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Abstract

In this paper, we discuss the Weyl problem in warped product
spaces. We apply the method of continuity and prove the openness
of the Weyl problem. A counterexample is constructed to show
that the isometric embedding of the sphere with canonical metric
is not unique up to an isometry if the ambient warped product
space is not a space form. Then, we study the rigidity of the
standard sphere if we fixed its geometric center in the ambient
space. Finally, we discuss a Shi-Tam type of inequality for the
Schwarzschild manifold as an application of our findings.

1. Introduction

The isometric embedding problem is one of the fundamental issues
in differential geometry. Among them, the Weyl problem is a milestone
in the development of the theory of nonlinear elliptic partial differen-
tial equations, particularly, of the Monge-Ampère type. In 1916, Weyl
proposed the following problem: Does every smooth metric on the two
dimensional sphere with positive Gauss curvature admit a smooth iso-
metric embedding in the three dimensional Euclidean space? Weyl [47]
suggested the method of continuity to solve this problem. He also pre-
sented the openness part for the analytic case and established an esti-
mate on the mean curvature of the embedded strictly convex surfaces,
which is C2 a priori estimate for the embedding map. The analytic case
was fully solved by Lewy [27]. In 1953, Nirenberg, in his celebrated
paper [34], solved the Weyl problem in the smooth case and exhib-
ited a beautiful proof. Alexandrov and Pogorelov [37] used a different
approach to solve the problem independently. Pogorelov [38] also gen-
eralized Nirenberg’s theorem to the hyperbolic space. Furthermore, he
considered the problem in Riemannian manifolds [39, 40]. In the 1990s,
Weyl’s estimate was generalized to the degenerate case with nonnegative
Gauss curvature by Guan and Li [17], Hong and Zuily [23] and partially
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by Iaia [25]. Recently, Chang and Xiao [7] and Lin and Wang [28] con-
sidered the degenerate case for Pogorelov’s theorem in the hyperbolic
space.

The isometric embedding problem plays an important role in general
relativity. In 1993, Brown and York [6] proposed the following definition
of quasi-local mass: Let (Ω, σ) be a compact Riemannian 3-manifold,
and suppose its boundary (∂Ω, g) has positive Gauss curvature. They
define the quantity

mBY (∂Ω) =
1

8π

∫
∂Ω

(H0 −H)dVg,(1.1)

where dVg is the volume form of ∂Ω, H and H0 are the mean curva-
ture of ∂Ω in the original Riemannian manifold and the Euclidean space
respectively, if it can be isometrically embedded in R3. Nirenberg’s iso-
metric embedding theorem guarantees the existence of such an isometric
embedding. In 2002, an important work by Shi and Tam [44] showed
that the Brown–York mass is nonnegative.

Liu and Yau [29, 30] introduced the Liu–Yau quasi-local mass

mLY (∂Ω) =
1

8π

∫
∂Ω

(H0 − |H|)dVg,(1.2)

where |H| is the Lorentzian norm of the mean curvature vector. They
also proved the nonnegativity of their mass. Wang and Yau [48, 49, 50]
defined a new quasi-local mass generalizing the Brown–York mass. They
have used Pogorelov’s work on the isometric embedding of the sphere
into the hyperbolic space. The nonnegativity of the Wang–Yau mass is
also obtained in [48, 45].

The definitions of the Brown–York mass and the Wang–Yau mass
suggest that the isometric embedding of the sphere into model space al-
ways plays an important role for the quasi-local mass problem. Thus, an
important task is generalizing the Weyl problem to other 3-dimensional
ambient spaces which is not a space form. This topic may be helpful
for further discussion of the quasi-local mass.

In the present paper, we study the Weyl problem in 3-dimensional
warped product spaces. These warped product spaces mean the subset
of Rn with some nontrivial but rotation symmetric metrics. One may
write the metric in polar coordinates

ds2 =
1

f2(r)
dr2 + r2dSn−1,(1.3)

where r is the Euclidean radius and dSn−1 is the standard metric of the
n− 1 sphere. f depends only on r, which is called the warping function
here. If the warping function takes the form

f(r) =

√
1− m

r
+ κr2,(1.4)
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where κ andm are constants, then these spaces are called Anti-de Sitter–
Schwarzschild (AdS–Sch) spaces. They are special interesting examples
in which the quasi-local mass needs to be generalized. If m = 0 in (1.4),
then the AdS–Sch spaces are space forms.

Here, we present the outline and main results of this paper.
In the first part of this paper, we establish the openness for the strictly

convex surface in any 3-dimensional warped product space. We note
that Pogorelove [39, 40] has obtained the openness for the strictly con-
vex surface in any 3-dimensional Riemannian space. However, one ex-
pects to find another more rigorous and more elementary proof for the
openness and existence results. In our argument for the openness part,
we observe that a dual relation exists between the linearized isometric
embedding system and the homogeneous linearized Gauss-Codazzi sys-
tem, which is first discovered in our present paper. Then, we use the
maximum principle to obtain the uniqueness of solutions to the dual
problem. Therefore, the Fredholm theory shows the solvability of the
linearized problem. Our proof does not need infinitesimal rigidity of the
linearized isometric embedding system. Thus, our argument is consid-
erably different from Pogorelov’s proof and Nirenberg’s proof.

Let us state the openness theorem. We will always use the notation
N to denote the ambient space.

Theorem 1. Let N be a smooth 3-dimensional warped product space
and g be a smooth metric on the sphere S2. Suppose that (S2, g) can be
isometrically embedded into N as a closed strictly convex surface. Then,
for any α ∈ (0, 1), there exists a positive constant ε, depending only on
g and α, such that, for any smooth metric g̃ on S2 satisfying

‖g − g̃‖C2,α(S2,Sym(T ∗S2⊗ST ∗S2)) < ε,

(S2, g̃) also can be isometrically embedded into the same space as another
closed strictly convex surface, where the notation C2,α

(
S2,Sym

(
T ∗S2⊗

T ∗S2
))

means the index (2, α)-Hölder space of the covariant symmetric

two tensors on S2.

Here, the metric used to define the norm of the space C2,α
(
S2, Sym(

T ∗S2 ⊗ T ∗S2
) )

is the standard metric of the sphere. We also note the
recent work of Cabrera Pacheco and Miao [41], who have proved the
openness near the standard sphere metric in Schwarzschild manifolds
with small mass.

Combining the openness with the closeness result of [16, 31], we can
obtain some existence results. One of them is the following theorem,
which is proposed and proved by Guan and Lu [16] and Lu [31],

Theorem 2. Suppose a 3-dimensional warped product space N does
not have singularity and the warping function f satisfies the assumption
(a) and (b). Then for any metric g on S2, if its Gauss curvature K > K0
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for some constant K0, (S2, g) can be isometric embedded into N as a
strictly convex surface.

Here, the meaning of the assumption (a), (b) and the constant K0 will
be explained by (4.21) in section 4. A space with singularity means that
it contains some horizon in its interior. If the ambient space is a warped
product space, then containing singularities means that the warping
function f(r) = 0 has solutions, for example, the AdS–Sch spaces. In
other words, no singularity means that the space is null homologous.

The second part of this paper discusses the rigidity of the isometric
embedding problem in a warped product space. The global rigidity is
obtained by Cohn-Vossen for convex surfaces [8] in Euclidean spaces.
The cases of space forms are still valid [10, 18]. However, in general
warped product spaces, the rigidity is not always true.

Theorem 3. Suppose N is an n-dimensional warped product space.
If the function f in (1.3) satisfies

ff ′

r
+

1− f2

r2
6= 0, at r = r0

then level set sphere r = r0 is not rigid. This means that there exists
a smooth convex hypersurface that is isometric to the r = r0 sphere but
with different second fundamental form. If every r-level set sphere is
rigid, then the ambient space must be a space form.

Since the scalar curvature is only determined by its intrinsic metric,
the Alexandrov-type theorem for constant scalar curvature hypersur-
faces in general warped product spaces is also not true.

In general, strictly convex surfaces in 3-dimensional warped product
spaces are not infinitesimally rigid either, because the isometry group
of ambient spaces is small. The lack of infinitesimal rigidity yields the
global non-rigidity of any strictly convex surfaces in general warped
product spaces.

Non-rigidity in general warped product spaces can be explained rou-
ghly as follows: The kernel of the linearized problem of the isometric
embedding system is six dimensional, but the dimension of the isom-
etry group of the ambient space is less than six in general. Thus, we
can move hypersurfaces along a vector field in the kernel of the lin-
earized problem but outside of isometries of the ambient space. Thus,
if a certain type of rigidity is expected, then some restrictions have to
be imposed. Therefore, we propose the following condition in warped
product spaces:

Condition. Suppose that M is a hypersurface in an n dimensional
warped product space N and ~r is its position vector field. We require∫

Σ
~rdVg = 0,(1.5)
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where dVg is the volume form of M .

Now, we can recover the rigidity of spheres endowed with Einstein
metrics and further satisfying the above condition.

Theorem 4. Suppose that Σ is an n − 1 dimensional topological
sphere and g is an Einstein metric with positive constant scalar curva-
ture on Σ. Suppose that (Σ, g) can be isometrically embedded into an n
dimensional warped product space N . If the embedded hypersurface M
is σ2-convex and it satisfies condition (1.5), then M is a slice sphere,
i.e., a level set sphere.

Here, a σ2-convex hypersurface means that the summation of the
product of its any two principal curvatures is positive.

In the third part, we revisit the infinitesimal rigidity in space forms.
The infinitesimal rigidity of any embedded closed convex surface in the
Euclidean space holds, as obtained initially by Cohn-Vossen [9] and
then simplified by Blaschke [4] using Minkowski identities. The corre-
sponding infinitesimal rigidity of any embedded closed strictly convex
surface in the hyperbolic space also holds, as discussed and reconfirmed
by Lin and Wang [28] recently. Here, we provide an alternative proof
for these known results. The infinitesimal rigidities in space forms are
summarized in the following theorem.

Theorem 5. Suppose M is a closed embedded strictly convex sur-
face in a three dimensional space form, then it is infinitesimally rigid.
Namely, the set of solutions of the linearized isometric embedding sys-
tem comes from the Lie algebra of the isometry group of the ambient
space.

In the Euclidean space, we present a new proof of the above theorem
using the maximum principle adopted from [19] and [22]. Then, by
using the Beltrami map, we extend the infinitesimal rigidity of closed
embedded strictly convex surfaces to space forms. Our proofs are dif-
ferent from the classical ones in literature. Furthermore, the openness
of the Weyl problem in space forms can be considered as a corollary
of the openness of the Weyl problem in the Euclidean space using the
Beltrami map.

In the last part, we discuss an application for our theorem. We
will prove an inequality similar to Shi-Tam’s in Schwarzschild manifold,
namely, κ = 0 in (1.4).

Theorem 6. Suppose r > m are two positive constants. Suppose Ω
is a compact connected 3-dimensional Riemannian manifold with non-
negative scalar curvature. We suppose Σ is its boundary and it is mean
convex in Ω. We further assume that the induced metric g on Σ in Ω is
in the neighborhood of the canonical metric of the sphere with radius r.
Namely, g is closed to the canonical metric on the standard r-Euclidean
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sphere. Then, Σ can be isometrically embedded into the Schwarzschild
manifold with mass m as a strictly convex M . Thus, we have the fol-
lowing inequality

1

8π

∫
Σ

(H0 −H)f(|~r|)dVg +
m

2
≥ 0,(1.6)

where H0, H are the mean curvature of M in the Schwarzschild manifold
and Σ in the Riemannian manifold Ω, respectively; ~r is the position
vector of M in Schwarzschild manifold; | · | is the norm with respect to
the metric of the Schwarzschild manifold; f is the warping function; and
dVg is the volume form of Σ. The equality holds if M is an asymptotic
Euclidean ball.

The canonical metric of the sphere is the Euclidean metric induced
on the canonical sphere in the Euclidean space. The above theorem
may relate to the work of Fan, Shi and Tam [13] and Shi, Wang and
Wu [43].

In section 2, we present a brief review of some basic formulae. In
section 3, we solve the linearized system. In section 4, we prove the
openness theorem and discuss some existence results. In section 5, we
construct some counterexamples, which are non-rigid in any dimensional
warped product spaces. In section 6, we present the proof of Theorem
4. In section 7, we revisit the infinitesimal rigidity of the closed embed-
ded strictly convex surface in space forms. The last section proves an
inequality of Shi-Tam type and exhibits an example.
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2. Notations and some formulae

For an n-dimensional warped product space, we may rewrite (1.3) as

ds2 =
1

f2(r)
dr2 + r2

(
n−1∑
i=1

cos2 ui−1 · · · cos2 u1(dui)2

)
,(2.1)

where (r, u1, · · · , un−1) is the polar coordinate. r takes the range [r0, r1],
where r0 may be 0 and r1 may be +∞ depending on specific cases.
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In this paper, ‘·’ always presents the inner product defined by the
metric ds2 in the ambient space, | · | denotes the norm with respect to
ds2 and D denotes the Levi-Civita connection with respect to the metric
ds2. We will always denoteN as an n-dimensional warped product space
(Rn, ds2) unless otherwise specified. Suppose that X,Y are two vector
fields in the warped product space N . The Riemannian curvature tensor
of N is defined by

R̄(X,Y ) = DXDY −DYDX −D[X,Y ].

Henceforth, the Greek indices α, β, γ, · · · always ranges from 1 to n
and the Latin indices i, j, k, · · · ranges from 1 to n− 1.

Then, for any frame {E1, E2, · · · , En} on N , the Ricci curvature and
scalar curvature are defined by

R̄αβ =
∑
γ,δ

σγδR̄αγδβ , R̄ =
∑
α,β

σαβR̄αβ,

where σα,β is the metric matrix of the metric ds2 and
(
σαβ

)
is the inverse

matrix of (σαβ), and

R̄αγδβ = R̄(Eα, Eγ)Eδ · Eβ.

We define a special orthogonal frame. For α = 1, · · · , n, let

Ẽα = f
∂

∂r
, if α = 1;(2.2)

Ẽα =
1

r cosuα−1 · · · cosu1

∂

∂uα−1
, if α > 1.

With the above frame {Ẽ1, Ẽ2, · · · , Ẽn}, a straightforward calculation
shows

R̄1γ1γ =
ff ′

r
, for γ 6= 1; R̄αβαβ =

f2 − 1

r2
, and α, β 6= 1, α 6= β;(2.3)

R̄αβγδ = 0 for α, β, γ, δ taking three different indices.

Accordingly, the scalar curvature is

R̄ =
2(n− 1)ff ′

r
+ (n− 1)(n− 2)

f2 − 1

r2
,(2.4)

where f ′ = df/dr is the derivative of f .
In the rest of this paper, we use the Einstein summation convention

unless otherwise specified.
Suppose M is a hypersurface in N and g is its induced metric. For

any two vector fields X,Y defined on the manifold M , the Riemannian
curvature tensor of the submanifold M is defined by

R(X,Y ) = ∇X∇Y −∇Y∇X −∇[X,Y ],

where ∇ is the Levi-Civita connection with respect to g.
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Suppose {e1, e2, · · · , en−1} is a frame on M . We denote

Rijkl = R(ei, ej)ek · el,

and then the Ricci curvature and the scalar curvature are

Rij = glkRilkj , R = gijRij .

We further denote

Rlijk = glpRijkp.

Suppose
{
x1, x2, · · · , xn−1

}
is a local coordinate of M . Using the Ricci

identity, for a 1-form ξ = uidx
i, we have

(2.5) ui,jk − ui,kj = Rljkiul,

where ui,jk represents the second order covariant derivative of ui with
respect to the connection ∇.

We always use ~r to present M ’s position vector field and ν to be its
unit normal vector field of M with a suitable orientation. If M is closed,
then we further assume that ν is the exterior normal. We denote κi as
the i-th principal curvature function of M . Suppose {e1, e2, · · · , en−1}
is an orthonormal frame. Let R̄ijij = R̄(ei, ej , ei, ej). By the Gauss
equation, we have

σ2(κ1, · · · , κn−1) =
R

2
+
∑
i<j

R̄ijij ,(2.6)

where σ2(κ1, κ2, · · · , κn−1) =
∑

i<j κiκj . We let

ν =
∑
α

ναẼα,

where να is the scalar component of ν with respect to Ẽα. Thus, we
have ∑

i<j

R̄ijij = −R̄
2

+ R̄ic(ν, ν), R̄ic(ν, ν) =
∑
α

(να)2R̄αα.

By (2.3) and (2.4), we have

∑
i<j

R̄ijij = (n− 2)

[
ff ′

r
+
n− 3

2

f2 − 1

r2
− (ν1)2

r2

(
rff ′ + 1− f2

)]
.

(2.7)

The conformal Killing vector field in N is defined by

X = rf(r)
∂

∂r
.(2.8)

For any vector field Y , it is well known that

DYX = fX.(2.9)
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The squared distance function and support function of M are defined
by

ρ =
1

2
X ·X =

r2

2
, and ϕ = X · ν.(2.10)

We defined the second fundamental form of M ,

hij = −Deiej · ν.
Note that, if M is a closed strictly convex hypersurface, since ν is as-
sumed to be the out normal, then hij is positive definite. The Weigarten
formula is

Deiν =
∑
m

himem.

Based on (2.9) and the definition of the second fundamental form, the
covariant derivatives of ρ with respect to ei and ei, ej are

ρi = fX · ei,(2.11)

ρi,j =
fρ
f
ρiρj + f2gij − hijfϕ,

where the function fρ means

fρ =
df

dρ
=
df

dr

dr

dρ
.

In this paper, an r-geodesic sphere is the set defined by {p ∈ N ; ρ(p) =
r2/2}. For the r-geodesic sphere in the warped product space, we have

ν = f
∂

∂r
, ϕ = r, ρ =

r2

2
, hij =

f(r)

r
gij .(2.12)

We always call the r-geodesic sphere the radius r slice sphere or r slice
sphere in this paper.

Suppose M̄ is an n− 1 dimensional Riemannian manifold. It can be
isometrically embedded into N as the hypersurface M by some isometric
embedding map ~r, that is ~r : M̄ →M ⊂ N . Since any point in warped
product space N corresponds to one vector, we also view ~r as the posi-
tion vector of M in N if no ambiguity exists. Suppose {x1, x2, · · · , xn−1}
is a local coordinate of M̄ . Then, ∂

∂x1
, · · · , ∂

∂x2
, · · · , ∂

∂xn−1 is a local

frame on M̄ . We always denote the push-forward of ∂
∂xi

in the tangent

space of the ambient space by ~ri = ∂~r
∂xi

.
As we will consider a differential equation on the sphere, we may

need the Sobolev spaces of sections of bundles on (S2, g). Suppose E is
a vector bundle on S2, which is endowed with an inner product 〈·, ·〉. The
notations Cm,α

(
S2, E

)
, C∞(S2, E), L2(S2, E) denote the index (m,α)

Hölder space, smooth space and L2 space of sections of the bundle E.
Here, the inner product of the L2 space is∫

S2
〈·, ·〉dVg,
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m is an integer and 0 < α < 1 is a real number and not an index.
Since the sphere can be presented as some standard unit sphere in the
3-dimensional Euclidean space R3, there is a standard metric mS in-

duced by the standard Euclidean metric. If E =
(
TS2

)⊗p ⊗ (T ∗S2
)⊗q

,
unless otherwise specified, we always assume that the inner product of
E is induced by the metric mS . Thus, the norm of the Hölder space
Cm,α

(
S2, E

)
is defined by mS .

3. Linearized problem

In this section, we first study the linearized problem in a 3-dimen-
sional warped product space N , and then we generalize our main results
when the ambient space is any 3-dimensional Riemannian manifold.
Suppose that (S2, g) is a 2-dimensional sphere endowed with the metric
g. The isometric embedding problem is to find an embedding map ~r
that maps S2 to R3 to satisfy the following system:

d~r · d~r = g.

We always denote the image surface of the map ~r by M . The linearized
problem of the above system is

d~r ·Dτ = q,(3.1)

where τ, q are the variation fields of ~r and g, respectively. The variation
fields τ, q means that if we have a 1-parameter family of metrics gt and
a 1-parameter family of isometric embeddings ~rt of (S2, gt) in N such
that g0 = g, ~r0 = ~r, then we let

q =
dgt
dt

∣∣∣∣
t=0

; τ =
d~rt
dt

∣∣∣∣
t=0

.

The details to obtain system (3.1) have been written down in [28].
We have to rewrite the system (3.1) on the sphere S2. Let

{
x1, x2

}
be a local coordinate. We define a 1-form

ξ = τ · d~r = u1dx
1 + u2dx

2,

where ui = τ · ~ri, φ = τ · ν and ν is the unit normal vector field of
the embedded surface M . The connection D of the ambient space can
be decomposed into two components, namely, tangential and normal
components D = ∇+D⊥, and then we have

∇ξ
= dui ⊗ dxi + ui∇dxi

= ~ri ·Dτ ⊗ dxi + τ ·D~ri ⊗ dxi + ui∇dxi

= ~ri ·Djτdx
i ⊗ dxj + τ · ∇~ri ⊗ dxi + τ ·D⊥j ~ridxj ⊗ dxi + ui∇dxi.

By the Gauss formulas, the definition of the second fundamental form
hij and the definition of the Christoffel symbol Γkij with respect to ∇,
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we have

D⊥j ~ri = hijν, ∇~ri = Γkij~rk ⊗ dxj .
By the Levi-Civita property Γkij = Γkji, we have

∇ξ = ~ri ·Djτdx
i ⊗ dxj + φhijdx

i ⊗ dxj(3.2)

+Γkijukdx
j ⊗ dxi − uiΓimldxm ⊗ dxl

= (~ri ·Djτ + φhij)dx
i ⊗ dxj .

Based on the previous notations, the system (3.1) is equivalent to the
following system: u1,1 = q11 + φh11

u1,2 + u2,1 = 2(q12 + φh12)
u2,2 = q22 + φh22

,(3.3)

where the comma indicates the covariant derivative with respect to ∇.
Denote the symmetrization operator by Sym. We also denote the cotan-
gent bundle of S2 by T ∗S2. Then, we define a linear operator

Lh : T ∗S2 → Sym(T ∗S2 ⊗ T ∗S2)(3.4)

ξ 7→ Sym(∇ξ)− trh(∇ξ)
2

h,

where trh means taking a trace with respect to the positive definite
tensor h, i.e., for any (0, 2) tensor a, we have trh(a) = hijaij , where
(hij) is the inverse matrix of (hij). Thus, (3.3) becomes

Lh(ξ) = q − trh(q)

2
h,(3.5)

because φ can be represented by

φ =
trh(∇ξ − q)

2
.

It is easy to check that the operator Lh is a strong elliptic operator
defined on the closed manifold S2. As the strong elliptic operator is a
Fredholm operator, we know that

coker(Lh) = ker(L∗h),

where L∗h is the adjoint operator of Lh. Thus the solvability of the
linearized problem is equivalent to show that the kernel of L∗h is zero.
Let’s present the framework to clarify our notions. At first we define an
inner product space H

H :=
{
a ∈ C∞

(
S2,Sym

(
T ∗S2 ⊗ T ∗S2

) )
; trh(a) = 0

}
equipped with the inner product

(a, b) =

∫
S2
KhijhmnaimbjndVg



254 C. LI & Z. WANG

for a, b ∈ H, where K = det(h)
det(g) , det(g), and det(h) are the determinants

of the first and second fundamental forms, respectively, and dVg is the
volume form with respect to the metric g. Thus K is the σ2 curvature of
the surface M in the ambient space N . We also define the inner product
in C∞

(
S2, T ∗S2

)
,

(ξ, η) =

∫
S2
hijuiηjdVg(3.6)

for ξ = uidx
i, η = ηidx

i ∈ C∞(T ∗S2). Here, C∞(·) means the set of
smooth sections of the corresponding vector bundle.

According to the definition of adjoint operator, L∗h is defined by

(ξ, L∗h(a)) = (Lh(ξ), a), for any ξ ∈ C∞
(
S2, T ∗S2

)
, a ∈ H.

Then, we have

(Lh(ξ), a)

=

∫
S2
Khijhmnui,majndVg +

1

2

∫
S2
Ktrh(∇ξ)hijhmnhimajndVg

= −
∫
S2

(Khijhmnajn),muidVg,

where we have used hijaij = 0. Thus, the adjoint operator is

(L∗h(a))k = −(Khijhmnajn),mhik.

For any a ∈ H, L∗h(a) = 0 implies

(Aijh
mnajn),m = 0,

where Aij is the cofactor of hij with respect to the matrix (hij).
For i = 1, the preceding equation can be written as

0 = (A11h
1na1n +A12h

1na2n),1 + (A11h
2na1n +A12h

2na2n),2

= (−A11h
2na2n +A12h

1na2n),1 + (A11h
2na1n −A12h

1na1n),2

= (−h22h
2na2n − h12h

1na2n),1 + (h22h
2na1n + h12h

1na1n),2

= −(δ2na2n),1 + (δ2na1n),2

= a21,2 − a22,1,

where we have used hijaij = 0 in the second equality and δij is Kro-
necker’s symbol. A similar argument yields

a11,2 = a12,1.

Thus, the tensor a satisfies a homogenous linearized system{
hijaij = 0
aij,k = aik,j

.(3.7)

In the following, we will prove that (3.7) has only trivial solutions,
thereby implying that ker(L∗h) = 0.
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A standard procedure is applied to define the cross product “×” on
every tangent vector space of N induced by its inner product “·” if N
is 3-dimensional. Once we fix an orientation of a given tangent space,

for any two tangent vectors ~a,~b, the cross product of ~a,~b is a unique
tangent vector that satisfies the following two properties:

~a×~b · ~a = ~a×~b ·~b = 0; |~a×~b|2 = (~a · ~a)(~b ·~b)− (~a ·~b)2,(3.8)

which is a bilinear product for its two variables. It is easy to check that

for any three tangent vectors ~a,~b,~c, we have ~a×~b · ~c = ~a · (~b× ~c).
Using the cross product, we define a new (1, 1) tensor related to the

homogenous linearized system (3.7). We let

Ak = gijakiν × ~rj ,

where ν is the unit normal vector field of the surface M being parallel
to ~r1 × ~r2. By (3.8), Ak is a tangent vector field. Then, Ak ⊗ dxk is a
well defined (1, 1) tensor on the sphere S2. More precisely, using (3.8)
and the triple scalar product formula, we obtainA1 = 1√

det(g)
(−a12~r1 + a11~r2)

A2 = 1√
det(g)

(−a22~r1 + a21~r2)
.(3.9)

Lemma 7. For any vector field E in the ambient space N satisfying

d~r ·DE = 0(3.10)

on the given surface M , where M is the image of the embedding map
~r : S2 → N , we can define a 1-form on S2

ω = Ak · Edxk.

Then, ω is a closed form, and is zero.

Proof. Obviously ω is a one form. Then, the differential of ω is

dω = ∂j(Ak · E)dxj ∧ dxk(3.11)

= (DjAk · E +Ak ·DjE) dxj ∧ dxk

=
[
(D1A2 −D2A1) · E + (A2 ·D1E −A1 ·D2E)

]
dx1 ∧ dx2.

By (3.10), we have

~r1 ·D1E = 0;~r2 ·D2E = 0;~r1 ·D2E + ~r2 ·D1E = 0.

Thus, by (3.9), we obtain

A2 ·D1E −A1 ·D2E =
a21√
det(g)

~r2 ·D1E +
a12√
det(g)

~r1 ·D2E = 0.

For convenience, we write

Ak = wlk~rl,
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where wlk are coefficients of the (1, 1) tensor Ω, and the relation between

aij and wlk is given in (3.9). In detail,

w1
1 = − 1√

det(g)
a12, w

2
1 =

1√
det(g)

a11,(3.12)

w1
2 = − 1√

det(g)
a22, w

2
2 =

1√
det(g)

a21.

Then, we have

DiAk =
(
wlk,i + Γmikw

l
m

)
~rl + wlkD

⊥
i ~rl =

(
wlk,i + Γmikw

l
m

)
~rl + wlkhilν,

where wlk,i is the covariant derivative of wlk with respect to ∂
∂xi

. Since

Γmik = Γmki, by (3.7) and (3.12), we have

D1A2 −D2A1

= −
(
wl1,2 − wl2,1

)
~rl +

(
h1lw

l
2 − h2lw

l
1

)
ν

=
−1√
det(g)

((a22,1 − a12,2)~r1 + (a11,2 − a21,1)~r2

+(h11a22 − h12a21 − h21a12 + h22a11)ν)

=
−1√
det(g)

((a22,1 − a12,2)~r1 + (a11,2 − a21,1)~r2 + det(h)hijaijν)

= 0.

Thus, ω is a closed one form.
Since the first de Rham cohomology of the sphere is trivial,

H1
DR(S2) = 0, there exists a smooth function f on the sphere such

that

ω = df = fkdx
k.

Therefore, we have

fk = Ak · E = wlk~rl · E.(3.13)

Similarly, we have

∇jω = ∂j(Ak · E)dxk +Ak · E∇jdxk(3.14)

= (DjAk · E +Ak ·DjE)dxk − ΓkjlAk · Edxl

=
[(
wlk,j + Γmjkw

l
m

)
~rl · E + wlkhjlν · E + wlk~rl ·DjE

]
dxk

− Γkjlw
m
k ~rm · Edxl

=
[
wlk,j~rl · E + wlkhjlν · E + wlk~rl ·DjE

]
dxk.

Thus, we obtain

fk,j = wlk,j~rl · E + wlkhjlν · E + wlk~rl ·DjE.
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Furthermore, we obtain

hkjfk,j = hkjwlk,j~rl · E + wkkν · E + hkjwlk~rl ·DjE

(3.15)

= hkjwlk,j~rl · E +

(
−a12√
det(g)

+
a21√
det(g)

)
ν · E

+ h1kw2
k~r2 ·D1E + h2kw1

k~r1 ·D2E

= hkjwlk,j~rl · E +
(
h1kw2

k − h2kw1
k

)
~r2 ·D1E

= hkjwlk,j~rl · E +
h11a11 + h12a21 + h21a12 + h22a22√

det(g)
~r2 ·D1E

= hkjwlk,j~rl · E.

For l = 1, we also have

hijw1
i,j = h11w1

1,1 + h12w1
1,2 + h21w1

2,1 + h22w1
2,2

=
1√

det(g)

(
− h11a12,1 − h12a12,2 − h21a22,1 − h22a22,2

)
= − 1√

det(g)

(
h11a11,2 + h12a12,2 + h21a21,2 + h22a22,2

)
= − 1√

det(g)
hijaij,2

=
1√

det(g)
hij,2aij .

Similarly, we have

hijw2
i,j =

−1√
det(g)

hij,1aij .

Using the preceding three formulae, we obtain

hkjfk,j =
1√

det(g)
hij,2aij~r1 · E +

1√
det(g)

hij,1aij~r2 · E.(3.16)

By Lemma 4 in [19], we obtain(
w1

1

)2
+
(
w1

2

)2
+
(
w2

1

)2
+
(
w2

2

)2 ≤ −C detw,(3.17)

where C is a constant only depending on the given surface M . We
denote the set {P ∈ M ; detw(P ) 6= 0} by U , which is an open subset
of M . We conclude that, in U

~rl · E =
Bm
l fm

detw
,
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where Bm
l is the cofactor of wml . Thus, in U , we have a differential

equation satisfied by the function f ,

hkjfk,j = hkj,2 akj
Bm

1 fm√
det(g) detw

− hkj,1 akj
Bm

2 fm√
det(g) detw

.(3.18)

On the other hand, in the set M \U , since detw = 0, by (3.17), we have

wji = 0, which implies aij = 0 for 1 ≤ i, j ≤ 2. Using (3.16), we obtain,
in M \ U

hkjfk,j = 0.(3.19)

We let

Am1 =

hkj,2 akj
Bm

1√
det(g) detw

if detw 6= 0

0 if detw = 0
,

Am2 =

−hkj,1 akj
Bm

2√
det(g) detw

if detw 6= 0

0 if detw = 0
.

Using the preceding notions and combining (3.18) with (3.19), we have

hkjfk,j = Am1 fm +Am2 fm.

Since the coefficients akj and Bm
l are all linear combinations of wml ,

the coefficients of the preceding equation are bounded in view of (3.17).
The strong maximum principle holds for bounded coefficients of lower
order terms, Chapter 3, [15]. It implies that f is a constant function
on the sphere, which means that

ω = df = 0.

q.e.d.

In view of the previous Lemma, we need to find enough special solu-
tions of (3.10).

Lemma 8. Suppose the coordinate of the Euclidean space R3 is {z1,
z2, z3}. Let

Iα =
∂

∂zα
×E ~r,

where ×E is the cross product defined by the Euclidean metric, then
every Iα satisfies (3.10) for α = 1, 2, 3, i.e., d~r ·DIα = 0. We also have

Iα =
∂

∂zα
×X,

where X is the conformal Killing vector of N and × is the cross product
defined by the metric of the ambient space N .
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Proof. The relationship between the isometric system and its lin-
earized system tells that if we can construct a 1-parameter family of
embeddings ~rt satisfying

d~rt · d~rt = d~r · d~r,

where ~r is the given embedding, then E = d~rt
dt

∣∣∣
t=0

satisfies (3.10). As

any 3-dimensional warped product metric is rotationally symmetric,
the 3-dimensional orthogonal group O(3) is a subgroup of its isome-
try group. It is well known that the Lie algebra o(3) of O(3) is the
collection of all 3 × 3 anti-symmetric matrices and I1, I2, I3 can com-
pose a basis of o(3). Thus, for every Iα, α = 1, 2, 3, we can always find
a 1-parameter family of orthogonal matrices Aαt , which is a path gener-
ated by Iα at the identity matrix I in O(3) using the exponential map.
Therefore, we let

~rt = Aαt ~r

be a 1-parameter family of surfaces in N , and then we have

d~rt · d~rt = Aαt d~r ·Aαt d~r = d~r · d~r,

which implies the first statement.
For the second result, we claim that, in fact, for any tangent vector

field ~a of N , we always have

~a×E ~r = ~a×X,

where X is the conformal Killing vector defined in (2.8). Suppose the
3-dimensional polar coordinate is (r, u1, u2), then we write

~a = µ
∂

∂r
+ λ1 ∂

∂u1
+ λ2 ∂

∂u2
, and ~r = r

∂

∂r
,(3.20)

where µ, λ1, λ2, r are scalar components. The definition of the cross
product involves the orientation of the vector space. As the underlying
manifold of the 3-dimensional Euclidean space and the 3-dimensional
warped product space is the same, we can fix a same orientation for
every tangent vector space. Thus, we have

~a×E ~r = r

(
λ1

cosu1

∂

∂u2
− λ2 cosu1 ∂

∂u1

)
,

which implies

~a×E ~r · ~a = ~a×E ~r ·X = 0.

Therefore, ~a ×E ~r is parallel to ~a ×X. We only need to compare their
norms,

|~a×X|2 = |~a|2|X|2 − (~a ·X)2 = r2
(
(λ2)2 cos2 u1 + (λ1)2

)
= |~a×E ~r|2.

The claim is verified. q.e.d.
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We define a set of zero points

m0 =
{
p ∈ S2;~r(p) = 0

}
.

As M is a regular surface, m0 is a finite set by the compactness of the
sphere. Furthermore, we have the following fact:

Proposition 9. The set Z =
{
p ∈ S2 \m0;ϕ(p) = X · ν(p) = 0

}
is

a regular curve on the sphere, if the surface M is strictly convex.

Proof. It suffices to check that on Z, dϕ 6= 0. X is the conformal
Killing vector field, we have

∂iϕ = X ·Diν. and Diν = −gklhik~rl.
Since X ·ν = 0 on Z, we can assume that X = ai~ri for any point p ∈ Z.
Then, if dϕ = 0, by the Gauss-Weingarten formulae, we have

∂iϕ = −akhik = 0,

which implies that ak = 0, namely, X = 0. Thus, we know that ~r(p) = 0,
which contradicts p /∈ m0. q.e.d.

We are in a position to prove our main theorems in this section.

Theorem 10. Suppose that (S2, g) can be isometrically embedded into
a 3-dimensional warped product space as a closed strictly convex surface
M with the embedding map ~r. For any given (0, 2) symmetric tensor q,
there exists a vector field τ satisfying the following system:

d~r ·Dτ = q.

Proof. We first assume that N is a warped product space. From
the previous discussion, it suffices to prove that ker(L∗h) = 0, which is

equivalent to Ak⊗dxk = 0. By Lemma 7 and 8, we obtain for α = 1, 2, 3,

Ak ⊗ dxk · Iα = 0, and Ak · νdxk = 0.

By (3.9), each Ak is a tangent vector field, which implies the above
second equality. For any three tangent vector fields a, b, c, we always
have

(a× b)× c = b(a · c)− a(b · c).
Thus, for α 6= β and α, β = 1, 2, 3, we have

Iα × Iβ · ν =

(
∂

∂zα
×X

)
×
(

∂

∂zβ
×X

)
· ν(3.21)

=

(
∂

∂zα
× ∂

∂zβ
·X
)
ϕ.

At a point of M where X 6= 0, we can always find two different indices

α0 6= β0 such that
∂

∂zα0
,
∂

∂zβ0
and X are linearly independent. As the

function ϕ is non-zero on S2 \ (Z ∪m0), (3.21) means that Iα0 , Iβ0 and

ν are linearly independent, which implies that Ak ⊗ dxk = 0. Note that
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Z∪m0 is a closed set without interior points. Thus, Ak⊗dxk = 0 is zero
on the entire sphere. We complete the proof for any warped product
space. q.e.d.

We now deal with general N . The following theorem and corollary are
the only two places in this paper where the assumption of the ambient
space is a general Riemannian manifold and not only a warped product
space.

Theorem 11. Suppose that (S2, g) can be isometrically embedded
into a 3-dimensional Riemannian manifold as a closed strictly convex
surface M with the embedding map F . For any given (0, 2) symmetric
tensor q, there exists a vector field τ satisfying the following system:

dF ·Dτ = q,

where dF means the differential of the map F .

Proof. In the following notations, we still useN to denote the ambient
Riemannian manifold. The Riemannian metric is denoted by “·” and
D is its corresponding Levi-Civita connection. Thus, for a given metric
g on S2, the isometric embedding system is to find an embedding map
F : S2 → N that satisfies

dF · dF = g,

where dF represents the differential of the map F . We denote the image
of F by M . Then, we derive the linearized problem of the isometric
embedding system in a general Riemannian manifold. Suppose that we
have a 1-parameter family of metrics gt on the 2-dimensional sphere S2

and every (S2, gt) can be isometrically embedded into N by the map

F(t). Let F(0) = F and τ = ∂Ft
∂t

∣∣
t=0

be the variation vector field. We

let {x1, x2} be a local coordinate of the sphere. We have

∂

∂t
gtij(3.22)

=
∂

∂t
gt
(
∂

∂xi
,
∂

∂xj

)
= gt

(
D ∂

∂t

∂

∂xi
,
∂

∂xj

)
+ gt

(
∂

∂xi
, D ∂

∂t

∂

∂xj

)
= gt

(
D ∂

∂xi

∂

∂t
,
∂

∂xj

)
+ gt

(
∂

∂xi
, D ∂

∂xj

∂

∂t

)
.

Thus, the preceding equation can be rewritten as

dF ·Dτ =
1

2

∂

∂t
gt
∣∣∣∣
t=0

,

which is the same as the linear system (3.1) derived in the warped prod-
uct space. As the argument of this section before Lemma 8 does not
substantially use the warped product structure, we can extend every-
thing in any Riemannian manifolds. Thus, we also have the definition
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(3.4) of the linear operator Lh in a Riemannian manifold, where h is
the second fundamental form of M .

Let us consider the index of the operator Lh. Since Lh is an elliptic
operator defined on the cotangent bundle of the sphere with respect to
the surface M , it is a Fredholm operator. Its index is defined by

ind(Lh) = dim kerLh − dim cokerLh.(3.23)

The index of an elliptic operator only depends on its principal sym-
bol. In the following, we calculate the index of Lh using the homotopic
invariance of the index.

We quote Theorem 19.2.2 in the work of Hörmander [24]: Let I be the
interval [0, 1] on R, and let I 3 t 7→ a(t) ∈ C∞ (T ∗(X); Hom(π∗E, π∗F ))
and I 3 t 7→ b(t) ∈ C∞(T ∗(X); Hom(π∗F, π∗E)) be continuous maps
such that a(t) is uniformly bounded in Sm, b(t) is uniformly bounded
in S−m and a(t)b(t)− I is uniformly bounded in S−1(T ∗(X); Hom(π∗F ,
π∗E)) while b(t)a(t)−I is uniformly bounded in S−1(T ∗(X); Hom(π∗E,

π∗F )). If A0, A1 ∈ Ψm
(
X;E ⊗ Ω

1
2 , F ⊗ Ω

1
2

)
have principal symbols

a(0) and a(1), respectively, then it follows that ind A0 = ind A1.
We further explain the above Theorem. X is a compact manifold

and E,F are two complex vector bundles on X with the same fiber
dimension. T ∗(X) is the cotangent bundle of X and the map π :
T ∗X → X is the canonical projection. Ω is a density line bundle on

X. Ψm
(
X;E ⊗ Ω

1
2 , F ⊗ Ω

1
2

)
means the set of order m linear elliptic

(pseudo) differential operators mapping the sections of E ⊗ Ω
1
2 to the

sections of F ⊗Ω
1
2 with coefficients defined on X. If the dimension of X

is n, then T ∗X can be viewed as Rn × Rn in a local coordinate. Thus,
for a real number s, the definition of a section a ∈ Ss is as follows: In a
local coordinate, we can write a = a(x, ξ) where (x, ξ) ∈ Rn × Rn. For

all multiple indices α, β, the derivative aαβ = ∂αξ ∂
β
xa(x, ξ) has the bound∣∣aαβ(x, ξ)

∣∣ ≤ Cα,β(1 + |ξ|)s−|α|; x, ξ ∈ Rn,
where Cα,β is a positive constant depending on the underlying Riemann-
ian manifold.

Being specific to our case, the underlying manifold X is the 2-dimen-
sional sphere S2 and the bundle E is the complexification of the cotan-
gent bundle T ∗S2. The bundle F is the complexification of the following
bundle:

F ′h =
{
a ∈ Sym

(
T ∗S2 ⊗ T ∗S2

)
; trha = 0

}
.

Now we need to point out two facts. One is that the complexification
is not necessary because we can extend our operator to the complexi-
fication of our bundles and the complex dimensions of the kernel and
cokernel of the complexification are the same as the real dimensions of
the original real bundles. Another is that we do not need to consider
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the density line bundle in our present case. In the literature, the destiny
line bundle is mainly used to define the adjoint operator. In our case,
however, the underlying manifold is a Riemannian manifold and the el-
liptic operator Lh is only composed of the covariant derivatives. Thus,
we can use the volume form to define the density line bundle: Suppose
we have two different local coordinates for a certain point, {x1, x2} and
{y1, y2}. The metric can be represented by gij and g̃ij in the two coor-
dinates. The transition functions of the half density line bundle can be
defined by

txy =
(det gij)

1/4

(det g̃ij)
1/4

.

The section of the density line bundle
{

(det gij)
1/4
}

will be not involved
in the calculation of the dual operator, i.e., no contribution for the
integration by part. In the following, we use Hörmander’s theorem
without the complexification and density bundle.

Let’s calculate the principal symbol of Lh. Suppose that η = ηidx
i is a

unit cotangent vector field (i.e., 1-form), ξ = uidx
i is another cotangent

vector field and q is a symmetric (0, 2) tensor field with trhq = 0. Then,
the principal symbol of Lh defined by h is a linear operator determined
by

q11 = u1η1 − ζh11,(3.24)

2q12 = 2q21 = u1η2 + u2η1 − 2ζh12,

q22 = u2η2 − ζh22,

where 2ζ = hijuiηj .
The previous calculation shows that the principal symbol only de-

pends on the second fundamental form h. Thus, if we need a homotopy
path of the principal symbols, we can consider a 1-parameter family
of (0, 2) positive definite tensors. Since the sphere can be presented as
some standard unit sphere in the 3-dimensional Euclidean space R3, the
standard Euclidean metric g0 on the standard unit sphere can be viewed
as a positive definite section in the bundle Sym(T ∗S2 ⊗ T ∗S2). Thus,
we can define the following path:

ht = (1− t)h+ tg0, and gt = (1− t)g + tg0,

where 0 ≤ t ≤ 1. As gt, ht are positive definite, we can define a 1-
parameter family of elliptic operators Lt using them

Ltξ = Sym
(
∇gtξ

)
−

trht
(
∇gtξ

)
2

ht, for ξ ∈ T ∗S2,

where∇gt is the Levi-Civita connection with respect to gt. The image of
the map Lt is a rank 2 bundle F ′ht =

{
a∈Sym(T ∗S2 ⊗ T ∗S2); trhta = 0

}
.
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In fact F ′ht is bundle isomorphic to F ′h = F ′h0 . Let’s calculate the bun-

dle isomorphism in a local coordinate {x1, x2}. For any bt ∈ F ′ht , it

means (ht)ijbtij = 0. We let section b ∈ Sym(T ∗S2 ⊗ T ∗S2) satisfy

btij = htimh
mnbnj which implies that hijbij = 0. Therefore, the bundle

isomorphism ϕt from F ′h to F ′ht is determined by the matrix
(
htimh

mn
)

in the local coordinate.
The operators

(
ϕt
)−1

Lt have the same image F ′h. Again, let us sup-
pose that ξ is a unit cotangent vector field, u is a cotangent vector field,
and q is symmetric (0, 2) tensor with trhq = 0. We let qt = ϕtq. Thus,

the principal symbol a(t) of the operators
(
ϕt
)−1

Lt is determined by

qt11 = u1η1 − ζht11,(3.25)

2qt12 = 2qt21 = u1η2 + u2η1 − 2ζht12,

qt22 = u2η2 − ζht22,

where 2ζ = (ht)ijuiηj . The inverse symbol b(t) of a(t) is determined by

u1 =
1

χt
[
(qt11h

t
22 − qt22h

t
11)η1 − 2(ht12q

t
11 − ht11q

t
12)η2

]
,(3.26)

u2 =
1

χt
[
(qt22h

t
11 − qt11h

t
22)η2 − 2(ht12q

t
22 − ht22q

t
12)η1

]
,

χt = ht22η
2
1 + ht11η

2
2 − 2ht12η1η2.

Obviously, since ht, gt are uniformly bounded, we have a(t) ∈ S1, b(t) ∈
S−1, a(t)b(t)−I, b(t)a(t)−I ∈ S−1 and all of these bounds are uniform,
i.e., not depending on t, where the explicit meaning of the notation
S1, S−1 can be found in [24]. Now, using the invariance of the index
along a homotopic path, e.g., Theorem 19.2.2 [24], the index of the oper-
ator Lh is the same as (ϕ1)−1L1. It is easy to see that the dimensions of
the kernel and cokernel of the operator (ϕ1)−1L1 are the same as the di-
mensions of the kernel and cokernel of L1. The operator L1 is defined by
the standard unit 2-dimensional sphere embedded in the 3-dimensional
Euclidean space. Thus, by the infinitesimal rigidity in the Euclidean
space, namely Cohn-Vossen Theorem, we have ind (L1) = 6 because
the kernel has six dimensions consisting of three rotations and three
translations and the cokernel is trivial. Thus, we have ind(Lh) = 6.

We now prove our theorem. In view of (3.23) and ind(Lh) = 6,
the kernel of Lh is always nontrivial. Thus, we can find a 1-form ξ
satisfying Lh(ξ) = 0, which is not identically zero. We claim that the
set S = {p ∈ S2;ω|p = 0} is a closed set with no interior point. In fact,
suppose the set includes an open subset. As the equation Lh(ξ) = 0
can be viewed as an elliptic differential system of the first order on an
open subset of R2 in a local coordinate, the unique continuation [2, 3]
states that ξ = 0 on the entire surface, which contradicts that ξ is not
identically zero. Thus, we have proved our claim. Let τ be a vector
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field that satisfies

dF ·Dτ = 0, and ξ = τ · dF .

We again suppose that {x1, x2} is a local coordinate. For any symmetric
(0, 2) tensor aij that satisfies the homogenous linearized Gauss-Codazzi
system (3.7), using (3.9) and Lemma 7, we have[

−a12 a11

−a22 a21

](
τ · F1

τ · F2

)
= 0.(3.27)

Thus, the above algebraic system has nontrivial solution on S2\S, which
implies

det

[
a11 a12

a21 a22

]
= det

[
−a12 a11

−a22 a21

]
= 0

on the entire sphere. As hijaij = 0 and aij is symmetric, we obtain
aij = 0. Thus, we have ker(L∗h) = 0, which implies coker (Lh) = 0.
q.e.d.

Although we have two different proofs of the existence theorem for
the linearized problem, the benefit of the first one is that it is a purely
geometric argument and does not need the unique continuation.

For any 3-dimensional Riemannian manifold N , let TN denote its
tangent bundle. An immediate corollary of the above theorem is

Corollary 12. Suppose that (S2, g) can be isometrically embedded
into a 3-dimensional Riemannian manifold N as a closed strictly convex
surface M by the embedding map F . The dimension of the solution space
of the linear homogeneous system

dF ·Dτ = 0(3.28)

is always six, where τ is a smooth vector field of the pull-back vector
bundle F∗TN , dF is the differential of the map F and D is the Levi-
Civita connection of N .

Proof. In view of the proof of the previous theorem, the cokernel of
the operator Lh is trivial. Thus, we have ind (Lh) = dim kerLh = 6.
q.e.d.

4. Openness and existence results

In this section, we prove the openness for the Weyl problem, namely,
Theorem 1. We assume that (S2, g) can be isometrically embedded into
the ambient space N as a strictly convex surface M by the map ~r.
Following Nirenberg’s approach, for any perturbation metric g̃ closed to
the metric g on S2, we need to find a vector field ~y to satisfy

d(~r + ~y) · d(~r + ~y) = g̃.(4.1)
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We let {x1, x2} be a local coordinate of the sphere. As the underlying
manifold of the warped product space N is R3, we have a global coordi-
nate

{
z1, z2, z3

}
for N such that

{
∂
∂z1

, ∂
∂z2

, ∂
∂z3

}
is the standard frame

of R3. Note that every ∂
∂zα can be viewed as a global vector field in

N . We present additional notations. Here, the Greek indices α, β, γ, · · ·
range form 1 to 3 and the Latin indices i, j, k, · · · range from 1 to 2.
The vector fields ~r and ~y can be expressed as linear combinations of
∂
∂z1

, ∂
∂z2

, ∂
∂z3

,

~r = rα
∂

∂zα
and ~y = yβ

∂

∂zβ
,

where rα, yβ are the scalar components. Let (σαβ) be the metric matrix
of the warped product metric ds2 defined by (1.3). Thus, at points ~r+~y
and ~r, σαβ can be expressed respectively by

σαβ(~r + ~y)
∂(rα + yα)

∂xi
∂(rβ + yβ)

∂xj
= g̃(~r + ~y)

(
∂

∂xi
,
∂

∂xj

)
= g̃ij(~r + ~y)

and

σαβ(~r)
∂rα

∂xi
∂rβ

∂xj
= g(~r)

(
∂

∂xi
,
∂

∂xj

)
= gij(~r).

We introduce the following three tensors,

Fαβγλ(~r, ~y) =

∫ 1

0
(1− t) ∂2

∂zγ∂zλ
σαβ(~r + t~y)dt,(4.2)

Gαβγ(~r, ~y) =

∫ 1

0

∂

∂zγ
σαβ(~r + t~y)dt,

and

qij(~y,∇~y)(4.3)

= g̃ij(~r + ~y)− gij(~r)− σαβ(~r)
∂yα

∂xi
∂yβ

∂xj
− Fαβγλ(~r, ~y)

∂rα

∂xi
∂rβ

∂xj
yγyλ

−Gαβγ(~r, ~y)yγ
(
∂rα

∂xi
∂yβ

∂xj
+
∂yα

∂xi
∂rβ

∂xj
+
∂yα

∂xi
∂yβ

∂xj

)
,

where q is a symmetric (0, 2) tensor. Using these notations, we conclude
that (4.1) can be rewritten as the following nonlinear system:

d~r ·D~y = q(~y,∇~y).(4.4)

The detailed derivation can be found in [28]. Also note that

‖Fαβγλ‖Cm,α(S2,~r∗T ∗N⊗~r∗T ∗N⊗~r∗T ∗N⊗~r∗T ∗N)(4.5)

+‖Gαβγ‖Cm,α(S2,~r∗T ∗N⊗~r∗T ∗N⊗~r∗T ∗N)

≤ Cm,α + C̄m,α‖~y‖mCm,α(S2,~r∗TN),

where Cm,α, C̄m,α are two constants depending on m,α and M .
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Now we define a map Φ on S2. As in section 3, TN denotes the
tangent vector bundle of N . For any given vector field ~z of the pull-
back bundle ~r∗TN , suppose the image of Φ is the vector field ~y of ~r∗TN ,
namely,

Φ : C2,α
(
S2, ~r∗TN

)
→ C2,α

(
S2, ~r∗TN

)
,

~z 7→ ~y,

for 0 < α < 1. We define the vector field ~y as follows. Consider the
following system for the unknown vector field τ :

d~r ·Dτ = q(~z,∇~z),(4.6)

where the tensor q is defined in (4.3). Theorem 10 states that the above
system is always solvable if M is a strictly convex surface. Note that
the kernel of the above system is nontrivial. We let the vector field ~y be
the solution of the above system being perpendicular to its kernel, i.e.,
the solutions of the system

d~r ·Dτ = 0.(4.7)

We explain the meaning of the word “perpendicular” here. Every vector
field τ corresponds to a 1-form ξ = τ · d~r. Thus, any two vector fields
perpendicular to each other means that the corresponding 1-forms are
perpendicular to each other in the inner product space defined by (3.6).
We will prove that ~y is a C2,α vector field in the next several paragraphs.

Suppose {x1, x2} is a local coordinate of the sphere. We first give the
Schauder estimates for the linear elliptic system (3.3). We let ξ = uidx

i.
In (3.3), multiplying h12 in the first equation and multiplying h11 in the
second equation, and then, taking their difference, we have

2h12u1,1 − h11(u1,2 + u2,1) = 2h12q11 − 2h11q12.(4.8)

Again in (3.3), multiplying h11 in the last equation and multiplying h11

in the first equation, and then, taking their difference, we have

h11u2,2 − h22u1,1 = h11q22 − h22q11.(4.9)

Covariant differentiating (4.8) with respect to ∂
∂x2

and (4.9) with respect

to ∂
∂x1

respectively, and then summing them up, we obtain

−h22u1,11 + h12u1,21 + h21u1,12 − h11u1,22 + lower order terms(4.10)

= (h11q22 − h22q11),1 + (2h12q11 − 2h11q12),2,

where we have used the Ricci identities Rl211ul = u1,21 − u1,12 and

Rk122uk = u2,12 − u2,21. Similarly, switching 1 and 2 in the above equa-
tion, we have

−h22u2,11 + h12u2,21 + h21u2,12 − h11u2,22 + lower order terms(4.11)

= −(h11q22 − h22q11),2 + (2h12q22 − 2h22q12),1.
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Thus, we obtain a linear elliptic partial differential system (4.10), (4.11)
of second order. Using the interior Schauder estimates of elliptic systems
[14], we have

‖ξ‖C2,α(S2,T ∗S2)(4.12)

≤ C2,α

(
‖q‖C1,α(S2,Sym(T ∗S2⊗T ∗S2)) + ‖ξ‖C0,α(S2,T ∗S2)

)
,

where the positive constant C2,α only depends on the upper and lower
bounds of the principal curvatures κ1, κ2 of M and the upper bound of
the derivatives of κ1, κ2. See Vekua [46] for another argument regarding
(4.12).

If ξ is perpendicular to the kernel of the operator Lh, then ξ is the
unique solution to the system (3.3) for a given q. Thus, we further have
the following estimate by a compactness argument:

(4.13) ‖ξ‖C2,α(S2,T ∗S2) ≤ C‖q‖C1,α(S2,Sym(T ∗S2⊗T ∗S2)).

Therefore, the tangential component of ~y is C2,α. The compactness
argument is standard in the regularity theory of elliptic PDEs [14, 15],
but for the sake of completeness, we include the detail here. If the
estimate (4.13) does not holds, then we have a sequence {ξ(n)}∞n=1 which

satisfies that every ξ(n) is perpendicular to the kernel of Lh in the sense
of L2 product defined by (3.6) and q(n), such that we have

lim
n→∞

‖ξ(n)‖C2,α(S2,T ∗S2) = +∞,

‖q(n)‖C1,α(S2,Sym(T ∗S2⊗T ∗S2)) = 1,

and

Lh

(
ξ(n)

)
= q(n) − trh(q(n))

2
h.

We denote

ξ̃(n) =
ξ(n)

‖ξ(n)‖C2,α(S2,T ∗S2)

.

As Lh is a linear operator, we have

Lh

(
ξ̃(n)

)
=

q(n) − trh(q(n))
2 h

‖ξ(n)‖C2,α(S2,T ∗S2)

.(4.14)

Obviously the sequence
{
ξ̃(n)

}∞
n=1

is bounded in C2,α
(
S2, T ∗S2

)
. For

any 0 < β < α, by Sobolv’s compact embedding theorem, there ex-

ists a subsequence of
{
ξ̃(n)

}∞
n=1

, which converges to a ξ∗ in the space

C2,β
(
S2, T ∗S2

)
. Without loss of generality, we may assume that the

subsequence is the sequence
{
ξ̃(n)

}∞
n=1

itself. By (4.14), we have

(4.15) Lh(ξ∗) = 0.
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As every ξ(n) is perpendicular to ker(Lh), ξ∗ is also perpendicular to
ker(Lh). Therefore, (4.15) implies ξ∗ = 0. Using Sobolev’s embedding
theorem, we have∥∥∥ξ̃(n)

∥∥∥
C2,α(S2,T ∗S2)

≤ C
∥∥∥ξ̃(n)

∥∥∥
C2,β(S2,T ∗S2)

,

where C is a universal constant. ξ∗ = 0 implies that the right hand side
of the above inequality converges to zero, but it is clear that the left
hand side is equal to 1, which is a contradiction.

In view of the system (3.3), if ξ is C2,α and q is smooth enough, we
can obtain only φ = ~y · ν is C1,α, where ν is the unit exterior normal
vector field of M . If we would like to define the map Φ well, we need to
improve the regularity of φ to C2,α. We perform this task by modifying
Nirenberg’s trick [34]. Let

w =
u1,2 − u2,1

2
√

det(g)
,(4.16)

where a comma indicates covariant derivatives. w is a globally defined
function on S2 because 2wdVg = dξ. Moreover, w satisfies

w
√

det(g) + q12 = u1,2 − h12φ,(4.17)

q21 − w
√

det(g) = u2,1 − h12φ.

By Ricci identities (2.5), we have

Rl211ul = u1,21 − u1,12 = (q12 + w
√

det(g) + h12φ),1 − (q11 + h11φ),2,

Rk122uk = u2,12 − u2,21 = (q21 − w
√

det(g) + h21φ),2 − (q22 + h22φ),1.

Thus, we have

−w1 =
1√

det(g)
(q12,1 − q11,2 + (h21φ),1 − (h11φ),2 −Rl211ul),

−w2 =
1√

det(g)
(q22,1 − q12,2 + (h22φ),1 − (h21φ),2 +Rk122uk).

By the compatibility condition w1,2 = w2,1, we obtain

((deth)hijφ),ij(4.18)

= −(Rl211ul),2 − (Rk122uk),1 + q12,12 − q11,22 − q22,11 + q12,21,

which is an elliptic equation if the second fundamental form hij is pos-
itive definite.

Remark 13. In fact, (4.18) is the linearized Gauss equation. As the
tensor q is the linearization of the metric tensor, the Gauss curvature
type tensor with respect to q appears on the right hand side.

Using (4.13), (4.18), and Schauder estimates, we obtain the following
lemma.
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Lemma 14. For 0 < α < 1 and any given symmetric (0, 2) tensor
q, suppose ~y is a solution of the system

d~r ·D~y = q,

which is perpendicular to its kernel. Then, we have the estimate

‖~y‖C2,α(S2,~r∗TN)(4.19)

≤ C
(
‖q‖C1,α(S2,T ∗S2)

+

∥∥∥∥ 1

det(g)
(q12,12 − q11,22 − q22,11 + q12,21)

∥∥∥∥
Cα(S2)

)
,

where C is a positive constant depending only on α and the surface M .

By (4.3), in every term of qij except the term g̃ij − gij , the vector ~z
appears at least twice. For any vector field ~z on M , we let q = q(~z,∇~z)
defined by (4.3). As the term q12,12−q11,22−q22,11+q12,21 is the linearized
Gauss curvature, it does not include any third order derivatives of ~z.
By (4.3), in every term of qij except the term g̃ij − gij , the vector ~z
appears at least twice. Thus, by the definition of the map Φ, Lemma
14 implies

‖Φ(~z)‖C2,α(S2,~r∗TN)(4.20)

≤ C
(
‖gij − g̃ij‖C2,α(S2,Sym(T ∗S2⊗T ∗S2)) + ‖~z‖2C2,α(S2,~r∗TN)

+‖~z‖3C2,α(S2,~r∗TN) + ‖~z‖4C2,α(S2,~r∗TN)

)
.

For any number δ < 1, let

Bδ =
{
~z a vector field defined on the surface M ; ‖~z‖C2,α(S2,~r∗TN) ≤ δ

}
.

If we take a sufficiently small δ, the map Φ is well defined in Bδ by
(4.20). We then prove that the map Φ is a contraction map. Suppose
~z1, ~z2 ∈ Bδ, and let

q̃ = q(~z1,∇~z1)− q(~z2,∇~z2).

By (4.3), we have

q̃ij =

−σαβ(~r)

[
((zα1 )i − (zα2 )i)

(
zβ1

)
j

+ (zα2 )i

((
zβ1

)
j
−
(
zβ2

)
j

)]
− (zµ1 − z

µ
2 )

(∫ 1

0

∂Fαβγλ
∂yµ

(t~z1 + (1− t)~z2) dt

)
zγ1 z

λ
1 r

α
i r

β
j

+Fαβγλ(~z2) (zγ1 + zγ2 )
(
zλ1 − zλ2

)
rαi r

β
j

− (zµ1 − z
µ
2 )

(∫ 1

0

∂Gαβγ
∂yµ

(t~z1 + (1− t)~z2)dt

)
zγ1
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×
(
rαi

(
zβ1

)
j

+ rβj (zα1 )i + (zα1 )i

(
zβ1

)
j

)
+Gαβγ(~z2) (zγ1 − ~z

γ
2 )

(
rαi

(
zβ1

)
j

+ rβj (zα1 )i + (zα1 )i

(
zβ1

)
j

)
+Gαβγ(~z2)zγ2

(
rαi

(
zβ1 − z

β
2

)
j

+ rβj (zα1 − zα2 )i

)
+Gαβγ(~z2)zγ2

(
(zα1 − zα2 )i

(
zβ1

)β
j

+ (zα2 )i

(
zβ1 − z

β
2

)
j

)
,

where zα1 , z
α
2 are the scalar components of ~z1, ~z2 with respect to ∂

∂zα ,

and (zα1 )i , (z
α
2 )i are the derivatives of zα1 , z

α
2 with respect to ∂

∂xi
, i.e.,

(zα1 )i =
∂zα1
∂xi

, (zα2 )i =
∂zα2
∂xi

.

Thus, by Lemma 14, we have

‖Φ(~z1)− Φ(~z2)‖C2,α(S2,~r∗TN) ≤ Cδ‖~z1 − ~z2‖C2,α(S2,~r∗TN).

If we choose a sufficiently small δ, then the map Φ is a contraction map
that implies the existence of (4.4). We complete the proof of Theorem 1.

Using the openness, we can prove an existence theorem of AdS–Sch
spaces. The metrics of AdS–Sch spaces are defined by (1.3), (1.4).

Theorem 15. For any metric g on S2, if its Gaussian curvature K >
−κ, where κ is a nonnegative constant, then (S2, g) can be isometrically
embedded into an AdS–Sch space with the form (1.4). More precisely,
(S2, g) always can be isometrically embedded into the AdS–Sch space
with parameters κ,m as a surface outside of a large ball BR, where R
is the Euclidean radius of the ball.

Proof. Using the Weyl problem in space forms, we know that, (S2, g)
can be isometrically embedded into a space form as some surface M .
Here, the scalar curvature of the space form is 6κ, which is referred
to as κ-space form in the following. We also call the AdS–Sch space
with parameters κ,m the (κ,m)-AdS–Sch space in the following. We
translate M to the outside of a sufficiently large ball BR in the κ-
space form. As the underlying manifold of the κ-space form and the
(κ,m)-AdS–Sch space are the same, we can view M as a surface in the
(κ,m)-AdS–Sch space and its induced metric is denoted by gR. Then,
we have

‖g − gR‖C3,α(S2,Sym(T ∗S2⊗T ∗S2)) ≤
C

R
,

where C is a positive constant not depending on R. The second fun-
damental forms of M in the κ-space form and in the (κ,m)-AdS–Sch
space are denoted by h, hR, respectively. The unit normal vector fields
of M and the Levi-Civita connections on M in the κ-space form and in
the (κ,m)-AdS–Sch space are denoted by νκ, ν and ∇κ,∇, respectively.
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Suppose
{
x1, x2

}
is a local coordinate of the sphere and ~r is the position

vector of M , then it is not difficult to check that

‖ν − νκ‖C2,α(S2,~r∗T ∗N) ≤
C

R
, and ‖∇κi ~rj −∇i~rj‖C2,α(S2,TS2) ≤

C

R
,

which implies

‖h− hR‖C2,α(S2,Sym(T ∗S2⊗T ∗S2)) ≤
C

R
.

Here, C is also a positive constant independent of R. Thus, based on the
above several inequalities, the constants in the proof of the openness,
Theorem 1 are uniformly bounded. Thus, we conclude that there is a
positive large constant R0 such that for R > R0, the constants appearing
in Theorem 1 do not depend on R. Therefore, for a sufficiently large R,
metric g is in a ε neighborhood of gR. By the openness, (S2, g) can be
isometrically embedded into the (κ,m)-AdS–Sch space. q.e.d.

For the sake of the completeness, we roughly review existence results
obtained by Guan and Lu [16] and Lu [31]. The following Heinz type
C2 a priori estimate has been proved by Lu [31]:

Theorem 16. Suppose (S2, g) is isometrically embedded into some
ambient Riemannian manifold (N3, ḡ) such that it is null homologous.
Let X be some isometric embedding map. Assume that

R(x)− R̄(X(x)) + 2 inf{RicX(x)(µ, µ) : µ ∈ TX(x)U, |µ| = 1} ≥ C0 > 0,

for any x ∈ S2 where C0 is a positive constant. Further assume that R̄ ≥
−6κ2 and R > −2κ2 for some constant κ. Then, the mean curvature H
of the embedded surface is bounded from above,

H ≤ C,
where C is a positive constant depending on C0, inf(R+2κ2), ‖g‖C3 and
‖ḡ‖C3, but not depending on the position of the embedded surface.

We clarify the condition appearing in Theorem 2. Assume that there
is a universal constant K0 satisfying

(a) lim sup
r→∞

1− f2

r2
≤ K0, (b) lim sup

r→∞
−1− f2 + 2rff ′

r2
≤ K0.

(4.21)

The proof of Theorem 2 can be found in [16], [31].

5. Non-rigidity of slice spheres

In this section, we construct examples to show the non-rigidity of the
isometric embedding problem in any dimensional ambient space. More
precisely, we will find some convex hypersurface in an n-dimensional
warped product space that is isometric to the unit slice sphere, but
their second fundamental forms are not the same.
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Reconsider the linearized system in the warped product space N ,

2d~r ·Dτ = q,(5.1)

where ~r is the position vector of a given surface M , τ is a variation field,
and q is a symmetric (0, 2) tensor on the sphere. Similar to Section 3,
in a local coordinate {x1, x2} of S2, this system can be rewritten as

ui,j + uj,i = 2φhij + qij ,(5.2)

where ξ =
∑

i uidx
i, ui = τ · ∂

∂xi
is a 1-form on the sphere, φ = τ · ν

is a function on the sphere, and hij is the second fundamental form of
M . The comma again indicates the covariant derivative. Henceforth,
we always use “∗” to present the Euclidean inner product. By (2.12),
for any r slice sphere, we have

φhij =
f2(r)

r
τ · ∂

∂r
gij =

1

r
τ ∗ ∂

∂r
gij .

Let φE = τ ∗ νE and hEij be the second fundamental form of M in the
Euclidean space, where νE is the exterior normal of M in the Euclidean
space. Then, for the r slice sphere, we have

ui,j + uj,i = 2φEh
E
ij + qij ,

which means that, if the given surface M is a slice sphere, then the
system (5.1) can be viewed as a linearized isometric embedding system
in the Euclidean space. Thus, we rewrite the above system in a polar
coordinate.

Let (u1, u2, · · · , un−1) be a spherical coordinate and r be the radius.
Then, we can present the radius r slice sphere in the warped product
space by the map

~r
(
u1, · · · , un−1

)
= r

(
cosu1 cosu2 · · · cosun−1, cosu1 cosu2 · · · cosun−2 sinun−1, · · · ,

sinu1
)

=
(
r1, r2, · · · , rn

)
,

where r is a positive constant, and rα is the scalar component of the
position vector ~r with respect to ∂

∂zα . By (5.1), we have

∂

∂ui
∗ ∂τ
∂uj

+
∂

∂uj
∗ ∂τ
∂ui

= qij .(5.3)

We define a symmetric (0, 2) tensor for two given vector fields ~r, ~y,

qij(~r, ~y)(5.4)

= −σαβ(~r)yαi y
β
j − Fαβγλ(~r, ~y)rαi r

β
j y

γyλ

−Gαβγ(~r, ~y)yγ
(
rαi y

β
j + yαi r

β
j + yαi y

β
j

)
,
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where the notations σαβ, rα, yγ , F,G have been defined in section 4.

For convenience, we denote rαi = ∂rα

∂ui
, yγj = ∂yγ

∂uj
. Let {z1, · · · , zn} be

the standard coordinate of the underlying Euclidean space Rn. Thus,
we have the following result for the system (5.3),

Lemma 17. Suppose θ is a smooth function of one variable. Let’s
define two vector fields

~y = θ
(
sinu1

) ∂

∂zn
and ~r = r

∂

∂r
(5.5)

on the radius r slice sphere for a given positive constant r. Thus, the
solution to the system (5.3) with qij given by (5.4) and ~r, ~y defined by
(5.5) can be chosen by

τ = θ̃
(
sinu1

) ∂

∂zn
,(5.6)

where θ̃ is another smooth function of one variable depending on θ.

Proof. We calculate qij in the Euclidean coordinate {z1, · · · , zn}. The
metric (1.3) can be rewritten as

ds2 =
1

f2
dr2 + r2dSn−1(5.7)

=

(
1

f2
− 1

)
dr2 + dr2 + r2dSn−1

= ψ(r)zαzβdzαdzβ + δαβdz
αdzβ,

where δαβ is Kronecker’s symbol, and we let

ψ(r) =
1

r2

(
1

f2(r)
− 1

)
, and r2 =

∑
α

(zα)2 .(5.8)

We divide q into three terms

q = −I − II − III.
In the following, we calculate qij term by term. We first note that
yn = θ, and yi = 0 if i < n. For the first term, we have

Iij = σnn(~r)θiθj ,

where θi indicates the derivative of θ with respect to ∂
∂ui

. As θ =

θ(sinu1), except i = j = 1, we have Iij = 0. For I11, we have

I11 =
(
ψ(r)(rn)2 + 1

)
θ2

1

=
(
r2ψ(r) sin2 u1 + 1

)
(θ′)2 cos2 u1,

where θ′ indicates the first order derivative of θ. The second term is

IIij =

∫ 1

0
(1− t)∂nnσαβ(~r + t~y)rαi r

β
j θ

2dt,
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where rαi indicates the derivative of rα with respect to ∂
∂ui

. Let r̃ =
|~r + t~y|, then we have

∂nσαβ(~r + t~y) =
ψ′(r̃)

r̃
(rn + tyn) (rα + tyα)

(
rβ + tyβ

)
(5.9)

+ ψ(r̃)
(
δαn

(
rβ + tyβ

)
+ δβn

(
rα + tyβ

))
,

where ψ′ indicates the derivative of ψ with respect to the variable r.
We also have

∂nnσαβ(~r + t~y)(5.10)

=

[
ψ′(r̃)

r̃

]′
(rn + tyn)2 (rα + tyα)

(
rβ + tyβ

)
+
ψ′(r̃)

r̃
(rα + tyα)

(
rβ + tyβ

)
+2

ψ′(r̃)

r̃
(rn + tyn)

(
δαn

(
rβ + tyβ

)
+ δβn (rα + tyα)

)
+2ψ(r̃)δαnδβn.

Obviously,

r̃2 = r2 + t2
(
θ
(
sinu1

))2
+ 2tr sinu1θ

(
sinu1

)
,

depending only on sinu1 and t. As
∑

α(rα)2 = r2, where r is constant,
for any i = 1, · · · , n− 1, we have∑

α

rαrαi = 0.

Thus, we have

IIij =

∫ 1

0
(1− t)θ2

{[
ψ′(r̃)

r̃

]′
(rn + tyn)2 +

ψ′(r̃)

r̃

}
t2(yn)2rni r

n
j dt

+4

∫ 1

0
(1− t)θ2ψ

′(r̃)

r̃
(rn + tyn)t~ynrni r

n
j dt

+2

∫ 1

0
(1− t)θ2ψ(r̃)rni r

n
j dt.

Therefore, II is zero except i = j = 1 because rn = r sinu1. For II11,
we have

II11

=

∫ 1

0
(1− t)t2θ4

{[
ψ′(r̃)

r̃

]′ (
r sinu1 + tθ

)2
+
ψ′(r̃)

r̃

}
r2 cos2 u1dt

+4

∫ 1

0
(1− t)tθ3ψ

′(r̃)

r̃
(r sinu1 + tθ)r2 cos2 u1dt

+2

∫ 1

0
(1− t)θ2ψ(r̃)r2 cos2 u1dt.
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For III, by (5.9), we have

IIIij

(5.11)

=

∫ 1

0
θ∂nσαβ(~r + t~y)

(
rαi y

β
j + yαi r

β
j + yαi y

β
j

)
dt

=

∫ 1

0
θ
ψ′(r̃)

r̃
(rn + tθ)

[
tyn(rni y

n
j + rnj y

n
i )(rn + tyn)

+ (rn + tyn)2yni y
n
j

]
dt

+

∫ 1

0
θψ(r̃)

[
(rni y

n
j + znj y

n
i )(zn + tyn + tyn) + 2yni y

n
j (rn + tyn)

]
dt.

Therefore, except i = j = 1, III is zero. For III11, we have

III11(5.12)

=

∫ 1

0
θ
ψ′(r̃)

r̃
(r sinu1 + tθ)2

[
2trθθ′ cos2 u1

+
(
r sinu1 + tθ

)
(θ′)2 cos2 u1

]
dt

+

∫ 1

0
θψ(r̃)

[
2rθ′ cos2 u1

(
r sinu1 + 2tθ

)
+2(θ′)2 cos2 u1

(
r sinu1 + tθ

) ]
dt.

If we let

W
(
r, sinu1, θ

)
=

(
r2ψ(r) sin2 u1 + 1

)
(θ′)2

+

∫ 1

0
(1− t)t2θ4

{[
ψ′(r̃)

r̃

]′ (
r sinu1 + tθ

)2
+
ψ′(r̃)

r̃

}
r2dt

+4

∫ 1

0
(1− t)tθ3ψ

′(r̃)

r̃

(
r sinu1 + tθ

)
r2dt+ 2

∫ 1

0
(1− t)θ2ψ(r̃)r2dt.

+

∫ 1

0
θ
ψ′(r̃)

r̃

(
r sinu1 + tθ

)2 [
2trθθ′ +

(
r sinu1 + tθ

)
(θ′)2

]
dt

+

∫ 1

0
θψ(r̃)

[
2rθ′

(
r sinu1 + 2tθ

)
+ 2(θ′)2

(
r sinu1 + tθ

)]
dt,

then we have

qij =

{
−W

(
r, sinu1, θ

)
cos2 u1, if i = j = 1

0, otherwise
.(5.13)

Inserting (5.6) into the system (5.3), we have

2r cosu1 dθ̃

du1
= −W cos2 u1,
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more explicitly,

2rdθ̃ = −Wd sinu1.

Integrating the above ODE, we find

θ̃(t) = − 1

2r

∫ t

0
W (r, s, θ(s))ds,(5.14)

which implies that θ̃
(
sinu1

)
is required. q.e.d.

In the following, we apply Banach contraction mapping theorem to ob-
tain the solution of (5.3). For any small positive constant ε ≤ ε0, we
define a map

T : Ck([−1, 1]) → Ck([−1, 1])(5.15)

θ 7→ − 1

2rε2

∫ t

0
W
(
r, s, ε+ ε2θ(s)

)
ds,

which has created a well defined map. We denote

m(s) = 2

∫ 1

0
(1− t)ψ(r̃(s, t))r2dt, and C0 = ‖m‖Ck([−1,1]),

where r̃ = |~r + t~y|. If ‖θ‖Ck([−1,1]) ≤ 2C0, we estimate Tθ,

‖Tθ‖Ck([−1,1]) ≤ C

∥∥∥∥∥W
(
r, s, ε+ ε2θ(s)

)
ε2

∥∥∥∥∥
Ck−1([−1,1])

≤ 2C0,(5.16)

for any sufficiently small constant ε ≤ ε0. It remains to prove that T
is a contraction map. For θ1, θ2 satisfying ‖θ1‖Ck([−1,1]), ‖θ2‖Ck([−1,1]) ≤
2C0, we have

‖Tθ1 − Tθ2‖Ck([−1,1])(5.17)

≤ C

ε2
∥∥W (

r, s, ε+ ε2θ1(s)
)
−W

(
r, s, ε+ ε2θ2(s)

)∥∥
Ck−1([−1,1])

≤ C(C0)ε‖θ1 − θ2‖Ck([−1,1]).

Once we choose a sufficiently small positive constant ε0, the map T is
a contraction map for any ε ≤ ε0. Thus, T has a fixed point, which is
denoted by θ∗(s). A Ck hypersurface Y ε is defined by

Y ε = ~r +
(
ε+ ε2θ∗

(
sinu1

)) ∂

∂zn
and ~y =

(
ε+ ε2θ∗

(
sinu1

)) ∂

∂zn
,

(5.18)

for ε ≤ ε0. By Lemma 17, it is obvious that

∂

∂ui
∗ ∂~y
∂uj

+
∂

∂uj
∗ ∂~y
∂ui

= qij(~r, ~y).

We conclude, as we have shown in section 4, Y ε is isometric to the r
slice sphere.
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Remark 18. If M is a 2-dimensional strictly convex surface, then
the system (5.1) always is solvable in view of the argument in section
3. However, if M is a high dimensional hypersurface, the solvability of
the system (5.1) is an open question in general.

Now, we can prove Theorem 3, i.e., the non-rigidity of slice spheres.

Proof of Theorem 3. In the preceding calculation, we have proved that
every Ck hypersurface Y ε defined by (5.18) is isometric to the r slice
sphere. Furthermore, we can show that it is smooth. Using the spherical
coordinate {u1, · · · , un−1} of the sphere, by (2.6), the Gauss equations
says that

σ2(hij) =
(n− 1)(n− 2)

2rn−1
− R̄

2
+ R̄ic(ν, ν),(5.19)

where hij is the second fundamental form of Y ε, R̄ and R̄ic are the
scalar and Ricci curvature of the ambient space N , and ν is the unit
exterior normal vector field of Y ε. As in section 2, using the squared
distance function ρ, the second fundamental form can be rewritten as
follows:

hij =
1

fϕ

(
−ρi,j +

fρ
f
ρiρj + f2gij

)
,(5.20)

where ϕ is the support function and 2ρ = r2. We can assume that the
hypersurface is C3 at least. In view of section 2, the right hand side of
(5.19) can also be expressed by ρ. Combining (5.19) with (5.20), and
using the standard regularity theory of linear elliptic partial differential
equations, we have the smoothness of ρ, which implies the smoothness
of hij . By the Gauss formula, we have

Y ε
i,j = ΓkijY

ε
k + hijν,

thus, we obtain the smoothness of Y ε, where the comma indicates the
covariant derivative using D and Γkij is the Christoffel symbol with re-
spect to the connection ∇.

Now we can calculate the second fundamental form of Y ε to compare
with the slice sphere’s. Note that

∂

∂zn
= sinu1 ∂

∂r
+

cosu1

r

∂

∂u1
, ~r = r

∂

∂r
.

Thus, the squared distance function ρ(Y ε) of Y ε is a function of the
variable ε. If ε = 0, then Y 0 is exactly the r slice sphere. The Taylor
expansion of ρ(Y ε) in the ε neighborhood of the r slice sphere is

2ρ(Y ε) = r2 + 2rε sinu1 +O
(
ε2
)
,

which implies

|Y ε| =
√

2ρ(Y ε) =
√
r2 + 2rε sinu1 +O (ε2) = r + ε sinu1 +O

(
ε2
)
.
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As the derivatives of h∗ are independent of ε, we can require ε to be
sufficiently small such that the first order term of ε is dominant. As we
know, the second order covariant derivative of ρ is defined by

ρi,j =
∂2

∂ui∂uj
ρ−

(
∇ ∂

∂ui

∂

∂uj

)
ρ.

Thus, we have

ρ1,1 = −rε sinu1 +O
(
ε2
)

; ρi,j = O
(
ε2
)

for i 6= j;(5.21)

ρi,i = −rε sinu1Πi−1
j=1 cos2 uj +O

(
ε2
)

for i 6= 1.

A straightforward computation shows

ρiρj = O
(
ε2
)

; |∇ρ|2 = O
(
ε2
)

;

ϕ =

√
2ρ− |∇ρ|2

f2 (|Y ε|)
= r + ε sinu1 +O

(
ε2
)
.

Using Taylor expansion, we have

f(|Y ε|) = f(r) + f ′(r)ε sinu1 +O
(
ε2
)
,

f2(|Y ε|) = f2(r) + 2f(r)f ′(r)ε sinu1 +O
(
ε2
)
,

uf(|Y ε|) = rf(r) + (rf ′(r) + f(r))ε sinu1 +O
(
ε2
)
.

For i 6= j, we have hij = O
(
ε2
)
. Thus, the diagonal terms are

hii = giihii =
f2(r) +

(
2f(r)f ′(r) + 1

r

)
ε sinu1 +O

(
ε2
)

rf(r) + (rf ′(r) + f(r))ε sinu1 +O (ε2)

=
f(r)

r
+

(
f(r)f ′(r)

r
+

1− f2(r)

r2

)
ε sinu1

f(r)
+O

(
ε2
)
,

where the index i does not take summation here. Thus, hii is the i-th
diagonal term of the matrix g−1h, which means it is the i-th principal
curvature of Y ε. Thus, if the positive constant ε is sufficiently small,
then each principal curvature of Y ε is not the same as the slice sphere’s.
Thus, we present our counterexamples. If every sphere is rigid, then the
coefficient of the first order term vanishes for every r in the expression
of hii. Thus, the warped function should satisfy

f(r)f ′(r)

r
+

1− f2(r)

r2
= 0,(5.22)

for any r. It is well known that the solutions to the above equation are
only the warping functions of space forms. We complete our proof.
q.e.d.

An immediate corollary of the above theorem is that A. Ros’s type
theorems [42] are not always true in general warped product spaces,
namely,
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Theorem 19. Constant scalar curvature hypersurfaces are not al-
ways round spheres in general warped product spaces. More precisely,
if (5.22) does not hold for some r, then there exists a convex hypersur-
face which is a perturbation of the radius r slice sphere with the same
constant scalar curvatures but different second fundamental forms.

Proof. The examples in Theorem 3 are isometric to slice spheres,
hence, their scalar curvatures are the same. q.e.d.

Remark 20. Using Brendle’s theorem [5], in some cases, we have
another proof that the second fundamental form of Y ε is not the same
as the slice sphere’s. In fact, if the second fundamental form of Y ε is
the same as a slice sphere’s, then its mean curvature should be con-
stant, which implies that it must be a slice sphere [5]. However, the
construction of Y ε shows that it should not be a slice sphere, which is
a contradiction.

The uniqueness of the solution to the Weyl problem in space forms is
true, [18, 10]. If the dimension of these space forms are large that
3, as we have more Gauss equations for a strictly convex embedded
hypersurface M , these algebraic equations will determine the principal
curvature of M . However, in general warped product spaces, Theorem 3
says that these more algebraic relations are not useful for the uniqueness
of the solution to the isometric embedding problem.

The lack of rigidity of any strictly convex surface also appears in
any 3-dimensional warped product space. An immediate corollary of
Corollary 12 is the following non-infinitesimal rigidity of any strictly
convex surface:

Corollary 21. If the sectional curvature of a 3-dimensional warped
product space is not a constant, namely

f(r)f ′(r)

r
+

1− f2(r)

r2
6= 0,

for some r, then any embedded strictly convex surface is not infinitesi-
mally rigid.

Proof. We first review some known facts about the isometry group of
an n-dimensional Riemannian manifold N. The isometry group of N is
a Lie group and its dimension is at most n(n + 1)/2. If the dimension
achieves n(n+ 1)/2, then the space should be a constant sectional cur-
vature space. For further details, refer to [26] and [12]. In the present
case, the 3-dimensional warped space is not a space form, the dimension
of the isometry group is less than 6 which implies that the dimension
of its Lie algebra is also less than 6. The argument in section 3 shows
that for any element A in the Lie algebra, we can define a vector field τ
using A satisfying (3.28). The details are the following: Suppose φt is a
family of isometries generated by A and ~r is the position vector field of
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an embedded surface M . Every φtM is isometric to M . Thus, we let τ
be the variation of φt~r, namely,

τ =
d (φt~r)

dt

∣∣∣∣
t=0

.

On the other hand, Corollary 12 states that the kernel of (3.28) is always
6-dimensional. Thus, there should exist a solution to (3.28) that does
not come from the Lie algebra of the isometry group of N . Therefore,
the embedded strictly convex surface is no longer infinitesimally rigid.
q.e.d.

In view of the proof of openness, the previous corollary implies the
non-rigidity of any strictly convex surface in a general 3-dimensional
warped product space.

We point out that the meaning of the rigidity in the following theorem
is different from the rigidity used in Theorem 3. In fact, we have two
definitions of rigidity. One is that if two hypersurfaces have the same
first fundamental forms, then they have the same second fundamental
forms. The other is that if two hypersurfaces have the same first funda-
mental forms, then they can be isometrically translated to each other
by an isometry of the ambient space. The second definition of rigidity
is stronger than the first one. Let us see some examples. In (1.3), we
choose the following warping function in R3, then

f(r) =

{
1, if 0 ≤ r ≤ r0

g(r), if r > r0
,(5.23)

where r0 is a given positive number and g(r) is an arbitrary positive
function. If there is a convex surface M contained in the ball Br0 with
radius r0, then the translation of M in the ball does not change the
shape of the surface. However, if the function g is not equal to 1, the
warped product space defined by (5.23) is not a space form. Hence, M
is rigid according to the first definition but not rigid according to the
second one using the following theorem:

Theorem 22. In any 3-dimensional warped product space N that is
not a space form, any embedded strictly convex surface M is not rigid.

Proof. Suppose ~r is the position vector of M . By the previous corol-
lary, there exists a vector field T , which is the solution of (3.28), but
not from the Lie algebra of the isometry group, i.e., there is no element
A in the Lie algebra such that T = A~r. In the following, we generate a
1-parameter family of strictly convex surfaces Mε, which is isometric to
M using the vector field T . For any positive constant ε, we define the
position vector field of Mε as

~rε = ~r + εT + ε2Tε,
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where Tε is a vector field to be determined later. As required, ~rε satisfies
the isometric embedding system

d~rε · d~rε = d~r · d~r.

According to a similar procedure to obtain (4.4) in section 4, the
above system can be rewritten as

d~r ·D
(
εT + ε2Tε

)
= q

(
εT + ε2Tε,∇

(
εT + ε2Tε

))
,

which implies that

d~r ·DTε =
1

ε2
q
(
εT + ε2Tε,∇

(
εT + ε2Tε

))
.

We will reuse the argument in the proof of openness to find a solution
Tε that satisfies the above nonlinear system. Let TN again denote the
tangent vector bundle of the ambient space N . For any given vector
field Tε of the pull-back bundle ~r∗TN , we can define a map F whose
image is a vector field T ∗ε of ~r∗TN , namely,

F : C2,α
(
S2, ~r∗TN

)
→ C2,α

(
S2, ~r∗TN

)
,

T̃ε 7→ T ∗ε ,

for 0 < α < 1, where T ∗ε solves the following system:

d~r ·DT ∗ε =
1

ε2
q
(
εT + ε2T̃ε,∇

(
εT + ε2T̃ε

))
,

for the given T̃ε, and T ∗ε is perpendicular to its kernel, namely, the
solutions to the system

d~r ·DT = 0.

Such T ∗ε exists uniquely as seen in section 4, so the map F is well defined.
If we choose a sufficiently small ε, then the map F is a contraction
map. By contraction mapping theorem, there exists a fixed point for
the map F . We obtain a family of strictly convex surfaces Mε if Tε is
exactly the fixed point. The detail is similar to what is presented in
section 4.

We claim that there is some ε0 such that there is no isometry of N
by which we can translate Mε0 to M . If the claim is not true, then we
can find a 1-parameter family of isometries gε of the ambient space N
such that

~rε = gε~r.

Now, we differentiate ~rε with respect to ε, and then letting ε = 0,
we find that the vector field T is an infinitesimal vector field coming
from an isometry of N , i.e., T comes from the Lie algebra of isome-
try, which contradicts our assumption. Thus, Mε0 is isometric to the
surface M but we cannot translate Mε to M by any isometry of N .
q.e.d.
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6. A rigidity theorem for spheres

In the previous section, some counterexamples have been constructed
to answer the rigidity problem for isometric embedding system nega-
tively. In this section, we try to recover the rigidity of round spheres
using condition (1.5), which restricts “translations” and exhibits the
rotations. Thus, it may be compatible with the isometry group of the
ambient space.

Suppose that Σ is an n − 1 dimensional topological sphere and g is
an Einstein metric with positive constant scalar curvature on Σ. The
Einstein condition says

Rij = (n− 2)gij = (n− 2)δij .(6.1)

We need a Poincáre-type inequality. By Linchnerowicz’s theorem
[36], for Einstein metric defined by (6.1), the first eigenvalue λ1 of the
Laplacian with respect to the metric g defined on manifold Σ is not less
than n − 1. Thus, for any smooth function χ defined on Σ satisfying∫

Σ χdVg = 0, where dVg is the volume form of Σ, we have the following
Poincáre type inequality:

(n− 1)

∫
Σ
χ2dVg ≤ λ1

∫
Σ
χ2dVg ≤

∫
Σ
|∇χ|2gdVg.

Here, | · |g is the norm with respect to the metric g on Σ.
Suppose that (Σ, g) can be isometrically embedded into an n-dimen-

sional warped product space N . The embedded hypersurface is denoted
by M . As the underlying manifold of N is the n-dimensional Euclidean
space Rn, let {z1, · · · , zn} be the standard coordinate of Rn. We use ∗
to denote the standard inner product of the underlying Euclidean space.
A vector field E is called a constant vector field, if every E ∗ ∂

∂zi
is a

constant for i = 1, · · · , n. Thus, by the condition (1.5), we have∫
M
~r ∗ EdVg = 0,

where ~r is the position vector field of the hypesurfaceM . Again, suppose
{e1, e2, · · · , en−1} is an orthonormal frame on M . If the metric on M is
of Einstein, by the above Poincáre-type inequality, we have∫

Σ
|~r∗E|2dVg ≤

1

n− 1

∫
Σ

∑
i

|ei(~r∗E)|2dVg =
1

n− 1

∫
Σ

∑
i

|ei ∗E|2dVg.

Denote r = |~r|. Thus, we have∫
Σ
r2dVg =

∫
Σ

∑
j

∣∣∣∣~r ∗ ∂

∂zj

∣∣∣∣2 dVg ≤ 1

n− 1

∫
Σ

∑
i

|ei|2EdVg,(6.2)
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where | · |E represents the Euclidean norm of some vector field. Now,
we calculate the Euclidean norm of ei using the polar coordinate. Let

Ẽ1 =
E1

f
, Ẽ2 = E2, · · · Ẽn = En,

be another orthonormal frame with respect to the Euclidean metric,
where Ei is defined in section 2. Suppose the scalar components of the
vector ei are aαi and ãαi with respect to the two different frames

ei =
∑
α

aαi Eα =
∑
α

ãαi Ẽα,

then we have

ã1
i = fa1

i , ã
α
i = aαi , for α = 2, · · · , n.

Since every ei is unit in N , we have
∑

α (aαi )2 = 1. Thus, we obtain

|ei|2E =
∑
α

(ãαi )2 =
(
ã1
i

)2
+ 1−

(
a1
i

)2
= 1 +

(
f2 − 1

) (
a1
i

)2
.

We also have

a1
i = ei · E1 =

ei ·X
r

, and ρi = fei ·X = rfa1
i .

Thus, we obtain

|ei|2E = 1 +
f2 − 1

2ρf2
ρ2
i .

Therefore, (6.2) becomes∫
Σ

2ρdVg ≤
∫

Σ
dVg +

∫
Σ

f2 − 1

2(n− 1)ρf2
|∇ρ|2dVg.(6.3)

In the following, we try to find another integral equality using the Dar-
boux equation. For the orthonormal frame {e1, · · · , en−1}, by (2.6), we
have

σ2(h) =
(n− 1)(n− 2)

2
+
∑
i<j

R̄ijij ,

where the last term is the curvature of the ambient space defined by
(2.7). Recall that ϕ = X · ν is the support function of M , and then we
have

ϕ2 = 2ρ− |∇ρ|
2

f2
, and (ν1)2 = (ν · E1)2 =

ϕ2

r2
= 1− |∇ρ|

2

2ρf2
.

By (2.7), we have

1

n− 2
σ2(h) =

n− 1

2
+
n− 1

2

f2 − 1

2ρ
+

fρ
2ρf
|∇ρ|2 +

1− f2

4ρ2f2
|∇ρ|2.(6.4)

Denote

wij = −ρi,j +
fρ
f
ρiρj + f2δij ,(6.5)
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where the comma indicates covariant derivative with respect to ∇. By
(2.11), we have wij = fϕhij . Then, by (6.4), we have

1

n− 2

σ2(w)

f2
= ϕ2

n− 1

2
+

1

n− 2

∑
i<j

R̄ijij


(6.6)

= (n− 1)ρ+
n− 1

2
(f2 − 1) +

fρ
f
|∇ρ|2 +

1− f2

2ρf2
|∇ρ|2

−

n− 1

2
+

1

n− 2

∑
i<j

R̄ijij

 |∇ρ|2
f2

.

We calculate the left hand side. Obviously, we have

σ2(w) =
1

2
σij2

(
−ρi,j +

fρ
f
ρiρj + f2δij

)
=

1

2
σij2 (−ρi,j) +

fρ
2f
σij2 ρiρj

+
(n− 2)f2

2

(
−∆ρ+

fρ
f
|∇ρ|2 + (n− 1)f2

)
.

Thus, we obtain

∫
Σ

σ2(w)

f2
dVg

(6.7)

=

∫
Σ

(
σij2
2f2

)
,j

ρidVg +

∫
Σ

fρ
2f3

σij2 ρiρjdVg +
n− 2

2

∫
Σ

fρ
f
|∇ρ|2dVg

+
(n− 1)(n− 2)

2

∫
Σ
f2dVg

=

∫
Σ

1

2f2

(
σij2

)
,j
ρidVg −

∫
Σ

fρ
2f3

σij2 ρiρjdVg +
n− 2

2

∫
Σ

fρ
f
|∇ρ|2dVg

+
(n− 1)(n− 2)

2

∫
Σ
f2dVg.

We detail the first term of the above equality. We can rotate our frame
to diagonalize the matrix wij , and then we have(

σij2

)
,j
ρi = σij,pq2 wpq,j =

∑
j 6=i

ρi(wjji − wijj).(6.8)

It is obvious that

wbja − wbaj = ρbaj − ρbja +
fρ
f

(ρbaρj − ρbjρa) + 2ffρ(ρaδbj − ρjδab).

(6.9)
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By applying Ricci identities, we have

ρbaj − ρbja =
∑
c

ρcRajbc.(6.10)

By using (6.5), the definition of wij , we obtain

fρ
f

(ρbaρj − ρbjρa)

(6.11)

=
fρ
f

[
ρj

(
−wba +

fρ
f
ρbρa + f2δba

)
− ρa

(
−wbj +

fρ
f
ρbρj + f2δbj

)]
.

Combining (6.9) and (6.10) with (6.11), we obtain

wbja − wbaj =
∑
c

ρcRajbc +
fρ
f

(ρawbj − ρjwba) + ffρ(ρaδbj − ρjδab).

(6.12)

Thus, combining (6.8) with the Einstein condition, we have(
σij2

)
,j
ρi =

∑
i,c

∑
j 6=i

ρiρcRijjc +
fρ
f
σij2 ρiρj + (n− 2)ffρ|∇ρ|2

= (n− 2)|∇ρ|2 +
fρ
f
σij2 ρiρj + (n− 2)ffρ|∇ρ|2.

Thus, combining the above equality with (6.7), we have∫
Σ

σ2(w)

f2
dVg

=
n− 2

2

∫
Σ

|∇ρ|2

f2
dVg + (n− 2)

∫
Σ

fρ
f
|∇ρ|2dVg

+
(n− 1)(n− 2)

2

∫
Σ
f2dVg.

Using (6.6) and the above equality, we have

∫
Σ

2ρdVg =

∫
Σ
dVg +

∫
Σ

|∇ρ|2

(n− 1)f2
dVg +

∫
Σ

f2 − 1

(n− 1)ρf2
|∇ρ|2dVg

(6.13)

+

∫
Σ

1 +
2

(n− 1)(n− 2)

∑
i<j

R̄ijij

 |∇ρ|2
f2

dVg.

Combining (6.3) with (6.13), we obtain

0 ≥
∫

Σ

|∇ρ|2

(n− 1)f2
dVg +

∫
Σ

f2 − 1

2(n− 1)ρf2
|∇ρ|2dVg(6.14)
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+

∫
Σ

1 +
2

(n− 1)(n− 2)

∑
i<j

R̄ijij

 |∇ρ|2
f2

dVg.

Now, we will be able to prove Theorem 4.

Proof of Theorem 4. We define a function depending on the variable ρ

φ(ρ) = 2ρ+ f2 − 1.

As the function ρ is defined on M , ρ should range between its minimum
and maximum values. Denote the two values by ρmin, ρmax, then ρmin ≤
ρ ≤ ρmax. Obviously, we have

φρ = 2(1 + ffρ),

where φρ indicates the derivative of the function φ with respect to ρ.
By (6.4), we have

1

n− 2
σ2(h) =

n− 1

2

φ(ρ)

2ρ
+
φρ(ρ)

4ρf2
|∇ρ|2 − φ(ρ)

4ρ2f2
|∇ρ|2.(6.15)

By the assumption of the convexity, the right hand side of the above
equality is always positive. Therefore, at the minimum point of ρ on
M , we have ∇ρ = 0, which implies φ(ρmin) > 0. We claim that φ is
always positive between ρmin and ρmax. If this is not true, let ρ0 be the
first zero of φ from ρmin, and then, at ρ0, φρ ≤ 0. By (6.15), we obtain
σ2(h) ≤ 0 at ρ = ρ0, which contradicts σ2(h) > 0. Thus, we always
have φ > 0. By the positivity of φ(ρ), the assumption of the convexity,
and (6.14), we obtain ∇ρ = 0. Therefore, ρ is a constant. Using (6.13),
we have 2ρ = 1, which implies M is a unit slice sphere. We complete
our proof. q.e.d.

In any 3-dimensional warped product space, Theorem 4 implies the
following Corollary on the surfaces with constant Gauss curvature.

Corollary 23. In any 3-dimensional warped product space, the only
possible embedded strictly convex surface with constant scalar curvature
is the slice sphere provided that the embedded surface satisfies condition
(1.5).

Proof. As the constant scalar curvature condition implies that the
intrinsic metric of S2 is the standard metric of the sphere, applying
Theorem 4 immediately yields the corollary. q.e.d.

If the warping function f = 1, namely, that the ambient space is
the Euclidean space, the above corollary is the classical rigidity of 2-
dimensional strictly convex embedded surfaces.
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7. Infinitesimal rigidity in space forms

In this section, we reprove the infinitesimal rigidity of strictly convex
embedded surfaces in R3 using the maximum principle. Then, using
Beltrami map, we can obtain the infinitesimal rigidity of strictly convex
embedded surfaces in space form.

In the first two proofs on the infinitesimal rigidity in the Euclidean
space, for simplification, we use the notation × to present the cross
product induced by the Euclidean metric.

As in section 3, the infinitesimal rigidity problem of an isometric
embedding system is to consider the linear system

d~r · dτ = 0(7.1)

for any given strictly convex embedded surface M , where ~r is its position
vector field. Obviously, there is vector field A satisfying

dτ = A× d~r.(7.2)

A is called the rotation vector. Differentiating the above equation (7.2),
we have

d2τ = dA× d~r = 0,

which implies that dA is parallel to the tangent space of M . Suppose
{x1, x2} is a local coordinate of M . Therefore, we can assume

d~r = ~ridx
i, dA = Aidx

i and Ai = wki ~rk,

where ~ri, Ai are the derivatives of ~r, A with respect to ∂
∂xi

and wki is the
corresponding scalar components. By dA× d~r = 0, we have

wki ~rk × ~rjdxi ∧ dxj =
(
wk1~rk × ~r2 − wk2~rk × ~r1

)
dx1 ∧ dx2 = 0,

which implies

w1
1 + w2

2 = 0.(7.3)

Now, we use a comma to indicate the covariant derivative. Using the
Gauss formula, we have

Ai,j = wki,j~rk + wki ~rk,j = wki,j~rk + wki hkjν,(7.4)

where hij and ν are the second fundamental form and the unit exte-
rior normal vector field of M . As Ai,j = Aj,i, by (7.4), we have the
compatible equations

wki,j = wkj,i and wki hkj = wkj hki.

The second equation can be rewritten in detail as

−w1
1h12 − w2

1h22 + w1
2h11 + w2

2h21 = 0.

Multiplied by det(hij), it becomes

w1
1h

21 − w2
1h

11 + w1
2h

22 − w2
2h

12 = 0.(7.5)
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We introduce a new tensor a = aijdx
idxj defined by

a11 =
√

det(g)w2
1, a12 =

√
det(g)w2

2,(7.6)

a21 = −
√

det(g)w1
1, a22 = −

√
det(g)w1

2.

Then, by (7.3) (aij) is a symmetric matrix, and the above equations can
be rewritten as {

hijaij = 0
aij,k = aik,j

,(7.7)

which is exactly (3.7) in fact. For further detail, see [34] and [21].
Differentiating the first equation of (7.7), we have

−hij,2aij =
√

det(g)hijw1
i,j , h

ij
,1aij =

√
det(g)hijw2

i,j .

Therefore, we obtain

hijAi,j = hijwki,j~rk + wii~ν = − 1√
det(g)

hij,2aij~r1 +
1√

det(g)
hij,1aij~r2.

(7.8)

By Lemma 4 in [19], we have

a2
11 + a2

12 + a2
21 + a2

22 ≤ −C det (aij) ,

which means that(
w1

1

)2
+
(
w2

1

)2
+
(
w1

2

)2
+
(
w2

2

)2 ≤ −C det (wij) .

Thus, by Ai = wki ~rk, we conclude, in any non-degenerate point, namely,
detw 6= 0,

hijAi,j = −hij,2aij
C l1Al√

det(g) detw
+ hij,1aij

C l2Al√
det(g) detw

,

where Cij is the cofactor of wji with respect to matrix
(
wji

)
.

Suppose the standard coordinate of R3 is {z1, z2, z3}. A constant
vector field E means that each E · ∂

∂zi
is a constant for i = 1, 2, 3.

Thus, for any constant vector E, taking the inner product on both
sides of the previous equation with E, we obtain an elliptic partial
differential equation of the function A ·E with bounded coefficients for
non-degenerate points. For degenerate points detw = 0, using (7.8), we
have

hij (A · E)i,j = 0,

which is an elliptic partial differential equation with bounded coeffi-
cients. Then, an application of the strong maximum principle yields
that A · E is a constant that implies A is a constant vector field.

Thus, we have the following infinitesimal rigidity of any strictly con-
vex embedded surface in the Euclidean space.
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Proposition 24. In the 3-dimensional Euclidean space, all solutions
of (7.1) are

A× ~r +B,

where A,B are two constant vector fields and ~r is the position vector
field of a given strictly convex embedded surface.

Remark 25. We can provide another proof of the above proposition,
though which we establish an elliptic equation for the vector field

B = τ −A× ~r,

where τ and A are defined by (7.1) and (7.2). Then, again using the
strong maximum principle, we can obtain that B is a constant vector
field.

Proof. Obviously, by (7.2), we have

dB = −dA× ~r.(7.9)

Again, we suppose that {x1, x2} is a local coordinate of S2. We write

Bk = −Ak × ~r,Ak = wlk~rl,

where Bi, ~ri, Ai are the derivatives of B,~r, A with respect to ∂
∂xi

, and

wki is the corresponding scalar component. Then, we have

Bi = −Ai × ~r = −wki ~rk × ~r,(7.10)

Bi.j = −wki,j~rk × ~r − hkjwki ~n× ~r − wki ~rk × ~rj .

Multiplied by hij , where (hij) is the inverse matrix of (hij), the above
equation becomes

hijBi.j = −hijwki,j~rk × ~r − wkk~n× ~r − hijwki ~rk × ~rj
= −hijwki,j~rk × ~r,

where we have used (7.3) and (7.5) in the last equality. Using the

first equation of (7.10), we obtain an elliptic equation of ~B in any non
degenerate point,

hijBi,j = −hij,2aij
C l1Al√

det(g) detw
+ hij,1aij

C l2Bl√
det(g) detw

,

where Cij is the cofactor of wji with respect to matrix
(
wji

)
and aij is

defined by (7.6). The strong maximum principle implies that B is a
constant vector field. q.e.d.

Lin and Wang [28] discussed the infinitesimal rigidity of convex em-
bedded surfaces in the 3-dimensional hyperbolic space. Here, using the
Beltrami map, we turn the infinitesimal rigidity problem in space forms
into the one in the Euclidean space. The idea used here may appear in



THE WEYL PROBLEM IN WARPED PRODUCT SPACES 291

the literature, but we do not find an appropriate reference. For the sake
of completeness, we include the detailed argument.

The Anti-de Sitter space time of signature (3, 1) is a hyperboloid

−
(
y0
)2

+
(
y1
)2

+
(
y2
)2

+
(
y3
)2

= −1 in the Minkowski space R1,3,

where y0 is the time coordinate and {y1, y2, y3} is the space coordi-
nate. It is known that the hyperboloid with the induced metric of the
Minkowski space is isometric to the hyperbolic space. Thus, the infin-
itesimal rigidity problem in the hyperbolic space can be considered as
the same problem in the hyperboloid.

Suppose that M is a strictly convex embedded surface in the hyper-
boloid and g is the induced metric on M . Let · denote the Minkowski
inner product. For a 1-parameter family of surfaces Mt in the hyper-
boloid, let ~rt be Mt’s position vector field satisfying

~rt · ~rt = −1, and d~rt · d~rt = g,

where ~r0 = ~r. Set τ = ∂~rt
∂t

∣∣∣
t=0

, which is a variation of ~r. Differentiating

the above equations with respect to t and then letting t = 0, we have

τ · ~r = 0, and d~r · dτ = 0.

We can express τ, ~r with respect to the coordinate of the Minkowski
space

τ =

(
1

y0

∑
i

Aiyi, A1, A2, A3

)
, ~r =

(
y0, r̄

)
, and τ =

(
A ∗ r̄
y0

, A

)
,

where

r̄ =
(
y1, y2, y3

)
, A =

(
A1, A2, A3

)
,

and ∗ again denotes the standard inner product in the Euclidean space.
We have

d~r · dτ

=
(
dy0, dr̄

)
·
(
dA ∗ r̄ +A ∗ dr̄

y0
−A ∗ r̄ dy

0

(y0)2 , dA

)
=

1

(y0)2

((
y0
)2
dr̄ ∗ dA− y0dA ∗ r̄dy0 − y0A ∗ dr̄dy0 +A ∗ r̄

(
dy0
)2)

=
(
y0
)2 y0dr̄ − r̄dy0

(y0)2 ∗ y
0dA−Ady0

(y0)2

=
(
y0
)2
d
A

y0
∗ d r̄

y0
= 0,

which implies

d

(
r̄

y0

)
∗ d
(
A

y0

)
= 0.(7.11)
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The above equation indicates that the infinitesimal rigidity of the em-
bedded surface M in the hyperboloid can be considered as a correspond-
ing infinitesimal rigidity problem of the surface M̃ in the Euclidean
space, where M̃ is defined by the position vector field r̃ = r̄/y0. Thus,

we need to study the convexity of M̃ . We believe the following lemma
is well known, but we do not find an appropriate reference. Thus, we
provide a short proof here.

Lemma 26. The second fundamental form of the surface M̃ in R3

is conformal to the second fundamental form of the surface M in the
hyperboloid. The conformal function is always positive.

Proof. Let {x1, x2} be a local coordinate of M . The normal direction
of M in the hyperboloid is

1√
det(g)

∣∣∣∣∣∣∣∣
∂
∂y0

∂
∂y1

∂
∂y2

∂
∂y3

−
(
y0
)

1
r̄1

−
(
y0
)

2
r̄2

−y0 r̄

∣∣∣∣∣∣∣∣ ,
where

(
y0
)
k

= ∂y0

∂xk
, r̄k = ∂r̄

∂xk
for k = 1, 2 and g is the induced metric of

M in the hyperboloid. Thus, the second fundamental form of M in the
hyperboloid is

1√
det(g)

∣∣∣∣∣∣∣∣
−
(
y0
)
ij

r̄ij
−
(
y0
)

1
r̄1

−
(
y0
)

2
r̄2

−y0 r̄

∣∣∣∣∣∣∣∣ =
(−1)n+1y0√

det(g)

∣∣∣∣∣∣∣∣∣
r̄ij −

(y0)
ij

y0
r̄

r̄1 −
(y0)

1
y0

r̄

r̄2 −
(y0)

2
y0

r̄

∣∣∣∣∣∣∣∣∣ ,
where

(
y0
)
ij

= ∂2y0

∂xi∂xj
and r̄ij = ∂2r̄

∂xi∂xj
. On the other hand, the normal

vector field of the surface M̃ is

1√
det(g̃)

∣∣∣∣∣∣∣∣
∂
∂y1

∂
∂y2

∂
∂y3

r̄1
y0
− (y0)1

(y0)2
r̄

r̄2
y0
− (y0)2

(y0)2
r̄

∣∣∣∣∣∣∣∣ ,
where g̃ is the induced metric of M̃ in R3. The second derivative of r̃ is

r̃ij =
r̄ij
y0
−

(
y0
)
ij
r̄

(y0)2 −

(
y0
)
j
r̃i +

(
y0
)
i
r̃j

y0
.

Since the second fundamental form of M̃ is h̃ij = r̃ij ∗ ñ where ∗ is
the standard Euclidean metric, using the above three equalities, we
obtain that the two fundamental forms are conformal and the conformal

function is
(
y0
)4 √det(g̃)√

det(g)
, which is positive. q.e.d.

Now, we can prove Theorem 5.
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Proof of Theorem 5. To obtain the proof, we divided into three cases.
For the Euclidean space, Proposition 24 states that any solution τ to
(7.1) is generated by an element of the Lie algebra of the Lie group
O(3)×R3, which is the isometry group of the 3-dimensional Euclidean
space.

For the hyperbolic space, we use the notations in the previous para-
graphs. Lemma 26 and the argument before it show that we have two
constant vector fields Y,Z in R3, such that

A = Y ×E r̄ + y0Z,

where ×E is the cross product of the Euclidean space. Therefore, we
have

τ =
(
y0Z ∗ r̄, Y ×E r̄ + y0Z

)
.

For any point p =
(
y0, y1, y2, y3

)
∈ H3, the Beltrami map βp is defined

as follows:

βp : R3 → TpR3,1(7.12)

∂

∂yi
7→ yi

y0

∂

∂y0
+

∂

∂yi
.

If we let X = βp(r̄), Y0 = βp(Y ), Z0 = βp(Z), then it is easy to check
that

τ = y0Y0 ×X + y0Z0,

where × is the cross product of the hyperboloid. The above result was
first proved by Lin and Wang [28]. Evidently, τ is generated by an
element of the Lie algebra of the isometry group of the hyperboloid.
See [26] for further details.

For the spherical space, any strictly convex surface in a 3-dimensional
sphere can be included in a hemisphere by Bonnet-Myers’ theorem [33].
Now for a positive constant κ, we let the 3-dimensional sphere with
radius 1/κ be in R4 of which {y0, y1, y2, y3} is the standard Euclidean
coordinate. Without loss of generality, we assume that the surface lies
in the upper hemisphere, namely, y0 > 0. Using the Beltrami map,
we project the hemisphere to its equator hyperplane. An argument
similar to the proof in the hyperbolic space shows that solutions of the
infinitesimal problem are

τ = y0Y0 ×X + y0Z0,

where the meanings of ×, X, Y0, Z0 are similar to those in the hyperbolic

case except y0 replaced by

√
1− (y1)2 − (y2)2 − (y3)2. These solutions

are also generated by the Lie algebra of the Lie group O(4), which is the
isometry group of the 3-dimensional sphere. We complete the proof.
q.e.d.
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Remark 27. The previous argument can be generalized to hyper-
surfaces in high dimensional space forms. As we have more algebraic
relations in view of Gauss equations, the condition of the convexity in
Theorem 5 can be substituted by the condition that the rank of the sec-
ond fundamental form is equal to or greater than three as first proved
by Dajczer and Rodriguez [11]. Additional material on the infinitesimal
rigidity of embedded hypersurfaces can be found in [10].

At the end of this section, we emphasize another fact that may be
useful for the proof of openness in space forms.

Remark 28. In space forms, the linear system

d~r ·Dτ = q(7.13)

can be rewritten as an inhomogeneous system

d
r̄

y0
∗ d A

y0
=

q

(y0)2 ,(7.14)

where the meanings of these notations are the same as in previous para-
graphs. Nirenberg [34] proved (7.14) is always solvable in the Euclidean
space, which implies the solvability of (7.13) in space forms.

8. A Shi-Tam type inequality and an example

In this section, we try to prove a Shi-Tam type inequality in the
Schwarzschild manifold NS , where the warping function is defined by

f(r) =

√
1− m

r
.(8.1)

We assume that Ω is a compact connected 3-dimensional Riemannian
manifold bounded by the surface Σ and the scalar curvature of Ω is
nonnegative. We denote the mean curvature of Σ in Ω by H. Further-
more, Σ can be isometrically embedded into the Schwarzschild manifold
as a strictly convex surface M containing the black hole. We consider
a geodesic flow{

dΦ(t, ·)
dt

= νt , if t ∈ (0,+∞)

Φ(0, ·) = M
,(8.2)

where Φ(t, ·) is the position vector field and νt is the unit exterior normal
vector field of the surface Mt defined by Φ(t, ·). Thus, we have a foliation
of the space outside the M in NS . Note that M0 = M . The ambient
space metric can be rewritten as ds2 = dt2 + gt, where gt is the metric
on Mt. We try to find a conformal metric

ds̃2 = u2dt2 + gt

with the same scalar curvature as ds2, where u is an unknown function
to be determined in the following. We let Ht

0 and Ht
1 denote the mean
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curvature of the surface Mt in the ambient space with the metric ds2

and ds̃2. Thus, we have an evolution equation of the function u [44],Ht
0

∂u

∂t
= u2∆tu +

u− u3

2
Rt, if t ∈ (0,+∞)

u(0) = Ht
0

∣∣
t=0

/H
,(8.3)

where Rt is the scalar curvature of the surface Mt and ∆t is the Lapla-
cian operator on Mt.

The following explicit formula of sectional curvatures is useful in this
section:

Proposition 29. For any two vectors µ, ν in the warped product
space N =

(
R3, ds2

)
, the sectional curvature of N with respect to µ, ν is

R̄(µ, ν, µ, ν) =
m

2r3

[
|µ× ν|2 − 3 (µ× ν · E1)2

]
,(8.4)

where the cross product × is induced by ds2 and E1 is defined in sec-
tion 2.

Proof. We assume that

µ =
∑
α

µαEα, and ν =
∑
β

νβEβ,

where Eα is defined by (2.2) and µα, νβ are scalar components of µ, ν
with respect to Eα. Thus, by (2.3), we have

R̄(µ, ν, µ, ν) =
∑
α,β,γ,δ

µαµγνβνδR̄αβγδ

=
∑
α,β

(
(µα)2

(
νβ
)2
− µαµβνανβ

)
R̄αβαβ

=
∑
α<β

(
µανβ − µβνα

)2
R̄αβαβ .

Using (2.3), we have (8.4). q.e.d.

Using the above explicit formula, we can conclude that the geodesic
flow preserves convexity.

Lemma 30. If the metric on the strictly convex surface M is suf-
ficiently close to a canonical metric of the round sphere, then for any
t > 0, every leaf Mt is strictly convex as well.

Proof. We suppose that X is the conformal Killing vector in NS , and
ϕt = X ·νt is the support function of Mt. We can consider the parameter
r in the polar coordinate as a function depending on Mt and t. Thus,
we have

rt =
dr

dt
=
fϕt

r
.(8.5)
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As Φ(t, ·) is a geodesic flow, we have

D ∂
∂t
ν = 0, and

dϕt

dt
= D ∂

∂t
X · νt = f.(8.6)

Combining (8.6) with (8.5), we have

d
(
r2 −

(
ϕt
)2)

dt
= 0.

Solving the above equation, we have

ϕ =
√
r2 − C,

where C is a positive constant only depending on M = M0. On the
other hand, we obtain(

ϕt
)2

= 2ρ− |∇ρ|
2

f2
= 2ρ− |∇ρ|2

1−m/r
,

where ρ = r2/2, which implies C = |∇ρ|2
1−m/r . Note that, if M0 is the slice

sphere, we have C = 0. By continuity, we can require 3C < r2 at t = 0
because M0 is sufficiently close to the slice sphere. Thus, for any unit
tangential direction µt on Mt, by (8.4), we have

R̄
(
νt, µt, νt, µt

)
=

m

2r3

[∣∣νt × µt∣∣2 − 3
(
νt × µt · E1

)2]
(8.7)

≥ m

2r3

(
1− 3

C

r2

)
> 0,

where we have used the fact that νt and µt are unit vectors and per-
pendicular to each other.

By Riccati equation, any principal curvature λt of Mt satisfies

d

dt
λt = −

(
λt
)2

+ R̄
(
νt, µt, νt, µt

)
,(8.8)

where µt is the corresponding unit principal direction. By (8.7), we have
the convexity. q.e.d.

Now, we consider the following quantity:

Definition 31. Suppose the ambient space is a Schwarzschild man-
ifold with mass m. For every leaf Mt, suppose Ht

0, H
t
1 are the mean

curvatures of Mt with respect to the metric ds2, ds̃2, respectively. Let

Qt =
1

8π

∫
Mt

(
Ht

0 −Ht
1

)
fdVgt +

m

2
,

where dVgt is the volume form of Mt and f is defined by (8.1).

We observe that if the metric on M0 is sufficiently close to the canon-
ical metric on the round sphere, we have the monotonicity of Qt.
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Lemma 32. The quantity Qt monotonically decreases along the ge-
odesic flow (8.2).

Proof. The proof is modified from [45]. Taking the trace of the Ric-
cati equation, we have

dHt
0

dt
= −

∣∣ht∣∣2 − R̄ic (νt, νt) , and
dVgt
dt

= Ht
0dVgt ,

where ht is the second fundamental form of Mt with respect to ds2 and∣∣ht∣∣2 is the square summation of the eigenvalues of ht.
We calculate Qt using the parabolic equation (8.3) and the formula

(8.5),

d

dt

∫
Mt

Ht
0

(
1− u−1

)
fdVgt

= −
∫
Mt

u−1

2
(u− 1)2RtfdVgt

+

∫
Mt

[
−
(
u−1 − 1

)
R̄ic

(
νt, νt

)
f + u∆tf

]
dVgt

+

∫
Mt

Ht
0

(
1− u−1

) ff ′ϕ
r

dVgt .

By the static equation, we have

0 = ∆f =
d2f

dt2
+Ht

0

df

dt
+ ∆tf,

where ∆ is the Laplacian of the metric ds2 in NS and ∆t is the Laplacian
on Mt with respect to ds2. Then, using (8.5), (8.6), the expression of
R̄ic

(
νt, νt

)
in section 2 and the explicit formula of f , we obtain∫

Mt

[
−(1− u)R̄ic

(
νt, νt

)
f + u∆tf +Ht

0ϕ
t
(
1− u−1

) ff ′
r

]
dVgt

= −
∫
Mt

u−1(1− u)2Ht
0ϕ

t m

2r3
dVgt .

Thus, we obtain

d

dt

∫
Mt

Ht
0

(
1− u−1

)
fdVgt

= −
∫
Mt

u−1

2
(u− 1)2

(
Rt + 2R̄ic

(
νt, νt

))
fdVgt

−
∫
Mt

u−1(1− u)2Ht
0ϕ

t m

2r3
dVgt .

Lemma 30 states that the geodesic flow can preserve the convexity,
therefore, the right hand side of the above formula is non-positive. Thus,
we have the monotonicity. q.e.d.
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In the following, we investigate the asymptotic behavior of the prin-
cipal curvatures. By (8.5) and ϕt =

√
r2 − C, we have

rt =

√
1− m

r

√
1− C

r2
=

√
1− m

r
− C

r2
+
mC

r3
.

The right hand side of the above equality is bounded from below. We
can easily check that r(t, ·) monotonically increases to infinity as t ap-
proaches infinity. Thus, for a sufficiently large T , if t > T , we have

rt = 1−m
2r

+O

(
1

r2

)
, and t−T = r−r(T )+

m

2
log

2r −m
2r(T )−m

+O

(
1

r

)
.

Since r(t, ·) monotonically increases with respect to t, by (8.7), for t ≥ T ,
we obtain

m

4t3
≤ R̄

(
νt, µt, νt, µt

)
≤ m

t3
,

where −R̄
(
νt, µt, νt, µt

)
is the sectional curvature of the plane spanned

by µt, νt. Thus, we have

−
(
λt
)2

+
m

4t3
≤ dλt

dt
≤ −

(
λt
)2

+
m

t3
.(8.9)

Therefore, we obtain, for t ≥ T ,

λt =
1

t
+O

(
log t

t2

)
.

By (8.4), the sectional curvature of the ambient space along the tangent
vector fields is O

(
1
r3

)
. Using Gauss equations, we have that the scalar

curvature of Mt is

Rt =
2

t2
+O

(
log t

t3

)
.

We investigate the asymptotic behavior of the metric tensor on Mt.
νt is the unit normal vector field of Mt with respect to ds2. Evidently,
we have

Dνt ·Dνt = d
νt

|νt|E
·E d

νt

|νt|E
+O

(
1

t

)
= gS2 +O

(
1

t

)
,

where ·E is the standard Euclidean inner product, |·|E is the correspond-
ing norm and gS2 is the standard metric on the round sphere. Thus, we
have

g|Mt = t2Dνt ·Dνt +O(t log t) = t2gS2 +O(t log t).

Then, the asymptotic behavior of the area form is

dVgt = t2dVg +O(t log t),

where dVg is the standard area form of S2. Using a similar argument as
in [44], we have the following lemma:
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Lemma 33. There exists a unique solution to the initial value prob-
lem (8.3) in [0,+∞) and the asymptotic behavior of the solution u is

u(t) = 1 +
m0

t
+O

(
log t

t2

)
,

where m0 is a constant.

Finally, we calculate the ADM mass of the metric ds2. Let {z1, · · · ,
zn} be the standard coordinate of Rn. The ADM mass of a metric g is
defined by

ADM(g) =
1

2
lim

r→+∞

∫
S2

(
∂gij
∂zi
− ∂gii
∂zj

)
rzjdσ.

It is well known that ADM
(
ds2

0

)
= mω, where ω is the area of the

round sphere. Let

bij =
(
u2 − 1

) ∂t
∂zi

∂t

∂zj
.

Using Lemma 33, a straightforward calculation shows

∂bij
∂zi
− ∂bii
∂zj

=
2m0

t2
∂t

∂zj
+O

(
log t

t2

)
.

Thus, we have

ADM(b) = 2m0 lim
t→+∞

∫
S2

∑
j

zj

t

dt

dr

∂r

∂zj
dVg = 2m0ω.

By the choice of u in (8.3), the scalar curvature of ds̃2 is the same as
ds2, thus is nonnegative. An application of the positive mass theorem
[44] for Lipschitz metrics in asymptotic flat spaces with nonnegative
scalar curvature immediately yields

ADM
(
ds2
)

= ADM
(
ds2

0

)
+ADM(b) = (2m0 +m)ω ≥ 0.

Now, we can prove Theorem 6.

Proof of Theorem 6. By the monotonicity, it suffices to check that 2Qt
converges to ADM(ds2). We can find that

lim
t→+∞

2Qt

= 2 lim
t→+∞

1

8π

∫
S2
Ht

0

(
1− u−1

)√
1− m

t
dVgt +m

= 2m0 +m ≥ 0.

Thus, we complete our proof. q.e.d.

Remark 34. We believe that this type of inequality holds in any
AdS–Sch space.

We have proved an inequality (1.6) for convex surfaces of which the
metric is closed to the metric of the round sphere. An interesting prob-
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lem may be how to drop the constant m. At the end of this paper,
we calculate the quantity defined in Definition 31 for the radius 1 slice
sphere and its convex perturbation constructed in section 5 in the same
AdS–Sch space. It seems that the positive constant m may be dropped,
if the two surfaces lie in a same space.

We write down the second order approximation of the convex pertur-
bation constructed in section 5 and also use the notations of that section
with n = 2. In AdS–Sch spaces, the warping function f is defined by
(1.4). Let ~r be the position vector field of the radius 1 slice sphere. We
let (u1, u2) be a spherical coordinate of S2, which is

~r(u1, u2) = (cosu1 cosu2, cosu1 sinu2, sinu1).

We define a vector field

~y =
(
ε+ ε2θ̃(sinu1) + ε3θ(sinu1)

) ∂

∂z3
,

where ε is a sufficiently small positive constant and θ̃, θ are two smooth
functions of one variable to be determined later. Then, by (5.13), we
let

θ̃(t) = − 1

2ε2

∫ t

0
W (1, s, ε)ds

∣∣∣∣
ε=0

= −ψ(1)

2
t,

where the function ψ is defined by (5.8). Using a similar argument of
section 5, we can find a function θ such that the above vector field ~y
defined by θ̃, θ satisfies

d(~r + ~y) · d(~r + ~y) = d~r · d~r.
Thus, the convex surface ~r + ~y is isometric to the radius 1 slice sphere.
We denote

α = −ψ(1)

2
=
f2(1)− 1

2f2(1)
=

κ−m
2(1−m+ κ)

.

Then, we have the approximation of the square distance function ρ of
the surface M̃ defined by the vector field ~r + ~y with respect to ε,

ρ(ε) =
1

2
|~r + ~y|2E =

1

2

(
1 + 2ε sinu1 + ε2(1 + 2α sin2 u1)

)
+O

(
ε3
)
,

(8.10)

where | · |E denotes the standard Euclidean norm. By (2.11), the second
fundamental form and the support function are

hij =
ρi,j − fρ

f ρiρj − f
2gij

fϕ
, ϕ =

√
2ρ− |∇ρ|

2

f2
,(8.11)

where the comma indicates covariant derivatives of ρ with respect to ∇.
In our example, the mean curvature is defined by H = −gijhij , where
g is the metric of the round sphere. By a straightforward computation,
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for the surface M̃ , we have the following expansion with respect to ε:

6

4π

∫
S2

[
H

2
f −
√

1−m+ κf

]
dVg =

3m

4

m+ 2κ

1−m+ κ
ε2 +O(ε3).

Since 2
√

1−m+ κ is the mean curvature of the radius 1 slice sphere,
the quantity calculated above is nothing but the mass defined by (1.6)
without extra m/2. Thus, if ε is sufficiently small, we have∫

S2

[
H − 2

√
1−m+ κ

]
fdσ > 0.

Remark 35. Recently, Lu and Miao [32] considered the local version
of the Riemannian Penrose inequality in the Schwarzschild manifold,
thereby clarifying our previous example.
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