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STRANGE DUALITY ON RATIONAL SURFACES

YAO YUAN

Abstract

We study Le Potier’s strange duality conjecture on a rational
surface. We focus on the case involving the moduli space of rank
2 sheaves with trivial first Chern class and second Chern class 2,
and the moduli space of 1-dimensional sheaves with determinant
L and Euler characteristic 0. We show the conjecture for this case
is true under some suitable conditions on L, which applies to L
ample on any Hirzebruch surface X, := P(Op1 @ Op1(e)) except
for e = 1. When e = 1, our result applies to L = aG + bF with
b > a+[a/2], where F is the fiber class, G is the section class with
G? = —1 and [a/2] is the integral part of a/2.

1. Introduction

In this whole paper, X is a rational surface over the complex number
C, with Kx the canonical divisor and H the polarization such that the
intersection number Kx.H < 0. We use the same letter to denote both
the line bundles and the corresponding divisor classes, but we write
L1 ® Ly, L™ for line bundles while L; + Lo, —L for the corresponding
divisor classes. Denote by Lji.Lo the intersection number of L and Ls.
L?:=L.L.

Let K(X) be the Grothendieck group of coherent sheaves over X.
Define a quadratic form (u,c) — (u,c) := x(u ® ¢) on K(X), where
x(—) is the holomorphic Euler characteristic and x(u ® c) = x(F @ G)
for any F of class u, G of class ¢ and @L the flat tensor.

For two elements ¢,u € K(X) orthogonal to each other with respect
to (,), we have M¥ (c) and M¥ (u) the moduli spaces of H-semistable
sheaves of classes ¢ and u respectively. If there are no strictly semistable
sheaves of classes ¢ (u, resp.), then over M (c) (M (u), resp.) there
is a well-defined line bundle A.(u) (Ay(c), resp.) called determinant line
bundle associated to u (¢, resp.). If there are strictly semistable sheaves
of class u, one needs more conditions on ¢ to get A, (c) well-defined (see
Ch 8 in [11]).
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Let ¢,u € K(X). Assume both moduli spaces M7 (c) and Mjs (u)
are non-empty and the determinant line bundles A.(u) and A,(c) are
well-defined over M (c) and Mjs (u), respectively. According to [15]
(see [15] p.9), if the following () is satisfied,

(%) for all H-semistable sheaves F of class ¢ and H-semistable
sheaves G of class u on X, Tor'(F,G)=0V1i > 1, and H*(X, F®G) =0.

then there is a canonical map
(1.1)  SDew s HO(Mji(c), Ae(w))” — HO(Mjy (), Au(c)).

The strange duality conjecture asserts that SD., is an isomorphism.
Strange duality conjecture on curves was at first formulated (in [3]
and [7]) and has been proved (see [16], [4]). Strange duality on surfaces
does not have a general formulation so far. There is a special formulation
due to Le Potier (see [15] or [6]). In this paper we choose u = up, :=
[Ox]—[L7Y+ M[Ogﬁ] with z a single point in X, and ¢ = ¢ :=
2[0x] — 2[O4]. Then (%) is satisfied and SD,,, is well-defined. We

prove the following theorem.

Theorem 1.1 (Corollary 3.15). Let X be a Hirzebruch surface .
and L = aG + bF with F the fiber class and G the section such that
G? = —e. Then the strange duality map 5Dy, asin (1.1) is an
isomorphism for the following cases.

1) min{a,b} < 1;

2) min{a,b} > 2, e # 1, L ample;

3) min{a,b} > 2, e =1, b > a+ [a/2] with [a/2] the integral part of

a/2.

Although strange duality on surfaces is a very interesting problem,
there are very few cases known. Our result adds to previous work by
the author ([20], [22]) and others ([1], [5], [6], [9], [17], [18], [19]).

Especially, in [22] we proved Sch,uL is an isomorphism when X =
P2, The limitation of the method in [22] is that: we have used Fourier
transform on P? which does not behave well on other rational surfaces.
In this paper we use a new strategy. Actually we show the strange
duality map Sch,uL is an isomorphism under a list of conditions, and
then check that all these conditions are fulfilled for cases in Theorem 1.1.
So Theorem 1.1 is an application of our main theorem (Theorem 3.13) to
Hirzebruch surfaces and there are certainly more applications to other
rational surfaces.

The structure of the paper is arranged as follows. In § 2 we give
preliminaries, including some useful properties of M# (c3) (in § 2.1 and
§ 2.3) and a brief introduction to determinant line bundles and the set-
up of strange duality (in § 2.2). § 3 is the main part. In § 3.1 and
§ 3.2 we prove the strange duality map is an isomorphism under a list of
conditions; in § 3.3 we show the main theorem (Theorem 3.13) applies
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to cases on Hirzebruch surfaces. Although the argument in § 3.3 takes
quite much space, the technique used there is essentially a combination
of those in [21] and [22].

Notations. Let F, G be two sheaves.

¢i(F) is the i-th Chern class of F;

X(F) is the Euler characteristic of F;

h'(F) = dim H'(F);

ext!(F,G) = dim Ext!(F,G), hom(F,G) = dim Hom(F,G) and
X(F,G) = Zizo(—l)’ext’(}',g);

e Supp(F) or Cr is the support of 1-dimensional sheaf F

Acknowledgements. The author was supported by NSFC grant
11301292.

2. Preliminaries

Define uy, := [Ox] — [L71] + LD [0 ] € K(X) with L a line
bundle on X and z a single point in X. It is easy to check up, = 0
and ur, + ur, = Ur,oL,- If L is nontrivially effective, i.e. L 22 Ox
and HY(L) # 0, let |L| be the linear system, then uy, is the class of
1-dimensional sheaves supported at curves in |L| and of Euler charac-
teristic 0.

For L nontrivially effective, denote by M (L,0) the moduli space
M (ug). In fact a sheaf F of class uy is semistable (stable, resp.)
if and only if V 7' C F, x(F') <0 (x(F') <0, resp.). Hence M(L,0)
does not depend on the polarization H. We ask M (Ox,0) to be a single
point standing for the zero sheaf.

Let ¢}, = r[Ox]| — n[O,] € K(X) with z a single point on X. Denote
by W(r,0,n) the moduli space M (c") (but W (r,0,n) might depend
on H). In this paper we mainly focus on W(2,0,2) for X a rational
surface.

For any L, r,n, ur, and c], are orthogonal with respect to the quadratic
form (,) on K(X).

2.1. Some basic properties of W (2,0, 2).

Definition 2.1. We say the polarization H is c3-general, if for any
¢ € H*(X,Z) = Pic(X) such that £&.H = 0 and &2 > —2, we have & = 0.

Remark 2.2. Since Kx.H < 0, £H = 0 = ¢ < —2 for any
0 # ¢ € Pic(X). This is because HY(Ox(££)) = 0 by &.H = 0 and
H?(Ox(££)) = H(Ox(Kx F€))Y =0 by (Kx F€&).H < 0, hence
X(Ox (&) ® Ox (=€) =2+ <0.

Lemma 2.3. Let F be an H-semistable sheaf in class c3. If F is
not locally free, then it is strictly semistable and S-equivalent to I, 1,
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with z,y two single points on X. Moreover, if H is c3-general, then F
is H-stable if and only if F is locally free.

Proof. First assume F is not locally free, then its reflexive hull F"V
is locally free of class ¢ with i = 1 or 0. HZ%*(FVV) & H*(F) =
Hom(F,Kx)" = 0 by Kx.H < 0 and the semistability of 7. Hence
dim HO(FYV) > x(FYV) = 2 —i > 0. Therefore either F¥V = OF? or
FVV lies in the following sequence

(2.1) 0 0x > FYWY ST, -0,

where 7, is the ideal sheaf of some single point x on X.
If 7YV lies in (2.1), then we have

(2.2) 0—-F—=FVET o,

where 77 is a 0-dimensional sheaf with x(7;) = 1 and hence 7; = O,
for some single point y € X. Compose maps j in (2.1) and p in (2.2),
the map pojy: Ox — 71 is not zero because otherwise Ox would be
a subsheaf of F. Therefore p o j is surjective with kernel isomorphic to
Z, which is a subsheaf of F destabilizing F. Hence F is not stable and
S-equivalent to Z, ® Z,.

If ¥V 22 0%, then we have the following exact sequence

0—=F = 0P —=To—0,
where 73 is a 0-dimensional sheaf with x(72) = 2. We also have
0= 0z =T — 0Oy =0,

where x,y are two single points on X (it is possible to have z = y).
Hence we have the following diagram

0 0 0

0—72Z,—0O0x—0,—0
ooy
0—2,—0x —0,—0
v | v
0 0 0
Hence F is S-equivalent to Z, @ Z,,.
Now assume H is c3-general. We only need to show that any semi-
stable bundle F of class c3 is stable. If F is strictly semistable, then we
have the following sequence

0= T7(€) = F = T(—€) > 0,

where £&.H = 0 and Zz,Zy are ideal sheaves of O-dimensional sub-
schemes Z, W of X such that the length len(Z) =len(W)=1+¢%/2>0.
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Since H is c3-general, £ = 0 and Zy is a subsheaf of F. Hence so is Ox
because F is locally free, which is a contradiction since H°(F) = 0 by
semistability. Hence F is stable. The lemma is proved. q.e.d.

Denote by S the closed subset of W(2,0,2) consisting of non lo-
cally free sheaves, then set-theoretically S is isomorphic to the second
symmetric power X3 of X by Lemma 2.3. S is of codimension 1 in
W(2,0,2). In § 2.3 we will give a scheme-theoretic structure of S and
show that it is a divisor associated to some line bundle.

Remark 2.4. If H is not c3-general, then all strictly semistable
vector bundle are S-equivalent to Ox () & Ox(—¢) with £ € Pic(X),
€H=¢Kx =0and £ = —2.

2.2. Determinant line bundles and strange duality. To set up the
strange duality conjecture, we briefly introduce so-called determinant
line bundles on the moduli spaces of semistable sheaves. We refer to
Chapter 8 in [11] for more details.

For a Noetherian scheme Y, we denote by K(Y) the Grothendieck
groups of coherent sheaves on Y and K°(Y') be the subgroup of K(Y)
generated by locally free sheaves. Then K°(X) = K(X) since X is
smooth and projective.

Let & be a flat family of coherent sheaves of class ¢ on X parametrized
by a noetherian scheme S, then & € K°(X x S). Let p: X xS — S, ¢:
X x S — X be the projections. Define \¢ : K(X) = K°(X) — Pic(S)
to be the composition of the following homomorphisms:

(2.3)
161 det™!

KOX) —% KO(X x §) -2 KO(X x §) T2 K0(8) 242 pic(s),

where ¢* is the pull-back morphism, [Z].[¢] := Y, (—1)![Tor'(F,9)],
and R*p.([F]) = >_,(—1)![R'p..Z7]. Proposition 2.1.10 in [11] assures
that R*p.([.#]) € K°(9) for any . coherent and S-flat.

For any u € K(X), A¢(u) € Pic(S) is called the determinant line
bundle associated to v induced by the family &. Notice that the defi-
nition we use here is dual to theirs in [11].

Let S = M#(c), then there is in general no such universal family
& over X x M¥(c), and even if it exists, there is ambiguity caused by
tensoring with the pull-back of a line bundle on M (c). Thus to get
a well-defined determinant line bundle A.(u) over M#(c), we need look
at the good GL(V)-quotient Q(c) — M¥(c) with Q(c) an open subset
of some Quot-scheme and there is a universal quotient & over X x Q(c).
Ac(u) is then defined by descending the line bundle Az(u) over Q(c).
Az(u) descends if and only if it satisfies the “descent condition” (see
Theorem 4.2.15 in [11]), which implies that u is orthogonal to ¢ with
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respect to the quadratic form ( , ). Hence the homomorphism . is only
defined over a subgroup of K (X).

Now we focus on M(L,0) and W(r,0,n). As we have seen, ur, is
orthogonal to ¢ for any L,r, n.

Let Aer (L) be the determinant line bundle associated to uz, over (an
open subset of) W(r,0,n). We denote simply by A.(L) if » = n. By
checking the descent condition we see that \y(L) is always well-defined
over the stable locus W(2,0,2)® and S, hence it is well-defined over all
W (2,0,2) if H is c3-general. If H is not c3-general, then \o(L) is well-
defined over point [Ox(—&) ® Ox(§)] if and only if {.L = 0. We denote
by W(r,0,n)" the biggest open subset of W(r,0,n) where Aer (L) is
well-defined. Notice that the stable locus W (r,0,n)* C W(r,0,n)*. By
Remark 2.4, W (2,0,2)L = W(2,0,2)L®Kx,

On the other hand, let A7 (c],) be the determinant line bundle asso-
ciated to ¢}, over M(L,0), then A1 (c],) is always well-defined over the
whole moduli space. We have the following proposition which is analo-
gous to Theorem 2.1 in [6].

Proposition 2.5. (1) There is a canonical section, unique up to
scalars, ocr o, € HO(W (r,0,n)" x M(L,0), Aer (L)RIAL(ch)) whose zero
set is

Der up, =4 ([F], [G]) € W(r,0,n)"x M(L,0) | h°(F®G)=h*(F&G) #0}.
(2) The section ocr o, defines a linear map up to scalars
(24)  SDgy + HOOW(r,0,m)%, Ay (L))" — HO(M(L,0), A ch).

(3) Denote by o the restriction of oer u, to {F} xM(L,0). oF only
depends (up to scalars) on the S-equivalence class of F.

(4) If ocr ;. is not identically zero, then by assigning F to or we get
a rational map ® : W (r,0,n)r — P(HO(M(L,0),\(ch))). Similarly we
have a rational map ¥ : M(L,0) — P(HO(W (r,0,n)%, \er (L))). More-
over If the image of ® is not contained in a hyperplane, then SDcr .,
is injective; if the image of ¥ is not contained in a hyperplane, then
SDer y, is surjective.

Proof. The proof of Theorem 2.1 in [6] also applies to our case al-
though the surface may not be P2. For statement (3) and (4), one can
also see Lemma 6.13 and Proposition 6.17 in [9]. q.e.d.

The map SDcr o, in (2.4) is call the strange duality map, and Le
Potier’s strange duality is as follows (also see Conjecture 2.2 in [6])

Conjecture/Question 2.6. If both W(r,0,n)" and M(L,0) are

non-empty, then is SD¢r ,,, an isomorphism?

We denote by ©, the determinant line bundle associated to ¢} = [Ox]
on M(L,0). Then Oy, has a canonical divisor Dg, which consists of



STRANGE DUALITY ON RATIONAL SURFACES 311

sheaves with non trivial global sections. Since Ap is a group homo-
morphism, by Proposition 2.8 in [14], we have that Ar(c}) = 09" ®
7*O|(n) =: O} (n) where 7 : M(L,0) — |L| sends each sheaf to its
support.

In this paper we study the following strange duality map for X a
rational surface
(2.5)

SDyr :=SDg,, : H'(W(2,0,2)" X (L))" — H(M(L,0), 07 (2)).

2.3. Scheme-theoretic structure of S on W(2,0,2). S consists of
non locally free sheaves in W (2,0,2). Recall we have a good quotient
p: Qs — W(2,0,2). Let S = pL(8S).

Set-theoretically S = X3, Let A ¢ X be the singular locus and
A= X. Define S° = S—A, W(2,0,2)° = W(2,0,2)F—A, S° = p~1(S°)
and Qg = p~1(W(2,0,2)°). Let .# (F°, resp.) be the universal quotient
over X x g (X x4, resp.). We then have the following proposition due
to Abe (see Section 3.4 and Section 5.2 Proposition 3.7 and Proposition
5.2 in [1])

Proposition 2.7. (1) The second Fitting ideal Fitto(.F°) of F°
defines a smooth closed subscheme S° of X x Qf supported at the set

{(z,[q: Ox(—mH) @V — F])| dimyy) Fr @ k(x) > 2} C X x Q3.

i.e. §° consists of points (x,|q : Ox(—mH) — F]) such that Fy is not
free.

(2) We have a surjective map pq : S° — §° induced by the projection
po : X X Qo — Qo. We give a scheme structure of§ by letting its
defining ideal be the kernel of Oqg — pa«Ogs. Then S° is a normal

crossing divisor in 25 with S° — S the normalization.
(3) The line bundle associated to the divisor S° on Q3 is A gzo (uK;).

Proof. Sheaves in S° are all quasi-bundles (see Definition 2.1 in [1]),
hence Abe’s argument in Section 3.4 in [1] gives Statement (1) and (2).
Notice that our notations are slightly different from his.

For Statement (3), by Proposition 5.2 in [1] we know that Ogg(ga) =
Azo([Kx])™! @ Azo([Ox])~t. We also see that

)\EQO(UK;(I) = )\go([Kx])_l ® Az ([Ox]).

But Az ([Ox]) = Oqg since H(F)=0fori=0,1,2 and F semistable
of class c%. Hence the proposition. q.e.d.

Corollary 2.8. Let S have the scheme-theoretic structure as the clo-
sure of 8° in W (2,0,2). Then S is a divisor associated to the line bundle
Ao (K ) on W(2,0,2). Moreover S is an integral scheme.
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Proof. By Proposition 2.7, S° is a divisor associated to )\Q(K;(l) re-
stricted on W(2,0,2)°. S is the closure of S° in W(2,0,2)*. Since
Kx.H <0, W(2,0,2) is normal, Cohen-Macaulay and of pure dimen-
sion 5, hence the section given by S° extends to a section of )\Q(K)_(l)
on W(2,0,2)" with divisor S.

We have a morphism ¢ : X — S sending (z,y) to Z, @ Z,, which
is bijective. Hence S is irreducible. S° is reduced, hence so are S° and
S. Thus S is an integral scheme. q.e.d.

Lemma 2.9. For any line bundle L, the map HY(S, Xo(L)|s) LA
HY (X o*Ao(L)) induced by Ma(L)|s — pxp*No(L) is injective. More-
over HO(X®) o*)\o(L)) = (HY(X,L)®?)%2 = S2HO(X, L) where &, is
the n-th symmetric group.

Proof. Let A C X? be the diagonal, and Z is the ideal sheaf of
A in X2, Let pri; be the projection from X™ to the product X? of
the i-th and j-th factors. Then pri,Za @ prisZa gives a family of
ideal sheaves on X? and induces a morphism @ : X2 — W(2,0,2)
with image S. @ is Gy-invariant, hence factors through X2 — X2
and gives the map ¢ : X — S. The morphism ¢ is bijective and
S is reduced, hence the map ¢ : Og — ©+xOx (2 is injective. Hence
so is the map \o(L)|s — @«p*A2(L) and therefore H°(S, \2(L)|s) L
HO(X®) ©*Ao(L)) is injective.

Obviously HO(X®), o*\o(L)) = (HO (X2, &*Xo(L)))®2. Tt will suffice
to show that HY(X?2 5*Ao(L)) = HY(X,L)®2. By the basic proper-
ties (see Lemma 8.1.2 and Theorem 8.1.5 in [11]) of the determinant
line bundle, we have p*\y(L) = Apry s Tadprs 4Ta (ur) = Apr oTa (ur) ®
Apri 4Ta (ur) = Az, (L)¥2. Obviously Az, (L) = L, so we have

HO(X? 5" Xo(L)) = HY(X, Az, (L)®?* = HO(X, L)®%
Hence the lemma. q.e.d.

The line bundle L¥" on X™ is &,-linearized and descends to a line
bundle on X (™, which we denote by Lny- So ¢*Aa(L) = Lgy on xX@,
Denote also by L) the pullback of L, to X ) via the Hilbert-Chow
morphism, where X™ is the Hilbert scheme of n-points on X.

3. Main result on SD;

Let L be a nontrivially effective line bundle. Recall that SDs j, is the
following strange duality map as in (2.5):

SDoy : HY(W(2,0,2)% \o(L))Y — H°(M(L,0),07%(2)).

In this section, we show that under certain conditions SDj 1, is an iso-
morphism (see Theorem 3.13).
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On M(L,0) and W(2,0,2)* we have the following two exact se-
quences respectively.
(3.1) 0—0r(2) = 6%1(2) = 01(2)|pe, — 0;
(3.2) 0— )\Q(L X Kx) — )\Q(L) — )\Q(L)’S — 0.

Notice that W (2,0, 2)L®5x = 1 (2,0,2)% and (3.2) is because of Corol-
lary 2.8.

Lemma 3.1. By taking the global sections of (3.1) and the dual of
global sections of (3.2), we have the following commutative diagram
(3.3)

HO(S, \2(L)|s)Y i H(\o(L))Y SRCN H'\(L® Kx))Y —=0

asi \LSDQ’L \LBD

0 —— H%O1(2)) —— H(O7(2)) 7 H'(De,, ©(2)pe, )-

Proof. We only need to show that g o SDa 0 g5 = 0. By the
definition of SDj , it is enough to show that the section o3 ; defined
in Proposition 2.5 is identically zero on S x Dg,. Easy to see that
HY((Z, ®T,) ® G) # 0 for all G € M(L,0) such that H(G) # 0, hence
S x De, CD.z,, and 0.z p is identically zero on S x De, . The lemma
is proved. q.e.d.

3.1. On the map ag. We introduce the following condition.
Condition (CA). The strange duality map
(34)  SDg,, : H(W(1,0,n),A\a(L))" — H*(M(L,0),0.(2))

Cy,ur

is an isomorphism.

Remark 3.2. For any n > 1, W(1,0,n) = X[ and A (L) =
L(n)- It is well-known that HO(XI, L)) = S"HO(X, L) for all n and
L (see Lemma 5.1 in [8]). Therefore CA implies H(|L|,O1((2)) =
HO(|L|, 701 ® O)1(2)).

In particular we have h°(M(L,0),0) = h%(|L|,7.0L) = 1 and Deg,
is the unique divisor associated to Oyp..

Lemma 3.3. If CA is satisfied, then the map ag in (3.3) is an
isomorphism. In particular, gy is injective.

Proof. By Lemma 2.9 we have a surjective map

o™ HY(X® Ly)Y — HO(S, Ao (L)s)".

~

By Proposition 1.2 in [8], we have HC3Y : HO(XP L)V =
HY(X®) | L)Y where HCy : Xl — X®) is the Hilbert-Chow morphism.
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To prove the lemma, by CA it is enough to show ago¢*V o HC3Y =
SD,y,, or equivalently SDj 1 0 gy o™ 0o HC3Y = fr 08Dy,

C3,UL
We have a Cartesian diagram

(3.5) x2 HC x2

1)

Xk x@)
HC

where p is a Gp-quotient and X2 is the blow-up of X? along the diagonal
A. Then we only need to show

(3.6) @L := SDs 095 o™ o HCY opi*” fLoS’DC%,uLo,ZZ*v =: §I\DR.

There are two flat families on X x X2 of sheaves of class 02 Fl.=
HC’X(prl PYINL prl 3Za) and 7% = %52 @ ¢*Ox, where HCyx =
Idy x HC : X x X2 — X3, fix _IdXxu,q X x X2 = X and %
is the universal ideal sheaf on X x X 2,

F" induces a section oy of i*A. (L) K AL(c3) = f*L, K O7(2) on
X2 x M(L,0). The zero set of o; is D; := {(z,G)|H*(F] © G) # 0}.
By the definition of SDCr .y, We see that SD 1, is defined by the global
section o1. On the other hand the map [, is defined by multiplying an
element in H°(©) defininig the divisor Dg, . Therefore SDp is defined
by the global section o2. Hence to show (3.6), we only need to show D;
coincide as divisors for i = 1, 2.

Let C C X x|L| be the universal curve. Then C is a divisor in X x |L].
pijr| :=pi x Idjp) : X* x |L] = X x |L| with p; the projection to the
i-th factor. Denote by pas : X2 x M(L,0) — M(L,0) the prOJectlon
to M(L 0). Then easy to see that D; = Dy = 2p},De, + oc’ Py |L\C +

e’ p27|L|C. Hence the lemma. q.e.d.

Corollary 3.4. If CA is satisfied and moreover Do, = () and H(L®
K$™) =0 for all n > 1, then the map SDo 1, is an isomorphism.

Proof. By Lemma 3.3, we only need to show that HO(\2(L® Kx)) =
0. But HO(\(L ® K¥")|s) = 0 since H(L ® K") =0 for all n > 1.
Hence HO(A\2(L ® Kx)) & H°(A\(L ® K§™)) for all n > 1 and hence
HO(M\o(L ® Kx)) = 0 because \g(K ') is effective. q.e.d.

Remark 3.5. Assume K)_(1 is effective, then for any curve C € |K )_(1|,
either O¢ is semistable or C contains an integral subscheme with genus
> 1. Therefore we have Dg, = = H°(L @ K¢") = 0 for all n > 1.
This is because otherwise there must be a semistable sheaf of class uy,
having nonzero global sections.
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Moreover by Proposition 4.1.1 and Corollary 4.3.2 in [20], we see that
if every curve in |L| does not contain any 1-dimensional subscheme with
positive genus and K;(l is effective, then Corollary 3.4 applies and the
strange duality map SD> 1, is an isomorphism.

We have a useful lemma as follows.
Lemma 3.6. If Dg, # 0, then L ® Kx s effective.

Proof. Let F € Deg,, then Ext!(F, Kx) = H'(F)V # 0. Hence there
is a non split extension

0—>KX—>.7—>]-"—>O.

If for every proper quotient F — F” (i.e. F % F") we have h!(F")
0, then I has to be torsion-free and hence isomorphism to Zz (L ® Kx
with Z a O-dimensional subscheme of X. On the other hand h%(I)
hO(F) # 0, therefore H(L ® Kx) # 0.

If there is a proper quotient F; of F such that h'(F;) # 0, then we
can assume that for every proper quotient F|' of F; we have h!(F}]) =
0. Denote by L; the determinant of Fj, then by previous argument
HO(L; ® Kx) # 0 and hence H)(L ® Kx) # 0 because L ® L7 is
effective. q.e.d.

~—

3.2. On the map fSp. In this subsection we assume Dg, # (), then by
Lemma 3.6 L ® Kx is effective. We want to prove that under certain
conditions the map [Sp is an isomorphism. The main technique and
notations are analogous to [22].

Let ¢ := L.(L+ Kx)/2 = x(L ® Kx) — 1 and Hy be the Hilbert
scheme of /-points on X which also parametrizes all ideal sheaves Z
with colength ¢, i.e. len(Z) = £. If £ = 0, we say Hy is a simple point
corresponding to the structure sheaf Ox. Denote by %, the universal
ideal sheaf over X x Hy.

From now on by abuse of notation, we always denote by p the pro-
jection X x M — M and ¢ the projection X x M — X for any moduli
space M. If we have Y7 x --- xY,, with n > 2, denote by p;; (i < j) the
projection to Y; x Y.

Define

Q1 := Quotx . p,/m,(Fe @ ¢ (L ® Kx),ur)
and
Q2 = Quotxp,/m,(Fe ® ¢*(L @ Kx), uLgky )-

Then @1 and Q9 are the two relative Quot-schemes over H; parametriz-
ing quotients of class uy and urgr, respectively. Let p; : @Q; — Hy
be the projection. Each point [f; : Zz(L ® Kx) — Fr] € Q1 ([f2 :
I7(L ® Kx) — FrLeky] € Q2, resp.) over Iy € Hy, must have the
kernel Kx (Ox, resp.).
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Since L ® Ky is effective and X is rational, H?(L ® Kx) = 0. Hence
RO(L ® Kx) > x(L ® Kx). Therefore, for any ideal sheaf Ty with
colenght ¢, we have h®(Zz(L ® Kx)) > 1 and hence ps is always sur-
jective. If moreover L.Ky < 0, then H°(Zz(L)) # 0 and p; is also
surjective.

We write down the following two exact sequences.

(3.7) 0=+ Kx >Z7(L® Kx)— Fr — 0;
(3.8) 0 Ox - Iz(L® Kx) = Freky — 0.

Notice that if F, (resp. Frek, ) is semi-stable, then (the class of) Fp,
(resp. (the class of) Frgi, ) is contained in Dg, (resp. M(L® Kx,0)).
Let

D%L = {]:L S D@L

hY(FL) =1, hY(FL(—Kx)) =0
and Supp(Fr) is integral. ’

hY(Fr) =1, RN (Fr(—Kx)) =0
and Supp(Fr) is integral. ’
W (Frowy (Kx)) =0
M(L® Kx,0)°:= < Fregxy€ M(L® Kx,0) | and Supp(Freky ) ,
is integral.
f h(Frexx (Kx)) =0
Q3 =1 [Iz2(L ® Kx) = Freky] € Q2| and Supp(Freky)
is integral.

Let G/ with r > 1 be a locally free sheaf of class c;. on X. We define
a line bundle £" := (det(R*p«(¥ @ ¢*G-(L ® Kx))))" over Hy. Then

we have the following lemma.

0. {[IZ(L @ Kx) 5 Fileq

Lemma 3.7. There are classifying maps g1 : Q7 — D@ and g2 :
Q5 -+ M(L®Kx,0)°, where g1 is an isomorphism and g2 s a projective
bundle. Moreover gi©7 (r) = piL e and g507 ok (1) = p5L7 |qg-

Proof. The proof is analogous to [22]. See Lemma 4.8, Equation
(4.9), (4.10), (4.12) and (4.14) in [22]. q.e.d.

Let HY := p1(Q9) U p2(Q%). We introduce some conditions as follows.

Condition (CB). (1) Dg, is dense open in Dg,;

(2) M(L® Kx,0) is of pure dimension and satisfies the “condition So
of Serre”, and the complement of M (L® Kx,0)° is of codimension
> 2;

(3) (p1)+Oqs = Opg;

(4) Q3 is nonempty and dense open in p,*(p2(Q3)).

Remark 3.8. We say a scheme Y satisfies “condition Sy of Serre”

it Vy € Y the local ring O, has the property that for every prime
ideal p C O, of height > 2, we have depth O,, > 2 (also see ChII
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Theorem 8.22A in [10]). CB-(2) implies that for every line bundle
H over M(L ® Kx,0), the restriction map H°(M(L ® Kx,0),H) <
HY(M(L ® Kx,0)° H) is an isomorphism.

Lemma 3.9. If CB is satisfied, then we have an injective map for
all r >0

jr: H(De,,07(r)pe, ) = H(M(L ® Kx,0), O g (7).
Moreover, ja o Bp = SD2 roKy -
Proof. By CB-(1) we have an injection
(3.9) H’(De,,O1(r)|ps,) = H(Dg,,OL(r)Ipg )-
By Lemma 3.7 and CB-(3) we have
(3.10) HY(Dg,,07(r)lpg, ) — H(Q, piL |q) — HO(HP, L |1p)-

On the other hand ps is projective and surjective, hence there is a
natural injection Op, — (p2)+0q,. Hence by CB-(4) we have the
following injections

(3.11)  HO(HP, L") H°(p2(Q3), L | py03))

HO(p3 Y (p2(Q3)), p5L7) = HO(QS, p3L7).

Finally by Lemma 3.7 and CB-(2) we have

(3.12) HO(Q3, p3L7) —> HO(M(L ® Kx,0)°,07 o e (1)

J{g

HY(M(L ® Kx,0),07 g, (r))-

The map j, is obtained by composing all the maps successively in
(3.9), (3.10), (3.11) and (3.12).

Now we prove j,08p = SDs oK. Notice that x(E®IZ(LR®Kx)) =
h*(E@Tz(L® Kx)) =0 for all £ € W(2,0,2) and Zy € Hy. We then
have a determinant line bundle A\2(¢) (resp. Apg,(c3)) over W(2,0,2)F
(resp. Hy) associated to [Zz(L® Kx)| with Zy € Hy (resp. [£] with € €
W (2,0,2)). Obviously Ag,(c3) = £2. Moreover there is a section o
of HY(W(2,0,2)F x Hy, \a(¢) X £2) vanishing at the points (£,Zz) such
that HO(€ ® Tz(L ® K)) # 0. By (3.7), Ma(L) 2 A (£) @ Ao([Kx])~" =
Aa(€) @ Aa(K '), Hence A2(f) = M\o(L @ Kx).

The section o2 induces a morphism

HOW(2,0,2)%, 2a(L ® Kx))¥ 2224 HO(Hy, £2).
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Composing SDs , with the inclusion H°(Hy, £2) < HO(HZ, L?), we get

SDS
HO(W(2,0,2)%, \2(L ® Kx)) LN H°(Hg, £?). Composing maps in
(3.11) and (3.12) and we get

O, £2) S FO(M(L ® K, 0), O, (2))
We first show that the following diagram commutes.

(3.13)

SD2
HO(W(2,0,2)E, Mo (L ® Kx))¥ —= HO(HY, £2)

(g2)x0p3
m l 2

HYM(L ® Kx.,0),02, . (2)).

Recall that on X x ()9 there is an exact sequence
0— %y — (idX X P;)cﬂz ®q*(L®Kx) — rQSL@)KX — 0,

where % is the universal sheaf over X X H; and %5 = p*Ro with Ro a
line bundle over Q9. For simplicity let % := (idx X p3) % @¢* (L& Kx).

Recall the good PGL(V)-quotient p : Qo — W (2,0,2) such that
there is a universal sheaf & over X x Qo. Let QF := p=1(W(2,0,2)F).

*\V
The map H(Q, p*do(L @ Kx))¥ *— HO(W(2,0,2)%, X (L ® Kx))¥
is surjective and hence to show that (3.13) commutes it suffices to show

(3.14) SDa 1oy ©p" = (g2)s 0 p5 0 SDa g0 p™,

Over X x QF x Q9 we have

0 — plad ® pisFa — plad @ pigFa — P1aé @ PisF Loy — 0.

By Lemma 2.1.20 in [11], we have the following commutative diagram
(3.15)
0 0 0

0 —= P16 @ pi3F2 —= piad @ pigI2 —= D126 @ Pi3F Lok — 0

! T |

0— % Z ot P28 ® pisFLoky —0
b
DBy — By
T T
0 %5

!

0
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where oy, Bh, By and € are locally free such that Rip.(-) = 0 for all
i < 2 and R2p,(-) locally free over Q& x Q3. We have the following
commutative diagram

(3.16) R2p, 6y — R2p. By —2> R2p, ot

A

R%p, 6y —> R2p, By ——> R2p, .

vh and vy are surjective because H*(Froky ® £) = H*(Zz(L® Kx) ®
E) = 0 for every [Zz(L ® Kx) — Freoky] € Q% and € € QL. ny is
an isomorphism because %> is a pullback of a line bundle on Q9 and
HY(&) = H?*(&) = 0 for all £ € QF. Denote by Kz and K the kernels
of vy and v} respectively. Then we have

§LOK x

(3.17) R*p. 6 — K},

:T g%

R2p*%2 ?) ICQ.

L

The section det({rg K ) induces the map g3 0 SD2 ek © p*V while the
section det(¢2) induces the map ph o SDg, 0 p*. By (3.17) we have
det(Ernpi ) = det(nz) - det(€2) and hence det(Ergky) and det(€2) are
the same section up to scalars since 7y is an isomorphism. Hence
(3.18) 950 SDy ey 0 p* = p30SD3,0p™.

(3.18) implies (3.14) because go is a projective bundle and the map

HO(Q8, 050 ey (1) 225 HO(M(L & Kx,00°, 0 e, (1)) s an iso-
morphism with inverse map g3.

Now we have that (3.13) commutes. To show j, o fp = SD2 ek,
it suffices to show that the following diagram commutes.

SDS’Zop*V

(3.19) HOY(QL Ay (L ® Kx))V
f;QT T(Pl)*ogf
HO(QF, \a(L))Y H%(De,, 07 (2)|pe, )-

HO(HE, £?)

- >

groSDy op*Y
In other words, it suffices to show

(3.20) (p1)sogiogroSDypop™ =SD5, 00" o fy.
Recall that on X x @f there is an exact sequence

0— % — (idx x p1)# ®q¢ (L& Kx) — F1, — 0,
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where .#; is the universal sheaf over X x Hy and %, = p*R1®¢* K x with
R1 aline bundle (actually the relative tautological bundle O, (—1)) over
Q(l)' Let .7 = (idX X p*{)cﬂg ®q*(L®Kx).

Over X x QF x Q% we have

0 = pioé @ pis%1 — p1aé @ pisFh — piaé @ pigFr — 0.
Analogously, we have the following commutative diagram
(3.21)
0 0 0
0 —= p1oé @ pI3Z1 —= plaé @ P13 — plad @ pi3Fr —0

! T -]

0—>% B, P2 P& ® plaFL — 0
b
B, = B,
T T
0 A
T
0 :

where 71, ], %1 and € are locally free such that Rip.(-) = 0 for all
i < 2 and R?p,(-) locally free over Qf x Q¢. We have the following
commutative diagram

(3.22) R*p,¢) —— R*p. %, B R2p,.,

:T al T:

R%p, 6, — R2p, B, —> R2p,of.

4 and vy are surjective because H2(FL®&) = HX(Zz(L®Kx)®E) =0
for every [Zz(L ® Kx) — Fr] € Q¢ and £ € Q%. 7 is a morphism
between two vector bundles with same rank with cokernel R?p,(p},& x
Pis#1). Since #1 = p*R1®@¢* K x with R a line bundle over Q9, det(n;)
is the pullback to Q% x Q% of the section of Ao([Kx]|™!) = A\o(Ky')
defining the subscheme S.

Denote by K1 and K} the kernels of v and v/} respectively. Then we
have

(3.23) R%p. % -~ K

T Tm

RQP*CKl ? ICl .

L
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The section det({r,) induces the map gf o g1, 0 SDa 1, 0 p*V, the section
det(¢}) induces the map p} o SDj, o p*V and multiplying the section
det(m) induces the map fyq. By (3.23) we have det(¢L) = det(n) -
det(¢}) and hence

(3.24) giogr o SDy 0 p™ =pioSD3,0p™ o fg.

(3.24) implies (3.20) because by CB-(3) the map H®(QY¢, p;L") N
H°(Hg, L") is an isomorphism with inverse map pj.
The lemma is proved. q.e.d.

Now we want to modify CB. Define

Y integral subscheme C C C,
we have deg(Kx|c,) < 0. ’

W (Froxy (Kx)) =0

M(L@Kx,())l = .FL@)KXEM(L@K)(,O) and Supp(]:[@](x)
isin |[L® Kx|.

IL® Kx| = {Ce \L®KX!‘

FrLoky ts semistable,
W (Frory (Kx)) =0
and Supp(Freky )
isin |[L® Kx|'.

Let far @ Qrexy — M(L ® Kx,0) be the good PGL(Vigky)-
quotient with Vg, some vector space and Q¢ x, an open subscheme
of some Quot-scheme. Let Q7 = fi (M(L® Kx,0)"). Notice that
Extz(}"L@KX,]:L@KX) =0 for Frgi, semistable with Supp(Freky) €
|L ® Kx|'. Hence Q7 is smooth of pure dimension the expected
dimension.

Denote by Zrg Kk, the universal quotient over Qrgk, . Analogous to
[22], define V' := Eatl(ZLroky o ,¢*Ox) which is locally free of

LOKx

rank —(L + Kx).Kx on Q} g . Let P; C P(V') parametrizing torsion
free extensions of 2 by Ox for all s € Q) Ky- Then the classifying
map fo, : Py — Q5 is a principal PGL(Vg K )-bundle (see Lemma 4.7
in [22]). We have the following commutative diagram

fo
Q5 =1 [I2(L ® Kx) = Frekx] € Q2

!
P

(3.25) Pé Q/L®KX
fézzi if/M
Q) > M(L® Kx,0)'.
92

Let H; := p1(Q%) U p2(Q%). We define CB’ by keeping CB-(1) and
replacing CB-(2), (3) and (4) by (2'a), (2'b), (3) and (4') as follows.

Condition (CB’). (1) D@ is dense open in Dg,;
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(2'a) M(L® Kx,0) is of pure dimension and satisfies the “condition Sy
of Serre”, and the complement of M(L® Kx,0) is of codimension
> 2
(2'b) The complement of Pj in P(V’) is of codimension > 2;
(3) (p1):O0; = Oy
(4') QY is nonempty and dense open in p; ' (p2(Q5)).

Lemma 3.10. If CB' is satisfied, then there is an injective map for
allr >0

Jr: HO(DGLa @E(T)‘D@L) — HO(M(L ® KX70)7®£®KX(T))’
such that jo o Bp = SDa oKy -

Proof. The only difference from Lemma 3.9 is that the map ¢} is no
more a projective bundle. However it is enough to prove (gé)*(’)sz =
OmLeory,0y = Om(Lokx.0)-

In (3.25) we have f(, a principal PGL(VigKk, )-bundle and f), a good
PGL(Vigky )-quotient. of is PGL(Vigk )-equivariant and descends
to the map gs. In order to show (g5).Oq;, = O|LgK|» We only need to

show that (03).Op; & Oq, -
X

We have that (02).Opnr) = O

LYK

mension. By CB'-(2b) the complemen)‘é of P} in P(V’) is of codimension
> 2 and hence 7.Op; = Opyry with j : Py < P()') the embedding.
On the other hand o5 = 03 0 j, hence (05).Op; = (02)«(3:0p;) =
(02):Opyry = OQ/L®KX. Hence the lemma q.e.d.

Qe Ky 18 smooth of pure di-

Notice that CB-(2) = CB’-(2a) if (L+ Kx).Kx < 0. Lemma 3.9 and
Lemma 3.10 imply immediately the following proposition.

Proposition 3.11. If either CB or CB' is satisfied and SDs gy
is an isomorphism, then the map Bp in (3.3) is an isomorphism. In
particular, gy, is surjective.

Remark 3.12. If L = K)_(l then Bp is an isomorphism as long as
vV C € |L|, O¢ is stable (which is equivalent to say that C' contains
no subcurve with genus > 1) and there is a stable vector bundle £ €
W (2,0,2). This is because in this case fp is a nonzero map between
two vector spaces of 1 dimension, hence an isomorphism. Sp is nonzero
since H(€ ® O¢) = HY(E @ O¢) = 0 for all C € |L| (also see the proof
of Proposition 6.25 in [9]).

Combining Lemma 3.3 and Proposition 3.11 we have the following
theorem.

Theorem 3.13. Assume CA, and assume either CB or CB' is sat-
isfied, and assume SDa oK 15 an isomorphism, then SDa |, is an iso-
morphism.
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3.3. Application to Hirzebruch surfaces. Theorem 3.13 applies to
a large number of cases on Hirzebruch surface as stated in the following
theorem.

Theorem 3.14. Let X = %, (e > 0) := P(Op1 @ Opi(e)). Let F
be the fiber class and G the section such that G*> = —e over X. Let
L =aG 4+ bF. Then

(1) CA is fulfilled for L ample or min{a,b} < 1.

(2) If 2 < min{a, b} < 3, then CB' is fulfilled for L ample, i.e. b > ae
fore#0; ora,b>0 fore=0.

(3) If min{a,b} > 4, then CB is fulfilled for both L and L & Kx
ample, i.e. b >ae,e >1; orb>a+1,e=1; ora,b>4,e=0.

Corollary 3.15. Let X be a Hirzebruch surface %, and L = aG+bF'.
Then the strange duality map SDa 1, in (2.5) is an isomorphism for the
following cases.

1) min{a, b} < 1;

2) min{a,b} > 2, e # 1, L ample;

3) min{a,b} > 2, e =1, b > a+ [a/2] with [a/2] the integral part of

a/2.

Proof. If min{a,b} < 1, then every curve in |L| contains no subcurve
of positive genus and hence done by Corollary 3.4 and Remark 3.5.

If min{a,b} > 2 and e # 1, then L is ample = L ® Kx is ample.
Therefore by Theorem 3.14 and Theorem 3.13 we can reduce the prob-
lem to L = G+ nF (or F + nG for e = 0), or nF (or mG for e = 0)
while by Corollary 3.4 and Remark 3.5, SDs is an isomorphism in
these cases.

If min{a,b} > 2, e =1 and b > a + [a/2], then either both L and
L ® Kx are ample or L ample and L ® Kx = G + F or nF'. Therefore
analogously we are done by Theorem 3.14, Theorem 3.13, Corollary 3.4
and Remark 3.5.

The corollary is proved. q.e.d.

To prove Theorem 3.14, the main task is estimating codimension of
some schemes. However we want to use stack language as what we did
in [21] because it makes the argument clearer and simpler. Therefore,
we firstly introduce some stacks as follows, the notations of which are
slightly different from [21].

Definition 3.16. Let x and d be two integers.

(1) Let M?(L,x) be the (Artin) stack parametrizing pure 1-dimen-
sional sheaves F on X with determinant L, Euler characteristic x(F) =
x and satisfying either F is semistable or VF' C F, x(F') < d.

(2) Let M(L,x) (M(L,x)*, resp.) be the substack of M?(L,x)
parametrizing semistable (stable, resp.) sheaves in M?(L, x).
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(3) Let M (L, x) be the substack of M(L, x)* parametrizing sheaves
with integral supports.

(4) Let M%E(L, x) be the substack of M?(L, x) parametrizing sheaves
with reducible supports in M%(L,x). Let ME(L,x) = M®*E(L,x) N
M(L, x)*.

(5) Let M%N (L, x) be the substack of M?(L, x) parametrizing sheaves
with irreducible and non-reduced supports in M%(L, x). Let MY (L, x) =
MEN(L, x) N ML, x)*.

(6) Let C%(nL’,x) (n > 1) be the substack of M?%(nL’, x) parametriz-
ing sheaves F whose supports are of the form nC' with C an integral
curve in [L'|. C(nL',x) = CHnL',x) N M(L, x)*.

Lemma 3.17. Let X = X, and L = aG+bF ample with min{a, b} >
2. Then for all x and d, M (L,x) is smooth of dimension L?, and
the complement of M™(L,x) inside M%(L, ) is of codimension > 2,
i.e. of dimension < L? —2.

Proof. Since L.Kx < 0, M™(L,x) is smooth of dimension L?. We
first estimate the dimension of C¢(nL',x) (n > 1). Write L' = o/G+b'F.
Since |L/|™ £ (), L' =G or F;or b/ >d'e, e > 0; or a’,b >0, e = 0.

Claim &. ¥ d, x, dimC%(nL’, x) < n?L'? —min{7, —nL'.Kx — 1, (n —
1)L'2} < n?L'? for L' nef and dim C%(nG, x) < —n? for e > 0.

We show Claim &. Let

T(L, x) :={F € M(L,x)|3 v € X, such that dimy,)(F®k(z)) > m},

where k(z) is the residue field of z. Take a very ample divisor H =
G+ (e+1)F on X. If L' is nef, then (—jH + Kx).L' <0 for all j > —1
and hence HY(&xt' (F, F)(jH)) = Ext*(F, F(jH)) = Hom(F, F(Kx —
jH))Y =0forall j > —1 and F € C(nL’, x). Therefore by Castelnuovo-
Mumford criterion &xt'(F,F) is globally generated. Hence by
Le Potier’s argument in the proof of Lemma 3.2 in [13], C(nL', x) N
Tm(nL', x) is of dimension < n?L’2 — m? 4 2. Combining Proposition
4.1 and Theorem 4.16 in [21], we have

(3.26) dimC(nL',x) < n’L'? —min{7,n(n — 1)L'?, —nKx.L' —1}.

Let F € C4nL',x)\ C(nL',x). Since V F' C F, Kx.c1(F') <0, the
proof of Proposition 2.7 in [21] applies and dim(C%(nL’, x)\C(nL', x)) <
n?L'? — (n—1)L'2

Let e > 0. For every semistable sheaf F with support nGG, the map
F 2 F(G) is zero because G? < 0, where é¢ € H°(Ox(Q)) is a
function defining the divisor G. Hence F is a sheaf on G and hence a
direct sum of n line bundles over G. Thus dim C(nG,x) < —n?. Let F
be unstable with support GG, then take the Harder-Narasimhan filtration
of it as follows.

0=FoC F1 C---C Fp=F,
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with F;/F;i—1 = O¢(s;)®™ such that s; > s > -+ > s and Zle n; =
n. Then

ext?(F;/Fi_1, Fi_1) = hom(F;_1, Fi/Fi_1(Kx))
<> hom(Og(s;)?", Oq(si + (e — 2))%™)

j<i

< Z(e —2)n;n;.

i<t

By induction assumption dim C*(2G,x) < —n? for all # < n, then by
analogous argument to the proof of Proposition 2.7 in [21] we have

dim C%(nG, )

k—1
< max_{=n®, = m)? —nj— Y (1) 'ext!(Fa/Fr1, Fr1)}

ni, ,nE>0 ‘ .
s ni=n =1 1=0,1
_(Zl‘f:ll ni)* = ng — X(Fi/ Fi—1, Fr-1)
= max - n? =
nk>0{ +ext?(Fr/ Fr—1, Fr—1) J
n =N
. k—1 k—1 k—1
< . mz}lxw{ n? (Z ni)? —ni — nk(z (e —2) Z ning)}
5 mien i=1 i=1 i=1

Therefore Claim & is proved.

Easy to see M%(L,x) \ M™ (L, x) = M (L, x) U MV (L, x) and
MEN(L,x) = Upp=rC%(nL’, x). Claim & implies that M®V (L, x) is
of codimension > 2 inside MY(L, x) for L ample. Now we only need to
show M®%E(L, x) is of dimension < L? — 2.

Let G € ./\/ld’R(L7 X), then G admits a filtration as follows.

0=GCG1<C--CG=¢G,
l l
with S; = gi/gi_l S Cdi(niLi,Xi> such that ZniLi = L, in =X

i=1 =1
and Hom(S;,S;) = Ext*(S;,S;) = 0, Vi # j. Hence ext!(S;,S;) =

—x(8i,S5) = ninj(L;.Lj) Vi > j, and ext!(S;, Gi1) Zext (Si, Gi—1)

By analogous argument to the proof of Proposition 27]1<r11 [21], we have
(3.27)

d1m/\/ldR(L x) < Zg:%j(_L{ZdlmC n;Li, xi —i-;nm] (Li-Lj)}

< max {Z n?L? + Z ninj(Li.Lj) — a§ + agG.(L — apG)}

ZniLi =L — aoG
L; nef,ao < a J<i
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= max {L* - Z ninj(Li.L;) — a§ — agG.L}

ZniLi =L - aoG

L; nef,a0 < a J<i
=L - min { E ninj(Li.L;) + ad + apG.L}

>niL; =L —acG

L; nef,a0 < a J<t

If ag > 1, then Zj<i ninj(L;.L;) + at + aoG.L > ad +ap(b—ea) > 2. If
ap =0 or e =0, then 37, ,nin;(L;.L;j) > 2 since min{a, b} > 2 and L;
are all nef. Hence the lemma is proved. q.e.d.

Remark 3.18. Let d, x be two integers. Claim & and (3.27) also
provide an estimate of dim M%(L, x) for all L effective. We can see that
dim M%(nG, x) = dim C%(nG, x) < —n? for e # 0 and dim M¢(nF, x) <
0.

Denote by |L|"™ the open subset of | L| consisting of all integral curves.
If L is nef and big, i.e. |L|"™ # @ and L # F,G, then L.Ky < 0 and
dim M (L, y) is smooth of dimension L2, and moreover by Claim &
and (3.27), M%(L,x) \ M™(L,x) < L? — 1. Hence dim M%(L,x) =
dim M(L, x)* = L? and M(L, ) is irreducible of expected dimension.

If |L|"™ = (), min{a, b} > 1 and — K is nef, i.e. e < 2; then M(L,x)*
is either empty or of smooth of dimension L?.

If |L|"™ = () with min{a,b} > 1, then MY(L,x) = M4E(L,x) and
we then have

dim M4(L, x) < ,_mmax f{(L — aoG)? + apG(L — aoG) — a2}.
—agG ne

Let F7, be stable with C'r, = aoG—f—C}L such that G is not a component
of ley let fLG be F1,® Oq,c modulo its torsion. Hence fLG is a quotient
of F, while FE(—C}_—L) is a subsheaf of F;. Hence by stability of Fp,
C%,.G >0 and L — apG must be either ample or bF'. Hence

(3.28) dim M(L,x)* < max {(L—apG)*+aoG(L—agG)—a?}.

— aoG ample
or apg =a

We can choose an atlas QdL’X LN ML, x) with QdL’X a subscheme

IpYs

of some Quot-scheme. We also can ask ¥~ (M(L,x)) = Qp, —
M(L,x) to be a good PGL(Vr,)-quotient with M (L, x) the coarse

moduli space of semistable sheaves. Analogously we define QSL’X, QZL”;,

QCLL;{;, QdLi\(] etc. If x = 0, we write 2} instead of Qf ;. Since ¢ is
smooth, the codimension of Qf , inside QdL’X is the same as M*(L, x)
inside M?%(L,x). “®” stands for “int”, “d, R”, “d,N” etc.

Let M (L,x) := n~Y(|L|"™). Then M (L,x) is a flat family of
(compactified) Jacobians over |L|™™, hence it is connected. Q" =
i (M™(L,x)) and Qle;( is a principal PGL(VL)-bundle over

M®™ (L, x) hence also connected.
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We have a corollary to Lemma 3.17 as follows.

Corollary 3.19. Let X =X, and L = aG + bF.

(1) If min{a,b} <1, then M(L,0) = |L| and ©L = O,.

(2) If min{a,b} > 2 and L is nef for e # 1, ample for e = 1, then
M (L,0) is integral and normal; M(L,0)\ M™(L,0) is of codimension
> 2 inside M(L,0); and the dualizing sheaf of M(L,0) is locally free and
isomorphic to 7*O\r|(L.Kx ). Moreover 7,01 = O and R'm.07 =0
for all i,7 > 0.

Proof. If min{a, b} < 1, then done by Proposition 4.1.1 in [20].

Let L be as in (2). There are nonsingular irreducible curves in |L| and
the complement of |L|" in |L| is of codimension > 2. Since L.Kx < 0,
M™(L,0) is smooth and irreducible of dimension L? + 1. Q% is also
smooth, hence irreducible and of expected dimension.

By Lemma 3.17, Q¢ \ Qi is of codimension > 2 inside Q¢, then
QiL”t is dense in €7, hence then Qj is of expected dimension and by
deformation theory {2f is a local complete intersection. On the other
hand, €7, is smooth in codimension 1, hence normal for local complete
intersection. Therefore M (L,0) is integral and normal since 2y, is.

To show that M (L,0)\ M (L,0) is of codimension > 2, we only need
to show M (L,0)\M(L,0)* is of codimension > 2 with M (L, 0)* the open
subset consisting of stable sheaves. By Remark 3.18, dim M (L’,0)* =
L'? + 1 for L' nef and big, dim M (F,0)* = 1, dim M (nF,0)* = 0 for
n > 1, dim M (nG,0) = 0 for e > 0 and finally by (3.28) for |L/|"™ = ()
and L' # nF,mG,

dim M (L',0)® < ,_max (L) —apG)* +1 — a + apG.(L' — apG)}.
aoG ample
or ap=a

Hence if e # 0, then

(3.29)
L? +1 —dim(M(L,0) \ M(L,0)*)

_ 72 : . s
=L +1-— Zni?}:(L{Zi: dim M (L;,0)*}

<IL’4+1-— max {Z - a? +a;G.(L; — a;G) + #{L;}}

Y L;=L—agQ
L’ :=L;—a;G nef, 7
a; >0, a,oga

SO — #{L) + Y a? + 2a0G.L + 1

< min i7 i#0

e )Y G (L +2) L))+ (af — (Y _a)?)e

a;>0, ag<a 1#0 j#i 17#0
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S (LI = #{L + ) al + 200G L + 1
i i#0

< min
- L;=L—ag _ / 2
L;;Z:Llralc ncef, +Zal aOG + Z LJ) + ap€
a;>0, ag<a i#0 J#
ML) = #HL}+ ) al+ Y aG.L
_ o #i #0054
LE:LL:jl—;o:f +(Z%‘)G-L + apG.L + ao(Zai)e +1
a; >0, ag<a ZZO 7420

We want dim(M (L, 0)\ M(L,0)*) < L? — 1.

Assume L) = n;F for all i, then ) ,-,a; = a. If moreover a; = 0 for
i # 0, then ag = a and —#{L}} +2a9G.L+ae+1 = 1+ 2a(b—ae) —b+
a’e =bla—1)+a(b—ae)+1>5since a,b > 2 and b > ae. If I ay, # 0
for ko # 0, then —#{Li} + 3,0 a7 + 3,20 j2 0iG-L; + aG.L +1 >
a(b—ae) +1> 3.

Assume 3 L] # nF, then L .L’; > 1 for L nef hence } ., (L;.L}) >
2(#{LL}—1). If ap > 1, then 2a9G.L+a3e > 3 and hence > i Li L) —
#{L.} + 2a0G.L + ade +1 > 3. If ap = 0, then #{L}} > 2 and either
3 L, L, such that L] .L; > 1, L L, > 1 for L) nef; or 3 L,
such that L(O.L;. > 2 for L;. nef; or 3 ay, # 0 for k:o # 0. Then we
have

SNELLL)+> al+ Y aGLj+ (O a)G.L>2#{Lj} —1) +2

J#i i7#0 70,571 i>0

and
Z(L;L;) —#{Li} + Zaf + Z a;G.L; + (Z a;)G.L +1
i i#£0 i#£0,j7i i>0

> #{Li} +12=>3.
If e = 0, then easy to see

(3.30)
dim(M (L, 0) \ M(L,0)*) = . Z L? + #{L;}}
L nef
<I’- _min {ZLL #{L;}}

> Li=
L; nef J#

< L?-2.

Therefore the complement of M (L, 0)* inside M (L, 0) is of codimension
> 3 and hence M (L,0) \ M™(L,0) is of codimension > 2.

Because Q7 \ Q%" is of codimension > 2 and |L| contains smooth
curves, sheaves not locally free on their supports form a subset of codi-
mension > 2 inside Qr,, hence Proposition 4.2.11 in [20] applies and then
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the dualizing sheaf of M(L,0) is isomorphic to 7*O)r|(L.Kx). More-
over since M (L,0) is normal and integral, and the complement of | L|"*
inside |L| is of codimension > 2, Theorem 4.3.1 in [20] and Proposition
4.3 in [22] apply and we obtain that 7.0 = O and R'7m,0% =0 for
all i, > 0.

The lemma is proved. q.e.d.

Remark 3.20. Let L be as in Corollary 3.19. Since m.0. = O
and R'm,©7 =0 for all i, > 0, H(©(n)) =0 for all i > 0 and n > 0.
Hence we already know that the map g, in (3.3) is surjective in this
case.

Proof of Statement (1) of Theorem 3.14. By Corollary 3.19, the strange
duality map S Dy in (3.4) is a map between two vector spaces of same

dimension, while L is in case (1) of the theorem. The argument proving
Corollary 4.3.2 in [20] applies and hence SDC%A% is an isomorphism.

Statement (1) is proved. q.e.d.
To prove Statement (2) and (3), we need to introduce more stacks.

Definition 3.21. For two integers k > 0 and ¢, we define M}C”f(L, X)

to be the (locally closed) substack of M (L, x) parametrizing sheaves
F € M™(L,x) such that h'(F(—iKx)) = k and h'(F(-nKx)) =
0, ¥'n >i. Let M"(L,x) be the image of M (L,x) in M (L, x).

Define W,i’:‘it(L,x) to be the (locally closed) substack of M™ (L, )
parametrizing sheaves F € M (L, y) with h®(F(—iKx)) = k and
RO (F(—nKx)) =0, Vn <i. Let ngt(L,x) be the image of W,i’fit(L, X)
in M (L, x).

Remark 3.22. Since L.Kx < 0, for fixed ¥, M}C”f(L,X) is empty

except for finitely many pairs (k,7). We don’t define /\/lg’i(L,X) C
ML, x) because L may not be K y-negative (see Definition 2.1 in

[21]) and the analogous definition may not behave well.

Remark 3.23. By sending each sheaf F to its dual &zt!(F, Kx),
we get an isomorphism M}C”f(L, X) = W}C”EZ(L, —X)-

By Proposition 5.5 and Remark 5.6 in [21], we have

Proposition 3.24. 1) dim M (L,x) < L?* +iKx.L — x — k;

2) dim Wi"(L,0) < L?> —iKx.L+ x — k;

3) dim M{™(L,0) < L?* + 1+ iKx.L — x — k;

4) dim Wi"H(L,0) < L* +1 - iKx.L + x — k.

Corollary 3.25. Let X = Y. and L = aG + bF ample with
min{a, b} > 2. Let D§' := Do, N M"™(L,0). Then dim De, \ Dg"* <



330 Y. YUAN

L?-2, (md‘dim DQL\Dng < L?-3 with De, (Dgfz, resp.) the preimage
of De, (Dmlf, resp.) inside M(L,0).

Proof. We have shown that M (L,0) \ M(L,0)* is of dimension <
L? — 2. Then we only need to show dim(Dg, \Dg?) < L? — 3. Let
Cr,, L, with L1 + Ly = L be the stack parametring sheaves F € Dg,
with supports Cr = O, + Cp, such that Cp, € |L;|™ for i = 1,2. By
(3.26) and (3.27), we only need to show the stacks Coqi(p—1)F, r and
Cla—1)G+(ae+1)F, ¢ 1s of dimension < L? - 3.

Let F € Cog4(p—1)F, - Then we have the following exact sequence

(3.31) 0—=F —F—=Fr—0,

where F» is the torsion free part of F ® O¢,. and F; € M™(2G + (b —
1)F, x1) with x1 < 0. Notice that 1 ® Ox (F') is a quotient of F, hence
X1+2>0. Also F» ® Ox(—2G — (b — 1)F) is a subsheaf of F and
hence Fy = Op1 or Opi(—1). Let CSG+(b_1)F 7 C Cogy(b—1)F, F consist
of Fin (3.31) with HO(F1) = 0. F1 € Ujco Wi (2G + (b= 1)F, x1) if
F e C2G+(b—1)F, F \CgG—i—(b—l)F, B Therefore

(3.32)  dim Cogrpp—1)F, F \ CgG+(b_1)F, F
< (2G+ (b—1)F).F + dim | ] W (2G + (b— 1)F, x1)
1 <0
<Q2G+b-1)F)? —1+x1+2<4b—4de—-3=1L1*-3.

Denote by gz, the arithmetic genus of curvesin |L|. If F € CgG—i-(b—l)F,F’
then there is a injection Oc, — F with cokernel Oz,, where Zr
is a 0-dimensional subscheme of Cr with length g — 1. We have
ext! (07, 0¢) = dim Aut(Oyz) = h®(Oyz) = g1, — 1 for all Z C C. Hence
for a fixed curve C' and [Z] € Cl92=1 there are finitely many possible
choices for F lying in the following sequence

0— 0O —F—0z—0.
Hence the fiber of the projection CgGJr(b—l)FF — 2G4+ (b—1)F| x |F|
over a curve C is of dimension no larger than
dim 92~ 4 ext’ (O, Oc) —dim Aut(Oc) x Aut(Oz) = dim Clor 111,

Therefore

dim CSG+(b—1)F,F

Sdim|2G—|—(b—1)F‘ X |F|_1_|_ max dimC_[gL_l]

‘FGCSGJ,-(I)—I)F,F

—3b—3e—1+ max  dimCg
FECay (b-1)F,F
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=4b—4e -3+ ( max dimC;_gL_l] — (91— 1))
FECoaib-1)p.F

=L%-3+( max dim C;?Lfl] — (g1 — 1)).
Fec

0
2G+(b—1)F,F
The only thing left to prove is dim C2* ™1 < g/ — 1 for all C, and this
follows from that C'r only have isolated planner singularities and the
result of Iarrobino (Corollary 2 in [12]).

Analogously we can show that dim C(q_1)G4(aet+1)F, ¢ < L? — 3. The
corollary is proved. q.e.d.

Proof of Statement (2) and (3) of Theorem 3.14. The proof has 7 steps
and we check all conditions in CB and CB’ one by one as follows.
Step 1: CB-(1).
Since M(L,0) is integral and Dg, is a divisor on it, to show CB-(1)
it is enough to show dim(De, \ Dg, ) < L? — 1. By Corollary 3.25, it is
enough to show dim(Dg" \ Dg ) < L* — 1. By definition

(DEI\Dy, ) | MIHL,0).
k>2,i=0
ori>1

Therefore we have CB-(1) is fulfilled by Proposition 3.24.

Step 2: CB-(2).

Assume L = aG + bF ample with min{a,b} > 4. Then Lemma 3.17
applies to L+ Ky = (a—2)G+(b—e—2)F and M(L®Kx,0)\ M™(L®
Kx,0) is of codimension > 2. M (L ® Kx,0) satisfies the “condition Sy
of Serre” because it is normal by Corollary 3.19. Hence to prove CB-(2)
is fulfilled, it is enough to show M (L ® Kx,0)\ M(L ® Kx,0)° is of
dimension < (L + Kx)? — 1. Since we have

M™(L® Kx,0)\ M(L® Kx,0)°= | Wit(L® Kx,0),
i<—1

by Proposition 3.24 we have
dim M"™(L ® Kx,0)\ M(L ® Kx,0)° < (L + Kx)*+ Kx.(L + Kx)
<(L+Kx)*-1.
Hence CB-(2).
Step 3: CB-(3).

To check that CB-(3) holds, it is enough to show the following three
statements.

1) dimQ¢ =2¢ - L.Kx = L?;
2) p1 (p1(Q9)) \ QF is of dimension < 2/ — L.Ky —2 = L? —2;
3) Hy\ p1(Q%) is of dimension < 2¢ —2 = L? + L.Kx — 2.
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Let s > 0,¢t > 0, and define

Qi = { T2 0 ) 2 7] € QU R = 5. 1RLKx) =
HP* = {Ty € H|WNIz(L® Kx)) =s—1, h'(Zz(L)) =t.}.

Then Qi’t = py (HLSt) p1(Q7) C HL’LO and p; (Pl(Ql)) C Q%O‘

L,s,t
For d large enough, we have the classifying map Qlt i ML, 0).
In particular when s = 1, ¢£’1’t(Q1 ) € M(L,0), hence d)L’l’t(Qlt) C
Deg, . This is because for every F € M?(L,0), if h%Fz) = 1 and there
is a torsion free extension of F; by Ky, then V F' C F, h°(F') < 1
and h'(F’) > 1 hence then x(F') < 0 and F is semistable. The fiber of

qﬁf’s’t at Fr, is contained in Ext!(Fr, Kx), and hence

dim Q9 = 1 + dim(De, N (M™(L,0) \ U ML, 0))) = L2
kE>2,i=0 or i>0

(3.33)
dim(|J Q1) \ @F < 1+ dim((De, \ DE) U | MH(L,0)) < L* -2,
t>0 >0

where the last inequality is because of Corollary 3.25 and Proposi-
tion 3.24.
By (3.7) Q7" = P(p(SFe@q"L)|yr.s), where p. (S ®q*L) is a vector
4

bundle of rank h°(Zz(L)) =t + 1 — L.Kx over HL’S’t Hence
(3.34) dlle = dim L5t+thKX

Hence (3.33) implies dim (U, H L’l’t) \p1(Q9) < L2+ L.Kx —2. Hence

we only need to show dim Hy \ (U;>q H HEYY <20-2 je. dlrnHLSt
20 — 2 for all s > 2.

(S @ ¢* (L ® Kx)) is a vector bundle of rank h%(Zz(L ® Kx)) =
over HeL’S’t. By (3.8) P(p«(F ® ¢* (L @ Kx))|yz.s¢) is a locally closed
subscheme inside (J2. For d big enough, there isea classifying map

L,s,t

* ¢L®KX d
P(p*(feééq (L®KX))‘HlL,s,t) — M (L®Kx,0).
If s > 2, then the image of qﬁégf(x is contained in

(MUL ® Kx,0)\ M™(L® Kx,0)) U U Wi (L ® K, 0).

i=0,k=s—1
or i1 <0

The fiber of qﬁfg’[t(x at Freky is contained in Extl(]-"L@)KX,OX). If
Frekx € W;TLO(L ® Kx,0), then

ho(]:L®KX (Kx)) =0 and eth(]:L®KX70X) = —(L + Kx).Kx.
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If Frexy & Wmt o(L ® Kx,0), then since —Kx — G is very ample, by
(3.8) we have

(3.35) W (Frery (Kx)) = h'(Zz(L® K$?))
<h(ZIZ(L® Kx ® Ox(-@))) — 1
<hR(IZz(L®Kx))—1=s5—1.

Hence ext!(Frory,Ox) <s—1— (L + Kx).Kx. Hence for s > 2
(3.36)
dim H;*" + s — 1 = dimP(p. (I @ ¢* (L ® Kx))| r.5)
dlmwmt JL®Ky,0)— (L+Kx).Kx,
< max dim(M (L@KX,O)\MW(L@KX,O)U Uwi (L & Kx,0))

1<0
+s—1— (L+Kx).Kx
< max{(L + Kx).L -1, (L+ Kx).L —3+s}=(L+Kx).L—3+s.

Hence dim HKL’S’t < 2¢—2 for all s > 2. Hence CB-(3) is fulfilled.
Step 4: CB-(4).

CB-(4) can be shown analogously: (9 is obviously nonempty and
LOK x
there is a classifying map Q- e, MU L ® Kx,0) with fiber over
FrLeky contained in Extl(}"L®KX, Ox).

dim py ' (p2(Q9)) \ Q3 < dim Q3 — 2 because

dim ¢S5 (p3 " (p2(Q9)) \ Q)
< dim MYL ® Kx,0)\ M™(L® Kx,0)U | ] WiH(L® Kx,0)

1<—1
< (L+ Kx)* -2,

and

ext! (Frony, Ox) = —Kx.(L+ Kx), VFraxy € dron (p3 ' (p2(Q9))-

Statement (3) is proved.

Step 5: CB'-(3') and CB'-(2'a).

Now we prove Statement (2) of the theorem. We need to check con-
ditions in CB’ hold. With no loss of generality, we ask L = aG + bF
with b > a. Then in this case L + Kx = mF or G +nF withn > 0
for e = 0, and n > 2e — 1 for e > 1. Then Frgk, is semistable
& HY(Frgky) = 0. Hence H) C Ut>oHeL’1’t and by (3.33) we
have CB’-(3'). Notice that (3.33) holds for L = aG + bF ample with
min{a,b} > 2.

Also M(L@Kx,O) = |L®Kx| and M(L@Kx,(])/ = |L®Kx|/.
Then easy to check CB’-(2'a) holds.
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Step 6: CB'-(2'D).
Now we check CB’-(2'b). First let L ® Kx = G 4 nF with |G +
nF["™ = (). Recall the commutative diagram in (3.25)

/
D (<)

(3.37) POV) <—— P Doy

f, l lfaf

Qy —= M(L® Kx,0)"
2

where V' = &ut)( 2Lk« |Q/L®K ,¢*Ox) with 215k, the universal quo-
X

tient over Qrer, . V' is locally free of rank —(L + Kx).Kx on Q’L®KX.
P} c P(V') parametrizing torsion free extensions of 2, by Ox for all
s € Qg and f(, 1 P; — Q3 is the classifying map and also a principal
PGL(VigKk )-bundle for some vector space Vigk -

To show the complement of P} inside P()’) is of codimension > 2, it is
enough to show for every Frox, € ME(LoKx,0), H(Frok, (Kx)) =
0 with support Cr g, = Cl U CJQEL®KX such that CJlEL@KX € |F|

FLRK x
and C% € |G + (n — 1)F|"™ there is a torsion free extension in
LK x

Ext'(Frokyx:Ox). V Floxy & Froky Ext' (Frery/Flek,  Ox)
can be view as a subspace of Extl(fL@)KX,(’)X). There is a torsion
free extension in Ext!(Frgk,,Ox) < extl(fL®KX/f’L®KX,OX) <
ext! (Froxy,Ox), V ]:’L®KX C Freky- Now we have that C’;L®KX =
1 2 ; ~ pl _ C_
C;L®KX UC’;L®KX, C}:L@)KX =P and deg(KX\C;L@)KX) <0, fori=1,2.

Therefore V Fi o G Freky, cither Ext'(Froxy /Flex,,Ox) = 0or
Ext*(Frek /‘F/L®KX7 Ox) = 0. Hence the map

Ext'(Froxy /Froky Ox) = Ext' (Froxy, Ox)

can not be surjetive. The reason is that ext!(Frex,, Ox) = 2n+2—e >
0 and Ext!( Loky Ox) # 0 since X(Fro ., (Kx)) <O0.

If L ® Kx = F, then CB/-(2'b) is obvious. Let |L @ Kx|™ = (),
ie. L ® Kx = nF with n > 1. In this case |[L ® Kx|' = |L ® Kx]|.
Qrery = QUeky. In order to show dimP(V') \ P} < dim P} — 2, it
is enough to show for every Frgi, semistable, P(Extl(}"L@KX, Ox) \
Ext!(Freory, Ox)) is of dimension < —Kx.(L + Kx) — 3, where
Ext!(Frery,Ox)!) is the subset parameterizing torsion free exten-
sions. We have

(3.38) Eth(fL@)KX,OX) \Eth(]:L(gKX,Ox)tf
= U Ext' (Frexy /Frowry Ox)-

/
fL®KXgFL®KX
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Since L ® Kx = nF, we have for any ]:/L®KX C Freky, either

Ext'(Frory/Floky: Ox) = 0 or Ext*(Frokry/Fier, Ox) = 0.
Hence we only need to show that ¥ Fj o Ky & FLeky such that

Ext'(Frery/Froky Ox) # 0,

we have extl(F]’:®KX, Ox) > 2. It is enough to show extl(fj:@KX ,O0x)>

2 for every Frop. G FrLoky With C;/L®KX integral. On the other

hand C'z =~ P! if integral, and also deg(Kx|c_, ) = —2. Hence
L®K x Fleky
extl(f'L®KX,(’)X) = hl{( Tokyx (Kx)) > 2 because x(FLgp, (Kx)) <
—2.
Step 7: CB'-(4').
CB’-(4') is the last thing left to check.

f2 Freky is semistable,
QIQ = [IZ(L(X)KX) _»JTL®KX]€Q2 ho(}—L@)KX(Kx)) —0, and
Supp(Freky) € |L © Kx|'

In this case Frek is semistable & HY(Frgi, ) = 0. h(Zz(LoKx)) =
1 for all Z; € p2(Q5), hence p2|Q/2 is bijective and hence an isomorphism,

therefore Q% = py ' (p2(Q%)) and CB’-(4") holds.
The proof of Theorem 3.14 is finished. q.e.d.
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