j. differential geometry 114 (2020) 305-336

STRANGE DUALITY ON RATIONAL SURFACES

Yao Yuan

Abstract

We study Le Potier's strange duality conjecture on a rational surface. We focus on the case involving the moduli space of rank 2 sheaves with trivial first Chern class and second Chern class 2, and the moduli space of 1-dimensional sheaves with determinant L and Euler characteristic 0. We show the conjecture for this case is true under some suitable conditions on L , which applies to L ample on any Hirzebruch surface $\Sigma_e := \mathbb{P}(\mathcal{O}_{\mathbb{P}^1} \oplus \mathcal{O}_{\mathbb{P}^1}(e))$ except for $e = 1$. When $e = 1$, our result applies to $L = aG + bF$ with $b \ge a + [a/2]$, where F is the fiber class, G is the section class with $G² = -1$ and $\lfloor a/2 \rfloor$ is the integral part of $a/2$.

1. Introduction

In this whole paper, X is a rational surface over the complex number \mathbb{C} , with K_X the canonical divisor and H the polarization such that the intersection number $K_X.H<0$. We use the same letter to denote both the line bundles and the corresponding divisor classes, but we write $L_1 \otimes L_2$, L^{-1} for line bundles while $L_1 + L_2$, $-L$ for the corresponding divisor classes. Denote by $L_1.L_2$ the intersection number of L_1 and L_2 . $L^2 := L.L.$

Let $K(X)$ be the Grothendieck group of coherent sheaves over X. Define a quadratic form $(u, c) \mapsto \langle u, c \rangle := \chi(u \otimes c)$ on $K(X)$, where $\chi(-)$ is the holomorphic Euler characteristic and $\chi(u\otimes c) = \chi(\mathcal{F}\otimes^L\mathcal{G})$ for any F of class u, G of class c and \otimes^L the flat tensor.

For two elements $c, u \in K(X)$ orthogonal to each other with respect to \langle , \rangle , we have $M_X^H(c)$ and $M_X^H(u)$ the moduli spaces of H-semistable sheaves of classes c and u respectively. If there are no strictly semistable sheaves of classes c (u, resp.), then over $M_X^H(c)$ ($M_X^H(u)$, resp.) there is a well-defined line bundle $\lambda_c(u)$ ($\lambda_u(c)$, resp.) called determinant line bundle associated to u (c, resp.). If there are strictly semistable sheaves of class u, one needs more conditions on c to get $\lambda_u(c)$ well-defined (see $Ch 8$ in [[11](#page-31-0)]).

Mathematics Subject Classification. Primary 14D05.

Key words and phrases. Rational surfaces, moduli spaces of sheaves, strange duality.

Received May 1, 2016.

Let $c, u \in K(X)$. Assume both moduli spaces $M_H^X(c)$ and $M_H^X(u)$ are non-empty and the determinant line bundles $\lambda_c(u)$ and $\lambda_u(c)$ are well-defined over $M_H^X(c)$ and $M_H^X(u)$, respectively. According to [[15](#page-31-1)] (see [[15](#page-31-1)] p.9), if the following (\star) is satisfied,

 (\star) for all H-semistable sheaves F of class c and H-semistable sheaves G of class u on X, $\text{Tor}^i(\mathcal{F}, \mathcal{G}) = 0 \ \forall i \geq 1$, and $H^2(X, \mathcal{F} \otimes \mathcal{G}) = 0$. then there is a canonical map

$$
(1.1) \tSD_{c,u}: H^0(M_H^X(c), \lambda_c(u))^{\vee} \to H^0(M_H^X(u), \lambda_u(c)).
$$

The strange duality conjecture asserts that $SD_{c,u}$ is an isomorphism.

Strange duality conjecture on curves was at first formulated (in [[3](#page-30-0)] and $[7]$ $[7]$ $[7]$) and has been proved (see $[16]$ $[16]$ $[16]$, $[4]$ $[4]$ $[4]$). Strange duality on surfaces does not have a general formulation so far. There is a special formulation due to Le Potier (see [[15](#page-31-1)] or [[6](#page-30-3)]). In this paper we choose $u = u_L :=$ $[\mathcal{O}_X] - [L^{-1}] + \frac{(L(L+K_X))}{2}[\mathcal{O}_x]$ with x a single point in X, and $c = c_2^2 :=$ $2[\mathcal{O}_X] - 2[\mathcal{O}_x]$. Then (\star) is satisfied and $SD_{c,u}$ is well-defined. We prove the following theorem.

Theorem 1.1 (Corollary [3.15\)](#page-18-0). Let X be a Hirzebruch surface Σ_e and $L = aG + bF$ with F the fiber class and G the section such that $G^2 = -e$. Then the strange duality map $SD_{c_2^2, u_L}$ as in [\(1.1\)](#page-1-0) is an isomorphism for the following cases.

- 1) $\min\{a, b\} \leq 1$;
- 2) min $\{a, b\} \geq 2, e \neq 1, L$ ample;
- 3) min $\{a, b\} \geq 2$, $e = 1$, $b \geq a + [a/2]$ with $[a/2]$ the integral part of $a/2$.

Although strange duality on surfaces is a very interesting problem, there are very few cases known. Our result adds to previous work by the author $([20], [22])$ $([20], [22])$ $([20], [22])$ $([20], [22])$ $([20], [22])$ and others $([1], [5], [6], [9], [17], [18], [19]).$ $([1], [5], [6], [9], [17], [18], [19]).$ $([1], [5], [6], [9], [17], [18], [19]).$ $([1], [5], [6], [9], [17], [18], [19]).$ $([1], [5], [6], [9], [17], [18], [19]).$ $([1], [5], [6], [9], [17], [18], [19]).$ $([1], [5], [6], [9], [17], [18], [19]).$ $([1], [5], [6], [9], [17], [18], [19]).$ $([1], [5], [6], [9], [17], [18], [19]).$ $([1], [5], [6], [9], [17], [18], [19]).$ $([1], [5], [6], [9], [17], [18], [19]).$ $([1], [5], [6], [9], [17], [18], [19]).$ $([1], [5], [6], [9], [17], [18], [19]).$ $([1], [5], [6], [9], [17], [18], [19]).$ $([1], [5], [6], [9], [17], [18], [19]).$

Especially, in [[22](#page-31-4)] we proved $SD_{c_2^2, u_L}$ is an isomorphism when $X =$ \mathbb{P}^2 . The limitation of the method in [[22](#page-31-4)] is that: we have used Fourier transform on \mathbb{P}^2 which does not behave well on other rational surfaces. In this paper we use a new strategy. Actually we show the strange duality map $SD_{c_2^2, u_L}$ is an isomorphism under a list of conditions, and then check that all these conditions are fulfilled for cases in Theorem [1.1.](#page-1-1) So Theorem [1.1](#page-1-1) is an application of our main theorem (Theorem [3.13\)](#page-17-0) to Hirzebruch surfaces and there are certainly more applications to other rational surfaces.

The structure of the paper is arranged as follows. In $\S 2$ $\S 2$ we give preliminaries, including some useful properties of $M_X^H(c_2^2)$ (in § [2.1](#page-2-1) and § [2.3\)](#page-6-0) and a brief introduction to determinant line bundles and the setup of strange duality (in $\S 2.2$). $\S 3$ $\S 3$ is the main part. In $\S 3.1$ $\S 3.1$ and § [3.2](#page-10-0) we prove the strange duality map is an isomorphism under a list of conditions; in $\S 3.3$ $\S 3.3$ we show the main theorem (Theorem [3.13\)](#page-17-0) applies

to cases on Hirzebruch surfaces. Although the argument in $\S 3.3$ $\S 3.3$ takes quite much space, the technique used there is essentially a combination of those in $[21]$ $[21]$ $[21]$ and $[22]$ $[22]$ $[22]$.

Notations. Let F , G be two sheaves.

- $c_i(\mathcal{F})$ is the i-th Chern class of $\mathcal{F};$
- $\chi(\mathcal{F})$ is the Euler characteristic of \mathcal{F} ;
- $h^i(\mathcal{F}) = \dim H^i(\mathcal{F});$
- $ext{ext}^{i}(\mathcal{F}, \mathcal{G}) = \dim \text{Ext}^{i}(\mathcal{F}, \mathcal{G}), \text{ hom}(\mathcal{F}, \mathcal{G}) = \dim \text{Hom}(\mathcal{F}, \mathcal{G})$ and $\chi(\mathcal{F},\mathcal{G})=\sum_{i\geq 0}(-1)^i \text{ext}^i(\mathcal{F},\mathcal{G});$
- Supp (F) or C_F is the support of 1-dimensional sheaf F

Acknowledgements. The author was supported by NSFC grant 11301292.

2. Preliminaries

Define $u_L := [\mathcal{O}_X] - [L^{-1}] + \frac{(L(L+K_X))}{2}[\mathcal{O}_x] \in K(X)$ with L a line bundle on X and x a single point in X. It is easy to check $u_{\mathcal{O}_X} = 0$ and $u_{L_1} + u_{L_2} = u_{L_1 \otimes L_2}$. If L is nontrivially effective, i.e. $L \overset{\sim}{\neq} \mathcal{O}_X$ and $H^0(L) \neq 0$, let |L| be the linear system, then u_L is the class of 1-dimensional sheaves supported at curves in $|L|$ and of Euler characteristic 0.

For L nontrivially effective, denote by $M(L, 0)$ the moduli space $M_X^H(u_L)$. In fact a sheaf $\mathcal F$ of class u_L is semistable (stable, resp.) if and only if $\forall \mathcal{F}' \subsetneq \mathcal{F}$, $\chi(\mathcal{F}') \leq 0$ ($\chi(\mathcal{F}') < 0$, resp.). Hence $M(L, 0)$ does not depend on the polarization H. We ask $M(\mathcal{O}_X, 0)$ to be a single point standing for the zero sheaf.

Let $c_n^r = r[\mathcal{O}_X] - n[\mathcal{O}_x] \in K(X)$ with x a single point on X. Denote by $W(r, 0, n)$ the moduli space $M_X^H(c_n^r)$ (but $W(r, 0, n)$ might depend on H). In this paper we mainly focus on $W(2, 0, 2)$ for X a rational surface.

For any L, r, n, u_L and c_n^r are orthogonal with respect to the quadratic form \langle , \rangle on $K(X)$.

2.1. Some basic properties of $W(2,0,2)$.

Definition 2.1. We say the polarization H is c_2^2 -general, if for any $\xi \in H^2(X,\mathbb{Z}) \cong \text{Pic}(X)$ such that $\xi \cdot H = 0$ and $\xi^2 \geq -2$, we have $\xi = 0$.

Remark 2.2. Since $K_X.H < 0$, $\xi.H = 0 \Rightarrow \xi^2 \le -2$ for any $0 \neq \xi \in Pic(X)$. This is because $H^0(\mathcal{O}_X(\pm \xi)) = 0$ by $\xi.H = 0$ and $H^2(\mathcal{O}_X(\pm \xi)) = H^0(\mathcal{O}_X(K_X \mp \xi))^\vee = 0$ by $(K_X \mp \xi)H < 0$, hence $\chi(\mathcal{O}_X(\xi) \oplus \mathcal{O}_X(-\xi)) = 2 + \xi^2 \leq 0.$

Lemma 2.3. Let F be an H-semistable sheaf in class c_2^2 . If F is not locally free, then it is strictly semistable and S-equivalent to $\mathcal{I}_x \oplus \mathcal{I}_y$

with x, y two single points on X. Moreover, if H is c_2^2 -general, then $\mathcal F$ is H-stable if and only if $\mathcal F$ is locally free.

Proof. First assume $\mathcal F$ is not locally free, then its reflexive hull $\mathcal F^{\vee\vee}$ is locally free of class c_i^2 with $i = 1$ or 0. $H^2(\mathcal{F}^{\vee\vee}) \cong H^2(\mathcal{F}) \cong$ $\text{Hom}(\mathcal{F}, K_X)^{\vee} = 0$ by $K_X.H < 0$ and the semistability of \mathcal{F} . Hence $\dim H^0(\mathcal{F}^{\vee\vee}) \ge \chi(\mathcal{F}^{\vee\vee}) = 2 - i > 0.$ Therefore either $\mathcal{F}^{\vee\vee} \cong \mathcal{O}_X^{\oplus 2}$ or $\mathcal{F}^{\vee\vee}$ lies in the following sequence

(2.1)
$$
0 \to \mathcal{O}_X \xrightarrow{J} \mathcal{F}^{\vee \vee} \to \mathcal{I}_x \to 0,
$$

where \mathcal{I}_x is the ideal sheaf of some single point x on X.

If $\mathcal{F}^{\vee\vee}$ lies in (2.1) , then we have

(2.2)
$$
0 \to \mathcal{F} \to \mathcal{F}^{\vee\vee} \stackrel{p}{\to} \mathcal{T}_1 \to 0,
$$

where \mathcal{T}_1 is a 0-dimensional sheaf with $\chi(\mathcal{T}_1) = 1$ and hence $\mathcal{T}_1 \cong \mathcal{O}_y$ for some single point $y \in X$. Compose maps j in [\(2.1\)](#page-3-0) and p in [\(2.2\)](#page-3-1), the map $p \circ j : \mathcal{O}_X \to \mathcal{T}_1$ is not zero because otherwise \mathcal{O}_X would be a subsheaf of $\mathcal F$. Therefore $p \circ j$ is surjective with kernel isomorphic to \mathcal{I}_y which is a subsheaf of $\mathcal F$ destabilizing $\mathcal F$. Hence $\mathcal F$ is not stable and S-equivalent to $\mathcal{I}_x \oplus \mathcal{I}_y$.

If $\mathcal{F}^{\vee\vee} \cong \mathcal{O}_X^{\oplus 2}$, then we have the following exact sequence

$$
0 \to \mathcal{F} \to \mathcal{O}_X^{\oplus 2} \to \mathcal{T}_2 \to 0,
$$

where \mathcal{T}_2 is a 0-dimensional sheaf with $\chi(\mathcal{T}_2) = 2$. We also have

$$
0 \to \mathcal{O}_x \to \mathcal{T}_2 \to \mathcal{O}_y \to 0,
$$

where x, y are two single points on X (it is possible to have $x = y$). Hence we have the following diagram

$$
0 \t 0 \t 0 \t 0
$$

\n
$$
0 \rightarrow \mathcal{I}_x \rightarrow \mathcal{O}_X \rightarrow \mathcal{O}_x \rightarrow 0
$$

\n
$$
0 \rightarrow \mathcal{F} \rightarrow \mathcal{O}_X^{\oplus 2} \rightarrow \mathcal{T}_2 \rightarrow 0
$$

\n
$$
0 \rightarrow \mathcal{I}_y \rightarrow \mathcal{O}_X \rightarrow \mathcal{O}_y \rightarrow 0
$$

\n
$$
\downarrow \qquad \downarrow
$$

\n
$$
0 \rightarrow \mathcal{I}_y \rightarrow \mathcal{O}_X \rightarrow \mathcal{O}_y \rightarrow 0
$$

\n
$$
\downarrow \qquad \downarrow
$$

Hence $\mathcal F$ is S-equivalent to $\mathcal I_x \oplus \mathcal I_y$.

Now assume H is c_2^2 -general. We only need to show that any semistable bundle $\mathcal F$ of class c_2^2 is stable. If $\mathcal F$ is strictly semistable, then we have the following sequence

$$
0 \to \mathcal{I}_Z(\xi) \to \mathcal{F} \to \mathcal{I}_W(-\xi) \to 0,
$$

where $\xi.H = 0$ and $\mathcal{I}_Z, \mathcal{I}_W$ are ideal sheaves of 0-dimensional subschemes Z, W of X such that the length $len(Z) = len(W) = 1 + \xi^2/2 \ge 0$.

Since H is c_2^2 -general, $\xi = 0$ and \mathcal{I}_Z is a subsheaf of F. Hence so is \mathcal{O}_X because F is locally free, which is a contradiction since $H^0(\mathcal{F}) = 0$ by semistability. Hence $\mathcal F$ is stable. The lemma is proved. $q.e.d.$

Denote by S the closed subset of $W(2, 0, 2)$ consisting of non locally free sheaves, then set-theoretically S is isomorphic to the second symmetric power $X^{(2)}$ of X by Lemma [2.3.](#page-2-2) S is of codimension 1 in $W(2, 0, 2)$. In § [2.3](#page-6-0) we will give a scheme-theoretic structure of S and show that it is a divisor associated to some line bundle.

Remark 2.4. If H is not c_2^2 -general, then all strictly semistable vector bundle are S-equivalent to $\mathcal{O}_X(\xi) \oplus \mathcal{O}_X(-\xi)$ with $\xi \in Pic(X)$, $\xi.H = \xi.K_X = 0$ and $\xi^2 = -2$.

2.2. Determinant line bundles and strange duality. To set up the strange duality conjecture, we briefly introduce so-called determinant line bundles on the moduli spaces of semistable sheaves. We refer to Chapter 8 in [[11](#page-31-0)] for more details.

For a Noetherian scheme Y, we denote by $K(Y)$ the Grothendieck groups of coherent sheaves on Y and $K^0(Y)$ be the subgroup of $K(Y)$ generated by locally free sheaves. Then $K^0(X) = K(X)$ since X is smooth and projective.

Let $\mathcal E$ be a flat family of coherent sheaves of class c on X parametrized by a noetherian scheme S, then $\mathscr{E} \in K^0(X \times S)$. Let $p : X \times S \to S$, q: $X \times S \to X$ be the projections. Define $\lambda_{\mathscr{E}} : K(X) = K^0(X) \to Pic(S)$ to be the composition of the following homomorphisms: (2.3)

$$
K^{0}(X) \longrightarrow^{q^{*}} K^{0}(X \times S) \xrightarrow{\cdot [\mathscr{E}]} K^{0}(X \times S) \xrightarrow{R^{\bullet}p_{*}} K^{0}(S) \xrightarrow{det^{-1}} \text{Pic}(S),
$$

where q^* is the pull-back morphism, $[\mathscr{F}],[\mathscr{G}] := \sum_i (-1)^i [\text{Tor}^i(\mathscr{F}, \mathscr{G})],$ and $R^{\bullet}p_{*}([\mathscr{F}]) = \sum_{i} (-1)^{i} [R^{i}p_{*}\mathscr{F}]$. Proposition 2.1.10 in [[11](#page-31-0)] assures that $R^{\bullet} p_{*}([\mathscr{F}]) \in K^{0}(S)$ for any \mathscr{F} coherent and S-flat.

For any $u \in K(X)$, $\lambda_{\mathscr{E}}(u) \in Pic(S)$ is called the **determinant line bundle** associated to u induced by the family $\mathscr E$. Notice that the definition we use here is dual to theirs in $[11]$ $[11]$ $[11]$.

Let $S = M_X^H(c)$, then there is in general no such universal family $\mathscr E$ over $X \times M_X^H(c)$, and even if it exists, there is ambiguity caused by tensoring with the pull-back of a line bundle on $M_X^H(c)$. Thus to get a well-defined determinant line bundle $\lambda_{\mathcal{L}}(u)$ over $M_X^H(c)$, we need look at the good $GL(V)$ -quotient $\Omega(c) \to M_X^H(c)$ with $\Omega(c)$ an open subset of some Quot-scheme and there is a universal quotient $\mathscr E$ over $X \times \Omega(c)$. $\lambda_c(u)$ is then defined by descending the line bundle $\lambda_{\widetilde{\mathcal{E}}}(u)$ over $\Omega(c)$. $\lambda_{\widetilde{\mathcal{E}}}(u)$ descends if and only if it satisfies the "descent condition" (see Theorem 4.2.15 in $[11]$ $[11]$ $[11]$, which implies that u is orthogonal to c with respect to the quadratic form \langle , \rangle . Hence the homomorphism λ_c is only defined over a subgroup of $K(X)$.

Now we focus on $M(L, 0)$ and $W(r, 0, n)$. As we have seen, u_L is orthogonal to c_n^r for any L, r, n .

Let $\lambda_{c_n^r}(L)$ be the determinant line bundle associated to u_L over (an open subset of) $W(r, 0, n)$. We denote simply by $\lambda_r(L)$ if $r = n$. By checking the descent condition we see that $\lambda_2(L)$ is always well-defined over the stable locus $W(2, 0, 2)^s$ and **S**, hence it is well-defined over all $W(2,0,2)$ if H is c_2^2 -general. If H is not c_2^2 -general, then $\lambda_2(L)$ is welldefined over point $[\mathcal{O}_X(-\xi) \oplus \mathcal{O}_X(\xi)]$ if and only if $\xi.L = 0$. We denote by $W(r, 0, n)^L$ the biggest open subset of $W(r, 0, n)$ where $\lambda_{c_n^r}(L)$ is well-defined. Notice that the stable locus $W(r, 0, n)^s \subset W(r, 0, n)^L$. By Remark [2.4,](#page-4-1) $W(2,0,2)^L = W(2,0,2)^{L \otimes K_X}$.

On the other hand, let $\lambda_L(c_n^r)$ be the determinant line bundle associated to c_n^r over $M(L, 0)$, then $\lambda_L(c_n^r)$ is always well-defined over the whole moduli space. We have the following proposition which is analogous to Theorem 2.1 in $[6]$ $[6]$ $[6]$.

Proposition 2.5. (1) There is a canonical section, unique up to scalars, $\sigma_{c_n^r,u_L} \in H^0(W(r,0,n)^L \times M(L,0), \lambda_{c_n^r}(L) \boxtimes \lambda_L(c_n^r))$ whose zero set is

 $D_{c_n^r,u_L} := \left\{ ([\mathcal{F}], [\mathcal{G}]) \in W(r,0,n)^L \times M(L,0) \mid h^0(\mathcal{F} \otimes \mathcal{G}) = h^1(\mathcal{F} \otimes \mathcal{G}) \neq 0 \right\}.$

(2) The section $\sigma_{c_n^r,u_L}$ defines a linear map up to scalars

$$
(2.4) \qquad SD_{c_n^r, u_L} : H^0(W(r, 0, n)^L, \lambda_{c_n^r}(L))^{\vee} \to H^0(M(L, 0), \lambda_L(c_n^r)).
$$

(3) Denote by $\sigma_{\mathcal{F}}$ the restriction of $\sigma_{c_n^r,u_L}$ to $\{\mathcal{F}\}\times M(L,0)$. $\sigma_{\mathcal{F}}$ only depends (up to scalars) on the S-equivalence class of $\mathcal{F}.$

(4) If $\sigma_{c_n^r,u_L}$ is not identically zero, then by assigning $\mathcal F$ to $\sigma_{\mathcal F}$ we get a rational map $\Phi: W(r,0,n)^L \to \mathbb{P}(H^0(M(L,0), \lambda_L(c_n^r)))$. Similarly we have a rational map $\Psi: M(L,0) \to \mathbb{P}(H^0(W(r,0,n)^L, \lambda_{c_n^r}(L)))$. Moreover If the image of Φ is not contained in a hyperplane, then $SD_{c_n^r,u_L}$ is injective; if the image of Ψ is not contained in a hyperplane, then $SD_{c_n^r,u_L}$ is surjective.

Proof. The proof of Theorem 2.1 in $\left| 6 \right|$ $\left| 6 \right|$ $\left| 6 \right|$ also applies to our case although the surface may not be \mathbb{P}^2 . For statement (3) and (4), one can also see Lemma 6.13 and Proposition 6.17 in $[9]$ $[9]$ $[9]$. q.e.d.

The map $SD_{c_n^r,u_L}$ in [\(2.4\)](#page-5-0) is call the **strange duality map**, and Le Potier's strange duality is as follows (also see Conjecture 2.2 in [[6](#page-30-3)])

Conjecture/Question 2.6. If both $W(r, 0, n)^L$ and $M(L, 0)$ are non-empty, then is $SD_{c_n^r,u_L}$ an isomorphism?

We denote by Θ_L the determinant line bundle associated to $c_0^1 = [\mathcal{O}_X]$ on $M(L, 0)$. Then Θ_L has a canonical divisor D_{Θ_L} which consists of sheaves with non trivial global sections. Since λ_L is a group homo-morphism, by Proposition 2.8 in [[14](#page-31-10)], we have that $\lambda_L(c_n^r) \cong \Theta_L^{\otimes r} \otimes$ $\pi^* \mathcal{O}_{|L|}(n) =: \Theta_L^r(n)$ where $\pi: M(L, 0) \to |L|$ sends each sheaf to its support.

In this paper we study the following strange duality map for X a rational surface

(2.5)

$$
SD_{2,L} := SD_{c_2^2, u_L} : H^0(W(2,0,2)^L, \lambda_2(L))^{\vee} \to H^0(M(L,0), \Theta_L^2(2)).
$$

2.3. Scheme-theoretic structure of S on $W(2,0,2)$. S consists of non locally free sheaves in $W(2, 0, 2)$. Recall we have a good quotient $\rho : \Omega_2 \to W(2, 0, 2)$. Let $\widetilde{\mathbf{S}} = \rho^{-1}(\mathbf{S})$.

Set-theoretically $S \cong X^{(2)}$. Let $\Delta \subset X^{(2)}$ be the singular locus and $\Delta \cong X$. Define $S^o = S - \Delta$, $W(2, 0, 2)^o = W(2, 0, 2)^L - \Delta$, $\widetilde{S}^o = \rho^{-1}(S^o)$ and $\Omega_2^o = \rho^{-1}(W(2,0,2)^o)$. Let $\mathscr{F}(\mathscr{F}^o, \text{resp.})$ be the universal quotient over $\overline{X} \times \Omega_2$ ($X \times \Omega_2^o$, resp.). We then have the following proposition due to Abe (see Section 3.4 and Section 5.2 Proposition 3.7 and Proposition 5.2 in $[1]$ $[1]$ $[1]$)

Proposition 2.7. (1) The second Fitting ideal $Fittz$ ₂(\mathscr{F} ^o) of \mathscr{F} ^o defines a smooth closed subscheme \widetilde{S}° of $X \times \Omega_2^o$ supported at the set

 $\{(x,[q:\mathcal{O}_X(-mH)\otimes V \twoheadrightarrow \mathcal{F}])|\dim_{k(x)}\mathcal{F}_x\otimes k(x)>2\}\subset X\times\Omega_2^o.$

i.e. \widehat{S}^o consists of points $(x, [q:O_X(-mH) \twoheadrightarrow \mathcal{F}])$ such that \mathcal{F}_x is not free.

(2) We have a surjective map $p_{\Omega} : \widetilde{S}^{\circ} \to \widetilde{S}^{\circ}$ induced by the projection $p_{\Omega}: X \times \Omega_2 \to \Omega_2$. We give a scheme structure of \widetilde{S}° by letting its defining ideal be the kernel of $\mathcal{O}_{\Omega^o_2} \to p_{\Omega*} \mathcal{O}_{\widehat{S}^o}$. Then \widetilde{S}^o is a normal crossing divisor in Ω_2^o with $\widetilde{S}^o \to \widetilde{S}^o$ the normalization.

(3) The line bundle associated to the divisor \widetilde{S}° on Ω_2° is $\lambda_{\mathscr{F}^{\circ}}(u_{K_X^{-1}})$.

Proof. Sheaves in \widetilde{S}^{σ} are all quasi-bundles (see Definition 2.[1](#page-30-4) in [1]), hence Abe's argument in Section 3.4 in [[1](#page-30-4)] gives Statement (1) and (2). Notice that our notations are slightly different from his.

For Statement (3), by Proposition 5.2 in [[1](#page-30-4)] we know that $\mathcal{O}_{\Omega_2^o}(\widetilde{\mathbf{S}^o}) \cong$ $\lambda_{\mathscr{F}^o}([K_X])^{-1}\otimes \lambda_{\mathscr{F}^o}([\mathcal{O}_X])^{-1}$. We also see that

$$
\lambda_{\mathscr{F}^o}(u_{K_X^{-1}})\cong \lambda_{\mathscr{F}^o}([K_X])^{-1}\otimes \lambda_{\mathscr{F}^o}([\mathcal{O}_X]).
$$

But $\lambda_{\mathscr{F}^o}([\mathcal{O}_X]) \cong \mathcal{O}_{\Omega_2^o}$ since $H^i(\mathcal{F}) = 0$ for $i = 0, 1, 2$ and \mathcal{F} semistable of class c_2^2 . Hence the proposition. q.e.d.

Corollary 2.8. Let S have the scheme-theoretic structure as the closure of S° in $W(2,0,2)$. Then S is a divisor associated to the line bundle $\lambda_2(K_X^{-1})$ on $W(2,0,2)$. Moreover **S** is an integral scheme.

Proof. By Proposition [2.7,](#page-6-1) S^o is a divisor associated to $\lambda_2(K_X^{-1})$ restricted on $W(2,0,2)^o$. S is the closure of S^o in $W(2,0,2)^L$. Since $K_X.H < 0, W(2,0,2)$ is normal, Cohen-Macaulay and of pure dimension 5, hence the section given by S^o extends to a section of $\lambda_2(K_X^{-1})$ on $W(2, 0, 2)^L$ with divisor **S**.

We have a morphism $\varphi: X^{(2)} \to \mathbf{S}$ sending (x, y) to $\mathcal{I}_x \oplus \mathcal{I}_y$, which is bijective. Hence **S** is irreducible. \tilde{S}° is reduced, hence so are S° and S. Thus S is an integral scheme. $q.e.d.$

Lemma 2.9. For any line bundle L, the map $H^0(\mathcal{S}, \lambda_2(L)|_{\mathcal{S}}) \stackrel{\varphi^*}{\longrightarrow}$ $H^0(X^{(2)}, \varphi^* \lambda_2(L))$ induced by $\lambda_2(L)|_S \to \varphi_* \varphi^* \lambda_2(L)$ is injective. Moreover $H^0(X^{(2)}, \varphi^*\lambda_2(L)) \cong (H^0(X, L)^{\otimes 2})^{\mathfrak{S}_2} \cong S^2H^0(X, L)$ where \mathfrak{S}_n is the n-th symmetric group.

Proof. Let $\Delta \subset X^2$ be the diagonal, and \mathcal{I}_{Δ} is the ideal sheaf of Δ in X^2 . Let $pr_{i,j}$ be the projection from X^n to the product X^2 of the i-th and j-th factors. Then $pr_{1,2}^*\mathcal{I}_\Delta \oplus pr_{1,3}^*\mathcal{I}_\Delta$ gives a family of ideal sheaves on X^3 and induces a morphism $\tilde{\varphi}: X^2 \to W(2, 0, 2)$ with image S. $\tilde{\varphi}$ is \mathfrak{S}_2 -invariant, hence factors through $X^2 \to X^{(2)}$ and gives the map $\varphi: X^{(2)} \to \mathbf{S}$. The morphism φ is bijective and **S** is reduced, hence the map $\varphi^{\natural}: \mathcal{O}_S \to \varphi_* \mathcal{O}_{X^{(2)}}$ is injective. Hence so is the map $\lambda_2(L)|_{\mathbf{S}} \to \varphi_*\varphi^* \lambda_2(L)$ and therefore $H^0(\mathbf{S}, \lambda_2(L)|_{\mathbf{S}}) \xrightarrow{\varphi^*}$ $H^0(X^{(2)}, \varphi^* \lambda_2(L))$ is injective.

Obviously $H^0(X^{(2)}, \varphi^* \lambda_2(L)) \cong (H^0(X^2, \widetilde{\varphi}^* \lambda_2(L)))^{\mathfrak{S}_2}$. It will suffice
show that $H^0(X^2, \widetilde{\varphi}^* \lambda_2(L)) \cong H^0(X, L) \otimes^2$. By the basic proper to show that $H^0(X^2, \tilde{\varphi}^*\lambda_2(L)) \cong H^0(X, L)^{\otimes 2}$. By the basic properties (see Lemma 8.1.2 and Theorem 8.1.5 in $[11]$ $[11]$ $[11]$) of the determinant line bundle, we have $\widetilde{\varphi}^* \lambda_2(L) \cong \lambda_{pr_{1,2}^* \mathcal{I}_{\Delta} \oplus pr_{1,3}^* \mathcal{I}_{\Delta}}(u_L) \cong \lambda_{pr_{1,2}^* \mathcal{I}_{\Delta}}(u_L) \otimes$ $\lambda_{pr_{1,3}^*\mathcal{I}_{\Delta}}(u_L) \cong \lambda_{\mathcal{I}_{\Delta}}(L)^{\boxtimes 2}$. Obviously $\lambda_{\mathcal{I}_{\Delta}}(L) \cong L$, so we have

$$
H^0(X^2, \widetilde{\varphi}^* \lambda_2(L)) \cong H^0(X, \lambda_{\mathcal{I}_{\Delta}}(L))^{\otimes 2} \cong H^0(X, L)^{\otimes 2}.
$$

Hence the lemma. $q.e.d.$

The line bundle $L^{\boxtimes n}$ on X^n is \mathfrak{S}_n -linearized and descends to a line bundle on $X^{(n)}$, which we denote by $L_{(n)}$. So $\varphi^* \lambda_2(L) \cong L_{(2)}$ on $X^{(2)}$. Denote also by $L_{(n)}$ the pullback of $L_{(n)}$ to $X^{[n]}$ via the Hilbert-Chow morphism, where $X^{[n]}$ is the Hilbert scheme of *n*-points on X.

3. Main result on $SD_{2,L}$

Let L be a nontrivially effective line bundle. Recall that $SD_{2,L}$ is the following strange duality map as in (2.5) :

$$
SD_{2,L}: H^0(W(2,0,2)^L, \lambda_2(L))^{\vee} \to H^0(M(L,0), \Theta_L^2(2)).
$$

In this section, we show that under certain conditions $SD_{2,L}$ is an iso-morphism (see Theorem [3.13\)](#page-17-0).

On $M(L, 0)$ and $W(2, 0, 2)^L$ we have the following two exact sequences respectively.

(3.1) $0 \to \Theta_L(2) \to \Theta_L^2(2) \to \Theta_L^2(2)|_{D_{\Theta_L}} \to 0;$

(3.2)
$$
0 \to \lambda_2(L \otimes K_X) \to \lambda_2(L) \to \lambda_2(L)|_{\mathbf{S}} \to 0.
$$

Notice that $W(2, 0, 2)^{L\otimes K_X} = W(2, 0, 2)^L$ and (3.2) is because of Corollary [2.8.](#page-6-3)

Lemma 3.1. By taking the global sections of (3.1) and the dual of global sections of (3.2) , we have the following commutative diagram (3.3)

$$
H^{0}(\mathbf{S}, \lambda_{2}(L)|_{\mathbf{S}})^{\vee} \stackrel{g_{2}^{\vee}}{\longrightarrow} H^{0}(\lambda_{2}(L))^{\vee} \stackrel{f_{2}^{\vee}}{\longrightarrow} H^{0}(\lambda_{2}(L \otimes K_{X}))^{\vee} \longrightarrow 0
$$

$$
\downarrow^{SD_{2,L}} \qquad \qquad \downarrow^{SD_{D_{2,L}}} \qquad \qquad \downarrow^{SD_{D_{2,L}}}
$$

$$
0 \longrightarrow H^{0}(\Theta_{L}(2)) \stackrel{f_{L}}{\longrightarrow} H^{0}(\Theta_{L}^{2}(2)) \stackrel{f_{L}}{\longrightarrow} H^{0}(D_{\Theta_{L}}, \Theta^{2}(2)|_{D_{\Theta_{L}}}).
$$

Proof. We only need to show that $g_L \circ SD_{2,L} \circ g_2^{\vee} = 0$. By the definition of $SD_{2,L}$, it is enough to show that the section $\sigma_{c_2,L}$ defined in Proposition [2.5](#page-5-1) is identically zero on $S \times D_{\Theta_L}$. Easy to see that $H^0((\mathcal{I}_x \oplus \mathcal{I}_y) \otimes \mathcal{G}) \neq 0$ for all $\mathcal{G} \in M(L,0)$ such that $H^0(\mathcal{G}) \neq 0$, hence $\mathbf{S} \times D_{\Theta_L} \subset D_{c_2^2, u_L}$ and $\sigma_{c_2^2, L}$ is identically zero on $\mathbf{S} \times D_{\Theta_L}$. The lemma is proved. $q.e.d.$

3.1. On the map α s. We introduce the following condition.

Condition (CA). The strange duality map

(3.4) $SD_{c_2^1, u_L}: H^0(W(1, 0, n), \lambda_{c_2^1}(L))^{\vee} \to H^0(M(L, 0), \Theta_L(2))$

is an isomorphism.

Remark 3.2. For any $n \geq 1$, $W(1,0,n) \cong X^{[n]}$ and $\lambda_{c_n^1}(L) \cong$ $L_{(n)}$. It is well-known that $H^0(X^{[n]}, L_{(n)}) = S^n H^0(X, L)$ for all n and L (see Lemma 5.1 in [[8](#page-30-6)]). Therefore \mathbf{CA} implies $H^0(|L|, \mathcal{O}_{|L|}(2)) \cong$ $H^0(|L|, \pi_*\Theta_L \otimes \mathcal{O}_{|L|}(2)).$

In particular we have $h^0(M(L, 0), \Theta_L) = h^0(|L|, \pi_* \Theta_L) = 1$ and D_{Θ_L} is the unique divisor associated to Θ_L .

Lemma 3.3. If CA is satisfied, then the map α_S in [\(3.3\)](#page-8-3) is an isomorphism. In particular, g_2^{\vee} is injective.

Proof. By Lemma [2.9](#page-7-1) we have a surjective map

$$
\varphi^{*\vee}: H^0(X^{(2)}, L_2)^{\vee} \twoheadrightarrow H^0(\mathbf{S}, \lambda_2(L)|_{\mathbf{S}})^{\vee}.
$$

By Proposition 1.2 in [[8](#page-30-6)], we have $HC_2^{\ast\vee}$: $H^0(X^{[2]}, L_2)^{\vee} \stackrel{\cong}{\rightarrow}$ $H^0(X^{(2)}, L_2)^\vee$ where $HC_2: X^{[2]} \to X^{(2)}$ is the Hilbert-Chow morphism.

To prove the lemma, by **CA** it is enough to show $\alpha_{\mathbf{S}} \circ \varphi^{*\vee} \circ HC_2^{*\vee} =$ $SD_{c_2^1, u_L}$ or equivalently $SD_{2,L} \circ g_2^{\vee} \circ \varphi^{*\vee} \circ HC_2^{*\vee} = f_L \circ SD_{c_2^1, u_L}$.

We have a Cartesian diagram

(3.5)
$$
\widehat{X}^2 \xrightarrow{\widehat{HC}} X^2
$$

$$
\widehat{\mu} \downarrow^2
$$

$$
X^{[2]} \xrightarrow[H]{H\widehat{C}} X^{(2)}
$$

where μ is a \mathfrak{S}_2 -quotient and \widehat{X}^2 is the blow-up of X^2 along the diagonal ∆. Then we only need to show

,

$$
(3.6)\ \widehat{SD}_L := SD_{2,L} \circ g_2^{\vee} \circ \varphi^{*\vee} \circ HC_2^{*\vee} \circ \widehat{\mu}^{*\vee} = f_L \circ SD_{c_2^1, u_L} \circ \widehat{\mu}^{*\vee} =: \widehat{SD}_R.
$$

There are two flat families on $X \times X^2$ of sheaves of class c_2^2 : \mathscr{F}^1 := $\widehat{HC}_X^*(pr_{1,2}^*\mathcal{I}_\Delta \oplus pr_{1,3}^*\mathcal{I}_\Delta)$ and $\mathscr{F}^2 := \widehat{\mu}_X^*\mathscr{I}_2 \oplus q^*\mathcal{O}_X$, where $\widehat{HC}_X :=$ $Id_X \times \widehat{HC} : X \times \widehat{X^2} \to X^3$, $\widehat{\mu}_X := Id_X \times \widehat{\mu}$, $q : X \times \widehat{X^2} \to X$ and \mathscr{I}_2
is the universal ideal shoot on $X \times X^{[2]}$ is the universal ideal sheaf on $X \times X^{[2]}$.

 \mathscr{F}^i induces a section σ_i of $\hat{\mu}^* \lambda_{c_n^1}(L) \boxtimes \lambda_L(c_2^2) \cong \hat{\mu}^* L_n \boxtimes \Theta_L^2(2)$ on $X^2 \times M(L,0)$. The zero set of σ_i is $D_i := \{(\underline{x}, \mathcal{G}) | H^0(\mathscr{F}_{\underline{x}}^i \otimes \mathcal{G}) \neq 0\}.$ By the definition of $SD_{c_n^r,u_L}$, we see that SD_L is defined by the global section σ_1 . On the other hand, the map f_L is defined by multiplying an element in $H^0(\Theta_L)$ defininig the divisor D_{Θ_L} . Therefore \widehat{SD}_R is defined by the global section σ_2 . Hence to show [\(3.6\)](#page-9-0), we only need to show D_i coincide as divisors for $i = 1, 2$.

Let $C \subset X \times |L|$ be the universal curve. Then C is a divisor in $X \times |L|$. $p_{i,|L|} := p_i \times Id_{|L|} : X^2 \times |L| \to X \times |L|$ with p_i the projection to the i-th factor. Denote by $p_M : \widehat{X}^2 \times M(L, 0) \to M(L, 0)$ the projection to $M(L, 0)$. Then easy to see that $D_1 = D_2 = 2p_M^* D_{\Theta_L} + \widehat{HC}^* p_{1,|L|}^* C +$ $\widehat{HC}^* p_{2,|L|}^* \mathcal{C}$. Hence the lemma. q.e.d.

Corollary 3.4. If **CA** is satisfied and moreover $D_{\Theta_L} = \emptyset$ and $H^0(L \otimes$ $K_X^{\otimes n}$ = 0 for all $n \geq 1$, then the map $SD_{2,L}$ is an isomorphism.

Proof. By Lemma [3.3,](#page-8-4) we only need to show that $H^0(\lambda_2(L \otimes K_X)) =$ 0. But $H^0(\lambda_2(L \otimes K_X^{\otimes n})|_{\mathbf{S}}) = 0$ since $H^0(L \otimes K_X^{\otimes n}) = 0$ for all $n \geq 1$. Hence $H^0(\lambda_2(L \otimes K_X)) \cong H^0(\lambda_2(L \otimes K_X^{\otimes n}))$ for all $n \geq 1$ and hence $H^0(\lambda_2(L \otimes K_X)) = 0$ because $\lambda_2(K_X^{-1})$ is effective. q.e.d.

Remark 3.5. Assume K_X^{-1} is effective, then for any curve $C \in |K_X^{-1}|$, either \mathcal{O}_C is semistable or C contains an integral subscheme with genus > 1. Therefore we have $D_{\Theta_L} = \emptyset \Rightarrow H^0(L \otimes K_X^{\otimes n}) = 0$ for all $n \ge 1$. This is because otherwise there must be a semistable sheaf of class u_L having nonzero global sections.

Moreover by Proposition 4.1.1 and Corollary 4.3.2 in $[20]$ $[20]$ $[20]$, we see that if every curve in $|L|$ does not contain any 1-dimensional subscheme with positive genus and K_X^{-1} is effective, then Corollary [3.4](#page-9-1) applies and the strange duality map $SD_{2,L}$ is an isomorphism.

We have a useful lemma as follows.

Lemma 3.6. If $D_{\Theta_L} \neq \emptyset$, then $L \otimes K_X$ is effective.

Proof. Let $\mathcal{F} \in D_{\Theta_L}$, then $\text{Ext}^1(\mathcal{F}, K_X) \cong H^1(\mathcal{F})^{\vee} \neq 0$. Hence there is a non split extension

$$
0 \to K_X \to \overline{I} \to \mathcal{F} \to 0.
$$

If for every proper quotient $\mathcal{F} \to \mathcal{F}''$ (i.e. $\mathcal{F} \not\cong \mathcal{F}''$) we have $h^1(\mathcal{F}'') =$ 0, then \overline{I} has to be torsion-free and hence isomorphism to $\mathcal{I}_Z(L \otimes K_X)$ with Z a 0-dimensional subscheme of X. On the other hand $h^0(\tilde{I}) =$ $h^0(\mathcal{F}) \neq 0$, therefore $H^0(L \otimes K_X) \neq 0$.

If there is a proper quotient \mathcal{F}_1 of $\mathcal F$ such that $h^1(\mathcal{F}_1) \neq 0$, then we can assume that for every proper quotient \mathcal{F}_1'' of \mathcal{F}_1 we have $h^1(\mathcal{F}_1'') =$ 0. Denote by L_1 the determinant of \mathcal{F}_1 , then by previous argument $H^0(L_1 \otimes K_X) \neq 0$ and hence $H^0(L \otimes K_X) \neq 0$ because $L \otimes L_1^{-1}$ is effective. $q.e.d.$

3.2. On the map β_D . In this subsection we assume $D_{\Theta_L} \neq \emptyset$, then by Lemma [3.6](#page-10-1) $L \otimes K_X$ is effective. We want to prove that under certain conditions the map β_D is an isomorphism. The main technique and notations are analogous to [[22](#page-31-4)].

Let $\ell := L(L + K_X)/2 = \chi(L \otimes K_X) - 1$ and H_{ℓ} be the Hilbert scheme of ℓ -points on X which also parametrizes all ideal sheaves \mathcal{I}_Z with colength ℓ , i.e. $len(Z) = \ell$. If $\ell = 0$, we say H_0 is a simple point corresponding to the structure sheaf \mathcal{O}_X . Denote by \mathscr{I}_ℓ the universal ideal sheaf over $X \times H_{\ell}$.

From now on by abuse of notation, we always denote by p the projection $X \times M \to M$ and q the projection $X \times M \to X$ for any moduli space M. If we have $Y_1 \times \cdots \times Y_n$ with $n \geq 2$, denote by p_{ij} $(i < j)$ the projection to $Y_i \times Y_j$.

Define

$$
Q_1 := Quot_{X \times H_\ell/H_\ell}(\mathscr{I}_\ell \otimes q^*(L \otimes K_X), u_L)
$$

and

$$
Q_2 := Quot_{X \times H_{\ell}/H_{\ell}}(\mathcal{I}_{\ell} \otimes q^*(L \otimes K_X), u_{L \otimes K_X}).
$$

Then Q_1 and Q_2 are the two relative Quot-schemes over H_ℓ parametrizing quotients of class u_L and $u_{L\otimes K_X}$ respectively. Let ρ_i : $Q_i \to H_\ell$ be the projection. Each point $[f_1 : \mathcal{I}_Z(L \otimes K_X) \rightarrow \mathcal{F}_L] \in Q_1$ ($[f_2 :$ $\mathcal{I}_Z(L \otimes K_X) \to \mathcal{F}_{L\otimes K_X}] \in Q_2$, resp.) over $\mathcal{I}_Z \in H_\ell$ must have the kernel K_X (\mathcal{O}_X , resp.).

Since $L \otimes K_X$ is effective and X is rational, $H^2(L \otimes K_X) = 0$. Hence $h^0(L \otimes K_X) \geq \chi(L \otimes K_X)$. Therefore, for any ideal sheaf \mathcal{I}_Z with colenght ℓ , we have $h^0(\mathcal{I}_Z(L \otimes K_X)) \geq 1$ and hence ρ_2 is always surjective. If moreover $L.K_X \leq 0$, then $H^0(\mathcal{I}_Z(L)) \neq 0$ and ρ_1 is also surjective.

We write down the following two exact sequences.

$$
(3.7) \t\t 0 \to K_X \to \mathcal{I}_Z(L \otimes K_X) \to \mathcal{F}_L \to 0;
$$

$$
(3.8) \t 0 \to \mathcal{O}_X \to \mathcal{I}_Z(L \otimes K_X) \to \mathcal{F}_{L \otimes K_X} \to 0.
$$

Notice that if \mathcal{F}_L (resp. $\mathcal{F}_{L\otimes K_X}$) is semi-stable, then (the class of) \mathcal{F}_L (resp. (the class of) $\mathcal{F}_{L\otimes K_X}$) is contained in D_{Θ_L} (resp. $M(L\otimes K_X, 0)$). Let

$$
D_{\Theta_L}^o := \left\{ \mathcal{F}_L \in D_{\Theta_L} \middle| \begin{array}{l} h^1(\mathcal{F}_L) = 1, \ h^1(\mathcal{F}_L(-K_X)) = 0 \\ \text{and } \text{Supp}(\mathcal{F}_L) \text{ is integral.} \end{array} \right\},
$$

\n
$$
Q_1^o := \left\{ [\mathcal{I}_Z(L \otimes K_X) \xrightarrow{f_1} \mathcal{F}_L] \in Q_1 \middle| \begin{array}{l} h^1(\mathcal{F}_L) = 1, h^1(\mathcal{F}_L(-K_X)) = 0 \\ \text{and } \text{Supp}(\mathcal{F}_L) \text{ is integral.} \end{array} \right\},
$$

\n
$$
M(L \otimes K_X, 0)^o := \left\{ \mathcal{F}_{L \otimes K_X} \in M(L \otimes K_X, 0) \middle| \begin{array}{l} h^0(\mathcal{F}_{L \otimes K_X}(K_X)) = 0 \\ \text{and } \text{Supp}(\mathcal{F}_{L \otimes K_X}) \\ \text{is integral.} \end{array} \right\},
$$

\n
$$
Q_2^o := \left\{ [\mathcal{I}_Z(L \otimes K_X) \xrightarrow{f_2} \mathcal{F}_{L \otimes K_X}] \in Q_2 \middle| \begin{array}{l} h^0(\mathcal{F}_{L \otimes K_X}(K_X)) = 0 \\ \text{and } \text{Supp}(\mathcal{F}_{L \otimes K_X}) \\ \text{is integral.} \end{array} \right\}.
$$

Let \mathcal{G}_r^r with $r \geq 1$ be a locally free sheaf of class c_r^r on X. We define a line bundle $\mathcal{L}^r := (det(R^{\bullet} p_*(\mathcal{I}_{\ell} \otimes q^* \mathcal{G}_r^r(L \otimes K_X))))^{\vee}$ over H_{ℓ} . Then we have the following lemma.

Lemma 3.7. There are classifying maps $g_1: Q_1^o \to D_{\Theta_L}^o$ and g_2 : $Q_2^o \rightarrow M(L\!\otimes\! K_X,0)^o,$ where g_1 is an isomorphism and g_2 is a projective bundle. Moreover $g_1^* \Theta_L^r(r) \cong \rho_1^* \mathcal{L}^r|_{Q_1^o}$ and $g_2^* \Theta_{L \otimes K_X}^r(r) \cong \rho_2^* \mathcal{L}^r|_{Q_2^o}$.

Proof. The proof is analogous to $[22]$ $[22]$ $[22]$. See Lemma 4.8, Equation $(4.9), (4.10), (4.12) \text{ and } (4.14) \text{ in } [22].$ $(4.9), (4.10), (4.12) \text{ and } (4.14) \text{ in } [22].$ $(4.9), (4.10), (4.12) \text{ and } (4.14) \text{ in } [22].$ q.e.d.

Let $H_{\ell}^o := \rho_1(Q_1^o) \cup \rho_2(Q_2^o)$. We introduce some conditions as follows.

Condition (**CB**). (1) $D_{\Theta_L}^o$ is dense open in D_{Θ_L} ;

- (2) $M(L \otimes K_X, 0)$ is of pure dimension and satisfies the "condition S_2 of Serre", and the complement of $M(L \otimes K_X, 0)$ ^o is of codimension $\geq 2;$
- (3) $\overline{(\rho_1)}_* \mathcal{O}_{Q_1^o} \cong \mathcal{O}_{H_\ell^o};$
- (4) Q_2^o is nonempty and dense open in $\rho_2^{-1}(\rho_2(Q_2^o))$.

Remark 3.8. We say a scheme Y satisfies "condition S_2 of Serre" if $\forall y \in Y$ the local ring \mathcal{O}_y has the property that for every prime ideal $\mathfrak{p} \subset \mathcal{O}_y$ of height ≥ 2 , we have **depth** $\mathcal{O}_{y,\mathfrak{p}} \geq 2$ (also see ChII Theorem 8.22A in $[10]$ $[10]$ $[10]$. CB-(2) implies that for every line bundle H over $M(L \otimes K_X, 0)$, the restriction map $H^0(M(L \otimes K_X, 0), \mathcal{H}) \hookrightarrow$ $H^0(M(L\otimes K_X, 0)^o, \mathcal{H})$ is an isomorphism.

Lemma 3.9. If **CB** is satisfied, then we have an injective map for all $r > 0$

$$
j_r: H^0(D_{\Theta_L}, \Theta^r_L(r)|_{D_{\Theta_L}}) \hookrightarrow H^0(M(L \otimes K_X, 0), \Theta^r_{L \otimes K_X}(r)).
$$

Moreover, $j_2 \circ \beta_D = SD_{2,L \otimes K_X}.$

Proof. By $CB-(1)$ we have an injection

(3.9)
$$
H^0(D_{\Theta_L}, \Theta_L^r(r)|_{D_{\Theta_L}}) \hookrightarrow H^0(D^o_{\Theta_L}, \Theta_L^r(r)|_{D^o_{\Theta_L}}).
$$

By Lemma [3.7](#page-11-0) and $CB-(3)$ we have

$$
(3.10) \quad H^0(D^o_{\Theta_L}, \Theta^r_L(r)|_{D^o_{\Theta_L}}) \xrightarrow{\cong} H^0(Q^o_1, \rho_1^* \mathcal{L}^r|_{Q^o_1}) \xrightarrow{\cong} H^0(H^o_{\ell}, \mathcal{L}^r|_{H^o_{\ell}}).
$$

On the other hand ρ_2 is projective and surjective, hence there is a natural injection $\mathcal{O}_{H_\ell} \hookrightarrow (\rho_2)_*\mathcal{O}_{Q_2}$. Hence by **CB**-(4) we have the following injections

$$
(3.11) \quad H^0(H_\ell^o, \mathcal{L}^r |_{H_\ell^o}) \longrightarrow H^0(\rho_2(Q_2^o), \mathcal{L}^r |_{\rho_2(Q_2^o)})
$$

$$
\downarrow
$$

$$
H^0(\rho_2^{-1}(\rho_2(Q_2^o)), \rho_2^* \mathcal{L}^r) \longrightarrow H^0(Q_2^o, \rho_2^* \mathcal{L}^r).
$$

Finally by Lemma [3.7](#page-11-0) and $CB-(2)$ we have

(3.12)
$$
H^{0}(Q_{2}^{o}, \rho_{2}^{*}\mathcal{L}^{r}) \xrightarrow{\cong} H^{0}(M(L \otimes K_{X}, 0)^{o}, \Theta_{L \otimes K_{X}}^{r}(r))
$$

$$
\downarrow^{\cong}
$$

$$
H^{0}(M(L \otimes K_{X}, 0), \Theta_{L \otimes K_{X}}^{r}(r)).
$$

The map j_r is obtained by composing all the maps successively in $(3.9), (3.10), (3.11)$ $(3.9), (3.10), (3.11)$ $(3.9), (3.10), (3.11)$ $(3.9), (3.10), (3.11)$ $(3.9), (3.10), (3.11)$ and $(3.12).$ $(3.12).$

Now we prove $j_r \circ \beta_D = SD_{2,L \otimes K_X}$. Notice that $\chi(\mathcal{E} \otimes \mathcal{I}_Z(L \otimes K_X)) =$ $h^2(\mathcal{E} \otimes \mathcal{I}_Z(L \otimes K_X)) = 0$ for all $\mathcal{E} \in W(2,0,2)$ and $\mathcal{I}_Z \in H_{\ell}$. We then have a determinant line bundle $\lambda_2(\ell)$ (resp. $\lambda_{H_\ell}(c_2^2)$) over $W(2, 0, 2)^L$ (resp. H_{ℓ}) associated to $[\mathcal{I}_Z(L\otimes K_X)]$ with $\mathcal{I}_Z \in H_{\ell}$ (resp. $[\mathcal{E}]$ with $\mathcal{E} \in$ $W(2,0,2)$). Obviously $\lambda_{H_{\ell}}(c_2^2) = \mathcal{L}^2$. Moreover there is a section $\sigma_{2,\ell}$ of $H^0(W(2,0,2)^L \times H_\ell, \lambda_2(\ell) \boxtimes \mathcal{L}^2)$ vanishing at the points $(\mathcal{E}, \mathcal{I}_Z)$ such that $H^0(\mathcal{E} \otimes \mathcal{I}_Z(L \otimes K)) \neq 0$. By $(3.7), \lambda_2(L) \cong \lambda_2(\ell) \otimes \lambda_2([K_X])^{-1} \cong$ $(3.7), \lambda_2(L) \cong \lambda_2(\ell) \otimes \lambda_2([K_X])^{-1} \cong$ $\lambda_2(\ell) \otimes \lambda_2(K_X^{-1})$. Hence $\lambda_2(\ell) \cong \lambda_2(L \otimes K_X)$.

The section $\sigma_{2,\ell}$ induces a morphism

$$
H^0(W(2,0,2)^L, \lambda_2(L \otimes K_X))^{\vee} \xrightarrow{SD_{2,\ell}} H^0(H_{\ell}, \mathcal{L}^2).
$$

Composing $SD_{2,\ell}$ with the inclusion $H^0(H_\ell, \mathcal{L}^2) \hookrightarrow H^0(H_\ell^o, \mathcal{L}^2)$, we get $H^0(W(2,0,2)^L, \lambda_2(L \otimes K_X))^{\vee} \xrightarrow{SD_{2,\ell}^o} H^0(H_{\ell}^o, \mathcal{L}^2)$. Composing maps in (3.11) and (3.12) and we get

$$
H^0(H_{\ell}^o, \mathcal{L}^2) \xrightarrow{(g_2)_* \circ \rho_2^*} H^0(M(L \otimes K_X, 0), \Theta_{L \otimes K_X}^2(2)).
$$

We first show that the following diagram commutes. (3.13)

$$
H^{0}(W(2,0,2)^{L},\lambda_{2}(L\otimes K_{X}))^{\vee} \xrightarrow{SD_{2,\ell}^{o}} H^{0}(H_{\ell}^{o},\mathcal{L}^{2})
$$
\n
$$
\downarrow^{(g_{2})_{*}\circ\rho_{2}^{*}}
$$
\n
$$
H^{0}(M(L\otimes K_{X},0),\Theta_{L\otimes K_{X}}^{2}(2)).
$$

Recall that on $X \times Q_2^o$ there is an exact sequence

$$
0 \to \mathscr{R}_2 \to (id_X \times \rho_2^*) \mathscr{I}_{\ell} \otimes q^*(L \otimes K_X) \to \mathscr{F}_{L \otimes K_X} \to 0,
$$

where \mathscr{I}_{ℓ} is the universal sheaf over $X \times H_{\ell}$ and $\mathscr{R}_2 = p^* \mathcal{R}_2$ with \mathcal{R}_2 a line bundle over Q_2^o . For simplicity let $\widetilde{\mathscr{I}}_2 := (id_X \times \rho_2^*) \mathscr{I}_\ell \otimes q^*(L \otimes K_X).$

Recall the good $PGL(V)$ -quotient $\rho : \Omega_2 \to W(2, 0, 2)$ such that there is a universal sheaf $\mathscr E$ over $X \times \Omega_2$. Let $\Omega_2^L := \rho^{-1}(W(2,0,2)^L)$. The map $H^0(\Omega_2^L, \rho^* \lambda_2(L \otimes K_X))^{\vee} \xrightarrow{\rho^{* \vee}} H^0(W(2, 0, 2)^L, \lambda_2(L \otimes K_X))^{\vee}$ is surjective and hence to show that (3.13) commutes it suffices to show

(3.14)
$$
SD_{2,L\otimes K_X} \circ \rho^{*\vee} = (g_2)_* \circ \rho_2^* \circ SD_{2,\ell} \circ \rho^{*\vee}.
$$

Over $X \times \Omega_2^L \times Q_2^o$ we have

$$
0 \to p_{12}^* \mathscr{E} \otimes p_{13}^* \mathscr{R}_2 \to p_{12}^* \mathscr{E} \otimes p_{13}^* \widetilde{\mathscr{I}}_2 \to p_{12}^* \mathscr{E} \otimes p_{13}^* \mathscr{F}_{L \otimes K_X} \to 0.
$$

By Lemma 2.1.20 in [[11](#page-31-0)], we have the following commutative diagram (3.15)

$$
0 \longrightarrow p_{12}^* \mathcal{E} \otimes p_{13}^* \mathcal{R}_2 \longrightarrow p_{12}^* \mathcal{E} \otimes p_{13}^* \widetilde{\mathcal{F}}_2 \longrightarrow p_{12}^* \mathcal{E} \otimes p_{13}^* \mathcal{F}_{L \otimes K_X} \longrightarrow 0
$$

\n
$$
0 \longrightarrow \mathcal{E}_2 \longrightarrow \mathcal{B}_2' \longrightarrow \mathcal{A}_2 \longrightarrow p_{12}^* \mathcal{E} \otimes p_{13}^* \mathcal{F}_{L \otimes K_X} \longrightarrow 0
$$

\n
$$
\mathcal{B}_2 \longrightarrow \mathcal{B}_2
$$

\n
$$
\uparrow \qquad \qquad \downarrow
$$

\n
$$
\mathcal{B}_2 \longrightarrow \mathcal{B}_2
$$

\n
$$
\uparrow \qquad \qquad \downarrow
$$

where \mathscr{A}_2 , \mathscr{B}'_2 , \mathscr{B}_2 and \mathscr{C}_2 are locally free such that $R^i p_*(\cdot) = 0$ for all $i < 2$ and $R^2p_*(\cdot)$ locally free over $\Omega_2^L \times Q_2^o$. We have the following commutative diagram

(3.16)
$$
R^2 p_* \mathscr{C}_2 \longrightarrow R^2 p_* \mathscr{B}'_2 \xrightarrow{\nu'_2} R^2 p_* \mathscr{A}_2
$$

$$
= \Bigg|_{R^2 p_* \mathscr{C}_2} \longrightarrow R^2 p_* \mathscr{B}_2 \xrightarrow{\nu_2} R^2 p_* \mathscr{A}_2.
$$

 ν'_2 and ν_2 are surjective because $H^2(\mathcal{F}_{L\otimes K_X}\otimes \mathcal{E})=H^2(\mathcal{I}_Z(L\otimes K_X)\otimes$ \mathcal{E}) = 0 for every $[\mathcal{I}_Z(L \otimes K_X) \rightarrow \mathcal{F}_{L \otimes K_X}] \in Q_2^o$ and $\mathcal{E} \in \Omega_2^L$. η_2 is an isomorphism because \mathcal{R}_2 is a pullback of a line bundle on Q_2^o and $H^1(\mathcal{E}) = H^2(\mathcal{E}) = 0$ for all $\mathcal{E} \in \Omega_2^L$. Denote by \mathcal{K}_2 and \mathcal{K}_2' the kernels of ν_2 and ν_2' respectively. Then we have

(3.17)
$$
R^2 p_* \mathscr{C}_2 \xrightarrow{\xi_L \otimes K_X} \mathcal{K}_2' = \int_{R^2 p_* \mathscr{C}_2} \cong \int_{\xi_{\ell}^2} \eta_2.
$$

The section $det(\xi_{L\otimes K_X})$ induces the map $g_2^* \circ SD_{2,L\otimes K_X} \circ \rho^{*\vee}$ while the section $det(\xi_\ell^2)$ induces the map $\rho_2^* \circ SD_{2,\ell}^o \circ \rho^{*\vee}$. By [\(3.17\)](#page-14-0) we have $det(\xi_{L\otimes K_X}) = det(\eta_2) \cdot det(\xi_{\ell}^2)$ and hence $det(\xi_{L\otimes K_X})$ and $det(\xi_{\ell}^2)$ are the same section up to scalars since η_2 is an isomorphism. Hence

(3.18)
$$
g_2^* \circ SD_{2,L\otimes K_X} \circ \rho^{*\vee} = \rho_2^* \circ SD_{2,\ell}^o \circ \rho^{*\vee}.
$$

 (3.18) implies (3.14) because g_2 is a projective bundle and the map $H^0(Q_2^o, g_2^*\Theta^r_{L\otimes K_X}(r)) \xrightarrow{(g_2)_*} H^0(M(L\otimes K_X, 0)^o, \Theta^r_{L\times K_X}(r))$ is an isomorphism with inverse map g_2^* .

Now we have that [\(3.13\)](#page-13-0) commutes. To show $j_r \circ \beta_D = SD_{2,L\otimes K_X}$, it suffices to show that the following diagram commutes.

$$
(3.19) \tH0(\Omega2L, \lambda2(L \otimes K_X))V \xrightarrow{SD2,\ell0\rho* \to} H0(Heo, L2)
$$

$$
H0(\Omega2L, \lambda2(L))V \xrightarrow{SD2,L0\rho* \to} H0(D\ThetaL, \ThetaL2(2)|_{D\ThetaL}).
$$

In other words, it suffices to show

(3.20)
$$
(\rho_1)_* \circ g_1^* \circ g_L \circ SD_{2,L} \circ \rho^{*\vee} = SD_{2,\ell}^o \circ \rho^{*\vee} \circ f_{2,\Omega}^{\vee}.
$$

Recall that on $X \times Q_1^o$ there is an exact sequence

 $0 \to \mathscr{R}_1 \to (id_X \times \rho_1^*)\mathscr{I}_{\ell} \otimes q^*(L \otimes K_X) \to \mathscr{F}_L \to 0,$

where \mathcal{I}_{ℓ} is the universal sheaf over $X \times H_{\ell}$ and $\mathcal{R}_1 = p^* \mathcal{R}_1 \otimes q^* K_X$ with \mathcal{R}_1 a line bundle (actually the relative tautological bundle $\mathcal{O}_{\rho_1}(-1))$ over Q_1^o . Let $\widetilde{\mathscr{I}}_1 := (id_X \times \rho_1^*) \mathscr{I}_\ell \otimes q^*(L \otimes K_X).$

Over $X \times \Omega_2^L \times Q_1^o$ we have

$$
0 \to p_{12}^* \mathscr{E} \otimes p_{13}^* \mathscr{R}_1 \to p_{12}^* \mathscr{E} \otimes p_{13}^* \widetilde{\mathscr{I}}_1 \to p_{12}^* \mathscr{E} \otimes p_{13}^* \mathscr{F}_L \to 0.
$$

Analogously, we have the following commutative diagram (3.21)

0 0 0 0 /p ∗ ¹²E ⊗ p ∗ ¹³R¹ OO /p ∗ ¹²E ⊗ p ∗ ¹³If¹ / OO p ∗ ¹²E ⊗ p ∗ ¹³F^L / OO 0 0 /C¹ /B⁰ 1 OO /A1 OO /p ∗ ¹²E ⊗ p ∗ ¹³F^L / = OO 0 B1 OO ⁼ /B¹ OO 0 OO C1 OO 0 OO ,

where $\mathscr{A}_1, \mathscr{B}'_1, \mathscr{B}_1$ and \mathscr{C}_1 are locally free such that $R^i p_*(\cdot) = 0$ for all $i < 2$ and $R^2p_*(\cdot)$ locally free over $\Omega_2^L \times Q_1^o$. We have the following commutative diagram

(3.22)
$$
R^2 p_* \mathscr{C}_1 \longrightarrow R^2 p_* \mathscr{B}'_1 \xrightarrow{\nu'_1} R^2 p_* \mathscr{A}_1
$$

$$
= \Big\uparrow \qquad \eta_1 \Big\uparrow \qquad \qquad \Big\uparrow =
$$

$$
R^2 p_* \mathscr{C}_1 \longrightarrow R^2 p_* \mathscr{B}_1 \xrightarrow{\nu_1} R^2 p_* \mathscr{A}_1.
$$

 ν'_1 and ν_1 are surjective because $H^2(\mathcal{F}_L \otimes \mathcal{E}) = H^2(\mathcal{I}_Z(L \otimes K_X) \otimes \mathcal{E}) = 0$ for every $[\mathcal{I}_Z(L \otimes K_X) \twoheadrightarrow \mathcal{F}_L] \in Q_1^o$ and $\mathcal{E} \in \Omega_2^L$. η_1 is a morphism between two vector bundles with same rank with cokernel $R^2p_*(p_{12}^*\mathscr{E}\times$ $p_{13}^*\mathscr{R}_1$). Since $\mathscr{R}_1 \cong p^*\mathcal{R}_1 \otimes q^*K_X$ with \mathcal{R}_1 a line bundle over Q_1^o , $\det^2(\eta_1)$ is the pullback to $\Omega_2^L \times Q_1^o$ of the section of $\lambda_2([K_X]^{-1}) \cong \lambda_2(K_X^{-1})$ defining the subscheme \tilde{S} .

Denote by \mathcal{K}_1 and \mathcal{K}'_1 the kernels of ν_1 and ν'_1 respectively. Then we have

(3.23)
$$
R^{2}p_{*}\mathscr{C}_{1} \xrightarrow{\xi_{L}} \mathcal{K}'_{1}
$$

$$
= \bigg\uparrow_{R^{2}p_{*}\mathscr{C}_{1}} \xrightarrow{\xi_{L}^{1}} \mathcal{K}_{1}.
$$

The section $det(\xi_L)$ induces the map $g_1^* \circ g_L \circ SD_{2,L} \circ \rho^{*\vee}$, the section $det(\xi^1_\ell)$ induces the map $\rho_1^* \circ SD_{2,\ell}^o \circ \rho^{*\vee}$ and multiplying the section $det(\eta_1)$ induces the map $f_{2,\Omega}^{\vee}$. By [\(3.23\)](#page-15-0) we have $det(\xi_L) = det(\eta_1)$. $det(\xi_{\ell}^1)$ and hence

$$
(3.24) \t\t g_1^* \circ g_L \circ SD_{2,L} \circ \rho^{* \vee} = \rho_1^* \circ SD_{2,\ell}^o \circ \rho^{* \vee} \circ f_{2,\Omega}^{\vee}.
$$

[\(3.24\)](#page-16-0) implies [\(3.20\)](#page-14-2) because by **CB**-(3) the map $H^0(Q_1^o, \rho_1^* \mathcal{L}^r) \xrightarrow{(\rho_1)_*}$ $H^0(H^o_{\ell}, \mathcal{L}^r)$ is an isomorphism with inverse map ρ_1^* .

The lemma is proved. $q.e.d.$

Now we want to modify CB. Define

$$
|L \otimes K_X|' := \left\{ C \in |L \otimes K_X| \middle| \begin{array}{l} \forall \text{ integral subscheme } C_1 \subset C, \\ we \text{ have } \deg(K_X|_{C_1}) < 0. \end{array} \right\},
$$

$$
M(L \otimes K_X, 0)' := \left\{ \mathcal{F}_{L \otimes K_X} \in M(L \otimes K_X, 0) \middle| \begin{array}{l} h^0(\mathcal{F}_{L \otimes K_X}(K_X)) = 0 \\ \text{and } \text{Supp}(\mathcal{F}_{L \otimes K_X}) \\ \text{is in } |L \otimes K_X|'. \end{array} \right\}.
$$

$$
Q'_2 := \left\{ [\mathcal{I}_Z(L \otimes K_X) \stackrel{f_2}{\twoheadrightarrow} \mathcal{F}_{L \otimes K_X}] \in Q_2 \middle| \begin{array}{l} \mathcal{F}_{L \otimes K_X} \text{ is semistable,} \\ h^0(\mathcal{F}_{L \otimes K_X}(K_X)) = 0 \\ \text{and } \text{Supp}(\mathcal{F}_{L \otimes K_X}) \\ \text{is in } |L \otimes K_X|'. \end{array} \right\}.
$$

Let f_M : $\Omega_{L\otimes K_X}$ \to $M(L \otimes K_X, 0)$ be the good $PGL(V_{L\otimes K_X})$ quotient with $V_{L\otimes K_X}$ some vector space and $\Omega_{L\otimes K_X}$ an open subscheme of some Quot-scheme. Let $\Omega'_{L\otimes K_X} := f_M^{-1}(M(L \otimes K_X, 0)')$. Notice that $\text{Ext}^2(\mathcal{F}_{L\otimes K_X}, \mathcal{F}_{L\otimes K_X})=0$ for $\mathcal{F}_{L\otimes K_X}$ semistable with $Supp(\mathcal{F}_{L\otimes K_X})\in$ $|L \otimes K_X|'$. Hence $\Omega'_{L \otimes K_X}$ is smooth of pure dimension the expected dimension.

Denote by $\mathscr{Q}_{L\otimes K_X}$ the universal quotient over $\Omega_{L\otimes K_X}$. Analogous to [[22](#page-31-4)], define $\mathcal{V}' := \mathscr{E}xt^1_p(\mathscr{Q}_{L\otimes K_X}|\Omega'_{L\otimes K_X}, q^*\mathcal{O}_X)$ which is locally free of rank $-(L+K_X).K_X$ on $\Omega'_{L\otimes K_X}$. Let $P'_2\subset \mathbb{P}(\mathcal{V}')$ parametrizing torsion free extensions of $\mathcal{Q}_\mathfrak{s}$ by \mathcal{O}_X for all $\mathfrak{s} \in \Omega'_{L \otimes K_X}$. Then the classifying map $f'_{Q_2}: P'_2 \to Q'_2$ is a principal $PGL(V_{L\otimes K_X})$ -bundle (see Lemma 4.7) in [[22](#page-31-4)]). We have the following commutative diagram

(3.25)
$$
P'_2 \xrightarrow{\sigma'_2} \Omega'_{L \otimes K_X}
$$

$$
f'_{Q_2} \downarrow \qquad \qquad \downarrow f'_M
$$

$$
Q'_2 \xrightarrow{\sigma'_2} M(L \otimes K_X, 0)'
$$

Let $H'_{\ell} := \rho_1(Q_1^o) \cup \rho_2(Q_2^{\prime})$. We define **CB'** by keeping **CB**-(1) and replacing $CB-(2)$, (3) and (4) by $(2'a)$, $(2'b)$, (3) and (4') as follows.

Condition (**CB'**). (1) $D_{\Theta_L}^o$ is dense open in D_{Θ_L} ;

- $(2[']a)$ $M(L \otimes K_X, 0)$ is of pure dimension and satisfies the "condition S_2 " of Serre", and the complement of $M(L \otimes K_X, 0)'$ is of codimension ≥ 2 ;
- (2'b) The complement of P'_2 in $\mathbb{P}(\mathcal{V}')$ is of codimension ≥ 2 ;
- $(3')\ (\rho_1)_* \mathcal{O}_{Q_1^o} \cong \mathcal{O}_{H'_{\ell}};$
- (4') Q'_2 is nonempty and dense open in $\rho_2^{-1}(\rho_2(Q'_2))$.

Lemma 3.10. If CB' is satisfied, then there is an injective map for all $r > 0$

$$
j_r: H^0(D_{\Theta_L}, \Theta^r_L(r)|_{D_{\Theta_L}}) \hookrightarrow H^0(M(L \otimes K_X, 0), \Theta^r_{L \otimes K_X}(r)),
$$

such that $j_2 \circ \beta_D = SD_{2,L\otimes K_X}.$

Proof. The only difference from Lemma [3.9](#page-12-4) is that the map g'_2 is no more a projective bundle. However it is enough to prove $(g_2')_*\mathcal{O}_{Q'_2} \cong$ $\mathcal{O}_{M(L\otimes K_X,0)'}\cong \mathcal{O}_{M(L\otimes K_X,0)}.$

In [\(3.25\)](#page-16-1) we have f'_{Q_2} a principal $PGL(V_{L\otimes K_X})$ -bundle and f'_M a good $PGL(V_{L\otimes K_X})$ -quotient. σ'_2 is $PGL(V_{L\otimes K_X})$ -equivariant and descends to the map g'_2 . In order to show $(g'_2)_*\mathcal{O}_{Q'_2} \cong \mathcal{O}_{|L\otimes K_X|'}$, we only need to show that $(\sigma_2')_* \mathcal{O}_{P_2'} \cong \mathcal{O}_{\Omega'_{L\otimes K_X}}$.

We have that $(\sigma_2)_*\mathcal{O}_{\mathbb{P}(\mathcal{V}')} \cong \mathcal{O}_{\Omega'_{L\otimes K_X}}$. $\Omega'_{L\otimes K_X}$ is smooth of pure dimension. By $\text{CB}'-(2'b)$ the complement of P'_2 in $\mathbb{P}(\mathcal{V}')$ is of codimension ≥ 2 and hence $j_* \mathcal{O}_{P_2} \cong \mathcal{O}_{\mathbb{P}(\mathcal{V}')}$ with $j : P_2^{\mathcal{F}} \hookrightarrow \mathbb{P}(\mathcal{V}')$ the embedding. On the other hand $\sigma'_2 = \sigma_2 \circ \jmath$, hence $(\sigma'_2)_* \mathcal{O}_{P'_2} \cong (\sigma_2)_* (\jmath_* \mathcal{O}_{P'_2}) \cong$ $(\sigma_2)_*\mathcal{O}_{\mathbb{P}(\mathcal{V}')} \cong \mathcal{O}_{\Omega'_{L\otimes K_X}}$. Hence the lemma q.e.d.

Notice that $CB-(2) \Rightarrow CB'-(2'a)$ if $(L+K_X)$. $K_X < 0$. Lemma [3.9](#page-12-4) and Lemma [3.10](#page-17-1) imply immediately the following proposition.

Proposition 3.11. If either **CB** or **CB'** is satisfied and $SD_{2,L\otimes K_X}$ is an isomorphism, then the map β_D in [\(3.3\)](#page-8-3) is an isomorphism. In particular, g_L is surjective.

Remark 3.12. If $L \cong K_X^{-1}$ then β_D is an isomorphism as long as $\forall C \in |L|, \mathcal{O}_C$ is stable (which is equivalent to say that C contains no subcurve with genus ≥ 1) and there is a stable vector bundle $\mathcal{E} \in$ $W(2, 0, 2)$. This is because in this case β_D is a nonzero map between two vector spaces of 1 dimension, hence an isomorphism. β_D is nonzero since $H^0(\mathcal{E} \otimes \mathcal{O}_C) = H^1(\mathcal{E} \otimes \mathcal{O}_C) = 0$ for all $C \in |L|$ (also see the proof of Proposition 6.25 in $[9]$ $[9]$ $[9]$).

Combining Lemma [3.3](#page-8-4) and Proposition [3.11](#page-17-2) we have the following theorem.

Theorem 3.13. Assume CA , and assume either CB or CB' is satisfied, and assume $SD_{2,L\otimes K_X}$ is an isomorphism, then $SD_{2,L}$ is an isomorphism.

3.3. Application to Hirzebruch surfaces. Theorem [3.13](#page-17-0) applies to a large number of cases on Hirzebruch surface as stated in the following theorem.

Theorem 3.14. Let $X = \Sigma_e$ $(e \ge 0) := \mathbb{P}(\mathcal{O}_{\mathbb{P}^1} \oplus \mathcal{O}_{\mathbb{P}^1}(e))$. Let F be the fiber class and G the section such that $G^2 = -e$ over X. Let $L = aG + bF$. Then

(1) CA is fulfilled for L ample or $\min\{a, b\} \leq 1$.

(2) If $2 \le \min\{a, b\} \le 3$, then **CB'** is fulfilled for L ample, i.e. $b > ae$ for $e \neq 0$; or $a, b > 0$ for $e = 0$.

(3) If $\min\{a, b\} \geq 4$, then **CB** is fulfilled for both L and $L \otimes K_X$ ample, i.e. $b > ae, e > 1$; or $b > a + 1, e = 1$; or $a, b \ge 4, e = 0$.

Corollary 3.15. Let X be a Hirzebruch surface Σ_e and $L = aG + bF$. Then the strange duality map $SD_{2,L}$ in [\(2.5\)](#page-6-2) is an isomorphism for the following cases.

- 1) min $\{a, b\} \leq 1$;
- 2) min $\{a, b\} \geq 2$, $e \neq 1$, L ample;
- 3) min $\{a, b\} \geq 2$, $e = 1$, $b \geq a + [a/2]$ with $[a/2]$ the integral part of $a/2$.

Proof. If $\min\{a, b\} \leq 1$, then every curve in |L| contains no subcurve of positive genus and hence done by Corollary [3.4](#page-9-1) and Remark [3.5.](#page-9-2)

If $\min\{a, b\} \geq 2$ and $e \neq 1$, then L is ample $\Rightarrow L \otimes K_X$ is ample. Therefore by Theorem [3.14](#page-18-2) and Theorem [3.13](#page-17-0) we can reduce the problem to $L = G + nF$ (or $F + nG$ for $e = 0$), or nF (or mG for $e = 0$) while by Corollary [3.4](#page-9-1) and Remark [3.5,](#page-9-2) $SD_{2,L}$ is an isomorphism in these cases.

If $\min\{a, b\} \geq 2$, $e = 1$ and $b \geq a + [a/2]$, then either both L and $L \otimes K_X$ are ample or L ample and $L \otimes K_X = G + F$ or nF. Therefore analogously we are done by Theorem [3.14,](#page-18-2) Theorem [3.13,](#page-17-0) Corollary [3.4](#page-9-1) and Remark [3.5.](#page-9-2)

The corollary is proved. $q.e.d.$

To prove Theorem [3.14,](#page-18-2) the main task is estimating codimension of some schemes. However we want to use stack language as what we did in [[21](#page-31-9)] because it makes the argument clearer and simpler. Therefore, we firstly introduce some stacks as follows, the notations of which are slightly different from $[21]$ $[21]$ $[21]$.

Definition 3.16. Let χ and d be two integers.

(1) Let $\mathcal{M}^{d}(L,\chi)$ be the (Artin) stack parametrizing pure 1-dimensional sheaves F on X with determinant L, Euler characteristic $\chi(\mathcal{F}) =$ χ and satisfying either F is semistable or $\forall \mathcal{F}' \subset \mathcal{F}, \chi(\mathcal{F}') \leq d$.

(2) Let $\mathcal{M}(L,\chi)$ $(\mathcal{M}(L,\chi)^s)$, resp.) be the substack of $\mathcal{M}^d(L,\chi)$ parametrizing semistable (stable, resp.) sheaves in $\mathcal{M}^{d}(L, \chi)$.

(3) Let $\mathcal{M}^{int}(L,\chi)$ be the substack of $\mathcal{M}(L,\chi)$ ^s parametrizing sheaves with integral supports.

(4) Let $\mathcal{M}^{d,R}(L,\chi)$ be the substack of $\mathcal{M}^d(L,\chi)$ parametrizing sheaves with reducible supports in $\mathcal{M}^d(L, \chi)$. Let $\mathcal{M}^R(L, \chi) = \mathcal{M}^{d,R}(L, \chi) \cap$ $\mathcal{M}(L,\chi)^s$.

(5) Let $\mathcal{M}^{d,N}(L,\chi)$ be the substack of $\mathcal{M}^{d}(L,\chi)$ parametrizing sheaves with irreducible and non-reduced supports in $\mathcal{M}^{d}(L,\chi)$. Let $\mathcal{M}^{N}(L,\chi)$ $\mathcal{M}^{d,N}(L,\chi)\cap \mathcal{M}(L,\chi)^s.$

(6) Let $\mathcal{C}^d(nL',\chi)$ $(n>1)$ be the substack of $\mathcal{M}^d(nL',\chi)$ parametrizing sheaves $\mathcal F$ whose supports are of the form nC with C an integral curve in |L'|. $\mathcal{C}(nL', \chi) = \mathcal{C}^d(nL', \chi) \cap \mathcal{M}(L, \chi)^s$.

Lemma 3.17. Let $X = \sum_e$ and $L = aG + bF$ ample with $\min\{a, b\} \ge$ 2. Then for all χ and d, $\mathcal{M}^{int}(L,\chi)$ is smooth of dimension L^2 , and the complement of $\mathcal{M}^{int}(L,\chi)$ inside $\mathcal{M}^{d}(L,\chi)$ is of codimension ≥ 2 , *i.e.* of dimension $\leq L^2 - 2$.

Proof. Since $L.K_X < 0$, $\mathcal{M}^{int}(L,\chi)$ is smooth of dimension L^2 . We first estimate the dimension of $\mathcal{C}^{d}(nL', \chi)$ $(n > 1)$. Write $L' = a'G + b'F$. Since $|L'|^{int} \neq \emptyset$, $L' = G$ or F ; or $b' \ge a'e$, $e > 0$; or $a', b' > 0$, $e = 0$.

Claim \clubsuit . $\forall d, \chi$, dim $\mathcal{C}^d(nL', \chi) \leq n^2L'^2 - \min\{7, -nL'.K_X - 1, (n - \chi)\}$ $1)L^{\prime 2} \leq n^2L^{\prime 2}$ for L' nef and dim $\mathcal{C}^d(nG,\chi) \leq -n^2$ for $e > 0$.

We show Claim ♣. Let

$$
\mathcal{T}_m(L,\chi) := \{ \mathcal{F} \in \mathcal{M}(L,\chi) | \exists x \in X, such that \dim_{k(x)} (\mathcal{F} \otimes k(x)) \ge m \},\
$$

where $k(x)$ is the residue field of x. Take a very ample divisor $H =$ $G + (e+1)F$ on X. If L' is nef, then $(-jH + K_X)$. L' < 0 for all $j \ge -1$ and hence $H^1(\mathscr{E}xt^1(\mathcal{F},\mathcal{F})(jH)) \cong \text{Ext}^2(\mathcal{F},\mathcal{F}(jH)) \cong \text{Hom}(\mathcal{F},\mathcal{F}(K_X (jH))^{\vee} = 0$ for all $j \geq -1$ and $\mathcal{F} \in \mathcal{C}(nL', \chi)$. Therefore by Castelnuovo-Mumford criterion $\mathscr{E}xt^{1}(\mathcal{F},\mathcal{F})$ is globally generated. Hence by Le Potier's argument in the proof of Lemma 3.2 in [[13](#page-31-12)], $\mathcal{C}(nL', \chi)$ $\mathcal{T}_m(nL', \chi)$ is of dimension $\leq n^2L'^2 - m^2 + 2$. Combining Proposition 4.1 and Theorem 4.16 in $[21]$ $[21]$ $[21]$, we have

$$
(3.26) \quad \dim \mathcal{C}(nL', \chi) \leq n^2L'^2 - \min\{7, n(n-1)L'^2, -nK_X.L' - 1\}.
$$

Let $\mathcal{F} \in C^d(nL',\chi) \setminus C(nL',\chi)$. Since $\forall \mathcal{F}' \subset \mathcal{F}, K_X.c_1(\mathcal{F}') < 0$, the proof of Proposition 2.7 in [[21](#page-31-9)] applies and $\dim(\mathcal{C}^d(nL',\chi)\backslash\mathcal{C}(nL',\chi))\leq$ $n^2L^{\prime 2} - (n-1)L^{\prime 2}.$

Let $e > 0$. For every semistable sheaf F with support nG , the map $\mathcal{F} \stackrel{\cdot \delta_G}{\longrightarrow} \mathcal{F}(G)$ is zero because $G^2 < 0$, where $\delta_G \in H^0(\mathcal{O}_X(G))$ is a function defining the divisor G . Hence $\mathcal F$ is a sheaf on G and hence a direct sum of n line bundles over G. Thus $\dim \mathcal{C}(nG, \chi) \leq -n^2$. Let F be unstable with support G , then take the Harder-Narasimhan filtration of it as follows.

$$
0=\mathcal{F}_0\subsetneq\mathcal{F}_1\subsetneq\cdots\subsetneq\mathcal{F}_k=\mathcal{F},
$$

with $\mathcal{F}_i/\mathcal{F}_{i-1} \cong \mathcal{O}_G(s_i)^{\oplus n_i}$ such that $s_1 > s_2 > \cdots > s_k$ and $\sum_{i=1}^k n_i =$ n. Then

$$
\operatorname{ext}^2(\mathcal{F}_i/\mathcal{F}_{i-1}, \mathcal{F}_{i-1}) = \hom(\mathcal{F}_{i-1}, \mathcal{F}_i/\mathcal{F}_{i-1}(K_X))
$$

$$
\leq \sum_{j < i} \hom(\mathcal{O}_G(s_j)^{\oplus n_j}, \mathcal{O}_G(s_i + (e-2))^{\oplus n_i})
$$

$$
\leq \sum_{j < i} (e-2)n_i n_j.
$$

By induction assumption $\dim \mathcal{C}^d(\tilde{n}G, \chi) \leq -\tilde{n}^2$ for all $\tilde{n} < n$, then by analogous argument to the proof of Proposition 2.7 in $[21]$ $[21]$ $[21]$ we have

$$
\dim \mathcal{C}^{d}(nG,\chi)
$$
\n
$$
\leq \max_{\substack{n_1,\cdots,n_k>0\\ \sum_i n_i=n}} \{-n^2, -(\sum_{i=1}^{k-1} n_i)^2 - n_k^2 - \sum_{i=0,1} (-1)^i \text{ext}^i(\mathcal{F}_k/\mathcal{F}_{k-1}, \mathcal{F}_{k-1})\}
$$
\n
$$
= \max_{\substack{n_1,\cdots,n_k>0\\ \sum_i n_i=n}} \{-n^2, -(\sum_{i=1}^{k-1} n_i)^2 - n_k^2 - \chi(\mathcal{F}_i/\mathcal{F}_{k-1}, \mathcal{F}_{k-1}) + \text{ext}^2(\mathcal{F}_k/\mathcal{F}_{k-1}, \mathcal{F}_{k-1})\}
$$
\n
$$
\leq \max_{\substack{n_1,\cdots,n_k>0\\ \sum_i n_i=n}} \{-n^2, -(\sum_{i=1}^{k-1} n_i)^2 - n_k^2 - n_k(\sum_{i=1}^{k-1} n_i)e + (e-2)(\sum_{i=1}^{k-1} n_i n_k)\}
$$
\n
$$
= -n^2
$$

Therefore Claim ♣ is proved.

Easy to see $\mathcal{M}^d(L,\chi) \setminus \mathcal{M}^{int}(L,\chi) = \mathcal{M}^{d,R}(L,\chi) \cup \mathcal{M}^{d,N}(L,\chi)$ and $\mathcal{M}^{d,N}(L,\chi) = \cup_{nL'=L} C^d(nL',\chi)$. Claim \clubsuit implies that $\mathcal{M}^{d,N}(L,\chi)$ is of codimension ≥ 2 inside $\mathcal{M}^{d}(L,\chi)$ for L ample. Now we only need to show $\mathcal{M}^{d,R}(L,\chi)$ is of dimension $\leq L^2-2$.

Let $\mathcal{G} \in \mathcal{M}^{d,\widetilde{R}}(L,\chi)$, then \mathcal{G} admits a filtration as follows.

$$
0=\mathcal{G}_0\subsetneq \mathcal{G}_1\subsetneq \cdots \subsetneq \mathcal{G}_l=\mathcal{G},
$$

with $S_i := \mathcal{G}_i / \mathcal{G}_{i-1} \in \mathcal{C}^{d_i}(n_i L_i, \chi_i)$ such that \sum l $i=1$ $n_iL_i = L, \sum$ l $i=1$ $\chi_i = \chi$ and $\text{Hom}(\mathcal{S}_i, \mathcal{S}_j) = \text{Ext}^2(\mathcal{S}_i, \mathcal{S}_j) = 0, \ \forall \ i \neq j.$ Hence $\text{ext}^1(\mathcal{S}_i, \mathcal{S}_j) =$ $-\chi(\mathcal{S}_i, \mathcal{S}_j) = n_i n_j(L_i, L_j) \ \forall \ i > j, \text{and} \ ext^1(\mathcal{S}_i, \mathcal{G}_{i-1}) = \sum_{i=1}^{n}$ j<i $ext^1(\mathcal{S}_i, \mathcal{G}_{i-1}).$

By analogous argument to the proof of Proposition 2.7 in $[21]$ $[21]$ $[21]$, we have (3.27)

$$
\dim \mathcal{M}^{d,R}(L,\chi) \leq \max_{\sum n_i L_i = L} \{ \sum_i \dim \mathcal{C}^{d_i}(n_i L_i, \chi_i) + \sum_{j < i} n_i n_j (L_i, L_j) \}
$$
\n
$$
\leq \max_{\sum n_i L_i = L - a_0 G \atop L_i = n \notin f, a_0 \leq a} \{ \sum_i n_i^2 L_i^2 + \sum_{j < i} n_i n_j (L_i, L_j) - a_0^2 + a_0 G (L - a_0 G) \}
$$

326 Y. YUAN

$$
= \max_{\substack{\sum n_i L_i = L - a_0 G \\ L_i ne_f, a_0 \le a}} \{L^2 - \sum_{j < i} n_i n_j (L_i L_j) - a_0^2 - a_0 G. L\}
$$
\n
$$
= L^2 - \min_{\substack{\sum n_i L_i = L - a_0 G \\ L_i ne_f, a_0 \le a}} \{ \sum_{j < i} n_i n_j (L_i L_j) + a_0^2 + a_0 G. L \}
$$

If $a_0 \geq 1$, then $\sum_{j < i} n_i n_j (L_i L_j) + a_0^2 + a_0 G.L \geq a_0^2 + a_0 (b - ea) \geq 2$. If $a_0 = 0$ or $e = 0$, then $\sum_{j < i} n_i n_j(L_i.L_j) \geq 2$ since $\min\{a, b\} \geq 2$ and L_i are all nef. Hence the lemma is proved. $q.e.d.$

Remark 3.18. Let d, χ be two integers. Claim \clubsuit and [\(3.27\)](#page-20-0) also provide an estimate of dim $\mathcal{M}^d(L,\chi)$ for all L effective. We can see that $\dim \mathcal{M}^d(nG,\chi) = \dim \mathcal{C}^d(nG,\chi) \leq -n^2$ for $e \neq 0$ and $\dim \mathcal{M}^d(nF,\chi) \leq$ 0.

Denote by $|L|^{int}$ the open subset of $|L|$ consisting of all integral curves. If L is nef and big, i.e. $|L|^{int} \neq \emptyset$ and $L \neq F, G$, then $L.K_X < 0$ and dim $\mathcal{M}^{int}(L,\chi)$ is smooth of dimension L^2 , and moreover by Claim \clubsuit and (3.27) , $\mathcal{M}^d(L,\chi) \setminus \mathcal{M}^{int}(L,\chi) \leq L^2 - 1$. Hence dim $\mathcal{M}^d(L,\chi) =$ $\dim \mathcal{M}(L,\chi)^s = L^2$ and $\mathcal{M}(L,\chi)$ is irreducible of expected dimension.

If $|L|^{int} = \emptyset$, $\min\{a, b\} \ge 1$ and $-K_X$ is nef, i.e. $e \le 2$; then $\mathcal{M}(L, \chi)^s$ is either empty or of smooth of dimension L^2 .

If $|L|^{int} = \emptyset$ with $\min\{a, b\} \geq 1$, then $\mathcal{M}^{d}(L, \chi) = \mathcal{M}^{d,R}(L, \chi)$ and we then have

$$
\dim \mathcal{M}^d(L, \chi) \le \max_{L-a_0G \ nef} \{ (L-a_0G)^2 + a_0G(L-a_0G) - a_0^2 \}.
$$

Let \mathcal{F}_L be stable with $C_{\mathcal{F}_L} = a_0 G + C'_{\mathcal{F}_L}$ such that G is not a component of $C'_{\mathcal{F}_L}$, let \mathcal{F}_L^G be $\mathcal{F}_L \otimes \mathcal{O}_{a_0G}$ modulo its torsion. Hence \mathcal{F}_L^G is a quotient of \mathcal{F}_L while $\mathcal{F}_L^G(-C'_{\mathcal{F}_L})$ is a subsheaf of \mathcal{F}_L . Hence by stability of \mathcal{F}_L , $C'_{\mathcal{F}_L}$ $G > 0$ and $L - a_0 G$ must be either ample or bF . Hence

$$
(3.28) \dim \mathcal{M}(L,\chi)^s \leq \max_{\substack{L-a_0G \text{ ample} \\ or \ a_0=a}} \{ (L-a_0G)^2 + a_0G(L-a_0G) - a_0^2 \}.
$$

We can choose an atlas $\Omega_{L,\chi}^d$ $\stackrel{\psi}{\rightarrow} \mathcal{M}^d(L, \chi)$ with $\Omega^d_{L, \chi}$ a subscheme of some Quot-scheme. We also can ask $\psi^{-1}(\mathcal{M}(L,\chi)) =: \Omega_{L,\chi} \xrightarrow{f_M}$ $M(L, \chi)$ to be a good $PGL(V_{L, \chi})$ -quotient with $M(L, \chi)$ the coarse moduli space of semistable sheaves. Analogously we define $\Omega_{L,\chi}^s$, $\Omega_{L,\chi}^{int}$, $\Omega_{L,\chi}^{d,R}, \Omega_{L,\chi}^{d,N}$ etc. If $\chi = 0$, we write Ω_L^{\bullet} instead of $\Omega_{L,0}^{\bullet}$. Since ψ is smooth, the codimension of $\Omega_{L,\chi}^{\bullet}$ inside $\Omega_{L,\chi}^{d}$ is the same as $\mathcal{M}^{\bullet}(L,\chi)$ inside $\mathcal{M}^{d}(L,\chi)$. " \bullet " stands for "int", "d, R", "d, N" etc.

Let $M^{int}(L,\chi) := \pi^{-1}(|L|^{int})$. Then $M^{int}(L,\chi)$ is a flat family of (compactified) Jacobians over $|L|^{int}$, hence it is connected. $\Omega_{L,\chi}^{int}$ = $f_M^{-1}(M^{int}(L,\chi))$ and $\Omega_{L,\chi}^{int}$ is a principal $PGL(V_L)$ -bundle over $M^{int}(L, \chi)$ hence also connected.

We have a corollary to Lemma [3.17](#page-19-0) as follows.

Corollary 3.19. Let $X = \sum_e$ and $L = aG + bF$.

(1) If $\min\{a, b\} \leq 1$, then $M(L, 0) \cong |L|$ and $\Theta_L \cong \mathcal{O}_{|L|}$.

(2) If $\min\{a, b\} \geq 2$ and L is nef for $e \neq 1$, ample for $e = 1$, then $M(L, 0)$ is integral and normal; $M(L, 0) \setminus M^{int}(L, 0)$ is of codimension ≥ 2 inside $M(L, 0)$; and the dualizing sheaf of $M(L, 0)$ is locally free and isomorphic to $\pi^* \mathcal{O}_{|L|}(L.K_X)$. Moreover $\pi_* \Theta_L \cong \mathcal{O}_{|L|}$ and $R^i \pi_* \Theta_L^r = 0$ for all $i, r > 0$.

Proof. If $\min\{a, b\} \leq 1$, then done by Proposition 4.1.1 in [[20](#page-31-3)].

Let L be as in (2). There are nonsingular irreducible curves in $|L|$ and the complement of $|L|^{int}$ in $|L|$ is of codimension ≥ 2 . Since $L.K_X < 0$, $M^{int}(L, 0)$ is smooth and irreducible of dimension $L^2 + 1$. Ω_L^{int} is also smooth, hence irreducible and of expected dimension.

By Lemma [3.17,](#page-19-0) $\Omega_L^d \setminus \Omega_L^{int}$ is of codimension ≥ 2 inside Ω_L^d , then Ω_L^{int} is dense in Ω_L , hence then Ω_L is of expected dimension and by deformation theory Ω_L is a local complete intersection. On the other hand, Ω_L is smooth in codimension 1, hence normal for local complete intersection. Therefore $M(L, 0)$ is integral and normal since Ω_L is.

To show that $M(L, 0) \setminus M^{int}(L, 0)$ is of codimension ≥ 2 , we only need to show $M(L, 0) \backslash M(L, 0)^s$ is of codimension ≥ 2 with $M(L, 0)^s$ the open subset consisting of stable sheaves. By Remark [3.18,](#page-21-0) dim $M(L', 0)^s =$ $L^2 + 1$ for L' nef and big, dim $M(F, 0)^s = 1$, dim $M(nF, 0)^s = 0$ for $n > 1$, dim $M(nG, 0) = 0$ for $e > 0$ and finally by (3.28) for $|L'|^{int} = \emptyset$ and $L' \neq nF, mG$,

$$
\dim M(L',0)^s \le \max_{\substack{L-a_0G \text{ ample} \\ or \text{ } a_0=a}} \{ (L'-a_0G)^2 + 1 - a_0^2 + a_0G.(L'-a_0G) \}.
$$

Hence if $e \neq 0$, then

$$
(3.29)
$$
\n
$$
L^{2} + 1 - \dim(M(L, 0) \setminus M(L, 0)^{s})
$$
\n
$$
= L^{2} + 1 - \max_{\sum L_{i}=L} \{ \sum_{i} \dim M(L_{i}, 0)^{s} \}
$$
\n
$$
\leq L^{2} + 1 - \max_{\sum L_{i}=L-q_{0}G \atop L'_{i}=L_{i}-a_{i}G \text{ nef, } i} \{ \sum_{L'_{i}=L-q_{i}G \text{ nef, } i} (L_{i}-a_{i}G)^{2} - a_{i}^{2} + a_{i}G.(L_{i}-a_{i}G) + \#\{L_{i}\} \}
$$
\n
$$
\leq \min_{\substack{L'_{i}=L-q_{0}G \text{ and } L'_{i}=L-q_{0}G \text{ for } i}} \left\{ \sum_{j\neq i} (L'_{i}.L'_{j}) - \#\{L'_{i}\} + \sum_{i\neq 0} a_{i}^{2} + 2a_{0}G.L + 1 \right\}
$$
\n
$$
\leq \min_{\substack{L'_{i}=L-q_{0}G \text{ for } i \neq 0}} \left\{ \sum_{i\neq 0}^{j\neq i} L'_{i}.(L'_{i} + 2\sum_{j\neq i} L'_{j}) + (a_{0}^{2} - (\sum_{i\neq 0} a_{i})^{2})e \right\}
$$

328 Y. YUAN

$$
\leq \min_{\substack{\sum L_i = L - a_0 G \\ L'_i = L_i - a_i G}} \left\{ \begin{array}{l} \sum_{j \neq i} (L'_i L'_j) - \# \{L'_i\} + \sum_{i \neq 0} a_i^2 + 2a_0 G.L + 1 \\ + \sum_{i \neq 0} a_i G.(L - a_0 G + \sum_{j \neq i} L'_j) + a_0^2 e \\ \sum_{i \geq 0, a_0 \leq a} \sum_{a_i \geq 0, a_0 \leq a} \left\{ \begin{array}{l} \sum_{j \neq i} (L'_i L'_j) - \# \{L'_i\} + \sum_{i \neq 0} a_i^2 + \sum_{i \neq 0, j \neq i} a_i G.L'_j \\ + (\sum_{i \geq 0} a_i) G.L + a_0 G.L + a_0 (\sum_{i \geq 0} a_i) e + 1 \end{array} \right\}
$$

We want $\dim(M(L,0) \setminus M(L,0)^s) \leq L^2 - 1$.

Assume $L'_i = n_i F$ for all i, then $\sum_{i \geq 0} a_i = a$. If moreover $a_i = 0$ for $i \neq 0$, then $a_0 = a$ and $-\#\{L'_i\} + 2a_0G\overline{\ }L + a_0^2e + 1 = 1 + 2a(b - ae) - b +$ $a^2e = b(a-1) + a(b - ae) + 1 \ge 5$ since $a, b \ge 2$ and $b > ae$. If $\exists a_{k_0} \ne 0$ for $k_0 \neq 0$, then $-\# \{L'_i\} + \sum_{i \neq 0} a_i^2 + \sum_{i \neq 0, j \neq i} a_i G.L'_j + aG.L + 1 \geq$ $a(b - ae) + 1 \geq 3.$

Assume $\exists L'_{i_0} \neq nF$, then $L'_{i_0}.L'_j \geq 1$ for L'_j nef hence $\sum_{j\neq i}(L'_i.L'_j) \geq$ $2(\# \{L_i'\}-1)$. If $a_0 \geq 1$, then $2a_0G.L + a_0^2e \geq 3$ and hence $\sum_{j\neq i}(L_i'.L_j') \# \{L_i'\} + 2a_0 G.L + a_0^2 e + 1 \geq 3$. If $a_0 = 0$, then $\# \{L_i'\} \geq 2$ and either $\exists L'_{i_0}, L'_{j_0},$ such that $L'_{i_0}.L_j \geq 1$, $L'_{j_0}.L'_j \geq 1$ for L'_j nef; or $\exists L'_{i_0},$ such that $L'_{i_0}.L'_j \geq 2$ for L'_j nef; or $\exists a_{k_0} \neq 0$ for $k_0 \neq 0$. Then we have

$$
\sum_{j \neq i} (L'_i \cdot L'_j) + \sum_{i \neq 0} a_i^2 + \sum_{i \neq 0, j \neq i} a_i G \cdot L'_j + (\sum_{i \geq 0} a_i) G \cdot L \geq 2(\#\{L'_i\} - 1) + 2
$$

and

$$
\sum_{j \neq i} (L'_i L'_j) - #\{L'_i\} + \sum_{i \neq 0} a_i^2 + \sum_{i \neq 0, j \neq i} a_i G.L'_j + (\sum_{i \geq 0} a_i) G.L + 1
$$

\n
$$
\geq #\{L_i\} + 1 \geq 3.
$$

If $e = 0$, then easy to see

(3.30)

$$
\dim(M(L,0) \setminus M(L,0)^s) = \max_{\substack{\sum_i L_i = L \\ L_i \text{ nef}}} \{ \sum_i L_i^2 + \# \{ L_i \} \}
$$

$$
\leq L^2 - \min_{\substack{\sum_i L_i = L \\ L_i \text{ nef}}} \{ \sum_{j \neq i} L_i L_j - \# \{ L_i \} \}
$$

$$
\leq L^2 - 2.
$$

Therefore the complement of $M(L, 0)^s$ inside $M(L, 0)$ is of codimension \geq 3 and hence $M(L, 0) \setminus M^{int}(L, 0)$ is of codimension \geq 2.

Because $\Omega_L \setminus \Omega_L^{int}$ is of codimension ≥ 2 and $|L|$ contains smooth curves, sheaves not locally free on their supports form a subset of codimension ≥ 2 inside Ω_L , hence Proposition 4.2.11 in [[20](#page-31-3)] applies and then

the dualizing sheaf of $M(L, 0)$ is isomorphic to $\pi^* \mathcal{O}_{|L|}(L.K_X)$. Moreover since $M(L, 0)$ is normal and integral, and the complement of $|L|^{int}$ inside |L| is of codimension ≥ 2 , Theorem 4.3.1 in [[20](#page-31-3)] and Proposition 4.3 in [[22](#page-31-4)] apply and we obtain that $\pi_* \Theta_L \cong \mathcal{O}_{|L|}$ and $R^i \pi_* \Theta_L^r = 0$ for all $i, r > 0$.

The lemma is proved. $q.e.d.$

Remark 3.20. Let L be as in Corollary [3.19.](#page-22-0) Since $\pi_* \Theta_L \cong \mathcal{O}_{|L|}$ and $R^i \pi_* \Theta_L^r = 0$ for all $i, r > 0$, $H^i(\Theta_L(n)) = 0$ for all $i > 0$ and $n \ge 0$. Hence we already know that the map g_L in (3.3) is surjective in this case.

Proof of Statement (1) of Theorem [3.14.](#page-18-2) By Corollary [3.19,](#page-22-0) the strange duality map $SD_{c_2^1, u_L}$ in [\(3.4\)](#page-8-5) is a map between two vector spaces of same dimension, while L is in case (1) of the theorem. The argument proving Corollary 4.3.2 in [[20](#page-31-3)] applies and hence $SD_{c_2^1, u_L}$ is an isomorphism. Statement (1) is proved. $q.e.d.$

To prove Statement (2) and (3), we need to introduce more stacks.

Definition 3.21. For two integers $k > 0$ and i, we define $\mathcal{M}^{int}_{k,i}(L, \chi)$ to be the (locally closed) substack of $\mathcal{M}^{int}(L, \chi)$ parametrizing sheaves $\mathcal{F} \in \mathcal{M}^{int}(L,\chi)$ such that $h^1(\mathcal{F}(-iK_X)) = k$ and $h^1(\mathcal{F}(-iK_X)) =$ $0, \forall n > i.$ Let $M_{k,i}^{int}(L, \chi)$ be the image of $\mathcal{M}_{k,i}^{int}(L, \chi)$ in $M^{int}(L, \chi)$.

Define $\mathcal{W}^{int}_{k,i}(L,\chi)$ to be the (locally closed) substack of $\mathcal{M}^{int}(L,\chi)$ parametrizing sheaves $\mathcal{F} \in \mathcal{M}^{int}(L,\chi)$ with $h^0(\mathcal{F}(-iK_X)) = k$ and $h^0(\mathcal{F}(-nK_X))=0, \ \forall \ n < i.$ Let $W_{k,i}^{int}(L,\chi)$ be the image of $\mathcal{W}_{k,i}^{int}(L,\chi)$ in $M^{int}(L, \chi)$.

Remark 3.22. Since $L.K_X < 0$, for fixed χ , $\mathcal{M}_{k,i}^{int}(L,\chi)$ is empty except for finitely many pairs (k, i) . We don't define $\mathcal{M}^d_{k,i}(L, \chi) \subset$ $\mathcal{M}^{d}(L,\chi)$ because L may not be K_X -negative (see Definition 2.1 in [[21](#page-31-9)]) and the analogous definition may not behave well.

Remark 3.23. By sending each sheaf F to its dual $\mathscr{E}xt^{1}(\mathcal{F}, K_{X}),$ we get an isomorphism $\mathcal{M}^{int}_{k,i}(L,\chi) \stackrel{\cong}{\to} \mathcal{W}^{int}_{k,-i}(L,-\chi)$.

By Proposition 5.5 and Remark 5.6 in [[21](#page-31-9)], we have

Proposition 3.24. 1) dim ${\cal M}^{int}_{k,i}(L,\chi) \leq L^2 + i K_X.L - \chi - k;$ 2) dim $\mathcal{W}^{int}_{k,i}(L,0) \leq L^2 - iK_X.L + \chi - k;$ 3) dim $M_{k,i}^{int}(L,0) \leq L^2 + 1 + iK_X.L - \chi - k;$ 4) dim $W_{k,i}^{int}(L,0) \leq L^2 + 1 - iK_X.L + \chi - k$.

Corollary 3.25. Let $X = \Sigma_e$ and $L = aG + bF$ ample with $\min\{a, b\} \geq 2$. Let $D_{\Theta_L}^{int} := D_{\Theta_L} \cap M^{int}(L, 0)$. Then $\dim D_{\Theta_L} \setminus D_{\Theta_L}^{int} \leq$

 L^2-2 , and $\dim {\cal D}_{\Theta_L}\backslash {\cal D}^{int}_{\Theta_L}\leq L^2-3$ with ${\cal D}_{\Theta_L}$ (${\cal D}^{int}_{\Theta_L}$, resp.) the preimage of D_{Θ_L} ($D_{\Theta_L}^{int}$, resp.) inside $\mathcal{M}(L, 0)$.

Proof. We have shown that $M(L, 0) \setminus M(L, 0)^s$ is of dimension \leq $L^2 - 2$. Then we only need to show $\dim(\mathcal{D}_{\Theta_L} \setminus \mathcal{D}_{\Theta_L}^{int}) \leq L^2 - 3$. Let \mathcal{C}_{L_1, L_2} with $L_1 + L_2 = L$ be the stack parametring sheaves $\mathcal{F} \in \mathcal{D}_{\Theta_L}$ with supports $C_{\mathcal{F}} = C_{L_1} + C_{L_2}$ such that $C_{L_i} \in |L_i|^{int}$ for $i = 1, 2$. By [\(3.26\)](#page-19-1) and [\(3.27\)](#page-20-0), we only need to show the stacks $C_{2G+(b-1)F, F}$ and $\mathcal{C}_{(a-1)G+(ae+1)F, G}$ is of dimension $\leq L^2-3$.

Let $\mathcal{F} \in \mathcal{C}_{2G+(b-1)F, F}$. Then we have the following exact sequence

(3.31)
$$
0 \to \mathcal{F}_1 \to \mathcal{F} \to \mathcal{F}_2 \to 0,
$$

where \mathcal{F}_2 is the torsion free part of $\mathcal{F} \otimes \mathcal{O}_{C_F}$ and $\mathcal{F}_1 \in \mathcal{M}^{int}(2G + (b -$ 1) F , χ_1) with $\chi_1 \leq 0$. Notice that $\mathcal{F}_1 \otimes \mathcal{O}_X(F)$ is a quotient of \mathcal{F} , hence $\chi_1 + 2 \geq 0$. Also $\mathcal{F}_2 \otimes \mathcal{O}_X(-2G - (b-1)F)$ is a subsheaf of $\mathcal F$ and hence $\overline{\mathcal{F}_2} \cong \mathcal{O}_{\mathbb{P}^1}$ or $\overline{\mathcal{O}_{\mathbb{P}^1}(-1)}$. Let $\overline{\mathcal{C}_{2G+(b-1)F,\ F}^0} \subset \mathcal{C}_{2G+(b-1)F,\ F}$ consist of F in [\(3.31\)](#page-25-0) with $H^0(\mathcal{F}_1) = 0$. $\mathcal{F}_1 \in \bigcup_{i \leq 0} \mathcal{W}^{int}_{k,i}(2G + (b-1)F, \chi_1)$ if $\mathcal{F} \in \mathcal{C}_{2G+(b-1)F, F} \setminus \mathcal{C}_{2G+(b-1)F, F}^{0}$. Therefore

$$
(3.32) \qquad \text{dim } C_{2G+(b-1)F, F} \setminus C_{2G+(b-1)F, F}^0
$$
\n
$$
\leq (2G + (b-1)F).F + \text{dim} \bigcup_{i \leq 0} \mathcal{W}_{k,i}^{int}(2G + (b-1)F, \chi_1)
$$
\n
$$
\leq (2G + (b-1)F)^2 - 1 + \chi_1 + 2 \leq 4b - 4e - 3 = L^2 - 3.
$$

Denote by g_L the arithmetic genus of curves in |L|. If $\mathcal{F} \in \mathcal{C}^0_{2G + (b-1)F, F}$, then there is a injection $\mathcal{O}_{C_{\mathcal{F}}} \hookrightarrow \mathcal{F}$ with cokernel $\mathcal{O}_{Z_{\mathcal{F}}}$, where $Z_{\mathcal{F}}$ is a 0-dimensional subscheme of C_F with length $g_L - 1$. We have $ext^1(\mathcal{O}_Z, \mathcal{O}_C) = \dim Aut(\mathcal{O}_Z) = h^0(\mathcal{O}_Z) = g_L - 1$ for all $Z \subset C$. Hence for a fixed curve C and $[Z] \in C^{[g_L-1]}$, there are finitely many possible choices for $\mathcal F$ lying in the following sequence

$$
0 \to \mathcal{O}_C \to \mathcal{F} \to \mathcal{O}_Z \to 0.
$$

Hence the fiber of the projection $\mathcal{C}_{2G+(b-1)F,F}^0 \to |2G+(b-1)F| \times |F|$ over a curve C is of dimension no larger than

$$
\dim C^{[g_L-1]} + \mathrm{ext}^1(\mathcal{O}_Z, \mathcal{O}_C) - \dim Aut(\mathcal{O}_C) \times Aut(\mathcal{O}_Z) = \dim C^{[g_L-1]} - 1.
$$

Therefore

$$
\dim C_{2G+(b-1)F,F}^{0}
$$
\n
$$
\leq \dim |2G + (b-1)F| \times |F| - 1 + \max_{\mathcal{F} \in C_{2G+(b-1)F,F}^{0}} \dim C_{\mathcal{F}}^{[g_L-1]}
$$
\n
$$
= 3b - 3e - 1 + \max_{\mathcal{F} \in C_{2G+(b-1)F,F}^{0}} \dim C_{\mathcal{F}}^{[g_L-1]}
$$

$$
= 4b - 4e - 3 + (\max_{\mathcal{F} \in \mathcal{C}_{2G + (b-1)F, F}^{0}} \dim C_{\mathcal{F}}^{[g_L - 1]} - (g_L - 1))
$$

$$
= L^2 - 3 + (\max_{\mathcal{F} \in \mathcal{C}_{2G + (b-1)F, F}^{0}} \dim C_{\mathcal{F}}^{[g_L - 1]} - (g_L - 1)).
$$

The only thing left to prove is $\dim C_{\mathcal{F}}^{[g_L-1]} \leq g_L - 1$ for all $C_{\mathcal{F}}$, and this follows from that $C_{\mathcal{F}}$ only have isolated planner singularities and the result of Iarrobino (Corollary 2 in $[12]$ $[12]$ $[12]$).

Analogously we can show that $\dim \mathcal{C}_{(a-1)G+(ae+1)F, G} \leq L^2 - 3$. The corollary is proved. $q.e.d.$

Proof of Statement (2) and (3) of Theorem [3.14.](#page-18-2) The proof has 7 steps and we check all conditions in CB and CB' one by one as follows.

Step 1: CB-(1).

Since $M(L, 0)$ is integral and D_{Θ_L} is a divisor on it, to show **CB**-(1) it is enough to show $\dim(D_{\Theta_L} \setminus D_{\Theta_L}^o) \leq L^2 - 1$. By Corollary [3.25,](#page-24-0) it is enough to show $\dim(D_{\Theta_L}^{int} \setminus D_{\Theta_L}^o) \leq L^2 - 1$. By definition

$$
(D_{\Theta_L}^{int} \setminus D_{\Theta_L}^o) \subset \bigcup_{\substack{k \geq 2, i = 0 \\ or i \geq 1}} M_{k,i}^{int}(L, 0).
$$

Therefore we have $CB-(1)$ is fulfilled by Proposition [3.24.](#page-0-0)

Step 2: CB-(2).

Assume $L = aG + bF$ ample with $\min\{a, b\} \geq 4$. Then Lemma [3.17](#page-19-0) applies to $L+K_X = (a-2)G+(b-e-2)F$ and $M(L\otimes K_X, 0) \setminus M^{int}(L\otimes$ K_X , 0) is of codimension ≥ 2 . $M(L \otimes K_X, 0)$ satisfies the "condition S_2 " of Serre" because it is normal by Corollary 3.19 . Hence to prove $CB-(2)$ is fulfilled, it is enough to show $M^{int}(L \otimes K_X, 0) \setminus M(L \otimes K_X, 0)$ ^o is of dimension $\leq (L+K_X)^2-1$. Since we have

$$
M^{int}(L\otimes K_X,0)\setminus M(L\otimes K_X,0)^o=\bigcup_{i\leq -1}W^{int}_{k,i}(L\otimes K_X,0),
$$

by Proposition [3.24](#page-0-0) we have

$$
\dim M^{int}(L \otimes K_X, 0) \setminus M(L \otimes K_X, 0)^o \le (L + K_X)^2 + K_X.(L + K_X)
$$

$$
\le (L + K_X)^2 - 1.
$$

Hence $CB-(2)$.

Step 3: CB-(3).

To check that $CB-(3)$ holds, it is enough to show the following three statements.

- 1) dim $Q_1^o = 2\ell L.K_X = L^2;$
- 2) $\rho_1^{-1}(\rho_1(Q_1^o)) \setminus Q_1^o$ is of dimension $\leq 2\ell L.K_X 2 = L^2 2;$
- 3) $H_{\ell} \setminus \rho_1(Q_1^o)$ is of dimension $\leq 2\ell 2 = L^2 + L.K_X 2$.

Let $s > 0, t \geq 0$, and define

$$
Q_1^{s,t} := \left\{ \left[\mathcal{I}_Z(L \otimes K_X) \stackrel{f_1}{\to} \mathcal{F}_L \right] \in Q_1 \middle| h^1(\mathcal{F}_L) = s, \ h^1(\mathcal{F}_L(-K_X)) = t \right\},\
$$

$$
H_{\ell}^{L,s,t} := \left\{ \mathcal{I}_Z \in H_{\ell} \middle| h^1(\mathcal{I}_Z(L \otimes K_X)) = s - 1, \ h^1(\mathcal{I}_Z(L)) = t. \right\}.
$$

Then $Q_1^{s,t} = \rho_1^{-1}(H_\ell^{L,s,t})$ $(\ell^{L,s,t}), \ \rho_1(Q_1^o) \subset H^{L,1,0}_{\ell}$ $\ell_{\ell}^{L,1,0}$ and $\rho_1^{-1}(\rho_1(Q_1^o)) \subset Q_1^{1,0}$ $_{1}^{1,0}$. For d large enough, we have the classifying map $Q_1^{s,t}$ 1 $\stackrel{\phi_L^{L,s,t}}{\longrightarrow} \mathcal{M}^d(L,0).$ In particular when $s = 1, \phi_L^{L,1,t}$ $L^{1,1,t}(Q^{1,t}_1$ $j_1^{1,t}$ $\subset \mathcal{M}(L,0)$, hence $\phi_L^{L,1,t}$ $L^{1,1,t}(Q_1^{1,t}$ $\binom{1,t}{1} \subset$ \mathcal{D}_{Θ_L} . This is because for every $\mathcal{F} \in \mathcal{M}^d(L,0)$, if $h^0(\mathcal{F}_L) = 1$ and there is a torsion free extension of \mathcal{F}_L by K_X , then $\forall \mathcal{F}' \subsetneq \mathcal{F}$, $h^0(\mathcal{F}') \leq 1$ and $h^1(\mathcal{F}') \geq 1$ hence then $\chi(\mathcal{F}') \leq 0$ and $\mathcal F$ is semistable. The fiber of $\phi_L^{L,s,t}$ $L_s^{L,s,t}$ at \mathcal{F}_L is contained in $\text{Ext}^1(\mathcal{F}_L, K_X)$, and hence

$$
\dim Q_1^o = 1 + \dim(\mathcal{D}_{\Theta_L} \cap (\mathcal{M}^{int}(L, 0) \setminus \bigcup_{k \ge 2, i=0 \text{ or } i>0} \mathcal{M}^{int}_{k,i}(L, 0))) = L^2.
$$

$$
(3.33)
$$

$$
\dim(\bigcup_{t\geq 0} Q_1^{1,t}) \setminus Q_1^o \leq 1 + \dim((\mathcal{D}_{\Theta_L} \setminus \mathcal{D}_{\Theta_L}^{int}) \cup \bigcup_{i>0} \mathcal{M}_{k,i}^{int}(L,0)) \leq L^2 - 2,
$$

where the last inequality is because of Corollary [3.25](#page-24-0) and Proposition [3.24.](#page-0-0)

By $(3.7) Q_1^{s,t}$ $(3.7) Q_1^{s,t}$ $P_1^{s,t} \cong \mathbb{P}(p_*(\mathscr{I}_\ell \otimes q^*L)|_{H_\ell^{L,s,t}}),$ where $p_*(\mathscr{I}_\ell \otimes q^*L)$ is a vector bundle of rank $h^0(\mathcal{I}_Z(L)) = t + 1 - L.K_X$ over $H^{L,s,t}_{\ell}$ $\ell^{L,s,t}$. Hence

(3.34)
$$
\dim Q_1^{s,t} = \dim H_{\ell}^{L,s,t} + t - L.K_X.
$$

Hence [\(3.33\)](#page-27-0) implies $\dim(\bigcup_{t\geq 0} H_{\ell}^{L,1,t}) \setminus \rho_1(Q_1^o) \leq L^2 + L.K_X - 2$. Hence ℓ we only need to show dim $\overline{H_{\ell}} \setminus (\bigcup_{t \geq 0} H_{\ell}^{L,1,t})$ $\mathcal{L}^{L,1,t}_{\ell}$ $\leq 2\ell - 2$, i.e. dim $H_{\ell}^{L,s,t}$ \leq $2\ell - 2$ for all $s \geq 2$.

 $p_*(\mathscr{I}_\ell \otimes q^*(L \otimes K_X))$ is a vector bundle of rank $h^0(\mathcal{I}_Z(L \otimes K_X)) = s$ over $H_{\ell}^{L,s,t}$ ^{L,s,t}. By [\(3.8\)](#page-11-2) $\mathbb{P}(p_*(\mathscr{I}_\ell \otimes q^*(L \otimes K_X))|_{H^{L,s,t}_\ell})$ is a locally closed subscheme inside Q_2 . For d big enough, there is a classifying map

$$
\mathbb{P}(p_*(\mathscr{I}_\ell \otimes q^*(L \otimes K_X))|_{H^{L,s,t}_\ell}) \xrightarrow{\phi_{L \otimes K_X}^{L,s,t}} \mathcal{M}^d(L \otimes K_X,0).
$$

If $s \geq 2$, then the image of $\phi^{L,s,t}_{L\otimes K}$ $\frac{L, s, t}{L \otimes K_X}$ is contained in $(\mathcal{M}^{d}(L \otimes K_X, 0) \setminus \mathcal{M}^{int}(L \otimes K_X, 0)) \cup$ $i = 0, k = s - 1$ or $i < 0$ $\mathcal{W}^{int}_{k,i}(L\otimes K_X,0).$

The fiber of $\phi_{L\otimes k}^{L,s,t}$ $L_{\otimes K_X}^{L,s,t}$ at $\mathcal{F}_{L\otimes K_X}$ is contained in $\mathrm{Ext}^1(\mathcal{F}_{L\otimes K_X}, \mathcal{O}_X)$. If $\mathcal{F}_{L\otimes K_X} \in \mathcal{W}^{int}_{s-1,0}(L\otimes K_X,0)$, then

$$
h^{0}(\mathcal{F}_{L\otimes K_{X}}(K_{X}))=0 \text{ and } \mathrm{ext}^{1}(\mathcal{F}_{L\otimes K_{X}},\mathcal{O}_{X})=-(L+K_{X}).K_{X}.
$$

If $\mathcal{F}_{L\otimes K_X} \notin \mathcal{W}^{int}_{s-1,0}(L\otimes K_X,0)$, then since $-K_X-G$ is very ample, by (3.8) we have

(3.35)
$$
h^{0}(\mathcal{F}_{L\otimes K_{X}}(K_{X})) = h^{0}(\mathcal{I}_{Z}(L\otimes K_{X}^{\otimes 2}))
$$

$$
\leq h^{0}(\mathcal{I}_{Z}(L\otimes K_{X}\otimes \mathcal{O}_{X}(-G))) - 1
$$

$$
\leq h^{0}(\mathcal{I}_{Z}(L\otimes K_{X})) - 1 = s - 1.
$$

Hence $ext^1(\mathcal{F}_{L\otimes K_X}, \mathcal{O}_X) \leq s-1-(L+K_X).K_X$. Hence for $s \geq 2$ (3.36)

$$
\dim H_{\ell}^{L,s,t} + s - 1 = \dim \mathbb{P}(p_*(\mathcal{I}_{\ell} \otimes q^*(L \otimes K_X))|_{H_{\ell}^{L,s,t}})
$$
\n
$$
\leq \max \left\{ \begin{array}{c} \dim \mathcal{W}_{s-1,0}^{int}(L \otimes K_X, 0) - (L + K_X).K_X, \\ \dim(\mathcal{M}^d(L \otimes K_X, 0) \setminus \mathcal{M}^{int}(L \otimes K_X, 0) \cup \bigcup \mathcal{W}_{k,i}^{int}(L \otimes K_X, 0)) \\ \dim(\mathcal{M}^d(L \otimes K_X, 0) \setminus \mathcal{M}^{int}(L \otimes K_X, 0) \cup \bigcup_{i < 0} \mathcal{W}_{k,i}^{int}(L \otimes K_X, 0)) \\ + s - 1 - (L + K_X).K_X \\ \text{max}\{(L + K_X).L - 1, (L + K_X).L - 3 + s\} = (L + K_X).L - 3 + s. \end{array} \right\}
$$

Hence dim $H_{\ell}^{L,s,t} \leq 2\ell - 2$ for all $s \geq 2$. Hence **CB**-(3) is fulfilled. Step 4: $CB-(4)$.

 $CB-(4)$ can be shown analogously: Q_2^o is obviously nonempty and there is a classifying map $Q_2 \xrightarrow{\phi_{L\otimes K_X}^{L\otimes K_X}} \mathcal{M}^d(L \otimes K_X, 0)$ with fiber over $\mathcal{F}_{L\otimes K_X}$ contained in $\mathrm{Ext}^1(\mathcal{F}_{L\otimes K_X}, \mathcal{O}_X)$. $\dim \rho_2^{-1}(\rho_2(Q_2^o)) \setminus Q_2^o \leq \dim Q_2^o - 2$ because

$$
\dim \phi_{L\otimes K_X}^{L\otimes K_X}(\rho_2^{-1}(\rho_2(Q_2^o)) \setminus Q_2^o)
$$

\n
$$
\leq \dim \mathcal{M}^d(L \otimes K_X, 0) \setminus \mathcal{M}^{int}(L \otimes K_X, 0) \cup \bigcup_{i \leq -1} \mathcal{W}^{int}_{k,i}(L \otimes K_X, 0)
$$

\n
$$
\leq (L + K_X)^2 - 2,
$$

and

$$
\mathrm{ext}^{1}(\mathcal{F}_{L\otimes K_{X}}, \mathcal{O}_{X})=-K_{X}.(L+K_{X}), \ \forall \mathcal{F}_{L\otimes K_{X}}\in \phi_{L\otimes K_{X}}^{L\otimes K_{X}}(\rho_{2}^{-1}(\rho_{2}(Q_{2}^{o})).
$$

Statement (3) is proved.

Step 5: CB' -(3') and CB' -(2'a).

Now we prove Statement (2) of the theorem. We need to check conditions in CB' hold. With no loss of generality, we ask $L = aG + bF$ with $b \ge a$. Then in this case $L + K_X = mF$ or $G + nF$ with $n > 0$ for $e = 0$, and $n \ge 2e - 1$ for $e \ge 1$. Then $\mathcal{F}_{L \otimes K_X}$ is semistable \Leftrightarrow $H^0(\mathcal{F}_{L\otimes K_X}) = 0$. Hence $H'_\ell \subset \bigcup_{t\geq 0} H^{L,1,t}_\ell$ $\ell^{L,1,t}$ and by (3.33) we have CB'-(3'). Notice that [\(3.33\)](#page-27-0) holds for $L = aG + bF$ ample with $\min\{a, b\} \geq 2.$

Also $M(L \otimes K_X, 0) \cong |L \otimes K_X|$ and $M(L \otimes K_X, 0)' \cong |L \otimes K_X'|$. Then easy to check $CB'-(2'a)$ holds.

Step 6: CB' - $(2'b)$.

Now we check $\mathbf{CB}'\text{-}(2'b)$. First let $L \otimes K_X = G + nF$ with $|G| +$ $nF|^{int} \neq \emptyset$. Recall the commutative diagram in [\(3.25\)](#page-16-1)

(3.37)
$$
\mathbb{P}(\mathcal{V}') \xleftarrow{\supseteq} P'_2 \xrightarrow{\sigma'_2} \Omega'_{L \otimes K_X}
$$

$$
f'_{Q_2} \downarrow \qquad \qquad f'_M
$$

$$
Q'_2 \longrightarrow_M (L \otimes K_X, 0)'
$$

where $V' = \mathscr{E}xt^1_p(\mathscr{Q}_{L\otimes K_X}|\Omega'_{L\otimes K_X},q^*\mathcal{O}_X)$ with $\mathscr{Q}_{L\otimes K_X}$ the universal quotient over $\Omega_{L\otimes K_X}$. V' is locally free of rank $-(L+K_X)$. K_X on $\Omega'_{L\otimes K_X}$. $P_2' \subset \mathbb{P}(\mathcal{V}')$ parametrizing torsion free extensions of \mathscr{Q}_s by \mathcal{O}_X for all $\mathfrak{s} \in \Omega'_{L\otimes K_X}$ and $f'_{Q_2}: P'_2 \to Q'_2$ is the classifying map and also a principal $PGL(V_{L\otimes K_X})$ -bundle for some vector space $V_{L\otimes K_X}$.

To show the complement of P'_2 inside $\mathbb{P}(\mathcal{V}')$ is of codimension ≥ 2 , it is enough to show for every $\mathcal{F}_{L\otimes K_X}\in \mathcal{M}^R(L\otimes K_X,0),$ $H^0(\mathcal{F}_{L\otimes K_X}(K_X))=0$ 0 with support $C_{\mathcal{F}_{L\otimes K_X}} = C_{\mathcal{F}_{L\otimes K_X}}^1 \cup C_{\mathcal{F}_{L\otimes K_X}}^2$ such that $C_{\mathcal{F}_{L\otimes K_X}}^1 \in |F|$ and $C_{\mathcal{F}_{L\otimes K_X}}^2 \in |G + (n-1)F|^{int}$, there is a torsion free extension in $\mathrm{Ext}^1(\mathcal{F}_{L\otimes K_X}, \mathcal{O}_X)$. $\forall \mathcal{F}'_{L\otimes K_X} \subsetneq \mathcal{F}_{L\otimes K_X}$, $\mathrm{Ext}^1(\mathcal{F}_{L\otimes K_X}/\mathcal{F}'_{L\otimes K_X}, \mathcal{O}_X)$ can be view as a subspace of $Ext^1(\mathcal{F}_{L\otimes K_X}, \mathcal{O}_X)$. There is a torsion free extension in $Ext^1(\mathcal{F}_{L\otimes K_X}, \mathcal{O}_X) \Leftrightarrow ext^1(\mathcal{F}_{L\otimes K_X}/\mathcal{F}'_{L\otimes K_X}, \mathcal{O}_X) <$ $ext^1(\mathcal{F}_{L\otimes K_X}, \mathcal{O}_X), \forall \mathcal{F}'_{L\otimes K_X} \subsetneq \mathcal{F}_{L\otimes K_X}.$ Now we have that $\hat{C}_{\mathcal{F}_{L\otimes K_X}} =$ $C_{\mathcal{F}_{L\otimes K_X}}^1 \cup C_{\mathcal{F}_{L\otimes K_X}}^2$, $C_{\mathcal{F}_{L\otimes K_X}}^i \cong \mathbb{P}^1$ and $deg(K_X|_{C_{\mathcal{F}_{L\otimes K_X}}^i})$ $) < 0$, for $i = 1, 2$. Therefore $\forall \mathcal{F}'_{L\otimes K_X} \subsetneq \mathcal{F}_{L\otimes K_X}$, either $\text{Ext}^1(\mathcal{F}_{L\otimes K_X}/\mathcal{F}'_{L\otimes K_X}, \mathcal{O}_X) = 0$ or $\text{Ext}^2(\mathcal{F}_{L\otimes K_X}/\mathcal{F}'_{L\otimes K_X}, \mathcal{O}_X)=0.$ Hence the map

$$
\mathrm{Ext}^1(\mathcal{F}_{L\otimes K_X}/\mathcal{F}'_{L\otimes K_X},\mathcal{O}_X)\hookrightarrow \mathrm{Ext}^1(\mathcal{F}_{L\otimes K_X},\mathcal{O}_X)
$$

can not be surjetive. The reason is that $ext^1(\mathcal{F}_{L\otimes K_X}, \mathcal{O}_X) = 2n+2-e > 0$ 0 and $\text{Ext}^1(\mathcal{F}'_{L\otimes K_X}, \mathcal{O}_X) \neq 0$ since $\chi(\mathcal{F}'_{L\otimes K_X}(K_X)) < 0$.

If $L \otimes K_X = F$, then CB' -(2'b) is obvious. Let $|L \otimes K_X|^{int} = \emptyset$, i.e. $L \otimes K_X = nF$ with $n > 1$. In this case $|L \otimes K_X|' = |L \otimes K_X|$. $\Omega'_{L\otimes K_X} = \Omega_{L\otimes K_X}$. In order to show $\dim \mathbb{P}(\mathcal{V}') \setminus P'_2 \leq \dim P'_2 - 2$, it is enough to show for every $\mathcal{F}_{L\otimes K_X}$ semistable, $\mathbb{P}(\mathrm{Ext}^1(\mathcal{F}_{L\otimes K_X},\mathcal{O}_X)$ $\text{Ext}^1(\mathcal{F}_{L\otimes K_X}, \mathcal{O}_X)^{tf}$ is of dimension $\leq -K_X.(L+K_X) - 3$, where $\text{Ext}^1(\mathcal{F}_{L\otimes K_X}, \mathcal{O}_X)^{tf}$ is the subset parameterizing torsion free extensions. We have

(3.38)
$$
\operatorname{Ext}^1(\mathcal{F}_{L\otimes K_X}, \mathcal{O}_X) \setminus \operatorname{Ext}^1(\mathcal{F}_{L\otimes K_X}, \mathcal{O}_X)^{tf}
$$

$$
= \bigcup_{\mathcal{F}'_{L\otimes K_X} \subsetneq \mathcal{F}_{L\otimes K_X}} \operatorname{Ext}^1(\mathcal{F}_{L\otimes K_X}/\mathcal{F}'_{L\otimes K_X}, \mathcal{O}_X).
$$

Since $L \otimes K_X = nF$, we have for any $\mathcal{F}'_{L\otimes K_X} \subsetneq \mathcal{F}_{L\otimes K_X}$, either $\mathrm{Ext} ^{1}(\mathcal{F}_{L\otimes K_{X}}/\mathcal{F}'_{L\otimes K_{X}},\mathcal{O}_{X}) \,\, = \,\, 0 \, \, \, \mathrm{or} \, \, \, \mathrm{Ext} ^{2}(\mathcal{F}_{L\otimes K_{X}}/\mathcal{F}'_{L\otimes K_{X}},\mathcal{O}_{X}) \,\, = \,\, 0.$ Hence we only need to show that $\forall \mathcal{F}'_{L\otimes K_X} \subsetneq \mathcal{F}_{L\otimes K_X}$ such that

$$
\text{Ext}^{1}(\mathcal{F}_{L\otimes K_{X}}/\mathcal{F}'_{L\otimes K_{X}},\mathcal{O}_{X})\neq 0,
$$

we have $ext^1(\mathcal{F}'_{L\otimes K_X}, \mathcal{O}_X) \geq 2$. It is enough to show $ext^1(\mathcal{F}'_{L\otimes K_X}, \mathcal{O}_X) \geq 0$ 2 for every $\mathcal{F}_{L\otimes K_X}^{\prime} \subsetneq \mathcal{F}_{L\otimes K_X}$ with $C_{\mathcal{F}_{L\otimes K_X}^{\prime}}$ integral. On the other hand $C_{\mathcal{F}'_{L\otimes K_X}} \cong \mathbb{P}^1$ if integral, and also $deg(\hat{K}_X|_{C_{\mathcal{F}'_{L\otimes K_X}}}$ $) = -2.$ Hence $ext^1(\mathcal{F}_{L\otimes K_X}', \mathcal{O}_X) = h^1(\mathcal{F}_{L\otimes K_X}'(K_X)) \geq 2$ because $\chi(\mathcal{F}_{L\otimes K_X}'(K_X)) \leq$ −2. Step 7: CB' -(4').

 $\mathbf{CB}'-(4')$ is the last thing left to check.

$$
Q_2' := \left\{ [\mathcal{I}_Z(L \otimes K_X) \stackrel{f_2}{\twoheadrightarrow} \mathcal{F}_{L \otimes K_X}] \in Q_2 \middle| \begin{array}{l} \mathcal{F}_{L \otimes K_X} \text{ is semistable,} \\ h^0(\mathcal{F}_{L \otimes K_X}(K_X)) = 0, \text{ and} \\ \text{Supp}(\mathcal{F}_{L \otimes K_X}) \in |L \otimes K_X|' \end{array} \right\}.
$$

In this case $\mathcal{F}_{L\otimes K_X}$ is semistable $\Leftrightarrow H^0(\mathcal{F}_{L\otimes K_X})=0$. $h^0(\mathcal{I}_Z(L\otimes K_X))=0$ 1 for all $\mathcal{I}_Z \in \rho_2(\widetilde{Q}_2')$, hence $\rho_2|_{Q_2'}$ is bijective and hence an isomorphism, therefore $Q'_2 \cong \rho_2^{-1}(\rho_2(Q'_2))$ and $\mathbf{CB}'-(4')$ holds.

The proof of Theorem [3.14](#page-18-2) is finished. q.e.d.

References

- [1] T. Abe, Deformation of rank 2 quasi-bundles and some strange dualities for rational surfaces, Duke Math. J. 155 (2010), no. 3, 577–620, MR2738583, Zbl 1208.14034.
- [2] T. Abe, Strange duality for height zero moduli spaces of sheaves on \mathbb{P}^2 , Michigan Math. J. 64 (2015), 569–586, MR3394260, Zbl 1359.14038.
- [3] A. Beauville, Vector bundles on curves and generalized theta functions: recent results and open problems. Current topics in complex algebraic geometry (Berkeley, CA, 1992/93), 17–33, Math. Sci. Res. Inst. Publ., 28, Cambridge Univ. Press, Cambridge, 1995, MR1397056, Zbl 0846.14024.
- [4] P. Belkale, Strange duality and the Hitchin/WZW connection. J. Differential Geom. Volume 82, Number 2 (2009), 445–465, MR2520799, Zbl 1193.14013.
- [5] G. Danila, Sections de fibré déterminant sur l'espace de modules des faisceaux semi-stable de rang 2 sur le plan projectif, Ann. Inst. Fourier (Grenoble) 50 (2000), 1323–1374, MR1800122, Zbl 0952.14010.
- $[6]$ G. Danila, Résultats sur la conjecture de dualité étrange sur le plan projectif. Bull. Soc. Math. France 130 (2002), 1–33, MR1906190, Zbl 1038.14004.
- [7] R. Donagi and L.W. Tu, Theta functions for $SL(n)$ versus $GL(n)$, Math. Res. Lett. 1 (1994), no. 3, 345–357, MR1302649, Zbl 0847.14027.
- [8] G. Ellingsrud, L. Göttsche, and M. Lehn. On the cobordism class of the Hilbert scheme of a surface. J. Algebraic Geom. 10 (2001), no. 1, 81–100. MR1795551, Zbl 0976.14002.

336 Y. YUAN

- [9] L. Göttsche, and Y. Yuan, *Generating functions for K-theoretic Donaldson in*variants and Le Potier's strange duality, J. Algebraic Geom. 28 (2019), 43–98, MR3875361.
- [10] R. Hartshorne, Algebraic Geometry. GTM 52, Springer Verlag, New York (1977).
- [11] D. Huybrechts, and M. Lehn, The Geometry of Moduli Spaces of Sheaves. Friedr. Vieweg & Sohn Verlagsgesellschaft mbH, Braunschweig/Wiesbaden, 1997.
- [12] A. Iarrobino, Punctual Hilbert schemes, Bull. Amer. Math. Soc. 78 (1972), 819– 823, MR0308120, Zbl 0267.14005.
- [13] J. Le Potier, Faisceaux Semi-stables de dimension 1 sur le plan projectif, Rev. Roumaine Math. Pures Appl., 38 (1993), 7–8, 635–678, MR1263210, Zbl 0815.14029.
- [14] J. Le Potier, Faisceaux semi-stables et systèmes cohérents, Proceedings de la Conference de Durham (July 1993), Cambridge University Press (1995), p. 179– 239, MR1338417, Zbl 0847.14005.
- [15] J. Le Potier, *Dualité étrange, sur les surfaces*, preliminary version 18.11.05.
- [16] A. Marian, and D. Oprea, The level-rank duality for non-abelian theta functions. Invent. Math. 168. 225–247 (2007), MR2289865, Zbl 1117.14035.
- [17] A. Marian, and D. Oprea, A tour of theta dualities on moduli spaces of sheaves. 175–202, Contemporary Mathematics, 465, American Mathematical Society, Providence, Rhode Island (2008), MR2457738, Zbl 1149.14301.
- [18] A. Marian, and D. Oprea, Generic strange duality for K3 surfaces. Duke Math. J. Volume 162, Number 8 (2013), 1463–1501, MR3079253, Zbl 1275.14037.
- [19] A. Marian, and D. Oprea, On the strange duality conjecture for abelian surfaces. J. Eur. Math. Soc. (JEMS) 16 (2014), no. 6, 1221–1252, MR3226741, Zbl 1322.14063.
- [20] Y.Yuan, Determinant line bundles on Moduli spaces of pure sheaves on rational surfaces and Strange Duality, Asian J. Math. Vol. 16, No. 3, pp. 451–478, September 2012, MR2989230, Zbl 1262.14013.
- [21] Yao Yuan, Motivic measures of moduli spaces of 1-dimensional sheaves on rational surfaces, Commun. Contemp. Math. 20 (2018), no. 3, 1750019, 32 pp., MR3766729.
- [22] Yao Yuan, Moduli spaces of 1-dimensional semi-stable sheaves and Strange duality on \mathbb{P}^2 , Adv. Math. 318, 130-157 (2017), MR3689738, Zbl 06769051.

YAU MATHEMATICAL SCIENCES CENTER Tsinghua University 100084, Beijing P. R. China E-mail address: yyuan@tsinghua.edu.cn