

)
∼=−→ H0(Qo1, ρ

∗
1Lr|Qo

1
)
∼=−→ H0(Ho

` ,Lr|Ho
`
).

On the other hand ρ2 is projective and surjective, hence there is a
natural injection OH`

↪→ (ρ2)∗OQ2 . Hence by CB-(4) we have the
following injections

(3.11) H0(Ho
` ,Lr|Ho

`
) �
� // H0(ρ2(Qo2),Lr|ρ2(Qo

2))� _

��
H0(ρ−1

2 (ρ2(Qo2)), ρ∗2Lr)
� � // H0(Qo2, ρ

∗
2Lr).

Finally by Lemma 3.7 and CB-(2) we have

(3.12) H0(Qo2, ρ
∗
2Lr)

∼= // H0(M(L⊗KX , 0)o,Θr
L⊗KX

(r))

∼=��
H0(M(L⊗KX , 0),Θr

L⊗KX
(r)).

The map jr is obtained by composing all the maps successively in
(3.9), (3.10), (3.11) and (3.12).

Now we prove jr◦βD = SD2,L⊗KX
. Notice that χ(E⊗IZ(L⊗KX)) =

h2(E ⊗ IZ(L ⊗KX)) = 0 for all E ∈ W (2, 0, 2) and IZ ∈ H`. We then
have a determinant line bundle λ2(`) (resp. λH`

(c2
2)) over W (2, 0, 2)L

(resp. H`) associated to [IZ(L⊗KX)] with IZ ∈ H` (resp. [E ] with E ∈
W (2, 0, 2)). Obviously λH`

(c2
2) = L2. Moreover there is a section σ2,`

of H0(W (2, 0, 2)L×H`, λ2(`)�L2) vanishing at the points (E , IZ) such
that H0(E ⊗ IZ(L⊗K)) 6= 0. By (3.7), λ2(L) ∼= λ2(`)⊗ λ2([KX ])−1 ∼=
λ2(`)⊗ λ2(K−1

X ). Hence λ2(`) ∼= λ2(L⊗KX).
The section σ2,` induces a morphism

H0(W (2, 0, 2)L, λ2(L⊗KX))∨
SD2,`−−−→ H0(H`,L2).
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Composing SD2,` with the inclusion H0(H`,L2) ↪→ H0(Ho
` ,L2), we get

H0(W (2, 0, 2)L, λ2(L ⊗KX))∨
SDo

2,`−−−→ H0(Ho
` ,L2). Composing maps in

(3.11) and (3.12) and we get

H0(Ho
` ,L2)

(g2)∗◦ρ∗2−−−−−→ H0(M(L⊗KX , 0),Θ2
L⊗KX

(2)).

We first show that the following diagram commutes.
(3.13)

H0(W (2, 0, 2)L, λ2(L⊗KX))∨
SDo

2,` //

SD2,L⊗KX ++

H0(Ho
` ,L2)

(g2)∗◦ρ∗2
��

H0(M(L⊗KX , 0),Θ2
L⊗KX

(2)).

Recall that on X ×Qo2 there is an exact sequence

0→ R2 → (idX × ρ∗2)I` ⊗ q∗(L⊗KX)→ FL⊗KX
→ 0,

where I` is the universal sheaf over X ×H` and R2 = p∗R2 with R2 a

line bundle over Qo2. For simplicity let Ĩ2 := (idX×ρ∗2)I`⊗q∗(L⊗KX).
Recall the good PGL(V )-quotient ρ : Ω2 → W (2, 0, 2) such that

there is a universal sheaf E over X × Ω2. Let ΩL
2 := ρ−1(W (2, 0, 2)L).

The map H0(ΩL
2 , ρ
∗λ2(L⊗KX))∨

ρ∗∨−−−→ H0(W (2, 0, 2)L, λ2(L⊗KX))∨

is surjective and hence to show that (3.13) commutes it suffices to show

(3.14) SD2,L⊗KX
◦ ρ∗∨ = (g2)∗ ◦ ρ∗2 ◦ SD2,` ◦ ρ∗∨.

Over X × ΩL
2 ×Qo2 we have

0→ p∗12E ⊗ p∗13R2 → p∗12E ⊗ p∗13Ĩ2 → p∗12E ⊗ p∗13FL⊗KX
→ 0.

By Lemma 2.1.20 in [11], we have the following commutative diagram
(3.15)

0 0 0

0 // p∗12E ⊗ p∗13R2

OO

// p∗12E ⊗ p∗13Ĩ2
//

OO

p∗12E ⊗ p∗13FL⊗KX
//

OO

0

0 // C2
// B′2

OO

// A2

OO

// p∗12E ⊗ p∗13FL⊗KX
//

=

OO

0

B2

OO

= // B2

OO

0

OO

C2

OO

0

OO

,
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where A2, B′2, B2 and C2 are locally free such that Rip∗(·) = 0 for all
i < 2 and R2p∗(·) locally free over ΩL

2 × Qo2. We have the following
commutative diagram

(3.16) R2p∗C2
// R2p∗B′2

ν′2 // R2p∗A2

R2p∗C2

=

OO

// R2p∗B2

η2

OO

ν2 // R2p∗A2.

=

OO

ν ′2 and ν2 are surjective because H2(FL⊗KX
⊗ E) = H2(IZ(L⊗KX)⊗

E) = 0 for every [IZ(L ⊗ KX) � FL⊗KX
] ∈ Qo2 and E ∈ ΩL

2 . η2 is
an isomorphism because R2 is a pullback of a line bundle on Qo2 and
H1(E) = H2(E) = 0 for all E ∈ ΩL

2 . Denote by K2 and K′2 the kernels
of ν2 and ν ′2 respectively. Then we have

(3.17) R2p∗C2

ξL⊗KX // K′2

R2p∗C2

=

OO

ξ2
`

// K2.

∼= η2

OO

The section det(ξL⊗KX
) induces the map g∗2 ◦SD2,L⊗KX

◦ ρ∗∨ while the
section det(ξ2

` ) induces the map ρ∗2 ◦ SDo
2,` ◦ ρ∗∨. By (3.17) we have

det(ξL⊗KX
) = det(η2) · det(ξ2

` ) and hence det(ξL⊗KX
) and det(ξ2

` ) are
the same section up to scalars since η2 is an isomorphism. Hence

(3.18) g∗2 ◦ SD2,L⊗KX
◦ ρ∗∨ = ρ∗2 ◦ SDo

2,` ◦ ρ∗∨.

(3.18) implies (3.14) because g2 is a projective bundle and the map

H0(Qo2, g
∗
2Θr

L⊗KX
(r))

(g2)∗−−−→ H0(M(L ⊗ KX , 0)o,Θr
L×KX

(r)) is an iso-
morphism with inverse map g∗2.

Now we have that (3.13) commutes. To show jr ◦ βD = SD2,L⊗KX
,

it suffices to show that the following diagram commutes.

(3.19) H0(ΩL
2 , λ2(L⊗KX))∨

SDo
2,`◦ρ

∗∨
// H0(Ho

e ,L2)

H0(ΩL
2 , λ2(L))∨

f∨2,Ω

OO

gL◦SD2,L◦ρ∗∨
// H0(DΘL

,Θ2
L(2)|DΘL

).

(ρ1)∗◦g∗1

OO

In other words, it suffices to show

(3.20) (ρ1)∗ ◦ g∗1 ◦ gL ◦ SD2,L ◦ ρ∗∨ = SDo
2,` ◦ ρ∗∨ ◦ f∨2,Ω.

Recall that on X ×Qo1 there is an exact sequence

0→ R1 → (idX × ρ∗1)I` ⊗ q∗(L⊗KX)→ FL → 0,
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where I` is the universal sheaf over X×H` and R1 = p∗R1⊗q∗KX with
R1 a line bundle (actually the relative tautological bundleOρ1(−1)) over

Qo1. Let Ĩ1 := (idX × ρ∗1)I` ⊗ q∗(L⊗KX).
Over X × ΩL

2 ×Qo1 we have

0→ p∗12E ⊗ p∗13R1 → p∗12E ⊗ p∗13Ĩ1 → p∗12E ⊗ p∗13FL → 0.

Analogously, we have the following commutative diagram
(3.21)

0 0 0

0 // p∗12E ⊗ p∗13R1

OO

// p∗12E ⊗ p∗13Ĩ1
//

OO

p∗12E ⊗ p∗13FL
//

OO

0

0 // C1
// B′1

OO

// A1

OO

// p∗12E ⊗ p∗13FL
//

=

OO

0

B1

OO

= // B1

OO

0

OO

C1

OO

0

OO

,

where A1, B′1, B1 and C1 are locally free such that Rip∗(·) = 0 for all
i < 2 and R2p∗(·) locally free over ΩL

2 × Qo1. We have the following
commutative diagram

(3.22) R2p∗C1
// R2p∗B′1

ν′1 // R2p∗A1

R2p∗C1

=

OO

// R2p∗B1

η1

OO

ν1 // R2p∗A1.

=

OO

ν ′1 and ν1 are surjective because H2(FL⊗E) = H2(IZ(L⊗KX)⊗E) = 0
for every [IZ(L ⊗ KX) � FL] ∈ Qo1 and E ∈ ΩL

2 . η1 is a morphism
between two vector bundles with same rank with cokernel R2p∗(p

∗
12E ×

p∗13R1). Since R1
∼= p∗R1⊗q∗KX withR1 a line bundle over Qo1, det(η1)

is the pullback to ΩL
2 × Qo1 of the section of λ2([KX ]−1) ∼= λ2(K−1

X )

defining the subscheme S̃.
Denote by K1 and K′1 the kernels of ν1 and ν ′1 respectively. Then we

have

(3.23) R2p∗C1
ξL // K′1

R2p∗C1

=

OO

ξ1
`

// K1.

η1

OO
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The section det(ξL) induces the map g∗1 ◦ gL ◦ SD2,L ◦ ρ∗∨, the section
det(ξ1

` ) induces the map ρ∗1 ◦ SDo
2,` ◦ ρ∗∨ and multiplying the section

det(η1) induces the map f∨2,Ω. By (3.23) we have det(ξL) = det(η1) ·
det(ξ1

` ) and hence

(3.24) g∗1 ◦ gL ◦ SD2,L ◦ ρ∗∨ = ρ∗1 ◦ SDo
2,` ◦ ρ∗∨ ◦ f∨2,Ω.

(3.24) implies (3.20) because by CB-(3) the map H0(Qo1, ρ
∗
1Lr)

(ρ1)∗−−−→
H0(Ho

` ,Lr) is an isomorphism with inverse map ρ∗1.
The lemma is proved. q.e.d.

Now we want to modify CB. Define

|L⊗KX |′ :=
{
C ∈ |L⊗KX |

∣∣∣∣ ∀ integral subscheme C1 ⊂ C,
we have deg(KX |C1) < 0.

}
,

M(L⊗KX , 0)′ :=

FL⊗KX
∈M(L⊗KX , 0)

∣∣∣∣∣∣
h0(FL⊗KX

(KX)) = 0
and Supp(FL⊗KX

)
is in |L⊗KX |′.

 .

Q′2 :=

[IZ(L⊗KX)
f2
� FL⊗KX

] ∈ Q2

∣∣∣∣∣∣∣∣
FL⊗KX

is semistable,
h0(FL⊗KX

(KX)) = 0
and Supp(FL⊗KX

)
is in |L⊗KX |′.

 .

Let fM : ΩL⊗KX
→ M(L ⊗ KX , 0) be the good PGL(VL⊗KX

)-
quotient with VL⊗KX

some vector space and ΩL⊗KX
an open subscheme

of some Quot-scheme. Let Ω′L⊗KX
:= f−1

M (M(L⊗KX , 0)′). Notice that

Ext2(FL⊗KX
,FL⊗KX

) = 0 for FL⊗KX
semistable with Supp(FL⊗KX

) ∈
|L ⊗ KX |′. Hence Ω′L⊗KX

is smooth of pure dimension the expected
dimension.

Denote by QL⊗KX
the universal quotient over ΩL⊗KX

. Analogous to
[22], define V ′ := E xt1p(QL⊗KX

|Ω′L⊗KX
, q∗OX) which is locally free of

rank −(L+KX).KX on Ω′L⊗KX
. Let P ′2 ⊂ P(V ′) parametrizing torsion

free extensions of Qs by OX for all s ∈ Ω′L⊗KX
. Then the classifying

map f ′Q2
: P ′2 → Q′2 is a principal PGL(VL⊗KX

)-bundle (see Lemma 4.7

in [22]). We have the following commutative diagram

(3.25) P ′2
σ′2 //

f ′Q2
��

Ω′L⊗KX

f ′M
��

Q′2 g′2

// M(L⊗KX , 0)′.

Let H ′` := ρ1(Qo1) ∪ ρ2(Q′2). We define CB′ by keeping CB-(1) and
replacing CB-(2), (3) and (4) by (2′a), (2′b), (3) and (4′) as follows.

Condition (CB′). (1) Do
ΘL

is dense open in DΘL
;
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(2′a) M(L⊗KX , 0) is of pure dimension and satisfies the “condition S2

of Serre”, and the complement of M(L⊗KX , 0)′ is of codimension
≥ 2;

(2′b) The complement of P ′2 in P(V ′) is of codimension ≥ 2;
(3′) (ρ1)∗OQo

1
∼= OH′` ;

(4′) Q′2 is nonempty and dense open in ρ−1
2 (ρ2(Q′2)).

Lemma 3.10. If CB′ is satisfied, then there is an injective map for
all r > 0

jr : H0(DΘL
,Θr

L(r)|DΘL
) ↪→ H0(M(L⊗KX , 0),Θr

L⊗KX
(r)),

such that j2 ◦ βD = SD2,L⊗KX
.

Proof. The only difference from Lemma 3.9 is that the map g′2 is no
more a projective bundle. However it is enough to prove (g′2)∗OQ′2

∼=
OM(L⊗KX ,0)′

∼= OM(L⊗KX ,0).
In (3.25) we have f ′Q2

a principal PGL(VL⊗KX
)-bundle and f ′M a good

PGL(VL⊗KX
)-quotient. σ′2 is PGL(VL⊗KX

)-equivariant and descends
to the map g′2. In order to show (g′2)∗OQ′2

∼= O|L⊗KX |′ , we only need to

show that (σ′2)∗OP ′2
∼= OΩ′L⊗KX

.

We have that (σ2)∗OP(V ′) ∼= OΩ′L⊗KX
. Ω′L⊗KX

is smooth of pure di-

mension. By CB′-(2′b) the complement of P ′2 in P(V ′) is of codimension
≥ 2 and hence ∗OP ′2

∼= OP(V ′) with  : P ′2 ↪→ P(V ′) the embedding.

On the other hand σ′2 = σ2 ◦ , hence (σ′2)∗OP ′2
∼= (σ2)∗(∗OP ′2) ∼=

(σ2)∗OP(V ′) ∼= OΩ′L⊗KX
. Hence the lemma q.e.d.

Notice that CB-(2) ⇒ CB′-(2′a) if (L+KX).KX < 0. Lemma 3.9 and
Lemma 3.10 imply immediately the following proposition.

Proposition 3.11. If either CB or CB′ is satisfied and SD2,L⊗KX

is an isomorphism, then the map βD in (3.3) is an isomorphism. In
particular, gL is surjective.

Remark 3.12. If L ∼= K−1
X then βD is an isomorphism as long as

∀ C ∈ |L|, OC is stable (which is equivalent to say that C contains
no subcurve with genus ≥ 1) and there is a stable vector bundle E ∈
W (2, 0, 2). This is because in this case βD is a nonzero map between
two vector spaces of 1 dimension, hence an isomorphism. βD is nonzero
since H0(E ⊗OC) = H1(E ⊗OC) = 0 for all C ∈ |L| (also see the proof
of Proposition 6.25 in [9]).

Combining Lemma 3.3 and Proposition 3.11 we have the following
theorem.

Theorem 3.13. Assume CA, and assume either CB or CB′ is sat-
isfied, and assume SD2,L⊗KX

is an isomorphism, then SD2,L is an iso-
morphism.
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3.3. Application to Hirzebruch surfaces. Theorem 3.13 applies to
a large number of cases on Hirzebruch surface as stated in the following
theorem.

Theorem 3.14. Let X = Σe (e ≥ 0) := P(OP1 ⊕ OP1(e)). Let F
be the fiber class and G the section such that G2 = −e over X. Let
L = aG+ bF . Then

(1) CA is fulfilled for L ample or min{a, b} ≤ 1.
(2) If 2 ≤ min{a, b} ≤ 3, then CB′ is fulfilled for L ample, i.e. b > ae

for e 6= 0; or a, b > 0 for e = 0.
(3) If min{a, b} ≥ 4, then CB is fulfilled for both L and L ⊗ KX

ample, i.e. b > ae, e > 1; or b > a+ 1, e = 1; or a, b ≥ 4, e = 0.

Corollary 3.15. Let X be a Hirzebruch surface Σe and L = aG+bF .
Then the strange duality map SD2,L in (2.5) is an isomorphism for the
following cases.

1) min{a, b} ≤ 1;
2) min{a, b} ≥ 2, e 6= 1, L ample;
3) min{a, b} ≥ 2, e = 1, b ≥ a + [a/2] with [a/2] the integral part of

a/2.

Proof. If min{a, b} ≤ 1, then every curve in |L| contains no subcurve
of positive genus and hence done by Corollary 3.4 and Remark 3.5.

If min{a, b} ≥ 2 and e 6= 1, then L is ample ⇒ L ⊗ KX is ample.
Therefore by Theorem 3.14 and Theorem 3.13 we can reduce the prob-
lem to L = G + nF (or F + nG for e = 0), or nF (or mG for e = 0)
while by Corollary 3.4 and Remark 3.5, SD2,L is an isomorphism in
these cases.

If min{a, b} ≥ 2, e = 1 and b ≥ a + [a/2], then either both L and
L⊗KX are ample or L ample and L⊗KX = G+ F or nF . Therefore
analogously we are done by Theorem 3.14, Theorem 3.13, Corollary 3.4
and Remark 3.5.

The corollary is proved. q.e.d.

To prove Theorem 3.14, the main task is estimating codimension of
some schemes. However we want to use stack language as what we did
in [21] because it makes the argument clearer and simpler. Therefore,
we firstly introduce some stacks as follows, the notations of which are
slightly different from [21].

Definition 3.16. Let χ and d be two integers.
(1) Let Md(L, χ) be the (Artin) stack parametrizing pure 1-dimen-

sional sheaves F on X with determinant L, Euler characteristic χ(F) =
χ and satisfying either F is semistable or ∀F ′ ⊂ F , χ(F ′) ≤ d.

(2) Let M(L, χ) (M(L, χ)s, resp.) be the substack of Md(L, χ)
parametrizing semistable (stable, resp.) sheaves in Md(L, χ).
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(3) LetMint(L, χ) be the substack ofM(L, χ)s parametrizing sheaves
with integral supports.

(4) LetMd,R(L, χ) be the substack ofMd(L, χ) parametrizing sheaves
with reducible supports in Md(L, χ). Let MR(L, χ) = Md,R(L, χ) ∩
M(L, χ)s.

(5) LetMd,N (L, χ) be the substack ofMd(L, χ) parametrizing sheaves
with irreducible and non-reduced supports inMd(L, χ). LetMN (L, χ) =
Md,N (L, χ) ∩M(L, χ)s.

(6) Let Cd(nL′, χ) (n > 1) be the substack ofMd(nL′, χ) parametriz-
ing sheaves F whose supports are of the form nC with C an integral
curve in |L′|. C(nL′, χ) = Cd(nL′, χ) ∩M(L, χ)s.

Lemma 3.17. Let X = Σe and L = aG+bF ample with min{a, b} ≥
2. Then for all χ and d, Mint(L, χ) is smooth of dimension L2, and
the complement of Mint(L, χ) inside Md(L, χ) is of codimension ≥ 2,
i.e. of dimension ≤ L2 − 2.

Proof. Since L.KX < 0, Mint(L, χ) is smooth of dimension L2. We
first estimate the dimension of Cd(nL′, χ) (n > 1). Write L′ = a′G+b′F .
Since |L′|int 6= ∅, L′ = G or F ; or b′ ≥ a′e, e > 0; or a′, b′ > 0, e = 0.

Claim ♣. ∀ d, χ, dim Cd(nL′, χ) ≤ n2L′ 2−min{7,−nL′.KX − 1, (n−
1)L′ 2} ≤ n2L′ 2 for L′ nef and dim Cd(nG, χ) ≤ −n2 for e > 0.

We show Claim ♣. Let

Tm(L, χ) := {F ∈ M(L, χ)|∃ x ∈ X, such that dimk(x)(F⊗k(x)) ≥ m},

where k(x) is the residue field of x. Take a very ample divisor H =
G+ (e+ 1)F on X. If L′ is nef, then (−jH +KX).L′ < 0 for all j ≥ −1
and hence H1(E xt1(F ,F)(jH)) ∼= Ext2(F ,F(jH)) ∼= Hom(F ,F(KX−
jH))∨ = 0 for all j ≥ −1 and F ∈ C(nL′, χ). Therefore by Castelnuovo-
Mumford criterion E xt1(F ,F) is globally generated. Hence by
Le Potier’s argument in the proof of Lemma 3.2 in [13], C(nL′, χ) ∩
Tm(nL′, χ) is of dimension ≤ n2L′ 2 −m2 + 2. Combining Proposition
4.1 and Theorem 4.16 in [21], we have

(3.26) dim C(nL′, χ) ≤ n2L′ 2 −min{7, n(n− 1)L′ 2,−nKX .L
′ − 1}.

Let F ∈ Cd(nL′, χ) \ C(nL′, χ). Since ∀ F ′ ⊂ F , KX .c1(F ′) < 0, the
proof of Proposition 2.7 in [21] applies and dim(Cd(nL′, χ)\C(nL′, χ)) ≤
n2L′ 2 − (n− 1)L′ 2.

Let e > 0. For every semistable sheaf F with support nG, the map

F ·δG−−→ F(G) is zero because G2 < 0, where δG ∈ H0(OX(G)) is a
function defining the divisor G. Hence F is a sheaf on G and hence a
direct sum of n line bundles over G. Thus dim C(nG, χ) ≤ −n2. Let F
be unstable with support G, then take the Harder-Narasimhan filtration
of it as follows.

0 = F0 ( F1 ( · · · ( Fk = F ,



STRANGE DUALITY ON RATIONAL SURFACES 325

with Fi/Fi−1
∼= OG(si)

⊕ni such that s1 > s2 > · · · > sk and
∑k

i=1 ni =
n. Then

ext2(Fi/Fi−1,Fi−1) = hom(Fi−1,Fi/Fi−1(KX))

≤
∑
j<i

hom(OG(sj)
⊕nj ,OG(si + (e− 2))⊕ni)

≤
∑
j<i

(e− 2)ninj .

By induction assumption dim Cd(ñG, χ) ≤ −ñ2 for all ñ < n, then by
analogous argument to the proof of Proposition 2.7 in [21] we have

dim Cd(nG, χ)

≤ max
n1,··· ,nk>0∑

i ni=n

{−n2,−(

k−1∑
i=1

ni)
2 − n2

k −
∑
i=0,1

(−1)iexti(Fk/Fk−1,Fk−1)}

= max
n1,··· ,nk>0∑

i ni=n

{
− n2,

−(
∑k−1

i=1 ni)
2 − n2

k − χ(Fi/Fk−1,Fk−1)
+ext2(Fk/Fk−1,Fk−1)

}
≤ max

n1,··· ,nk>0∑
i ni=n

{−n2,−(
k−1∑
i=1

ni)
2 − n2

k − nk(
k−1∑
i=1

ni)e+ (e− 2)(
k−1∑
i=1

nink)}

= −n2

Therefore Claim ♣ is proved.
Easy to see Md(L, χ) \Mint(L, χ) = Md,R(L, χ) ∪Md,N (L, χ) and

Md,N (L, χ) = ∪nL′=LCd(nL′, χ). Claim ♣ implies that Md,N (L, χ) is
of codimension ≥ 2 inside Md(L, χ) for L ample. Now we only need to
show Md,R(L, χ) is of dimension ≤ L2 − 2.

Let G ∈ Md,R(L, χ), then G admits a filtration as follows.

0 = G0 ( G1 ( · · · ( Gl = G,

with Si := Gi/Gi−1 ∈ Cdi(niLi, χi) such that

l∑
i=1

niLi = L,
l∑

i=1

χi = χ

and Hom(Si,Sj) = Ext2(Si,Sj) = 0, ∀ i 6= j. Hence ext1(Si,Sj) =

−χ(Si,Sj) = ninj(Li.Lj) ∀ i > j, and ext1(Si,Gi−1) =
∑
j<i

ext1(Si,Gi−1).

By analogous argument to the proof of Proposition 2.7 in [21], we have

dimMd,R(L, χ) ≤ max∑
niLi=L

{
∑
i

dim Cdi(niLi, χi) +
∑
j<i

ninj(Li.Lj)}
(3.27)

≤ max∑
niLi = L − a0G
Li nef, a0 ≤ a

{
∑
i

n2
iL

2
i +

∑
j<i

ninj(Li.Lj)− a2
0 + a0G.(L− a0G)}
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= max∑
niLi = L − a0G
Li nef, a0 ≤ a

{L2 −
∑
j<i

ninj(Li.Lj)− a2
0 − a0G.L}

= L2 − min∑
niLi = L − a0G
Li nef, a0 ≤ a

{
∑
j<i

ninj(Li.Lj) + a2
0 + a0G.L}

If a0 ≥ 1, then
∑

j<i ninj(Li.Lj) + a2
0 + a0G.L ≥ a2

0 + a0(b− ea) ≥ 2. If

a0 = 0 or e = 0, then
∑

j<i ninj(Li.Lj) ≥ 2 since min{a, b} ≥ 2 and Li
are all nef. Hence the lemma is proved. q.e.d.

Remark 3.18. Let d, χ be two integers. Claim ♣ and (3.27) also
provide an estimate of dimMd(L, χ) for all L effective. We can see that
dimMd(nG, χ) = dim Cd(nG, χ) ≤ −n2 for e 6= 0 and dimMd(nF, χ) ≤
0.

Denote by |L|int the open subset of |L| consisting of all integral curves.
If L is nef and big, i.e. |L|int 6= ∅ and L 6= F,G, then L.KX < 0 and
dimMint(L, χ) is smooth of dimension L2, and moreover by Claim ♣
and (3.27), Md(L, χ) \ Mint(L, χ) ≤ L2 − 1. Hence dimMd(L, χ) =
dimM(L, χ)s = L2 and M(L, χ) is irreducible of expected dimension.

If |L|int = ∅, min{a, b} ≥ 1 and −KX is nef, i.e. e ≤ 2; thenM(L, χ)s

is either empty or of smooth of dimension L2.
If |L|int = ∅ with min{a, b} ≥ 1, then Md(L, χ) = Md,R(L, χ) and

we then have

dimMd(L, χ) ≤ max
L−a0G nef

{(L− a0G)2 + a0G(L− a0G)− a2
0}.

Let FL be stable with CFL
= a0G+C ′FL

such that G is not a component

of C ′FL
, let FGL be FL⊗Oa0G modulo its torsion. Hence FGL is a quotient

of FL while FGL (−C ′FL
) is a subsheaf of FL. Hence by stability of FL,

C ′FL
.G > 0 and L− a0G must be either ample or bF . Hence

(3.28) dimM(L, χ)s ≤ max
L − a0G ample

or a0 = a

{(L−a0G)2+a0G(L−a0G)−a2
0}.

We can choose an atlas Ωd
L,χ

ψ−→ Md(L, χ) with Ωd
L,χ a subscheme

of some Quot-scheme. We also can ask ψ−1(M(L, χ)) =: ΩL,χ
fM−−→

M(L, χ) to be a good PGL(VL,χ)-quotient with M(L, χ) the coarse
moduli space of semistable sheaves. Analogously we define Ωs

L,χ, Ωint
L,χ,

Ωd,R
L,χ, Ωd,N

L,χ etc. If χ = 0, we write Ω•L instead of Ω•L,0. Since ψ is

smooth, the codimension of Ω•L,χ inside Ωd
L,χ is the same as M•(L, χ)

inside Md(L, χ). “•” stands for “int”, “d,R”, “d,N” etc.
Let M int(L, χ) := π−1(|L|int). Then M int(L, χ) is a flat family of

(compactified) Jacobians over |L|int, hence it is connected. Ωint
L,χ =

f−1
M (M int(L, χ)) and Ωint

L,χ is a principal PGL(VL)-bundle over

M int(L, χ) hence also connected.
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We have a corollary to Lemma 3.17 as follows.

Corollary 3.19. Let X = Σe and L = aG+ bF .
(1) If min{a, b} ≤ 1, then M(L, 0) ∼= |L| and ΘL

∼= O|L|.
(2) If min{a, b} ≥ 2 and L is nef for e 6= 1, ample for e = 1, then

M(L, 0) is integral and normal; M(L, 0) \M int(L, 0) is of codimension
≥ 2 inside M(L, 0); and the dualizing sheaf of M(L, 0) is locally free and
isomorphic to π∗O|L|(L.KX). Moreover π∗ΘL

∼= O|L| and Riπ∗Θ
r
L = 0

for all i, r > 0.

Proof. If min{a, b} ≤ 1, then done by Proposition 4.1.1 in [20].
Let L be as in (2). There are nonsingular irreducible curves in |L| and

the complement of |L|int in |L| is of codimension ≥ 2. Since L.KX < 0,
M int(L, 0) is smooth and irreducible of dimension L2 + 1. Ωint

L is also
smooth, hence irreducible and of expected dimension.

By Lemma 3.17, Ωd
L \ Ωint

L is of codimension ≥ 2 inside Ωd
L, then

Ωint
L is dense in ΩL, hence then ΩL is of expected dimension and by

deformation theory ΩL is a local complete intersection. On the other
hand, ΩL is smooth in codimension 1, hence normal for local complete
intersection. Therefore M(L, 0) is integral and normal since ΩL is.

To show that M(L, 0)\M int(L, 0) is of codimension ≥ 2, we only need
to show M(L, 0)\M(L, 0)s is of codimension ≥ 2 with M(L, 0)s the open
subset consisting of stable sheaves. By Remark 3.18, dimM(L′, 0)s =
L′ 2 + 1 for L′ nef and big, dimM(F, 0)s = 1, dimM(nF, 0)s = 0 for
n > 1, dimM(nG, 0) = 0 for e > 0 and finally by (3.28) for |L′|int = ∅
and L′ 6= nF,mG,

dimM(L′, 0)s ≤ max
L−a0G ample

or a0=a

{(L′ − a0G)2 + 1− a2
0 + a0G.(L

′ − a0G)}.

Hence if e 6= 0, then

(3.29)

L2 + 1− dim(M(L, 0) \M(L, 0)s)

= L2 + 1− max∑
Li=L
{
∑
i

dimM(Li, 0)s}

≤ L2 + 1− max∑
Li=L−a0G

L′i:=Li−aiG nef,

ai≥0, a0≤a

{
∑
i

(Li − aiG)2 − a2
i + aiG.(Li − aiG) + #{Li}}

≤ min∑
Li=L−a0G

L′i:=Li−aiG nef,

ai≥0, a0≤a


∑
j 6=i

(L′i.L
′
j)−#{L′i}+

∑
i6=0

a2
i + 2a0G.L+ 1

+
∑
i6=0

aiG.(L
′
i + 2

∑
j 6=i

L′j) + (a2
0 − (

∑
i6=0

ai)
2)e
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≤ min∑
Li=L−a0G

L′i:=Li−aiG nef,

ai≥0, a0≤a


∑
j 6=i

(L′i.L
′
j)−#{L′i}+

∑
i6=0

a2
i + 2a0G.L+ 1

+
∑
i6=0

aiG.(L− a0G+
∑
j 6=i

L′j) + a2
0e


= min∑

Li=L−a0G

L′i:=Li−aiG nef,

ai≥0, a0≤a


∑
j 6=i

(L′i.L
′
j)−#{L′i}+

∑
i6=0

a2
i +

∑
i6=0,j 6=i

aiG.L
′
j

+(
∑
i≥0

ai)G.L+ a0G.L+ a0(
∑
i≥0

ai)e+ 1


We want dim(M(L, 0) \M(L, 0)s) ≤ L2 − 1.
Assume L′i = niF for all i, then

∑
i≥0 ai = a. If moreover ai = 0 for

i 6= 0, then a0 = a and −#{L′i}+2a0G.L+a2
0e+1 = 1+2a(b−ae)−b+

a2e = b(a− 1) +a(b−ae) + 1 ≥ 5 since a, b ≥ 2 and b > ae. If ∃ ak0 6= 0
for k0 6= 0, then −#{L′i} +

∑
i6=0 a

2
i +

∑
i6=0,j 6=i aiG.L

′
j + aG.L + 1 ≥

a(b− ae) + 1 ≥ 3.
Assume ∃ L′i0 6= nF , then L′i0 .L

′
j ≥ 1 for L′j nef hence

∑
j 6=i(L

′
i.L
′
j) ≥

2(#{L′i}−1). If a0 ≥ 1, then 2a0G.L+a2
0e ≥ 3 and hence

∑
j 6=i(L

′
i.L
′
j)−

#{L′i} + 2a0G.L + a2
0e + 1 ≥ 3. If a0 = 0, then #{L′i} ≥ 2 and either

∃ L′i0 , L
′
j0

, such that L′i0 .Lj ≥ 1, L′j0 .L
′
j ≥ 1 for L′j nef; or ∃ L′i0 ,

such that L′i0 .L
′
j ≥ 2 for L′j nef; or ∃ ak0 6= 0 for k0 6= 0. Then we

have∑
j 6=i

(L′i.L
′
j) +

∑
i6=0

a2
i +

∑
i6=0,j 6=i

aiG.L
′
j + (

∑
i≥0

ai)G.L ≥ 2(#{L′i} − 1) + 2

and∑
j 6=i

(L′i.L
′
j)−#{L′i}+

∑
i6=0

a2
i +

∑
i6=0,j 6=i

aiG.L
′
j + (

∑
i≥0

ai)G.L+ 1

≥ #{Li}+ 1 ≥ 3.

If e = 0, then easy to see

dim(M(L, 0) \M(L, 0)s) = max∑
i Li = L
Li nef

{
∑
i

L2
i + #{Li}}

(3.30)

≤ L2 − min∑
i Li = L
Li nef

{
∑
j 6=i

LiLj −#{Li}}

≤ L2 − 2.

Therefore the complement of M(L, 0)s inside M(L, 0) is of codimension
≥ 3 and hence M(L, 0) \M int(L, 0) is of codimension ≥ 2.

Because ΩL \ Ωint
L is of codimension ≥ 2 and |L| contains smooth

curves, sheaves not locally free on their supports form a subset of codi-
mension ≥ 2 inside ΩL, hence Proposition 4.2.11 in [20] applies and then



STRANGE DUALITY ON RATIONAL SURFACES 329

the dualizing sheaf of M(L, 0) is isomorphic to π∗O|L|(L.KX). More-

over since M(L, 0) is normal and integral, and the complement of |L|int
inside |L| is of codimension ≥ 2, Theorem 4.3.1 in [20] and Proposition
4.3 in [22] apply and we obtain that π∗ΘL

∼= O|L| and Riπ∗Θ
r
L = 0 for

all i, r > 0.
The lemma is proved. q.e.d.

Remark 3.20. Let L be as in Corollary 3.19. Since π∗ΘL
∼= O|L|

and Riπ∗Θ
r
L = 0 for all i, r > 0, H i(ΘL(n)) = 0 for all i > 0 and n ≥ 0.

Hence we already know that the map gL in (3.3) is surjective in this
case.

Proof of Statement (1) of Theorem 3.14. By Corollary 3.19, the strange
duality map SDc12,uL

in (3.4) is a map between two vector spaces of same

dimension, while L is in case (1) of the theorem. The argument proving
Corollary 4.3.2 in [20] applies and hence SDc12,uL

is an isomorphism.

Statement (1) is proved. q.e.d.

To prove Statement (2) and (3), we need to introduce more stacks.

Definition 3.21. For two integers k > 0 and i, we defineMint
k,i (L, χ)

to be the (locally closed) substack of Mint(L, χ) parametrizing sheaves
F ∈ Mint(L, χ) such that h1(F(−iKX)) = k and h1(F(−nKX)) =
0, ∀ n > i. Let M int

k,i (L, χ) be the image of Mint
k,i (L, χ) in M int(L, χ).

Define W int
k,i (L, χ) to be the (locally closed) substack of Mint(L, χ)

parametrizing sheaves F ∈ Mint(L, χ) with h0(F(−iKX)) = k and
h0(F(−nKX)) = 0, ∀ n < i. Let W int

k,i (L, χ) be the image ofW int
k,i (L, χ)

in M int(L, χ).

Remark 3.22. Since L.KX < 0, for fixed χ, Mint
k,i (L, χ) is empty

except for finitely many pairs (k, i). We don’t define Md
k,i(L, χ) ⊂

Md(L, χ) because L may not be KX -negative (see Definition 2.1 in
[21]) and the analogous definition may not behave well.

Remark 3.23. By sending each sheaf F to its dual E xt1(F ,KX),

we get an isomorphism Mint
k,i (L, χ)

∼=−→W int
k,−i(L,−χ).

By Proposition 5.5 and Remark 5.6 in [21], we have

Proposition 3.24. 1) dimMint
k,i (L, χ) ≤ L2 + iKX .L− χ− k;

2) dimW int
k,i (L, 0) ≤ L2 − iKX .L+ χ− k;

3) dimM int
k,i (L, 0) ≤ L2 + 1 + iKX .L− χ− k;

4) dimW int
k,i (L, 0) ≤ L2 + 1− iKX .L+ χ− k.

Corollary 3.25. Let X = Σe and L = aG + bF ample with
min{a, b} ≥ 2. Let Dint

ΘL
:= DΘL

∩M int(L, 0). Then dimDΘL
\Dint

ΘL
≤
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L2−2, and dimDΘL
\DintΘL

≤ L2−3 with DΘL
(DintΘL

, resp.) the preimage

of DΘL
(Dint

ΘL
, resp.) inside M(L, 0).

Proof. We have shown that M(L, 0) \ M(L, 0)s is of dimension ≤
L2 − 2. Then we only need to show dim(DΘL

\ DintΘL
) ≤ L2 − 3. Let

CL1, L2 with L1 + L2 = L be the stack parametring sheaves F ∈ DΘL

with supports CF = CL1 + CL2 such that CLi ∈ |Li|int for i = 1, 2. By
(3.26) and (3.27), we only need to show the stacks C2G+(b−1)F, F and

C(a−1)G+(ae+1)F, G is of dimension ≤ L2 − 3.
Let F ∈ C2G+(b−1)F, F . Then we have the following exact sequence

(3.31) 0→ F1 → F → F2 → 0,

where F2 is the torsion free part of F ⊗OCF
and F1 ∈Mint(2G+ (b−

1)F, χ1) with χ1 ≤ 0. Notice that F1⊗OX(F ) is a quotient of F , hence
χ1 + 2 ≥ 0. Also F2 ⊗ OX(−2G − (b − 1)F ) is a subsheaf of F and
hence F2

∼= OP1 or OP1(−1). Let C0
2G+(b−1)F, F ⊂ C2G+(b−1)F, F consist

of F in (3.31) with H0(F1) = 0. F1 ∈
⋃
i≤0W int

k,i (2G + (b − 1)F, χ1) if

F ∈ C2G+(b−1)F, F \ C0
2G+(b−1)F, F . Therefore

dim C2G+(b−1)F, F \ C0
2G+(b−1)F, F(3.32)

≤ (2G+ (b− 1)F ).F + dim
⋃
i≤0

W int
k,i (2G+ (b− 1)F, χ1)

≤ (2G+ (b− 1)F )2 − 1 + χ1 + 2 ≤ 4b− 4e− 3 = L2 − 3.

Denote by gL the arithmetic genus of curves in |L|. If F ∈C0
2G+(b−1)F,F ,

then there is a injection OCF ↪→ F with cokernel OZF , where ZF
is a 0-dimensional subscheme of CF with length gL − 1. We have
ext1(OZ ,OC) = dimAut(OZ) = h0(OZ) = gL − 1 for all Z ⊂ C. Hence

for a fixed curve C and [Z] ∈ C [gL−1], there are finitely many possible
choices for F lying in the following sequence

0→ OC → F → OZ → 0.

Hence the fiber of the projection C0
2G+(b−1)F,F → |2G+ (b− 1)F | × |F |

over a curve C is of dimension no larger than

dimC [gL−1]+ext1(OZ ,OC)−dimAut(OC)×Aut(OZ) = dimC [gL−1]−1.

Therefore

dim C0
2G+(b−1)F,F

≤ dim |2G+ (b− 1)F | × |F | − 1 + max
F∈C0

2G+(b−1)F,F

dimC
[gL−1]
F

= 3b− 3e− 1 + max
F∈C0

2G+(b−1)F,F

dimC
[gL−1]
F
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= 4b− 4e− 3 + ( max
F∈C0

2G+(b−1)F,F

dimC
[gL−1]
F − (gL − 1))

= L2 − 3 + ( max
F∈C0

2G+(b−1)F,F

dimC
[gL−1]
F − (gL − 1)).

The only thing left to prove is dimC
[gL−1]
F ≤ gL− 1 for all CF , and this

follows from that CF only have isolated planner singularities and the
result of Iarrobino (Corollary 2 in [12]).

Analogously we can show that dim C(a−1)G+(ae+1)F, G ≤ L2 − 3. The
corollary is proved. q.e.d.

Proof of Statement (2) and (3) of Theorem 3.14. The proof has 7 steps
and we check all conditions in CB and CB′ one by one as follows.

Step 1: CB-(1).
Since M(L, 0) is integral and DΘL

is a divisor on it, to show CB-(1)
it is enough to show dim(DΘL

\Do
ΘL

) ≤ L2− 1. By Corollary 3.25, it is

enough to show dim(Dint
ΘL
\Do

ΘL
) ≤ L2 − 1. By definition

(Dint
ΘL
\Do

ΘL
) ⊂

⋃
k ≥ 2, i = 0

or i ≥ 1

M int
k,i (L, 0).

Therefore we have CB-(1) is fulfilled by Proposition 3.24.
Step 2: CB-(2).
Assume L = aG + bF ample with min{a, b} ≥ 4. Then Lemma 3.17

applies to L+KX = (a−2)G+(b−e−2)F and M(L⊗KX , 0)\M int(L⊗
KX , 0) is of codimension ≥ 2. M(L⊗KX , 0) satisfies the “condition S2

of Serre” because it is normal by Corollary 3.19. Hence to prove CB-(2)
is fulfilled, it is enough to show M int(L⊗KX , 0) \M(L⊗KX , 0)o is of
dimension ≤ (L+KX)2 − 1. Since we have

M int(L⊗KX , 0) \M(L⊗KX , 0)o =
⋃
i≤−1

W int
k,i (L⊗KX , 0),

by Proposition 3.24 we have

dimM int(L⊗KX , 0) \M(L⊗KX , 0)o ≤ (L+KX)2 +KX .(L+KX)

≤ (L+KX)2 − 1.

Hence CB-(2).
Step 3: CB-(3).
To check that CB-(3) holds, it is enough to show the following three

statements.

1) dimQo1 = 2`− L.KX = L2;

2) ρ−1
1 (ρ1(Qo1)) \Qo1 is of dimension ≤ 2`− L.KX − 2 = L2 − 2;

3) H` \ ρ1(Qo1) is of dimension ≤ 2`− 2 = L2 + L.KX − 2.
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Let s > 0, t ≥ 0, and define

Qs,t1 :=

{
[IZ(L⊗KX)

f1
� FL] ∈ Q1

∣∣h1(FL) = s, h1(FL(−KX)) = t

}
,

HL,s,t
` :=

{
IZ ∈ H`

∣∣h1(IZ(L⊗KX)) = s− 1, h1(IZ(L)) = t.
}
.

Then Qs,t1 = ρ−1
1 (HL,s,t

` ), ρ1(Qo1) ⊂ HL,1,0
` and ρ−1

1 (ρ1(Qo1)) ⊂ Q1,0
1 .

For d large enough, we have the classifying map Qs,t1

φL,s,t
L−−−→ Md(L, 0).

In particular when s = 1, φL,1,tL (Q1,t
1 ) ⊂ M(L, 0), hence φL,1,tL (Q1,t

1 ) ⊂
DΘL

. This is because for every F ∈ Md(L, 0), if h0(FL) = 1 and there
is a torsion free extension of FL by KX , then ∀ F ′ ( F , h0(F ′) ≤ 1
and h1(F ′) ≥ 1 hence then χ(F ′) ≤ 0 and F is semistable. The fiber of

φL,s,tL at FL is contained in Ext1(FL,KX), and hence

dimQo1 = 1 + dim(DΘL
∩ (Mint(L, 0) \

⋃
k≥2,i=0 or i>0

Mint
k,i (L, 0))) = L2.

dim(
⋃
t≥0

Q1,t
1 ) \Qo1 ≤ 1 + dim((DΘL

\ DintΘL
) ∪
⋃
i>0

Mint
k,i (L, 0)) ≤ L2 − 2,

(3.33)

where the last inequality is because of Corollary 3.25 and Proposi-
tion 3.24.

By (3.7) Qs,t1
∼= P(p∗(I`⊗q∗L)|

HL,s,t
`

), where p∗(I`⊗q∗L) is a vector

bundle of rank h0(IZ(L)) = t+ 1− L.KX over HL,s,t
` . Hence

(3.34) dimQs,t1 = dimHL,s,t
` + t− L.KX .

Hence (3.33) implies dim(
⋃
t≥0H

L,1,t
` )\ρ1(Qo1) ≤ L2 +L.KX−2. Hence

we only need to show dimH` \ (
⋃
t≥0H

L,1,t
` ) ≤ 2`− 2, i.e. dimHL,s,t

` ≤
2`− 2 for all s ≥ 2.
p∗(I` ⊗ q∗(L⊗KX)) is a vector bundle of rank h0(IZ(L⊗KX)) = s

over HL,s,t
` . By (3.8) P(p∗(I` ⊗ q∗(L ⊗KX))|

HL,s,t
`

) is a locally closed

subscheme inside Q2. For d big enough, there is a classifying map

P(p∗(I` ⊗ q∗(L⊗KX))|
HL,s,t

`
)
φL,s,t
L⊗KX−−−−−→Md(L⊗KX , 0).

If s ≥ 2, then the image of φL,s,tL⊗KX
is contained in

(Md(L⊗KX , 0) \Mint(L⊗KX , 0)) ∪
⋃

i = 0, k = s− 1

or i < 0

W int
k,i (L⊗KX , 0).

The fiber of φL,s,tL⊗KX
at FL⊗KX

is contained in Ext1(FL⊗KX
,OX). If

FL⊗KX
∈ W int

s−1,0(L⊗KX , 0), then

h0(FL⊗KX
(KX)) = 0 and ext1(FL⊗KX

,OX) = −(L+KX).KX .
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If FL⊗KX
6∈ W int

s−1,0(L⊗KX , 0), then since −KX −G is very ample, by

(3.8) we have

h0(FL⊗KX
(KX)) = h0(IZ(L⊗K⊗2

X ))(3.35)

≤ h0(IZ(L⊗KX ⊗OX(−G)))− 1

≤ h0(IZ(L⊗KX))− 1 = s− 1.

Hence ext1(FL⊗KX
,OX) ≤ s− 1− (L+KX).KX . Hence for s ≥ 2

(3.36)

dimHL,s,t
` + s− 1 = dimP(p∗(I` ⊗ q∗(L⊗KX))|

HL,s,t
`

)

≤ max


dimW int

s−1,0(L⊗KX , 0)− (L+KX).KX ,

dim(Md(L⊗KX , 0) \Mint(L⊗KX , 0) ∪
⋃
i<0

Wint
k,i (L⊗KX , 0))

+s− 1− (L + KX).KX


≤ max{(L+KX).L− 1, (L+KX).L− 3 + s} = (L+KX).L− 3 + s.

Hence dimHL,s,t
` ≤ 2`− 2 for all s ≥ 2. Hence CB-(3) is fulfilled.

Step 4: CB-(4).
CB-(4) can be shown analogously: Qo2 is obviously nonempty and

there is a classifying map Q2

φ
L⊗KX
L⊗KX−−−−−→ Md(L ⊗ KX , 0) with fiber over

FL⊗KX
contained in Ext1(FL⊗KX

,OX).

dim ρ−1
2 (ρ2(Qo2)) \Qo2 ≤ dimQo2 − 2 because

dimφL⊗KX
L⊗KX

(ρ−1
2 (ρ2(Qo2)) \Qo2)

≤ dimMd(L⊗KX , 0) \Mint(L⊗KX , 0) ∪
⋃
i≤−1

W int
k,i (L⊗KX , 0)

≤ (L+KX)2 − 2,

and

ext1(FL⊗KX
,OX) = −KX .(L+KX), ∀FL⊗KX

∈ φL⊗KX
L⊗KX

(ρ−1
2 (ρ2(Qo2)).

Statement (3) is proved.
Step 5: CB′-(3′) and CB′-(2′a).
Now we prove Statement (2) of the theorem. We need to check con-

ditions in CB′ hold. With no loss of generality, we ask L = aG + bF
with b ≥ a. Then in this case L + KX = mF or G + nF with n > 0
for e = 0, and n ≥ 2e − 1 for e ≥ 1. Then FL⊗KX

is semistable

⇔ H0(FL⊗KX
) = 0. Hence H ′` ⊂

⋃
t≥0H

L,1,t
` and by (3.33) we

have CB′-(3′). Notice that (3.33) holds for L = aG + bF ample with
min{a, b} ≥ 2.

Also M(L ⊗ KX , 0) ∼= |L ⊗ KX | and M(L ⊗ KX , 0)′ ∼= |L ⊗ KX |′.
Then easy to check CB′-(2′a) holds.
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Step 6: CB′-(2′b).
Now we check CB′-(2′b). First let L ⊗ KX = G + nF with |G +

nF |int 6= ∅. Recall the commutative diagram in (3.25)

(3.37) P(V ′) P ′2
⊇oo

σ′2 //

f ′Q2
��

Ω′L⊗KX

f ′M
��

Q′2 g′2

// M(L⊗KX , 0)′.

where V ′ = E xt1p(QL⊗KX
|Ω′L⊗KX

, q∗OX) with QL⊗KX
the universal quo-

tient over ΩL⊗KX
. V ′ is locally free of rank −(L+KX).KX on Ω′L⊗KX

.

P ′2 ⊂ P(V ′) parametrizing torsion free extensions of Qs by OX for all
s ∈ Ω′L⊗KX

and f ′Q2
: P ′2 → Q′2 is the classifying map and also a principal

PGL(VL⊗KX
)-bundle for some vector space VL⊗KX

.
To show the complement of P ′2 inside P(V ′) is of codimension ≥ 2, it is

enough to show for every FL⊗KX
∈MR(L⊗KX , 0), H0(FL⊗KX

(KX)) =
0 with support CFL⊗KX

= C1
FL⊗KX

∪ C2
FL⊗KX

such that C1
FL⊗KX

∈ |F |
and C2

FL⊗KX
∈ |G + (n − 1)F |int, there is a torsion free extension in

Ext1(FL⊗KX
,OX). ∀ F ′L⊗KX

( FL⊗KX
, Ext1(FL⊗KX

/F ′L⊗KX
,OX)

can be view as a subspace of Ext1(FL⊗KX
,OX). There is a torsion

free extension in Ext1(FL⊗KX
,OX) ⇔ ext1(FL⊗KX

/F ′L⊗KX
,OX) <

ext1(FL⊗KX
,OX), ∀ F ′L⊗KX

( FL⊗KX
. Now we have that CFL⊗KX

=

C1
FL⊗KX

∪C2
FL⊗KX

, CiFL⊗KX

∼= P1 and deg(KX |Ci
FL⊗KX

) < 0, for i = 1, 2.

Therefore ∀ F ′L⊗KX
( FL⊗KX

, either Ext1(FL⊗KX
/F ′L⊗KX

,OX) = 0 or

Ext2(FL⊗KX
/F ′L⊗KX

,OX) = 0. Hence the map

Ext1(FL⊗KX
/F ′L⊗KX

,OX) ↪→ Ext1(FL⊗KX
,OX)

can not be surjetive. The reason is that ext1(FL⊗KX
,OX) = 2n+2−e >

0 and Ext1(F ′L⊗KX
,OX) 6= 0 since χ(F ′L⊗KX

(KX)) < 0.

If L ⊗ KX = F , then CB′-(2′b) is obvious. Let |L ⊗ KX |int = ∅,
i.e. L ⊗ KX = nF with n > 1. In this case |L ⊗ KX |′ = |L ⊗ KX |.
Ω′L⊗KX

= ΩL⊗KX
. In order to show dimP(V ′) \ P ′2 ≤ dimP ′2 − 2, it

is enough to show for every FL⊗KX
semistable, P(Ext1(FL⊗KX

,OX) \
Ext1(FL⊗KX

,OX)tf ) is of dimension ≤ −KX .(L + KX) − 3, where
Ext1(FL⊗KX

,OX)tf ) is the subset parameterizing torsion free exten-
sions. We have

Ext1(FL⊗KX
,OX) \ Ext1(FL⊗KX

,OX)tf(3.38)

=
⋃

F ′L⊗KX
(FL⊗KX

Ext1(FL⊗KX
/F ′L⊗KX

,OX).
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Since L ⊗ KX = nF , we have for any F ′L⊗KX
( FL⊗KX

, either

Ext1(FL⊗KX
/F ′L⊗KX

,OX) = 0 or Ext2(FL⊗KX
/F ′L⊗KX

,OX) = 0.

Hence we only need to show that ∀ F ′L⊗KX
( FL⊗KX

such that

Ext1(FL⊗KX
/F ′L⊗KX

,OX) 6= 0,

we have ext1(F ′L⊗KX
,OX)≥ 2. It is enough to show ext1(F ′L⊗KX

,OX)≥
2 for every F ′L⊗KX

( FL⊗KX
with CF ′L⊗KX

integral. On the other

hand CF ′L⊗KX

∼= P1 if integral, and also deg(KX |CF′
L⊗KX

) = −2. Hence

ext1(F ′L⊗KX
,OX) = h1(F ′L⊗KX

(KX)) ≥ 2 because χ(F ′L⊗KX
(KX)) ≤

−2.
Step 7: CB′-(4′).
CB′-(4′) is the last thing left to check.

Q′2 :=

[IZ(L⊗KX)
f2
� FL⊗KX

]∈Q2

∣∣∣∣∣∣
FL⊗KX

is semistable,
h0(FL⊗KX

(KX)) = 0, and
Supp(FL⊗KX

) ∈ |L⊗KX |′

 .

In this case FL⊗KX
is semistable⇔H0(FL⊗KX

) = 0. h0(IZ(L⊗KX)) =
1 for all IZ ∈ ρ2(Q′2), hence ρ2|Q′2 is bijective and hence an isomorphism,

therefore Q′2
∼= ρ−1

2 (ρ2(Q′2)) and CB′-(4′) holds.
The proof of Theorem 3.14 is finished. q.e.d.
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[8] G. Ellingsrud, L. Göttsche, and M. Lehn. On the cobordism class of the Hilbert
scheme of a surface. J. Algebraic Geom. 10 (2001), no. 1, 81–100. MR1795551,
Zbl 0976.14002.



336 Y. YUAN
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