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Abstract

The Ricci flow on the 2-sphere with marked points is shown
to converge in all three stable, semi-stable, and unstable cases.
In the stable case, the flow was known to converge without any
reparametrization, and a new proof of this fact is given. The semi-
stable and unstable cases are new, and it is shown that the flow
converges in the Gromov–Hausdorff topology to a limiting metric
space which is also a 2-sphere, but with different marked points
and, hence, a different complex structure. The limiting metric
is the unique conical constant curvature metric in the semi-stable
case, and the unique conical shrinking gradient Ricci soliton metric
in the unstable case.

1. Introduction

A central theme in geometry is to characterize geometric structures
by canonical metrics. The Uniformization Theorem achieves this for
smooth compact Riemann surfaces. In higher dimensions, a well-known
conjecture of Yau [63], broadly stated, is that the existence of a canon-
ical metric should be equivalent to a suitable notion of stability in geo-
metric invariant theory. When the structure is not stable, it is expected
that a canonical metric should still exist, albeit with singularities or on
an adjacent structure. A model scenario is that of holomorphic vec-
tor bundles E → M over a compact Kähler manifold M . When E is
stable, a Hermitian–Einstein metric will exist, by the celebrated theo-
rem of Donaldson–Uhlenbeck–Yau [21, 58]. When E is unstable, the
Yang–Mills flow will converge instead to a Yang–Mills connection on the
double dual of the Harder–Narasimhan–Seshadri filtration of E. This
last statement was conjectured by Bando and Siu [1]. It was proved in
dimM = 2 by Daskalopoulos and Wentworth [17], and very recently
in general by Jacob [24], Sibley [41], and Sibley and Wentworth [42],
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building on the ideas of Donaldson [21], Uhlenbeck and Yau [58], and
Uhlenbeck [57].

When we pass from holomorphic vector bundles to complex mani-
folds, the Yang–Mills flow is replaced by the Ricci flow. The major
questions are then to determine the metric, the complex structure, and
the singularities which would emerge from its long-time limit. This ques-
tion is significantly more difficult than in the Yang–Mills case, because
the equations are more non-linear, and the group of diffeomorphisms is
more subtle than the group of gauge transformations. The case of posi-
tive curvature has proved in particular to be quite challenging, and there
are still few reasonably complete results. In particular, the convergence
of the flow is closely related to the geometric stability of the underlying
Kähler manifold, in accordance with the principles of Yau’s program
[63]. Two very recent important advances are the work of Tian–Zhu
[53] in 3 dimensions, and the work of Chen–Wang [12] in all dimen-
sions, on the convergence of the flow to a soliton with mild singularities.
However, it is not known whether the solutions can be extended across
the singularities, and what would be the limiting spaces and metrics.

The purpose of the present paper is to provide the complete analysis
of the Kähler–Ricci flow in a situation where the flow may cause the
complex structure to jump.1 For this, we need to consider a geometric
situation where there may be instability. The simplest is the case of
Riemann surfaces with conic singularities. Before describing our results
on the Kähler–Ricci flow on Riemann surfaces with singularities, we be-
gin by discussing the existing body of works on Kähler–Einstein metrics
and Kähler–Ricci solitons on such surfaces.

First, we need the notion of metrics with conical singularities on a
Kähler manifold. In [62], Yau considers complex Monge–Ampère equa-
tions with a singular right hand side as a generalization of his solution
to the Calabi conjecture and he derives various important a priori esti-
mates. In particular, Yau obtains local regularity for solutions of com-
plex Monge–Ampère equations with conical singularities. The general
Schauder estimates for equations of background conical Kähler metrics
are established more recently by Donaldson in [20]. The analysis is con-
siderably easier in the case of Riemann surfaces. Let M be a compact
Riemann surface, and p a given point on M . A metric g on M is said
to have a conical singularity at p if it can be expressed as

g = ef(z)|z|−2β|dz|2(1.1)

near p, with f(z) a bounded function. Here z is a local holomorphic
coordinate centered at p, and β ∈ (0, 1) is a constant. The constant β
is sometimes referred to as the weight of g at p, and the cone angle of
g at p is 2(1 − β)π. To lighten the notation, we denote by g both the

1Please also see [49, 60] for some examples from the smooth Kähler–Ricci flow.
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metric and the corresponding Kähler form
√
−1

2π ef(z)|z|−2β|dz|2, when
which is intended is clear from the context. Kähler metrics with conical
singularities have been extensively studied.

More generally, we consider a compact Riemann surface M with given
points p1, · · · , pk, and weights βj associated to each point pj . We denote

by β the divisor β =
∑k

j=1 βj [pj ], and refer to the data (M,β) as a

pair. Throughout this paper, we always assume that βj ∈ (0, 1) for
j = 1, ..., k. If g is a C2 metric on M \ β, the Ricci curvature can be
defined on M \ β by the usual formula

Ric(g) = −
√
−1

2π
∂∂̄ log g.

For simplicity, we identify each Kähler metric with its associated Kähler
form. If, in addition, g admits a conical singularity with weight βj at
each point pj , then the Ricci curvature Ric(g) can be defined on the
whole surface M as a current

Ric(g) = Ric(g) +
k∑
j=1

βj [pj ],

where [pj ] is the Dirac measure at pj . This is because, in two dimensions,
the contribution i∂∂̄f of the conformal factor f in (1.1) cannot include
a singular measure if f is bounded and C2 away from the point p. We
restrict ourselves to metrics g with conical singularities whose Ricci
current Ric(g) is still in c1(M), i.e., the same Chern class as the Ricci
curvature of smooth metrics on M . This means that

χ(M) =

∫
M

Ric(g) =

∫
M\β

Ric(g) +
k∑
j=1

βj ,

and, hence, ∫
M\β

Ric(g) = χ(M)−
k∑
j=1

βj ≡ χ(M,β).

where the second equality just defines the Euler characteristic χ(M,β)
of the pair (M,β).

The metric g with conical singularities is said to have constant Ricci
curvature if it satisfies Ric(g) = µ g on M \ β for some constant µ.
In view of the requirement that Ric(g) is still in the same Chern class
c1(M), it follows that the constant µ must satisfy the constraint
χ(M,β) = µ

∫
M g. If we normalize the metric g so that

∫
M g = 2,

the equation of constant Ricci curvature becomes

(1.2) Ric(g) =
1

2
χ(M,β)g

on M \β. The metrics with conical singularities and constant Ricci cur-
vature on Riemann surfaces (M,β) with weights have been extensively
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studied by Troyanov [56], McOwen [30], Luo–Tian [28]. When the pair
(M,β) has Euler characteristic χ(M,β) ≤ 0, it has been shown in [56]
that it always admits a conical metric with constant Ricci curvature,
and that such a metric is unique up to scaling. Clearly, χ(M,β) can be
strictly positive only when

(1.3) M = S2,
k∑
j=1

βj < 2.

Henceforth, we shall make these assumptions. In this case, there are,
indeed, in general obstructions for the existence of metrics with con-
ical singularities and constant Ricci curvature. More specifically, the
following is known:

• When k = 1, equation (1.2) does not admit a solution. Instead,
one can construct a unique rotationally symmetric compact shrinking
soliton g ∈ c1(S2) (the tear drop) [61, 4, 37].
•When k = 2, if β1 = β2, there exists a unique rotationally symmetric

solution of equation (1.2) (the football) [13, 4, 37].
•When k = 2 and β1 6= β2, equation (1.2) does not admit a solution.

Instead, one can construct a unique rotationally symmetric compact
shrinking soliton g [61, 4, 37].
• When k ≥ 3, there does not exist any holomorphic vector field on

S2 fixing p1, ..., pk since any holomorphic vector field can at most vanish
at 2 distinct points. Then the equation (1.2) admits a unique solution
if and only if [56, 28]

2 maxj βj <
k∑
j=1

βj .

Next, we describe what is known about the Ricci flow on the sphere
S2. The case without marked points and conic singularities has been
completely settled by the work of Hamilton [23] and Chow [13]. The
orbifold shrinking gradient solitons on S2 have been classified by Wu
[61]. The Ricci flow for metrics with conical singularities on Riemann
surfaces was first studied by Yin [64, 65], who provided an important
analytic framework as well as a proof of the long-time existence, and
convergence of the flow when χ(M,β) ≤ 0. Another approach to ex-
istence results for the Ricci flow for metrics with conic singularities
was given by Mazzeo, Rubinstein and Sesum [29], using an extensive
machinery of polyhomogeneous expansions, conormal distributions and
b-spaces. They also prove the convergence of the flow on any stable
pair (S2, β). When the pair (S2, β) is not stable, they argue for some
notion of “geometric” convergence (see Theorem 1.3 as well as section
§5, and especially Proposition 5.3 in [29]). The fact is that the case of
(S2, β) not stable presents some significant new difficulties which were
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absent in the stable case and which cannot be bypassed. On one hand,
the existence and global structure of the limiting space have to be de-
termined, and it is far from evident a priori that the limiting space is
another pair (S2, β∞), or even that its singular set is closed. In fact,
all conical singularities except the main one may converge to a single
limiting conical point, and, thus, the injectivity radius will converge
generically to 0, preventing any application of Hamilton’s compactness
theorem. Furthermore, for the possible convergence to a soliton, one
must allow for reparametrizations, thus, ruling out techniques based
solely on multiplier ideal sheaves.

The case of pairs (S2, β) is of particular importance as it is the most
basic example of spaces that can exhibit all three types of geometric
structures, namely stable, semi-stable, and unstable structures, and
where the phenomenon of the jumping of complex structures in the
limit can take place. It is also a good model case of the Ricci flow
on complex manifolds with singularities. We shall provide a complete
understanding of the long-time behavior of the Ricci flow in this case.
Besides its own interest, such an understanding should be valuable in the
development of any program to produce canonical metrics on singular
Kähler manifolds by the Ricci flow.

We state now precisely our results. Fix the following metric gβ
on S2 with conic singularities at the points {p1, · · · , pk} with weights
β1, · · · , βk ∈ (0, 1),

gβ =
∏
j

(
1 + |z|2

|z − pj |2

)βj
gFS ,(1.4)

where gFS is the Fubini–Study metric. Explicitly gFS =
√
−1

2π
|dz|2

(1+|z|2)2
.

Note that σj = (z − pj)2 ∂
∂z is the defining section for [2pj ], and that∫

S2 gβ = 2, which means that gβ ∈ c1(S2). We consider the conical Ricci
flow given by

(1.5)
∂g(t)

∂t
= −Ric(g) +

1

2
χ(S2, β)g(t), g(0) = g0

on S2 \ β, where g0 is a “regular metric”, i.e., a metric of the form

g0 = eu0gβ, u0 ∈ C∞(S2),

∫
S2
g0 = 2.(1.6)

Theorem 1.1. Consider the conical Ricci flow with initial metric
g0 satisfying the conditions (1.6). Then there exists a solution g(t) =

gFS +
√
−1

2π ∂∂ϕ(t) satisfying

(1) ϕ(t) ∈ PSH(S2, gFS) ∩ L∞(S2) for each t ∈ [0,∞). ϕ ∈ C∞(S2 \
β × [0,∞)).

(2) If we set g(t) = eu(t)gβ, then u(t) ∈ L∞(S2) for each t ∈ [0,∞)
and u ∈ C∞(S2 \ β × [0,∞)).
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(3) For any T > 0, there exists C > 0 such

|u|L∞(S2×[0,T ]) ≤ C.

(4) For any t > 0, there is a unique function v ∈ C∞(S2\β)∩L∞(S2)
satisfying

Ric(g) =
1

2
χ(S2, β)g −

√
−1

2π
∂∂̄v on S2 \ β,

∫
S2
e−vg = 1.

This function is called the Ricci potential of g(t).

(5) For any t0 > 0 and any k ∈ Z+ ∪ {0}, there exists C(k, t0) > 0
such that

sup
(S2\β)×[t0,∞)

(|∆kR|2 + |∇∆kR|) ≤ Ck,t0 ,

where R is the curvature of g(t), and the operators ∆, ∇ are defined
with respect to g(t).

One can show that u(t) is actually continuous on S2× [0,∞) because
∆g(t)u(t) and ∂u

∂t are bounded on S2 × [0, T ] for any T > 0 (∆g(t)u(t) =

−R(t) + R(gβ) is bounded and ∂
∂tu is equivalent to ∆g(t)u(t) on any

closed time interval). Of particular importance to us is the following
property of the spaces (S2 \ β, g(t)):

Theorem 1.2. Let (Xt, dt) be the metric completion of (S2 \β, g(t)).
Then

(1) (Xt, dt) is a compact metric space homeomorphic to S2 for any
t ∈ [0,∞), with uniformly bounded diameters and curvature,

sup
t∈[0,∞)

diam(Xt, dt) ≤ C, sup
S2\β×[0,∞)

|R| ≤ C,(1.7)

for some C > 0.

(2) (Xt, dt) is a continuous family of compact metric spaces in the
Gromov–Hausdorff topology for all t ∈ [0,∞).

To describe the convergence of the flow, we introduce the following
terminology:

Definition 1.1. Let (S2, β) be a sphere with marked points, with
k ≥ 3. We shall say that

• (S2, β) is stable if
∑k

i=1 βi ≥ 2 or 2 maxjβj <
∑k

i=1 βi.

• (S2, β) is semi-stable if
∑k

i=1 βi < 2 and 2 maxjβj =
∑k

i=1 βi.

• (S2, β) is unstable if
∑k

i=1 βi < 2 and 2 maxjβj >
∑k

i=1 βi.

Without loss of generality, we assume that

0 < β1 ≤ β2 ≤ ... ≤ βk = βmax.

We have then the following main result of the paper.
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Theorem 1.3. Let (S2, β) be a sphere with k marked points, β =∑k
j=1 βj [pj ],

∑k
j=1 βj < 2 and k ≥ 3. Consider the Ricci flow g(t) with

an initial metric g0 satisfying the condition (1.6).

(1) If (S2, β) is stable, then the flow converges in the Gromov–
Hausdorff topology and in C∞(S2 \ β) to the unique conical constant
curvature metric g∞ ∈ c1(S2) on (S2, β).

(2) If (S2, β) is semi-stable, then the flow converges in the Gromov–
Hausdorff topology to the unique conical constant curvature metric g∞
on a pair (S2, β∞), where the divisor β∞ is given by

β∞ = βmax[p∞] + βmax[q∞],

with βmax ≡ βk. The convergence is smooth on S2 \ {p∞, q∞}. In
particular, pk converges in Gromov–Hausdorff distance to one of the
two points p∞ and q∞, while p1, ..., pk−1 converge to the other.

(3) If (S2, β) is unstable, then the flow converges in the Gromov–
Hausdorff topology to the unique rotationally invariant shrinking soliton
g∞ on the pair (S2, β∞), where the divisor β∞ is given by

β∞ = βk[p∞] + β′k[q∞],

with β′k ≡
∑

j<k βj. The convergence is smooth on S2 \ {p∞, q∞}. In
particular, pk converges in Gromov–Hausdorff distance to the point p∞
while p1, ..., pk−1 converge to q∞.

We remark that the stable case (1) in Theorem 1.3 is proved in [29].
In the unstable case (3), we also show that p1, ..., pk−1 converge to q∞ in
distance exponentially fast as t→∞ (c.f. Lemma 7.11). We conjecture
that in the semi-stable case (2) in Theorem 1.3, the convergence of
p1, ..., pk−1 to q∞ is in distance with polynomial decay.

The present paper is a substantially revised and improved version of
the paper with the same title which was posted as ArXiv:14.07.1118. A
first significant improvement is the proof of a conjecture left open in the
original paper, on the convergence in the unstable case of the conic sin-
gularities p1, · · · , pk−1 to q∞. The second significant improvement is a
self-contained proof of the long-time existence and Perelman monotonic-
ity for the conical Ricci flow. The original paper ArXiv:14.07.1118 had
relied on the results of Yin [64, 65], by quoting directly his long-time
existence results in suitable Schauder spaces, and by using his methods
for the proof of Perelman monotonicity. Besides being self-contained,
the proof in the present paper of the long-time existence of the conical
Ricci flow and Perelman monotonicity applies to a more familiar class
of initial metrics g0 (see Theorem 1.1) than metrics defined in the more
subtle Schauder spaces that Yin [64, 65] had introduced specifically for
the heat equation on surfaces with conic singularities. The main idea
is to use smooth approximations of conical metrics, and make use of
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traditional techniques for the twisted Kähler–Ricci flow as in [16] and
[45, 46]. It is likely that the idea will also be useful in higher dimensions.

The paper is organized as follows. In Section §2, we establish the long-
time existence of the conical Ricci flow, together with basic estimates
for the conformal factor, the Kähler potential, and the Ricci potential.
As a consequence, we obtain the essential fact that the scalar curvature
and the diameter are uniformly bounded along the flow. Since in two
dimensions, the scalar curvature determines the full Riemannian curva-
ture, we are in a situation similar to that considered in [32], with the
key additional complication that the manifolds are not compact, and
the injectivity radius not bounded from below. In Section §3, we es-
tablish Perelman monotonicity for the conical Ricci flow. This requires
some delicate arguments of integration by parts. Section §4 is devoted
to the analysis of the long-time behavior in the stable case. In this case,
the functional Fβ is proper, and we adapt the arguments in the smooth
case to show the convergence of the flow. The Perelman monotonic-
ity for the conical Ricci flow is only needed for this section, but not
for the remaining sections on the Gromov–Hausdorff convergence in the
semistable and unstable cases. Section §5 is devoted to the proof of the
sequential convergence of the flow in the Gromov–Hausdorff sense, by
combining Cheeger–Colding theory, the partial C0 estimate, and Hamil-
ton’s entropy. The limit is a sphere with marked points, equipped with
either a metric of constant curvature or a shrinking gradient soliton.
The semi-stable case is treated in Section §6: we derive a weak lower
bound for the functional Fβ which allows us, nevertheless, to show the
existence of a sequence of times along which the Ricci flow converges to
a metric of constant curvature. The unstable case is treated in Section
§7. We show that the limiting metric cannot have constant curvature,
and, hence, it must be a soliton with rotational symmetry. We further
prove that the conical Ricci flow must uniformly converge to a unique
shrinking Ricci soliton with two conical points and such a soliton metric
does not depend on the choice of initial metric.

Some basic facts about the α-invariant and the F -functional for pairs
(S2, β) are summarized in the appendices.

Acknowledgments. The second named author would like to thank Xi-
aochun Rong for many stimulating discussions.

2. Long-time existence for the conical Ricci flow

In this section, we establish some general properties of the conical
Ricci flow, including the existence of long-time solutions g(t), and the
identification of the metric completion of the space (S2\β) for each time
t. The main idea is to use a smooth approximation of conical metrics.
This bypasses the problem of solving partial differential equations on
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open manifolds. The key quantities such as the metric g(t), the con-
formal factor u(t), the Kähler potential ϕ(t), and the Ricci potential
v(t) are obtained by smooth convergence over compact subsets of S2 \β.
Nevertheless, we can establish L∞(S2 \ β) bounds for u, ∇u, ϕ, ∇ϕ, v,
∇ϕ on any finite time interval [0, T ].

2.1. A smooth approximation of the initial metric. Let g0 be the
initial conical Kähler metric satisfying (1.6), and consider the following
approximating smooth Kähler metrics for ε > 0,

g0,ε = eu0+aε
∏
j

(
1 + |z|2

|z − pj |2 + ε

)βj
gFS ,(2.1)

where aε is the normalizing constant so that
∫
g0,ε = 2. Then

2e−aε =

∫
S2
eu0
∏
j

(
(1 + |z|2)

|z − pj |2 + ε

)βj
gFS ,

and aε is uniformly bounded for ε ∈ (0, 1) with aε → a0 = 0 as ε → 0.
Clearly,

g0,ε ≥ CgFS ,(2.2)

for some constant C > 0 independent of ε. Define the (1, 1)-form θε by

θε =
∑
j

βj

√
−1

2π
∂∂ log(|z − pj |2 + ε).(2.3)

Then the Ricci curvature Ric(ω0,ε) of ω0,ε is given by

Ric(g0,ε) =
1

2
χ(S2, β)gFS + θε −

√
−1

2π
∂∂u0.(2.4)

Let φε be the Kähler potential of the approximating metric g0,ε, i.e.,

g0,ε = gFS +

√
−1

2π
∂∂φε, supS2φε = 0.(2.5)

The function φε is then the unique solution, with the normalization
indicated, of the following smooth Laplace equation on S2,

(2.6) ∆gFSφε = eu0+aε
∏
j

(
(1 + |z|2)

|z − pj |2 + ε

)βj
− 1.

Lemma 2.1. There exists a constant C > 0 so that, for all ε ∈ (0, 1),
we have

‖φε‖L∞ + ‖∇φε‖g0,ε ≤ C.(2.7)

Furthermore, for any k > 0 and K ⊂⊂ S2 \ {p}, there exists Ck,K such
that

‖φε‖Ck(K) ≤ Ck,K for all ε ∈ (0, 1).(2.8)
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Proof. The right hand side of the equation (2.6) is uniformly bounded
for all ε ∈ (0, 1) in Lp(S2, gFS) for some fixed p > 1. The L∞ estimate
then follows immediately from the Laplacian estimates and Sobolev em-
bedding.

We now prove the estimates for ‖∇φε‖g0,ε , using the techniques for
combining gradient estimates and Yau’s Schwarz lemma first used in
[45, 46]. For the remainder of the proof, we denote by just ∆ and ∇
the Laplacian and gradient with respect to the metric g0,ε. We also
suppress the subindex ε in φε. Using the equation ∆φ = 1− trggFS , we
find

∆|∇φ|2 = |∇∇φ|2 + |∇∇̄φ|2 +R(g)|∇φ|2 − 2Re〈∇trg(gFS),∇φ〉
≥ |∇∇φ|2 + |∇∇̄φ|2 − 2|∇trg(gFS)| |∇φ| − C1|∇φ|2,(2.9)

since R(g) is bounded from below by a constant −C1 independent of ε.
Next, let A be a constant so large that A+ φ > 1 on S2. A straightfor-
ward computation gives

(2.10) ∆(
|∇φ|2

A+ φ
) =

∆|∇φ|2

A+ φ
− 2Re〈 ∇φ

A+ φ
,∇(
|∇φ|2

A+ φ
)〉 − ∆φ|∇φ|2

(A+ φ)2
.

On the other hand, we can also write

−Re〈 ∇φ
A+ φ

,∇(
|∇φ|2

A+ φ
)〉 =

|∇φ|4

(A+ φ)3
− 2Re〈 ∇φ

A+ φ
.
∇|∇φ|2

A+ φ
〉

≥ |∇φ|4

(A+ φ)3
− |∇φ|

2(|∇∇φ|+ |∇∇̄φ|)
(A+ φ)2

≥ 1

2

|∇φ|4

(A+ φ)3
− 1

2

(|∇∇φ|+ |∇∇̄φ|)2

A+ φ
.(2.11)

Fix 0 < δ < 1
4 . The above inequalities imply

∆(
|∇φ|2

A+ φ
) ≥ δ

|∇φ|4

(A+ φ)3
gFS − 2(1− δ)Re〈 ∇φ

A+ φ
,∇(
|∇φ|2

A+ φ
)〉

− 1

A+ φ

(
|∇φ|2∆φ

A+ φ
+ |∇trg(gFS)| |∇φ|+ C1|∇φ|2

)
.(2.12)

The troublesome term is |∇trg(gFS)| |∇φ| on the right hand side. To
handle it, write

∆ log trg(gFS) =
∆trg(gFS)

trg(gFS)
− |∇trg(gFS)|2

(trg(gFS))2
.(2.13)

The left hand side can be recognized as
(2.14)
−∆ log g + trg(gFS) ∆FS log gFS = R(g)− trg(gFS)R(gFS) ≥ −C2,



THE RICCI FLOW ON THE SPHERE WITH MARKED POINTS 127

where C2 is a constant independent of ε. Thus, we have

(2.15) ∆trg(gFS) ≥ |∇trg(gFS)|2

trg(gFS)
− C2trg(gFS) ≥ |∇trg(gFS)|2

trg(gFS)
− C3.

Set then

H =
|∇φ|2

A+ φ
+M trg(gFS).(2.16)

We have

∆H = ∆(
|∇φ|2

A+ φ
) +M ∆trg(gFS)

≥ δ |∇φ|4

(A+ φ)3
+M

|∇trg(gFS)|2

trg(gFS)
− 2(1− δ)Re〈 ∇φ

A+ φ
,∇H〉 −MC3

+ 2M(1− δ)Re〈 ∇φ
A+ φ

,∇trg(gFS)〉

−
(
|∇φ|2∆φ

(A+ φ)2
+
|∇trg(gFS)| |∇φ|+ C1|∇φ|2

A+ φ

)
.

The terms involving |∇trg(gFS)| can be grouped into

M
|∇trg(gFS)|2

trg(gFS)
+ 2M(1− δ)Re〈 ∇φ

A+ φ
,∇trg(gFS)〉

− |∇trg(gFS)| |∇φ|
A+ φ

≥ M

2

|∇trg(gFS)|2

trg(gFS)
− C4

|∇φ|2

(A+ φ)2
,

if M is large enough, and the constant C4 is allowed to depend on M .
Since ∆φ is bounded, we obtain in this manner

(2.17) ∆H ≥ δ |∇φ|4

(A+ φ)3
− 2(1− δ)Re〈 ∇φ

A+ φ
,∇H〉 − C5

|∇φ|2

A+ φ
.

It follows now from the maximum principle, applied to the function H,
that the function |∇φ| is uniformly bounded in ε.

Finally, the estimates for ‖φε‖Ck(K) are standard local estimates in
linear elliptic theory. q.e.d.

2.2. A smooth approximation for the Ricci flow. We consider
now the approximating Ricci flow

∂gε
∂t

= −Ric(gε) +
1

2
χ(S2, β)gε + θε, gε|t=0 = g0,ε.(2.18)

It is an example of a twisted Ricci flow with a positive (1, 1)-form θε, as
considered in [16]. When ε = 0, it coincides with the Ricci flow. If we
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let gε = gFS +
√
−1

2π ∂∂ϕε, then the corresponding flow for ϕε is given by
the parabolic Monge–Ampère equation,

∂ϕε
∂t

= log
gFS +

√
−1

2π ∂∂ϕε

gFS
+

1

2
χ(S2, β)ϕε +

∑
j

βj log
|z − pj |2 + ε

1 + |z|2
,

ϕε|t=0 = φε.(2.19)

Lemma 2.2. The following hold.
(1) For any T > 0, there exists C > 0 such that for all ε ∈ (0, 1),

‖ϕε‖L∞(S2×[0,T ]) ≤ C.

(2) For any T > 0, there exists C = C(T ) > 0 such that for all ε ∈ (0, 1)

sup
S2×[0,T ]

|uε| ≤ C,

where gε(t) = euε(t)
∏
j

(
(1+|z|2)
|z−pj |2+ε

)βj
gFS.

(3) For any K ⊂⊂ S2\β, T > 0 and k > 0, there exists C = CK,T,k > 0,

‖ϕε‖Ck(K×[0,T ]) ≤ C.

Proof. The proposition follows from general results from [45]. How-
ever, we include a proof for completeness.

Let H = ϕε(t)− φε. Then

(
∂

∂t
−∆gε)H = log

g0,ε +
√
−1

2π ∂∂H

g0,ε
+H, H|t=0 = 0.

Then the maximum principle immediately implies that for any T > 0,
H is uniformly bounded on S2 × [0, T ] for all ε ∈ (0, 1). Since φε is
uniformly bounded, this proves (1).

Next, ∂ϕε
∂t satisfies the equation

(
∂

∂t
−∆ε)

∂ϕε
∂t

=
1

2
χ(S2, β)

∂ϕε
∂t

.

The initial value

∂ϕε
∂t
|t=0 = log

g0,ε

gFS
+

1

2
χ(S2, β)φε +

1

2

∑
j

βj log
|z − pj |2 + ε

1 + |z|2

is uniformly bounded for all ε ∈ (0, 1) because φε is uniformly bounded.
The maximum principle immediately implies that for any T > 0, there
exists C > 0 such that for all ε ∈ (0, 1),

|∂ϕε
∂t
| ≤ C.(2.20)
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On the other hand, the defining relation for the conformal factor u can
be rewritten as

uε + aε = log
gε
gFS

+
∑
j

βj log
|z − pj |2 + ε

1 + |z|2
.(2.21)

Comparing this with the equation (2.19), we find

∂ϕε
∂t

= uε + aε +
1

2
χ(S2, β)ϕε.(2.22)

Thus, the uniform boundedness of uε follows from that of ϕε and ∂ϕε/∂t,
proving (2).

Finally, from the estimates for ∂ϕε
∂t , for any K ⊂⊂ S2 \ β and T > 0,

there exists C > 0 such that for all ε ∈ (0, 1),

‖∆0ϕε‖L∞(K×[0,T ]) ≤ C,

where ∆0 is the Laplacian operator with respect to gFS . The higher
order estimates follow immediately from the standard linear parabolic
theory. The proof of the lemma is complete. q.e.d.

2.3. Perelman monotonicity for the approximating flow. We
consider Perelman’s W-functional for the twisted Ricci flow as intro-
duced in [16]

Wθ(g, f, τ) =

∫
X
e−fτ−n(τ(R− trg(θ) + |∇f |2) + f)dVg,

and the corresponding twisted µ-functional,

µθ(g, τ) = inf
f∈C∞(X), (2τ)−n

∫
X e−fdVg=1

Wθ(g, f, τ).

It is proved in [16] that µθ is increasing along the Ricci flow, and that
Perelman’s estimates can be exactly reproduced for any fixed smooth
positive twisted form θ. In our situation, X = S2, τ = 1/2, θ = θε.
Thus,

Lemma 2.3. Let gε(t) be the solution of the twisted Ricci flow (2.18).
There exists C > 0, such that for all ε ∈ (0, 1),

µθε(gε(t), 1/2) ≥ −C.

Proof. By its definition, the initial g0,ε has uniformly bounded diam-
eter for ε ∈ (0, 1) and its curvature is uniformly bound below in view
of (2.4). Also the volume of g0,ε is uniformly bounded above and below
away from 0 for all ε ∈ (0, 1). Hence, the Sobolev and Log Sobolev
constants are uniformly bounded. Together they give a uniform lower
bound for the µθε-functional at the initial time. The lemma follows from
the monotonicity of µθε . q.e.d.
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We define the twisted Ricci potential vε by

vε =
∂ϕε
∂t

+ cε(t),

∫
S2
e−vεgε(t) = 1.(2.23)

The function vε is the twisted Ricci potential in the sense that

Ric(gε) =
1

2
χ(S2, β)gε + trgε(θε)−

√
−1

2π
∂∂vε.

Lemma 2.4. There exists C > 0 such that for all ε ∈ (0, 1),(
sup
S2

(|vε|+ |∇vε|gε + |∆gεvε|)
)
|t=0 ≤ C.

Proof. The bound for vε follows from the bound for ∂ϕε/∂t estab-
lished in (2.20). To establish the bound for |∇vε|gε , we note that

vε|t=0 + cε(0) = u0 + aε +
1

2
χ(S2, β)φε.

Then

(|∇vε|gε) |t=0 ≤ |∇u0|g0,ε +
1

2
χ(S2, β)|∇φε|g0,ε ≤ C

by Lemma 2.1 because gFS is bounded above by a positive multiple of
g0,ε. Finally, let Rε be the twisted scalar curvature defined by

Rε = R(gε)− trgεθε.(2.24)

At t = 0, the explicit formula for R(g0,ε) given in (2.4) shows that
|Rε| ≤ C. Since ∆gεvε = Rε − 1

2χ(S2, β), the desired estimate follows.
q.e.d.

Lemma 2.5. There exists C > 0 such that for all ε ∈ (0, 1) and for
all t ∈ [0,∞)

sup
S2

(|vε|+ |∇vε|gε + |∆gεvε|) ≤ C,

diam(S2, gε(t)) ≤ C, −C ≤ Rε ≤ C.(2.25)

Proof. The same argument of Perelman for the Fano Kähler–Ricci
flow [39] have been shown to generalize to the twisted Fano Kähler–
Ricci flow by [16]. In particular, the bounds only depend on the lower
bound of the µ-functional at the initial time as well as the bounds of
|vε|, |∇vε|gε , ∆gεvε at the initial time (see the proof of Lemma 2.2 in
[35] for such bounds of a family of the Kähler–Ricci flow). Since the
µθε-functional is uniformly bounded from below for all ε ∈ (0, 1), the
resulting bounds for vε, ∇vε, and ∆gεvε are all uniformly bounded in
ε ∈ (0, 1) and t ∈ [0,∞) from Lemma 2.4. q.e.d.

Lemma 2.6. For any k > 0, t0 > 0 there exists Ck,t0 > 0 such that
for all ε ∈ (0, 1),

sup
S2×[t0,∞)

(|∆k
gεRε|+ |∇gε∆

k
gεRε|gε) ≤ Ck,t0 .
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Proof. We consider the evolution of |∇Rε|2. There exist A,B > 0,
such that

∂|∇Rε|2gε
∂t

≤∆gε |∇Rε|2−|∇gε∇gεRε|2gε−|∇gε∇̄gεRε|
2
gε+A(R2

ε+B)|∇Rε|2gε .

Let H = t|∇Rε|2gε − 2MR2
ε for sufficiently large M > 0. We have

∂H

∂t
≤ ∆gεH −M |∇gεRε|2gε +R3

ε + C,

because Rε is uniformly bounded. The maximum principle immediately
gives a uniform bound for H and, thus, t|∇gεRε|2 on S2 × [0,∞).

We now pick any δ > 0. Let

G = (t− δ)∆gεRε +N |∇gεRε|2gε
on S2 × [δ,∞). Then there exists C > 0 so that

∂G

∂t
≤ ∆gεG−G+ C

on S2 × [δ,∞). By the maximum principle, G is uniformly bounded
above on S2 × [δ,∞) and so is (t − δ)∆gεRε. The lower bound of
(t − δ)∆gεRε is obtained by applying the maximum principle to (t −
δ)∆gεRε +N |∇gεRε|2gε .

The proof of the lemma is completed by repeating the procedure
applied to |∇gε∆kRε| and (∆gε)

k+1Rε. q.e.d.

We noticed after we finished writing our paper that the conical
Kähler–Ricci flow was treated similarly in [27] by applying approxi-
mation of twisted Kähler–Ricci flow with results in [16]. The argument
in our case is simpler and the curvature estimates are stronger, due to
the low dimension.

2.4. Proof of Theorem 1.1 and Theorem 1.2. Now we can take
limits and let g(t) = limε→0 gε(t) after passing to a convergent subse-
quence. Theorem 1.1 follows immediately. We note also that the same
limiting process shows that the curvature of the metrics along the con-
ical Ricci flow is uniformly bounded on S2 \ β.

Next, we establish Theorem 1.2.
Part 1 follows from well-known arguments in Riemannian geome-

try because the conformal factors are uniformly bounded and converge
smoothly away from finitely many points, and the sectional curvature is
uniformly bounded below. More precisely, we fix t. Then any sequence
of points {xj} in S2 \ β converging to a point p /∈ S2 \ β with respect to

g(t) must also converge in distance with respect to
∏
j

(
|z|2+1
|z−pj |2

)βj
gFS

because u(t) is bounded. But such a sequence of points must converge
to a unique conical point p ∈ S2. This implies that (Xt, dt) is homeo-
morphic to S2.
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For fixed t, we consider the sequence {(S2, g1/j(t))}j . Then the diam-

eter of (S2, g1/j(t)) is uniformly bounded below, the volume is always 2
and the curvature is uniformly bounded below. Applying the Cheeger–
Colding theory for degeneration of non-collapsed Riemmanian mani-
folds with Ricci lower bound after passing to a sequence, (S2, g1/j(t))
converges to a compact metric length space (Y, dY ). By the smooth con-
vergence of g1/j(t) to g(t) on S2 \β, (Y, dY ) must coincide with (Xt, dt),

the metric completion of (S2 \ β, g(t)) by the almost geodesic convex-
ity results of Cheeger–Colding theory. In particular, the diameter of
(Xt, dt) is uniformly bounded above for all t ∈ [0,∞). The uniform
curvature bound follows immediately from the uniform bound for Rε
for all ε ∈ (0, 1) and the smooth convergence of gε(t) to g(t) on S2 \ β.
One might also apply the Alexanderov theory for Riemann surfaces with
sectional curvature bounded below.

For Part 2, it suffices to prove the family of metric spaces (S2, g(t))
is continuous at some t0 > 0. For any ε > 0, there exists an open neigh-
borhood U of β such that diam(U, g(t)) < ε/2 for t ∈ [0, 2t0] because
g(t) is uniformly equivalent to gFS on a fixed closed time interval. There
exists δ > 0 such that for t ∈ [t0 − δ, t0 + δ],

dGH((S2 \ U, g(t)), (S2 \ U, g(t0))) < ε/2,

because g(t) converges smoothly to g(t0) on S2 \ β as t → t0. By the
triangle inequality, for all t ∈ [t0 − δ, t0 + δ],

dGH((S2, g(t)), (S2, g(t0))) < ε.

We also obtain the following approximation using the solution gε(t)
of the approximating twisted Ricci flow.

Corollary 2.1. There exists K > 0 such that for all t ∈ [0,∞) and
δ > 0, there exists a smooth metric gt,δ ∈ c1(S2) such that

R(gt,δ) > −K, dGH((S2, g(t)), (S2, gt,δ)) < δ.

We conclude this section with two important gradient bounds:

Lemma 2.7. For each T > 0, there exists a constant CT so that for
all t ∈ [0, T ],

‖∇ϕ‖L∞ + ‖∇u‖L∞ ≤ CT .(2.26)

Proof. We shall show that

‖∇ϕε‖L∞ ≤ CT .(2.27)

This will imply the desired bound for ‖∇ϕ‖L∞ , since ∇ϕε and gε con-
verges uniformly to ∇ϕ and g(t) on compact subsets of S2 \ β.

We apply the same argument as in Lemma 2.1 for the proof of the
bound for |∇φε|g0,ε . Notice that

∆εϕε = 1− trgε(gFS)
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is uniformly bounded on [0, T ] for all ε ∈ (0, 1). By a straightforward
calculation as in the proof of Lemma 2.1, we have

∆ε|∇ϕε|2gε = |∇ε∇εϕε|2gε + |∇ε∇̄εϕε|2gε − 2Re〈∇trgε(gFS),∇ϕε〉gε
+R(gε)|∇ϕε|2gε

≥ |∇ε∇εϕε|2gε + |∇ε∇̄εϕε|2gε − 2Re〈∇trgε(gFS),∇ϕε〉gε
−C|∇ϕε|2gε

since Rε is uniformly bounded. Similarly, arguing as in the proof of the
inequality (2.15), and using the fact that trgε(gFS) is uniformly bounded
on [0, T ], we have

∆εtrgε(gFS) ≥
|∇trgε(gFS)|2gε

trgε(gFS)
− CT ,

for some uniform CT > 0. Then we apply the maximum principle to

H =
|∇ϕε|2gε

ϕε +A+B
+B trgε(gFS),

where A = supε∈(0.1) supS2×[0,T ] |ϕε| and B is some fixed sufficiently

large constant. Then H is uniformly bounded on [0, T ] because

∆εH ≥
δ|∇ϕε|4

2(ϕε +A+B)
+

2− 2δ

ϕε +A+B
Re〈∇H, ∇̄ϕε〉gε − Cδ,

for some fixed sufficiently small δ > 0. The desired bound for |∇ϕε|
follows. Finally, in view of the equations (2.22) and (2.23), we have

vε − cε(t) = uε + aε +
1

2
χ(S2, β).(2.28)

Thus, the uniform bound for |∇ϕε| implies a uniform bound for |∇uε|,
and, hence, for |∇u|, by taking limits over compact subsets of S2 \ β as
ε→ 0. This completes the proof for the lemma. q.e.d.

3. Perelman monotonicity for the conical Ricci flow

In this section, we introduce the W -functional and establish Perelman
monotonicity for the conical Ricci flow itself. This cannot be obtained
by taking the limits of the W -functionals for the approximating Ricci
flows, because the convergence of the approximating flows is only over
compact subsets of S2\β and the limiting W -functional is different from
the W -functional for the conical Ricci flow.

Consider the unnormalized conical Ricci flow on (S2, β),

(3.1)
∂g

∂t
= −2Ric(g), g|t=0 = g0 = eu0gβ,
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for some u0 ∈ C∞(S2). Suppose g(t) solves the conical Ricci flow on
[0, T ). We define

(3.2) W (g, f, τ) =

∫
S2\β

(τ(R+ |∇f |2) + f − 2)
e−f

4πτ
g, τ > 0,

We define

(3.3) µ(g, τ) = inf∫
S2

e−f
4πτ

g=1,f∈C∞(S2)

W (g, f, τ).

From its definition, g(t) has bounded curvature and it is equivalent
to gβ. Then the log Sobolev constant for g(t) is bounded and, hence,
µ(g(t), τ) > −∞ for all τ > 0.

3.1. A maximum principle. The next lemma is a maximum principle
which holds thanks to the existence of a geometric barrier.

Lemma 3.1. Let g = g(t) be a C0 metric on (S2 \ β) × [0, T ]. Let
f ∈ C2((S2\β)×[0, T ])∩L∞(S2×[0, T ]) satisfy the following differential
inequality

∂tf ≥ ∆gf + b(x, t)f,(3.4)

where ∆g is the Laplacian with respect to g, and b(x, t) is a bounded
function.

(1) If f(x, 0) ≥ 0 for all x ∈ S2\β, then f(x, t) ≥ 0 in (S2\β)× [0, T ];
(2) If f(x, 0) ≥ δ > 0 for all x ∈ S2 \ β and some constant δ > 0,

then f(x, t) ≥ δe−t‖b‖L∞ on (S2, β) × [0, T ]. In particular, f(x, t) > 0
on (S2 \ β)× [0, T ].

Proof. We prove (1) first. Replacing f by fe−At for some large posi-
tive constant A, we can replace b(x, t) by b(x, t)−A, and, hence, assume
that b is strictly less than −B, for any fixed positive constant B. Let

f̃ = f − ε log
∏k
j=1 |sj |2h where sj is a holomorphic section of K−1

S2 with

divisor [2pj ], normalized so that |sj |2h ≤
1
2 , with h a smooth metric on

K−1
S2 . The function f̃ satisfies the differential inequality

∂tf̃ ≥ ∆gf̃ + bf̃ + ε(k Rh + b log

k∏
j=1

|sj |2h),(3.5)

and, thus, since Rh is the contraction of the curvature of h with g and,
hence, bounded,

∂tf̃ ≥ ∆gf̃ + bf̃ ,(3.6)

if we choose B to be sufficiently large. Since f̃ → +∞ near each of
the conical singularities pj , it must attain its minimum somewhere in
(S2 \β)× [0, T ]. Assume that this minimum is strictly negative, and let
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t0 > 0 be the first time when it is achieved, at some point x0 ∈ S2 \ β.
The above differential inequality would imply that

∂tf̃(x0, t0) ≥ b(x0, t0)f̃(x0, t0) > 0.(3.7)

But this would imply in turn that f̃ must have attained values strictly
lower than f̃(x0, t0), which is a contradiction. Thus, the minimum of f̃
must be non-negative. Letting ε→ 0, it follows that f is non-negative,
and (1) is proved.

Next, we prove (2). This time, we set f̃ = f − εe−At. Then the

function f̃ satisfies the differential inequality

∂tf̃ ≥ ∆gf̃ + bf̃ + ε(A+ b)e−At ≥ ∆gf̃ + bf̃ ,(3.8)

for A = ‖b‖L∞ . In view of Part (1), we have f̃ ≥ 0 for all t ∈ [0, T ],

if f̃ ≥ 0 at t = 0. Thus, we choose ε = δ, and obtain the bound
f(x, t) ≥ δe−t‖b‖L∞ , as claimed. The proof of Lemma 3.1 is complete.

q.e.d.

3.2. Regularity of the coupled system. Suppose g(t) is a solution of
the conical Ricci flow on [0, T ). We would like to show that µ(g(t), T−t)
is increasing along the Ricci flow, just as in the case of smooth manifolds.
For this we fix T , and consider the following coupled system of equations
(3.9)
∂g

∂t
(t) = −2Ric(g(t)),

∂F (t)

∂τ
= ∆tF −R(t)F, F |t=t0 = F0,

with τ = T − t, t0 ∈ (0, T ), F0 ∈ C∞(S2) and F > 0.

Lemma 3.2. There exists a unique solution F (t) solving the linear
equation (3.9) satisfying

(1) F ∈ L∞(S2 × [0, t0]) and F ∈ C∞(S2 \ β × [0, t0]).
(2) infS2×[0,t0] F > 0.

(3) For any k ∈ Z+ ∪ {0} and 0 < δ < t0,

(3.10) sup
S2×[δ,t0]

(
|∇F |+ |∆F |+ (t0 − t)2|∆2F |

)
<∞.

Proof. We recall the approximating twisted Ricci flow in Section 2.
Here we consider the unnormalized flow

∂gε
∂t

= −2Ric(gε) + 2θε,

which only differs from the normalized flow by a reparametrization. The
form θε is the same as in (2.3). Then we consider the linear equation,

−∂Fε
∂t

= ∆εFε −RεFε, Fε|t=t0 = F0,

where Rε = R(gε(t))−θε. Obviously, there exists a unique Fε ∈ C∞(S2×
[0, t0]) solving the above equation. Since Rε is uniformly bounded on
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S2 × [0, t0] for all ε ∈ (0, 1), the maximum principle implies that there
exists C > 0 such that for all ε ∈ (0, 1),

sup
S2×[0,t0]

|Fε| ≤ C.

By the maximum principle, there also exists c > 0 such that for all
ε ∈ (0, 1),

inf
S2×[0,t0]

Fε > c.

The evolution for |∇Fε|2gε is given by

− ∂

∂t
|∇Fε|2gε = ∆ε|∇Fε|2gε − |∇ε∇εFε|

2 − |∇̄ε∇εFε|2gε − 2Rε|∇Fε|2gε
+2Re∇ε(RεFε) · ∇̄εFε − trgε(θε)|∇Fε|2gε

≤ ∆ε|∇Fε|2gε − |∇ε∇εFε|
2 − |∇̄ε∇εFε|2gε + C|∇Fε|2gε ,

for some uniform C > 0 which only depends on δ because |∇Rε|2gε is
uniformly bounded on [δ, t0]. On the other hand, the evolution for

Ḟε = ∂Fε
∂t is given by

−∂Ḟε
∂t

= ∆εḞε − ṘεFε −RεḞε − 2Rε∆εFε ≤ −CḞε,

for some uniform C > 0 which only depends on δ because ∆εRε is
uniformly bounded on [δ, t0]. We can use then the same arguments as
before for the twisted scalar curvature. First we notice that(

− ∂

∂t
−∆ε

)
(∆εFε)

2 ≤ −|∇∆εFε|2gε + C,(
− ∂

∂t
−∆ε

)
|∇∆εFε|2gε ≤ −|∇ε∇ε∆εFε|2gε−|∇̄ε∇ε∆εFε|2gε+C|∇∆εFε|2gε ,(
− ∂

∂t
−∆ε

)
(
∂2

∂t2
Fε) ≤ C

∣∣∣∣ ∂2

∂t2
Fε

∣∣∣∣+ C,

for some uniform constant C on [δ, t0]. Then applying the maximum
principle to

H = (t0 − t)|∇∆εFε|2gε +A(∆εFε)
2,

and

G+ = (t0 − t)2(∆ε)
2Fε +A(t0 − t)|∇∆εFε|2gε +A2(∆εFε)

2,

and

G= − (t0 − t)2(∆ε)
2Fε +A(t− t0)|∇∆εFε|2gε +A2(∆εFε)

2,

for sufficiently large A > 0, we can show that there exists C > 0 such
that for all ε ∈ (0, 1),

sup
S2×[δ,t0]

(H +G+ +G−) ≤ C.
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The desired solution F can now be obtained as the limit of F1/j as
j → ∞ after passing to a convergent subsequence. The lemma follows
from the uniform estimates we obtained above because F is smooth
away from β by the standard linear parabolic theory. q.e.d.

3.3. Continuity of the W-functional along the coupled system.

Lemma 3.3. Let (g, F ) be the solution of the coupled system (3.9).
Then W (g, f, τ) is continuous on (0, t0].

Proof. Let φj be a sequence of cut-off functions 0 ≤ φj ≤ 1 on S2

such that each φj vanishes in a neighborhood of β and for any compact
set K in S2 \ β, φj uniformly tends to 1. We can further assume that

sup
t∈[0,t0]

∫
S2
|∇φj |2g → 0.

We first prove the continuity on (0, t0). We fix any time interval
[δ, t0] ⊂ (0, t0]. Then for any ε > 0, there exists j > 0 such that for all
t ∈ [δ, t0],∣∣∣∣∣W (g, f, τ)−

∫
S2\β

φj(τ(R+ |∇f |2) + f − 2)
e−f

4πτ
g

∣∣∣∣∣ < ε.

This is because R, f and |∇f | are all uniformly bounded on [δ, t0].
However, all the data are smooth on S2 \ β × [0, t0], therefore,∫

S2\β φj(τ(R+|∇f |2)+f−2) e
−f

4πτ g is continuous. Then for any t′ ∈ [δ, t0],

there exists δ1 > 0 such that

−ε <

(∫
S2\β

φj(τ(R+ |∇f |2) + f − 2)
e−f

4πτ
g

)∣∣∣∣∣
t

t′

< ε,

for all t ∈ (t′ − δ1, t
′ + δ1) ∩ [δ, t0] and so

|W (g(t), f(t), t0 − t)−W (g(t′), f(t′), t0 − t′)| < 2ε.

This proves the lemma. q.e.d.

Lemma 3.4. Let (g, F ) be the solution of the coupled system (3.9).
Then for any t ∈ (0, t0],

µ(g(t), T − t) ≤W (g(t), f(t), T − t).

Proof. We fix t ∈ (0, t0] Let

Fj = (1 + εj) (φjF (t) + (1− φj)) ∈ C∞(S2),

∫
S2
Fjg = 1.

Since F (t) is bounded and positive, Fj will be uniformly bounded above
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and below from 0. In particular, εj → 0. Let Fj = (4πτ)n/2e−fj . Then
a straightforward calculation shows that

µ(g(t), T − t) ≤ lim
j→∞

W (g(t), fj(t), T − t) = W (g(t), f(t), T − t).

q.e.d.

3.4. Monotonicity of µ(g, τ). We can complete now the proof of the
monotonicity of the function µ(g, τ) along the Ricci flow exactly as in
Perelman’s original arguments (c.f. [55]). Thus, set

(3.11) v =

(
τ(2∆f − |∇f |2 +R) + f − 2

)
e−f

4πτ
, F = (4πτ)−1e−f .

We need the following lemmas on integration by parts:

Lemma 3.5. Let g = eugβ with u ∈ C∞(S2 \ β) ∩ L∞(S2). If f ∈
C∞(S2 \ β) ∩ L∞(S2), and

inf
S2\β

∆f > −∞,(3.12)

then |∇f | ∈ L2(S2, g) and ∫
S2

(∆f)g = 0.(3.13)

Proof. Since ∆f ≥ −C on S2 \ β for some C > 0, f is quasi-
subharmonic on S2 \ β, i.e.,

√
−1

2π
∂∂f + Cg ≥ 0,

where g = gFS+
√
−1

2π ∂∂ϕ(t) is the Kähler current associated to g(t) and

it has bounded local potentials. On the other hand, since f ∈ L∞(S2)
and β is a set of finite points (hence, pluripolar), f can be uniquely
extended to a bounded quasi-subharmonic function on S2. The Chern–
Levine–Nirenberg inequality immediately implies that ∆f is integrable
and integration by parts is valid for bounded subharmonic functions∫

S2
|∇f |2g = −

∫
S2
f(∆f)g <∞,

∫
S2

(∆f)g = 0. q.e.d.

Lemma 3.6. Let F be the unique bounded solution of the coupled
system (3.9). Then for any t ∈ (0, t0),

inf
S2\β

∆

(
|∇F |2

F

)
> −∞.



THE RICCI FLOW ON THE SPHERE WITH MARKED POINTS 139

Proof. A straightforward calculation shows that

∆

(
|∇F |2

F

)
=
|∇∇F |2 + |∇∇̄F |2 + 2Re〈∇∆F, ∇̄F 〉

F

−2Re

(
gzz̄gzz̄(∇z∇zF )∇z̄F∇z̄F

F

)
−3
|∇F |2∆F

F 2
+ 2
|∇F |4

F 3
+
R|∇F |2

F
.

Since F , F−1, ∇F , ∆F , ∇∆F are bounded, the above formula implies
that there exists C > 0 such that

∆

(
|∇F |2

F

)
> −C. q.e.d.

The next lemma follows immediately from the preceding two, because
F , |∇F | are bounded:

Lemma 3.7. Let F be the unique bounded solution of the coupled
system. Then for any t ∈ (0, t0),∫

S2
∆

(
|∇F |2

F

)
g = 0.

We return to the study of the W -functional.

Lemma 3.8. Suppose F is the solution of the coupled system (3.9).
Then for any τ = T − t with t ∈ (0, t0),

(3.14) W (g, f, τ) =

∫
S2
vg(t).

Proof. Since F , |∇F | and ∆F are all bounded for any fixed t ∈ (0, t0),
the lemma follows directly from integration by parts.

Now the same calculation on the smooth part S2 \β as in Perelman’s
original arguments gives

(3.15) �∗v = −2τ |Ric(g) +Hess(f)− (2τ)−1g|2 e
−f

4πτ
,

where �∗ = − ∂
∂t −∆t +R(t). It follows that

∂W

∂t
(g, f, τ) =

∂

∂t

∫
S2
vg(t) =

∫
S2

(−�∗v −∆tv)g(t).(3.16) q.e.d.

Lemma 3.9. Suppose F is the solution of the coupled system (3.9).
Then for any τ = T − t with t ∈ (0, t0),∫

S2
(∆tv)g(t) = 0,

for all t ∈ (0, t0).
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Proof. Indeed, v can be rewritten in terms of F = e−f

4πτ as

(3.17) v = −2τ∆F + τ
|∇F |2

F
+ (τR+ f − 2)F.

As a consequence of Lemma 3.2, Lemma 3.6, Lemma 3.7 and Lemma
3.8, we have

(3.18)

∫
S2

∆tv g(t) = 0.

This completes the proof of the lemma. q.e.d.

An immediate corollary is

Lemma 3.10. For τ ∈ (0, t0), we have

∂W

∂t
(g, f, τ) =

∫
S2
|Ric(g) +Hess(f)− (2τ)−1g|2 e

−f

4πτ
g(t) ≥ 0.

Furthermore, W (g, f, τ) is increasing on [0, t0].

Theorem 3.1. µ(g, T − t) is increasing along the conical Ricci flow
for t ∈ [0, T ).

Proof. By Lemma 3.10 and Lemma 3.4, we have for any 0 < t1 <
t2 < T ,

µ(g(t2), T − t2) ≥ µ(g(t1), T − t1).

We now prove by contradiction that for any 0 ≤ t < T ,

µ(g(t), T − t) ≥ µ(g(0), T ).

Suppose there exists c > 0 and t0 > 0 such that for all t ∈ (0, t0),

µ(g(t), T − t) < µ(g(0), T )− c.
We solve the coupled system (g(t), F (t)) on (0, t0] with

F (t0) ∈ C∞(S2), W (g(t0), f(t0), T − t0)) < µ(g(0), T )− c.
Then immediately, there exists C > 0 such that for all t ∈ (0, t0],

sup
S2×(0,t0]

|f(t)| ≤ C, sup
t∈(0,t0]

∫
S2
|∇f(t)|2g(t) ≤ C.

Let b(t) ∈ R be the function of time defined by

(4πT )−1

∫
S2
e−f(t)−b(t)g(0) = 1.

Then limt→0 b(t) = 0 because g(t) smooth on S2 \ β × [0, t0] and g(t) is

uniformly equivalent to g(0) for all t ∈ [0, t0]. Let f̃(t) = f(t) + b(t).
Then ∣∣∣∣∫

S2
R(0)e−f̃(t)g(0)−

∫
S2
R(t)e−f(t)g(t)

∣∣∣∣
≤

∫
S2
|R(0)−R(t)|e−f̃(t)g(0) +

∫
S2
|R(t)|e−f(t)|eu(t) − eu0 |gβ → 0,
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and ∣∣∣∣∫
S2
|∇f̃(t)|2e−f̃(t)g(0)−

∫
S2
|∇f(t)|2e−f(t)g(t)

∣∣∣∣
≤

∫
S2
|∇f(t)|2e−f̃(t)|e−b(t)+u0 − eu(t)|g(t)→ 0,

since R(t), u(t) and f(t) are both uniformly bounded and converge
smoothly away from β when t→ 0. The above estimates imply that

µ(g(0), T ) ≤ lim inf
t→0

W (g(0), f̃(t), T ) ≤ inf
(0,t0]

W (g(t), f(t), T − t)

< µ(g(0), T )− c,

which is a contradiction. q.e.d.

4. The stable case

In this section, we prove the convergence of the conical Ricci flow
on (S2, β) in the stable case. This case is the easiest, and it does not
require the more sophisticated machinery of the other cases, because
the convergence is just the smooth convergence of the Kähler potentials,
without any need for reparametrizations. The following is a more precise
version of Part 1, Theorem 1.3:

Lemma 4.1. If 2βmax <
∑k

i=1 βi, then for any regular initial metric
g0 = eu0gβ ∈ c1(S2), the conical Ricci flow converges to the unique
constant curvature metric g∞ ∈ c1(S2) on (S2, β) in the sense that the
potentials ϕ are uniformly bounded in some Schauder space Cα(S2) for
some α > 0, and they converge in C∞ on any compact subset of S2 \ β.
Furthermore, (S2, g(t)) converges in Gromov–Hausdorff topology to the
unique constant curvature metric g∞ on (S2, β).

Proof. The proof is an adaptation of the methods in [33] and [34],
exploiting the properness of the functional Fβ (see Appendix B for a
brief review of Fβ) and the fact, established in the previous section,
that the Ricci potential v is uniformly bounded along the conical Ricci
flow.

First, we note as in [34] that if we express the metrics g(t) along the
Ricci flow as

(4.1) g(t) = gFS +

√
−1

2π
∂∂̄ϕ(t),

then v = ϕ̇(t) + c(t), where c(t) is a constant depending only on the
time t. Arguing as in [34], we see that the constant c(t) can be made
uniformly bounded in t by choosing suitably the arbitrary constant in
the definition of ϕ(0). The integrations by parts in the argument are
justified because v is bounded and |∇v| is bounded. With this choice of
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normalization, we have then

(4.2) supt‖ϕ̇‖C0 <∞.

This estimate together with the properness of Fβ can now be shown to
imply the following key estimate for the gradient

(4.3)

∫
S2

√
−1

2π
∂ϕ ∧ ∂̄ϕ ≤ C,

and for the average of ϕ along the flow

(4.4)

∣∣∣∣∫
S2
ϕgFS

∣∣∣∣ ≤ C.
To see this, we begin by noting, as in [33], that the functional Fβ and
the functional F 0

β defined by

(4.5) F 0
β (ϕ) =

√
−1

8π

∫
S2
∂ϕ ∧ ∂̄ϕ− 1

2

∫
S2
ϕgFS

are comparable along the flow,

(4.6) |Fβ(ϕ)− F 0
β (ϕ)| ≤ C.

This is because their difference satisfies

2e−‖ϕ̇‖C0 ≤
∫
S2
e−

1
2
χ(S2,β)ϕ

k∏
i=1

|σi|−βigFS
gFS

=

∫
S2
e−ϕ̇(gβ +

√
−1

2π
∂∂̄ϕ) ≤ 2e‖ϕ̇‖C0 ,

which is uniformly bounded since ‖ϕ̇‖C0 is uniformly bounded.
Next, a straightforward calculation shows that Fβ is decreasing along

the Kähler–Ricci flow, and, hence, using the properness of Fβ,

(4.7) Fβ(ϕ(0)) ≥ Fβ(ϕ) ≥ C1

∫
S2

√
−1

2π
∂ϕ ∧ ∂̄ϕ− C2,

which shows that

(4.8)

∫
S2

√
−1

2π
∂ϕ ∧ ∂̄ϕ ≤ C3,

for all t, which is equation (4.3). It follows also that |Fβ(ϕ)| is uniformly
bounded, and, hence, that |F 0

β (ϕ)| is uniformly bounded. Since we

already know that (4.3) holds, the estimate (4.4) follows at once.
We can now apply the Trudinger inequality on compact Riemannian

manifolds of dimension 2: there exist constants C > 0 and κ > 0 so
that for any p > 0,

(4.9)

∫
S2
ep|ϕ|gFS ≤ Cexp

(
κp2

∫
S2

√
−1

2π
∂ϕ ∧ ∂̄ϕ+ p

∣∣∣∣12
∫
S2
ϕgFS

∣∣∣∣ ).
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We deduce that for any p,

(4.10) supt

∫
S2
ep|ϕ|gFS <∞.

Next we rewrite the equation for the flow as

(4.11) gFS +

√
−1

2π
∂∂̄ϕ = gFSe

ϕ̇e−
1
2
χ(S2,β)ϕ

k∏
i=1

|σi|−βigFS
.

Since e
1
2
χ(S2,β)|ϕ| is in Lp for any p <∞, we can apply Hölder’s inequality

and find that the right hand side of the above equation is in Lp for some
p > 1. By the standard W 2,p estimate for elliptic linear PDE, we can
conclude that

(4.12) ϕ− 1

2

∫
S2
ϕgFS

is uniformly bounded in W 2,p(S2) ⊂ Cα(S2) for α = 2 − 2
p . In view of

(4.4), we can conclude that ϕ is uniformly bounded in Cα(S2).
We can then apply the parabolic versions ([34]) of the standard es-

timates of Aubin and Yau for the second derivatives, and of Calabi for

the third order derivatives, modified by ε log
∏k
i=1 |σi|2FS , to obtain the

uniform boundedness of the potentials ϕ in C∞(K) for any compact
subset K ⊂⊂ S2 \ β.

Applying the arguments in [36] (c.f. Lemma 6.1), one can show that
‖ϕ̇(t)‖L∞ → 0 as t → ∞. This implies the convergence of the poten-
tials ϕ in C∞ on compact subsets of S2 \ β for a subsequence ϕ(tj).
Since the limit is unique, the convergence along subsequences implies
the convergence of the whole flow. The Gromov–Hausdorff convergence
follows immediately because ‖ϕ̇‖Cα(S2,gFS) and ‖ϕ‖Cα(S2,gFS) are uni-
formly bounded for all t > 0 for some fixed α > 0 and the standard
sphere metric gFS . The proof of the lemma is complete. q.e.d.

5. Sequential convergence of the conical Ricci flow

The sequential convergence for the conical Ricci flow in both the
semi-stable and unstable cases can be established as follows.

Lemma 5.1. After passing to a subsequence, for any sequence tj →
∞, the spaces (S2, g(tj)) converge to a compact length metric space
(X, d) satisfying the following properties:

(1) X is homeomorphic to S2;
(2) the singular set D is a finite set of isolated points;
(3) (X \D, d) is a smooth surface equipped with a smooth Riemannian

metric with volume 2.
In particular, the convergence is smooth on X \D.
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Proof. We first apply Corollary 2.1 for g(tj) so that we can find
smooth metrics gj for all j such that

R(gj) ≥ −K, dGH((S2, g(tj)), (S2, gj)) ≤ j−1,

where K is the constant in Corollary 2.1. In particular, gj ∈ c1(S2)
and the diameter of (S2, gj) is uniformly bounded. We can now di-
rectly apply Cheeger–Colding theory and obtain a Gromov–Hausdorff
limit (X, d), a compact metric length space, after taking a convergent
subsequence of (S2, gj). Without loss of generality and by passing to
a convergent subsequence, we can assume that (S2, g(tj)) converges to
(X, d) in Gromov–Hausdorff topology.

We would like to show that the singular set D of (X, d) is finite
and that, in fact, it coincides with the set of limiting points of the
conical points along the sequence (S2, g(tj)). Let D′ be the set of all
the limiting points of the conical points. Obviously, D′ must be finite.
Furthermore, D′ ⊂ D because by (1) the volume comparison, (2) the
uniform lower bound of the curvature, and (3) the fact that the angles
of all the conical points are less than 2π(1−βk), there exists δ > 0 such
that, for any conical pj , the geodesic ball Bg(t)(pj , r) has volume less
than (1 − δ)BE(0, r) for all t ≥ 0 and r ∈ (0, 1], where BE(0, r) is the
Euclidian ball of radius r.

We will show that D = D′. Suppose P ∈ X \ D′, then there ex-
ist a sequence of points Pj ∈ (S2, g(tj)) converging to P in Gromov–
Hausdorff sense. Since D′ is finite, we can assume that the distance
from P to D′ is bounded from below by 2r > 0. Therefore, the distance
from Pj to the set of all conical points in (S2, g(tj)) is bounded from
below by r for sufficiently large j. We then consider the sequence of
balls Bg(tj)(Pj , r), which do not contain any conical point. Since the

curvature of g(tj) is uniformly bounded on Bg(tj)(Pj , r) and one has

uniformly nonlocal κ-collapsing for all (S2, g(tj)), the injectivity radius
of any point in Bg(tj)(Pj , r/A) is uniformly bounded below by apply-

ing Klingenberg’s lemma (see Section 8.4 in [55]) for a fixed sufficiently
large A > 0. Therefore, Bg(tj)(Pj , r/A) converges in C1,α after passing
to a convergent subsequence by Gromov’s compactness theorem. This
implies that P must be a regular point of X and so D = D′.

We can now establish the partial C0-estimates as in [22]. Of course,
one has to make a slight modification and this is essentially the case
studied in [10, 52]. However, in our situation, the singular set is much
simpler since there is no singular set of Hausdorff codimension greater
than 2 and, thus, each tangent cone of (X, d) is a flat metric cone on
C. This implies that each tangent cone is good, i.e., one can construct
appropriate cut-off functions. Hence, one can immediately obtain the
partial C0-estimates for the evolving metric g(t). More precisely, there
exist ε > 0 and N > 0 such that for all t ≥ 0 and any p ∈ S2, there
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exists σ ∈ H0(S2,K−NS2 ) satisfying(
|σ|2(g(t))N

)
(p) ≥ ε,

∫
S2
|σ|2(g(t))N+1 = 2.

Here g(t) is the volume form of g(t) and so it is a hermitian metric on
K−1

S2 . Suppose p∞ is a singular point in (X, d). Then any tangent cone at

p∞ must be a metric cone Cγ on C with a cone metric gγ =
√
−1

2π ∂∂|z|2γ
for some γ ∈ (0, 1] with 0 being p∞. The trivial line bundle on Cγ
is equipped with the hermitian metric e−|z|

2γ
. Let 0 ≤ F ≤ 1 be the

standard smooth cut-off function on [0,∞) with F = 1 on [0, 1/2] and
F = 0 on [1,∞). We then let

ρε = F

(
ηε

log ε

)
, ηε = max(log |z|2, 2 log ε).

Then one can show by straightforward calculations that∫
C
|∇ρε|2gγ < C(− log ε)−1,

for some fixed constant C > 0 uniform in ε ∈ (0, 1]. Obviously for any
K ⊂⊂ C∗ and δ > 0, there exists sufficiently small ε > 0 such that
ρε = 1 on K, supp ρε ⊂⊂ C∗. Using the construction of ρε, one can
prove the partial C0-estimate as in [22].

We can now make use of the arguments of [22]: the existence of the
above sections σ(g(t)) for any t implies that the surfaces (S2, g(t)) can
be uniformly imbedded into some CPN , separating points, and that the
limit of their images must be a normal variety. Since this normal variety
is a projective degeneration of S2, it must be S2.

From Shi’s local estimates [40], namely that uniform bounds for the
curvature along the Ricci flow on any bounded domains implies similar
bounds for the derivatives of the curvature on smaller domains, the
convergence on X \ D is smooth and the limiting metric is a smooth
metric on X \D. The lemma is then proved. q.e.d.

Xiaochun Rong has pointed out to us that one can apply Perel-
man’s stability theorem for Alexandrov spaces instead of the partial
C0-estimate to show that X is homeomorphic to S2. But what was
established above via the partial C0 estimate is slightly stronger: the
image in PN is a smooth P1, excluding the possibility of singular ratio-
nal curve which is also homeomorphic to S2, e.g., a rational curve with
cuspidal singularities.

To identify the metric on the limiting space, we make use next of
Hamilton’s entropy functional [23], defined for metrics with infS2R > 0
by

(5.1) N =

∫
S2
R logRg.
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The assumption infS2 R0 > 0 can be removed by a trick of Chow [13],
which still works in exactly the same way in the case of the sphere with
marked points (c.f. Section 8.2, Chapter 5 [15]), after replacing R by
R− s, where s is defined by ∂s

∂t = s(s− 1
2χ(S2, β)) with s(0) < infS2 R0.

Thus, we can, henceforth, assume that infS2R > 0.

Lemma 5.2. Let v be the Ricci potential defined as in (2.22). Along
the conical Ricci flow, we have

(5.2)
∂N

∂t
= −

∫
S2

|∇R+R∇v|2

R
g − 2

∫
S2
|∇∇v − 1

2
(∆v)g|2g,

if infS2 R0 > 0.

Proof. From the flow equation for R and the maximum principle
Lemma 3.1, it follows that infS2 R > 0 for all t if infS2 R0 > 0. Thus, the
entropy functional N is well-defined for all time. It suffices now to ap-
ply the same arguments as in Hamilton [23]. The integration by parts
which are required are justified in the lemmas which we state below.

q.e.d.

Lemma 5.3. Let g = eugβ be a conical metric with u, ∇u, and ∆u
all bounded, where ∆ is the Laplacian with respect to g. Then∫

S2
|∇2u|2g =

∫
S2

(∆u)2g +

∫
S2
Rij∇iu∇ju g.

In particular,
∫
S2 |∇

2u|2g <∞.

Proof. Let ρε be a family of cut-off functions ρε, 0 ≤ ρε ≤ 1, with the
following properties: for any ε > 0 and anyK ⊂⊂ S2\β, ρε ∈ C∞0 (S2\β),
ρε = 1 on K, and

∫
S2 |∇ρε|

2gβ < ε.∫
S2
ρ2
ε∇i∇ju∇i∇ju = −2

∫
S2
ρε∇iρε∇ju∇i∇ju−

∫
S2
ρ2
ε ∇ju∇i∇j∇iu

= −2

∫
S2
ρε∇iρε∇ju∇i∇ju−

∫
S2
ρ2
ε∇ju∇j∇i∇iu

+

∫
S2
ρ2
εR

i
j∇ju∇iu

=

∫
S2
ρ2
ε (∆u)2 +

∫
S2
ρ2
εR

i
j∇ju∇iu

− 2

∫
S2
ρε∇iρε∇ju∇i∇ju+ 2

∫
S2
ρε∇jρε∇ju∆u.

Hence,∣∣∣∣∫
S2
ρ2
ε |∇2u|2 −

∫
S2
ρ2
ε (∆u)2 −

∫
S2
ρ2
εR

i
j∇ju∇iu

∣∣∣∣
≤ 2

∣∣∣∣∫
S2
ρε∇iρε∇ju∇i∇ju

∣∣∣∣+ 2

∣∣∣∣∫
S2
ρε∇jρε∇ju∆u

∣∣∣∣
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≤ 2

(∫
S2
|∇u|2|∇ρε|2

)1/2(∫
S2
ρ2
ε |∇2u|2

)1/2

+ 2

(∫
S2
|∇ρε|2

)1/2(∫
S2
|∇u||∇u|

)1/2

≤ 2

(∫
S2
|∇u|2|∇ρε|2

)1/2

×
(∫

S2
ρ2
ε |∇2u|2 −

∫
S2
ρ2
ε (∆u)2 −

∫
S2
ρ2
εR

i
j∇ju∇iu

)1/2

+ C

(∫
S2
|∇u|2|∇ρε|2

)1/2

+ 2

(∫
S2
|∇ρε|2

)1/2(∫
S2
|∇u||∇u|

)1/2

,

for some uniform constant C > 0 since |∇u|, ∆u and R are bounded.
Then the proposition is proved by letting ε→ 0. q.e.d.

More generally, we have the following proposition, which can be
proved in exactly the same way:

Lemma 5.4. Let g be a conical metric g = eugβ as in the preceding
lemma. Suppose f ∈ C∞(S2 \β)∩L∞(S2), with |∇f |, ∆f bounded, and
∇(∆f) ∈ L2. Then∫

S2
|∇2f |2g =

∫
S2

(∆f)2g +

∫
S2
Rij∇if∇jf g,

where ∆ is the Laplacian with respect to g. In particular,∫
S2
|∇2f |2g <∞.

Since R logR is bounded from below, the entropy N is bounded from
below, and Lemma 5.2 implies immediately

Lemma 5.5. If infS2 R0 > 0, then

(5.3) lim
t→∞

∫ t+1

s=t

∫
S2
|∇∇v − 1

2
(∆v)g|2g ds = 0.

The following lemma will help establish the limiting soliton equation
of the conical Ricci flow. It should be well-known in complex analysis,
but we include the proof since we cannot find exact references.

Lemma 5.6. Let f(z, z̄) be a smooth real-valued harmonic function
on the punctured disc B∗ ⊂ C. Then

f(z, z̄) = Re(F (z)) + c log |z|2,

where F (z) is a holomorphic function on B∗ and c ∈ R. In particular,
if ef ∈ L1(B), then F extends to a holomorphic function on B.
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Proof. Let h be the exponential map from the left plane
{w ∈ C | Re(w) < 0} to B∗. Then u(w) = h∗f(w) = f(ew) is also
a harmonic function satisfying u(w + 2π

√
−1) = u(w). Since the left

plane is simply connected, there exists a complex conjugate v(w) for
u(w). In particular, ∇v(w + 2π

√
−1) = ∇v(w) for all w and we can

define a holomorphic function G satisfying

G(w) = u(w) +
√
−1v(w)− cw, G(w + 2πi

√
−1) = G(w),

for some c ∈ R. Hence,

f(z, z̄) = Re(G(log z)) + c log |z|,

and F (z) = G(log z) is obviously a holomorphic function on B∗ because
G(w + 2π

√
−1) = G(w).

If ef ∈ L1(B), then∫
B
ef =

∫
B
|z|2c|eF/2|2 <∞.

Hence, zmeF/2 is a holomorphic function on B for some sufficiently large
m ∈ Z+ and this implies that F cannot have a singularity at 0. The
proof of the lemma is complete. q.e.d.

Lemma 5.7. Let tj → ∞. Then by passing to a subsequence,
(S2, g(tj)) converges in Gromov–Hausdorff topology to one of the fol-
lowing:

(1) a conical metric space (S2, β∞) of constant curvature 1−1
2

∑k
i=1 βi,

(2) a rotationally symmetric conical shrinking gradient Ricci soliton
on (S2, β∞) with β∞ = βp∞ [p∞] + βq∞ [q∞] with 0 ≤ βq∞ < βp∞ < 1.

Proof. Using Lemma 5.1, we see that the flow converges smoothly on
X \D. Since R = ∆v + 1

2χ(S2, β) and v is uniformly bounded in C0, it
follows from the standard estimates for the Laplace equation that v(tj)
is locally bounded in C2,α for all j near any limiting point in X \ D,
where D is the singular set of X. After passing to a subsequence, we
can assume that (S2, g(tj)) converges in Gromov–Hausdorff topology to
(S2, d) equipped with a smooth Riemannian metric g∞ on S2 \D, where
D is the singular set of (S2, d). Then v(tj) converges smoothly on S2 \D
to v∞ satisfying on X \D

(5.4) R(g∞) =
1

2
χ(S2, β) + ∆∞v∞.

Furthermore, from the curvature bounds and injectivity radius bounds,
for any domain K ⊂⊂ S2 \D, we can apply the local version of Hamil-
ton’s compactness theorem for the Ricci flow, i.e., there exist domains
Kj ⊂⊂ S2 \ D and diffeomorphisms Φj : K → Kj , such that the Ricci
flow g(tj + t) for t ∈ [0, 1] converges to a smooth family of Riemannian
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metrics g∞(t) for t ∈ [0, 1] on K satisfying the Ricci flow

∂g∞(t)

∂t
= −Ric(g∞(t)) +

1

2
χ(S2, β)g∞(t), g∞(0) = g∞.

In particular, v(tj + t) converges to v∞(t) smoothly on K × [0, 1] after
reparametrization.

We claim that on S2 \D, we have

∇2
∞v∞ =

1

2
(∆v∞)g∞.

Otherwise, there exists a domain K ⊂⊂ S2 \D such that

inf
K
|∇2
∞v∞ −

1

2
(∆v∞)g∞|2g∞ > 0.

Then there exists some δ ∈ (0, 1) such that

inf
K×[0,δ]

|∇2
g∞(t)v∞(t)− 1

2
(∆g∞(t)v∞(t))g∞(t)|2g∞(t) > 0,

in particular,∫ 1

0

∫
K
|∇g∞(t)∇g∞(t)v∞(t)− 1

2
(∆∞v∞(t))g∞(t)|g∞(t)g∞(t) > 0.

From the smooth convergence of the Ricci flow g(tj+t), this then implies
that

lim inf
j→∞

∫ tj+1

t=tj

∫
S2
|∇2v − 1

2
(∆v)g|2g g dt > 0.

Contradiction by Lemma 5.5.
Hence, (g∞, v∞) is a shrinking gradient soliton on X \D. In partic-

ular, X∞ =↑ ∂v∞ is a holomorphic vector field on X \ D. From the
partial C0-estimate, g∞ extends to a Kähler current with bounded local
potentials. Since v∞ is bounded in W 1,2(S2) with respect to a fixed
smooth metric on S2, X∞ must extend to a holomorphic vector field on
S2.

We consider the following two cases:

1) X∞ is trivial.

In this case, v∞ is a constant and the limiting metric is a con-
stant curvature metric on S2 \D. Suppose that D = {P1, ..., Pl}.
We choose holomorphic sections σi ∈ H0(S2,−KS2) such that σi
vanishes at Pi of order 2. Let gFS ∈ c1(S2) be the standard smooth
sphere metric on S2. From the partial C0 estimate and the fact

that the limiting metric has constant curvature 1 − 1
2

∑k
i=1 βi on

X \D, the limiting equation must be of the following form

g∞ = gFS +

√
−1

2π
∂∂ϕ∞

= e−(1− 1
2

∑k
i=1 βi)ϕ∞(gFS)1− 1

2

∑k
i=1 βi |σ1|−

∑k
i=1 βieF ,
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for some bounded potential ϕ∞ and some smooth harmonic func-
tion F on S2 \D. Lemma 5.6 implies that the preceding equation
can be rewritten in the following form

g∞ = gFS +

√
−1

2π
∂∂ϕ∞ =

e−(1− 1
2

∑k
i=1 βi)ϕ∞∏l

i=1 |σi|
2γi
gFS

gFS .

This implies that g∞ is a conical constant curvature metric. The
fact that the cone angle of each conical point is less than 2π implies

that γi ∈ (0, 1/2), and
∑l

i=1 2γi =
∑k

i=1 βi, from the Gauss–
Bonnet formula.

2) X∞ is nontrivial.

Each nontrivial holomorphic vector field on S2 can vanish at two
distinct points at most and the imaginary part of X is a Killing
vector field induced from an S1-action. This implies that D can
have at most two points fixed by X∞ and the limiting soliton
metric g∞ must be rotationally symmetric. By the same argument
as for the case of X∞ = 0 or directly by solving an ODE equation,
we see that the limiting metric must be a conical shrinking gradient
Ricci soliton metric on S2 with 0, 1 or 2 conical points. We denote
(S2, β∞) the limiting conical sphere. In particular, β∞ 6= 0, by the
Gauss–Bonnet formula.

Combining the above, Lemma 5.7 is proved. q.e.d.

6. The semi-stable case: 2βmax =
∑k

i=1 βi

The goal of this section is to obtain a sequence converging to a conical
constant curvature metric space along the conical Ricci flow on a semi-
stable pair (S2, β).

The first step in the proof is to establish the following lower bound for

the conical functional Fβ(ϕ): let g(t) = gβ +
√
−1

2π ∂∂ϕ(t) be the solution
of Ricci flow (1.5). Then for any ε > 0, there exists Cε > 0 such that
for all t ∈ [0,∞) and ϕ = ϕ(t),

(6.1) Fβ(ϕ) ≥ −ε
√
−1

2π

∫
S2
∂ϕ ∧ ∂ϕ− Cε.

To do this, we introduce for each ε > 0 the following approximation
Fβ,ε(ϕ) of the functional Fβ(ϕ) of (B.2),

Fβ,ε(ϕ) =

√
−1

8π

∫
S2
∂ϕ ∧ ∂ϕ− 1

2

∫
S2
ϕgβ

− 1
1
2χ(S2, β)− ε

log

∫
S2
e−( 1

2
χ(S2,β)−ε)ϕ+hβgβ.
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We claim that for any ε ∈ (0, 1
2χ(S2, β)), the functional Fβ,ε(ϕ) is

bounded from below,

(6.2) Fβ,ε(ϕ) ≥ −Cε,

for all ϕ ∈ PSH(S2, gβ) ∩ L∞(S2). This can be shown by the following
argument. First by Corollary A.1, the conical alpha invariant is equal to
1
2 for the semi-stable pair (S2, β). By the interpolation method in [47],
the Euler–Lagrange equation for the functional Fβ,ε(ϕ) is a Monge–
Ampère equation which can be solved by the method of continuity for
these values of ε (see [47]). By the results of [3], the corresponding
functional Fβ,ε(ϕ) must be bounded from below by a constant for these
values of ε.

The lower bound for the functional Fβ,ε implies the following lower
bound for the functional Fβ,

Fβ(ϕ) ≥
√
−1

8π

∫
S2
∂ϕ ∧ ∂̄ϕ− 1

2

∫
S2
ϕgβ

− 2

χ(S2, β)
(log

∫
S2
e−( 1

2
χ(S2,β)−ε)ϕgβ − εinfS2ϕ)

≥ χ(S2, β)− 2ε

χ(S2, β)
Fβ,ε(ϕ)

+
2ε

χ(S2, β)
(

√
−1

8π

∫
S2
∂ϕ ∧ ∂̄ϕ− 1

2

∫
S2
ϕgβ + infS2ϕ)

≥ 2ε

χ(S2, β)
(

√
−1

8π

∫
S2
∂ϕ ∧ ∂̄ϕ− 1

2

∫
S2
ϕgβ + infS2ϕ)− Cε.(6.3)

By Theorem 1.2 and the remark at the beginning of Section §6, we
know that the curvature and the diameter along the conical Ricci flow

are uniformly bounded. We let gβ = ĝ +
√
−1

2π ∂∂ψ and g(t) = ĝ +
√
−1

2π ∂∂ψ+
√
−1

2π ∂∂ϕ(t), where ĝ ∈ [gβ] is a smooth Kähler metric and ψ is

a fixed continuous function in PSH(S2, ĝ). Let gj be the approximating
smooth Kähler metrics for g(t) for a fixed t after applying Corollary 2.1.

Then there exists C > 0 such that gj = ĝ +
√
−1

2π ∂∂(ψ + ϕj) satisfy

Ric(gj) ≥ −Cgj , diamgj (S
2) ≤ C, |ϕj − ϕ(t)|L∞(S2) → 0,

for all j > 0. Then the Green’s functions Gj for gj are uniformly
bounded below for all j and so

− inf
S2

(ψ + ϕj) ≤ −1

2

∫
S2

(ψ + ϕj)(ĝ +

√
−1

2π
∂∂(ψ + ϕj)) +K

≤
∫
S2

√
−1

4π
∂ϕj ∧ ∂ϕj +

1

2

∫
S2
ϕjgβ +K ′′,
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for fixed K, K ′ > 0 because ψ ∈ PSH(S2, ĝ) ∩ L∞(S2). Hence, by
letting j →∞, we have

(6.4) − inf
S2
ϕ ≤

∫
S2

√
−1

4π
∂ϕ ∧ ∂ϕ+

1

2

∫
S2
ϕgβ +K ′′,

since ϕj converges to ϕ in L∞, where K ′′ only depends on K and not
on t. Substituting this inequality into (6.3) gives the desired inequality
(after a renaming of ε).

We remark that in the last step, we can avoid using the lower bound of
the Green’s function for the evolving metrics. It suffices to approximate
the evolving metrics g(t) and ϕ by smooth metrics and potentials so
that the estimate (6.4) holds uniformly for the approximation.

The estimate (6.1) is slightly weak, since the ideal bound for the Fβ
functional should be a uniform bound from below by a constant. How-
ever, (6.1) suffices for our purpose, which is to show that the curvature
converges to a constant:

Lemma 6.1. There exists a sequence tj → ∞ such that the scalar
curvature R(tj) converges uniformly to 1−βmax along the conical Ricci
flow.

Proof. First, a straightforward calculation shows that

∂

∂t
Fβ(ϕt) = −

∫
S2
v(1− e−v)g ≤ 0,

where v is the Ricci potential defined in Theorem 1.1. Next, we claim
that

(6.5) inf
t∈[T,∞)

∫
S2
v(1− e−v)g = 0,

for any T ≥ 0. We prove the claim by contradiction. If not, then
inf [T ′,∞)

∫
S2 v(1 − e−v)g > δ for some fixed δ > 0 and some sufficiently

large T ′ > 0. This implies that

Fβ(ϕt) ≤ −δt+ C1,

for some fixed C1 > 0. On the other hand, by the estimate for v
established in Lemma 2.5 and the fact that ϕ̇(t) = v, ϕ(t) has at worst
linear growth in t modulo a bounded time-dependent constant. Thus,∫

S2

√
−1∂ϕ(t) ∧ ∂ϕ(t) =

∫
S2
ϕ(t)(gβ − g(t)) ≤ At+ C2,

for some fixed A,C2 > 0, where gβ and g(t) are the Kähler forms asso-
ciated to gβ and g(t). Therefore,

Fβ(ϕt) + ε

∫
S2

√
−1∂ϕt ∧ ∂ϕt ≤ −δt+ ε

∫
S2

√
−1∂ϕt ∧ ∂ϕt + C1

≤ −(δ −Aε)t+ C3 → −∞
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as t → ∞ if we choose ε > 0 sufficiently small. This would contradict
the estimate (6.1).

Since |∇v| is uniformly bounded for t ∈ [0,∞), and we have κ-
nonlocal collapsing along the flow, the equality (6.5) implies that there
exists a sequence tj → ∞ with limj→∞ supS2 |v(tj)| = 0. Furthermore,
we have

lim
j→∞

sup
(z,t)∈S2×[tj ,tj+1]

|v(z, t)| = 0,

since ∂v
∂t = ∆v + v and v is uniformly bounded.

Finally, one can apply the smoothing techniques in [36] in the conical
setting and show that there exist a sequence t′j ∈ [tj , tj + 1]→∞ such
that

lim
j→∞

sup
S2

(|∇v(t′j)|+ |R(t′j)−
1

2
χ(S2, β)|) = 0.

This requires only the application of the maximum principle over
[tj , tj + 1] combined with a family of barrier functions as in Lemma 3.1,
which is justified by the regularity of v. For example, for the bound
on |∇v|, we would apply the maximum principle to e−2t(v2 + t|∇v|2)−
ε log |σ|2g, and for ∆v, to e−(t−1)(|∇v|2+(t−1)∆v)−ε|σ|2g, and let ε→ 0.
This completes the proof of Lemma 6.1. q.e.d.

By Lemma 5.7, after passing to a subsequence, we can assume that
(S2, g(tj)) in Lemma 6.1 converges to a limiting space (X, d).

Lemma 6.2. The limiting space (X, d) has the following properties:
(1) The singular set D consists of two points p∞, q∞ with weights

βmax,
(2) the conical Ricci flow converges in Gromov–Hausdorff topology to

((S2, β∞), g∞) with β∞ = βmax[p∞] + βmax[q∞], and g∞ ∈ c1(S2) is the
unique conical metric with constant curvature 1− βmax,

(3) the convergence is in C∞ on S2 \ {p∞, q∞}.

Proof. By Lemma 5.7 and Lemma 6.1, (S2, g(tj)) converges to a
conical metric of constant curvature 1 − βmax. The angle of pk is
2(1−βmax)π, which is the smallest angle. The point pk will converge to a
limiting point p∞ in the limiting space (X, d) along any convergent sub-
sequence in the Gromov–Hausdorff topology. Applying the convergence
results from the theory of Cheeger–Colding and volume comparison, we
obtain

V ol(Bd(p∞, r))

V ol(B1−βmax(r))

= lim
j→∞

V ol(Bg(tj)(pk, r))

V ol(B1−βmax(r))
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≤ lim
j→∞

lim
r→0

(
V ol(Bg(tj)(pk, r))

V ol(BinfS2 R(g(tj))(r))

)(
V ol(BinfS2 R(g(tj))(r))

V ol(B1−βmax(r))

)
= (1− βmax),

because the curvature tends to 1 − βmax uniformly as j → ∞, where
BH(r) is the metric ball of radius r on S2 of constant curvature H
for H > 0. Therefore, p∞ must be a singular point on X by volume
comparison. In particular, p∞ is a conical point with cone angle at most
2(1− βmax)π.

Applying Troyanov’s stability condition [56] for the existence of con-
stant curvature combined with R = 1−βmax on S2, we can conclude that
there can be only another conical point q∞ with the same cone angle as
p∞, otherwise, the curvature must be strictly less than 1− βmax.

Since the constant curvature metric in c1(S2) with two conical points
of cone angle 2π(1− βk) is unique, the flow must converge to the same
limiting space for any convergent subsequence. This completes the proof
of Lemma 6.2. q.e.d.

By the uniqueness of conical constant curvature metric on (S2, β∞),
the limiting metric g∞ must be rotationally symmetric. We now want to
show that the conical points p1, p2, ..., pk−1 will merge into one point in
the limiting space. This would complete the proof of Part 2 of Theorem
1.3.

Lemma 6.3. Let A = {p1, p2, ..., pk−1}. Then the diameter of A with
respect to g(tj) converges to 0 as tj →∞. Furthermore, A converges to
a conical point in the limiting space.

Proof. First we pick pk and let p∞ be the limiting point of pk along
the flow. It suffices to show that lim infj→∞ distg(tj)(pk,A) > 0 by
Lemma 6.2. This is because there is only one conical point q∞ other
than p∞, and the limit of each pi must be a singular point by the volume
comparison, hence, A must converge to q∞.

We will prove the proposition by contradiction. Suppose that a sub-
set A′ of A converges to p∞ instead of q∞, say q1, ..., ql with weights
βq1 , ..., βql . We know that the limiting space is a football of constant
curvature metric. Let 2L be the distance from p∞ and q∞ on (X, d).
Then Bg(tj)(pk, L) converges to the half football Bg∞(p∞, L) in Gromov–
Hausdorff topology, furthermore, the convergence is smooth on
Bg∞(p∞, L) \Bg∞(p∞, L/2).

Let K = S2 \ {Bg∞(p∞, L/4) ∪ Bg∞(q∞, L/4)}. Then for any ε > 0,
there exists T > 0 such that for tj > T , there exists a diffeomorphism

σtj : K → K(tj) ⊂ S2 \ β,
such that

‖σ∗tjg(tj)− g∞‖C2(K,g∞) < ε.
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Let η be a smooth cut-off function on (S2\β∞, g∞) such that 0 ≤ η(z) ≤
1 on S2 with η = 0 on S2\Bg∞(q∞, L/2) and η = 1 on S2\Bg∞(p∞, L/2).
Let σ̃tj be a smooth diffeomorphism of S2 which is a smooth extension

of σtj to S2 \Bg∞(q∞, L/4). We then define a conical metric g̃(t) by

(6.6) g̃(tj) = ηg∞ + (1− η) σ̃∗tjg(tj).

Obviously, g̃(tj) = g∞ on Bg∞(q∞, d/2) and g̃(tj) = σ̃∗tjg(tj) on

Bg∞(p∞, d/2).
Since g(tj) converges to g∞ on K, g̃(tj) converges to g∞ on K smooth-

ly as tj → ∞. This implies that R(g̃(tj)) converge to 1 − 1
2

∑k
i=1 βi in

L∞(S2), and the total volume of g̃(tj) converges to 2, i.e.,
limt→∞

∫
S2 g̃(tj) = 2 because Bg(tj)(pk, d/2) converges to Bg∞(p∞, d/2)

in Gromov–Hausdorff topology as well as in measure. Therefore,

(6.7) lim
t→∞

∫
S2
R(g̃(tj))g̃(t) = 2−

k∑
i=1

βi.

On the other hand, by Gauss–Bonnet formula,

(6.8)

∫
S2
R(g̃(tj))g̃(t) = 2− βk −

l∑
i=1

βqi > 2−
k∑
i=1

βi.

Equations (6.7) and (6.8) lead to contradiction by choosing t sufficiently
large. q.e.d.

This lemma illustrates why one cannot apply a local version of Hamil-
ton’s compactness theorem to the local C∞-convergence as in Propo-
sition 5.3 in [29]. This is because from the partial C0-estimates, the
gauge transformations come from the C∗-action, and all points but pk
will converge to a single limiting conical point. Thus, the injectivity
radius will always tend to 0 for generic points on S2 \ β.

7. The unstable case: 2βmax >
∑k

i=1 βi

In this section, we will show that in the unstable case, the conical
Ricci flow must converge to the unique shrinking gradient Ricci soliton.
Such a soliton metric is rotationally symmetric and does not depend on
the initial conical metric.

7.1. Uniform convergence to a rotationally symmetric soliton.
First we show that if (S2, β) is unstable, then any sequential limit cannot
be a conical constant curvature metric space.

Lemma 7.1. Suppose (S2, β∞) is a sequential limit of the conical
Ricci flow (1.2) on an unstable pair (S2, β). Then β∞ = βp∞ [p∞] +
βq∞ [q∞] with 0 ≤ βq∞ < βp∞ < 1. Therefore, the limiting soliton
metric cannot be a constant curvature metric.
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Proof. Suppose (S2, g(tj)) converges to a limiting conical shrinking
gradient Ricci soliton ((S2, β∞), g∞). By the volume comparison, pk
must converge to a limiting conical point, say p∞, such that the cone
angle of g∞ at p∞ must be at most 2π(1 − βk) by volume comparison
as the curvature is uniformly bounded. On the other hand, by the
boundedness of R and smooth convergence of R on S2 \D, we have∫

S2
R(g∞)g∞ = 2−

k∑
i=1

βi.

Suppose β∞ = βp∞ [p∞]+
∑l

i=1 βqi [qi] with distinct points p∞, q1, ..., ql ∈
D. Then βp∞ ≥ βk and by the Gauss–Bonnet formula, we have

βp∞ +

l∑
i=1

βqi =

k∑
i=1

βk,

and so
l∑

i=1

βqi ≤
k−1∑
i=1

βi < βk ≤ βp∞ .

This contradicts Troyanov’s stability condition and so (S2, β∞) does not
admit a conical constant curvature metric. q.e.d.

Lemma 7.2. Assume that (S2, β∞, gsol,β∞) is the limit of a sequence
(S2, β, g(tm)) along the conical Ricci flow as m → ∞. Then (S2, β∞,
gsol,β∞) is a rotationally symmetric conical gradient shrinking Ricci soli-
ton. Furthermore,

pi → p∞, i ∈ I, pj → q∞, j ∈ J,
and

βp∞ =
∑
i∈I

βi, βq∞ =
∑
j∈J

βj ,

for some I ⊂ {1, 2, ..., k} and J = {1, 2, ..., k} \ I.

Proof. By Lemma 7.1, the limiting metric cannot have constant cur-
vature and there are at most two distinct conical points. Then by the
classification of nontrivial shrinking solitons with conical singularities on
S2, the limiting soliton metric must be always rotationally symmetric.

Without loss of generality, we can assume that for some I⊂{1, 2, ..., k}
and J = {1, 2, ..., k} \ I,

pi → p∞, pj → q∞,

for i ∈ I and j ∈ J . It suffices to show that the weights at p∞ and q∞
satisfy

βp∞ =
∑
i∈I

βi, βq∞ =
∑
j∈J

βj .

This can be shown by the same arguments in the proof of Lemma 6.3
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by gluing and by the Gauss–Bonnet formula, because the curvature is
uniformly bounded and converges uniformly away from p∞ and q∞.

q.e.d.

Lemma 7.3. Let S be the set of all conical shrinking gradient Ricci
solitons (S2, β∞, gsol,β∞) which arise as sequential limits for the Ricci
flow. Then S is a finite set.

Proof. For fixed β∞, the conical shrinking soliton (S2, β∞, gsol,β∞) is
unique. The corollary immediately follows from Lemma 7.2 and the fact
that there are only finitely many combinations of I t J = {1, 2, ..., k}.

q.e.d.

Lemma 7.4. Let g(t) be the solution of the Ricci flow. Then
(S2, β, g(t)) converges uniformly in Gromov–Hausdorff topology to a
shrinking gradient conical Ricci soliton (S2, β∞, gsol,β∞) for t→∞.

Proof. The proof is by contradiction. Suppose not. Then there ex-
ist two sequences of solutions for the conical Ricci flow g(tl) and g(t′l)
converging to two distinct conical shrinking solitons (S2, β′, g′sol) and
(S2, β′′, g′′sol) in Gromov–Hausdorff topology, as l → ∞. In particular,
there exists D > 0 such that

dGH((S2, g′), (S2, g′′)) = 2D,

and L > 0 such that for all l > L,

dGH((S2, g(tl)), (S2, g(t′l))) > D.

Without loss of generality, we can assume t′l > tl for each l. Then we
consider the function

fl(s) = dGH((S2, g((1− s)tl + s t′l)), (S2, g(tl))), s ∈ [0, 1].

Since the conformal factor of g(t) with respect to g(0) is continuous,
f(s) is a continuous function with fl(0) = 0 and fl(1) > D.

Therefore, for any d ∈ [0, D], there exist a sequence g(tl,d) such that

dGH((S2, g(tl,d)), (S2, g(tl))) = d.

After passing to a subsequence, (S2, g(tl,d)) converges to a conical shrink-
ing soliton (S2, βd, gsol,d) satisfying

dGH((S2, gsol,d), (S2, g′sol)) = d.

This implies that there are infinitely many distinct limiting conical
shrinking solitons from the conical Ricci flow. This contradicts Lemma
7.3. q.e.d.

We remark that Lemma 7.4 does not prove the limiting soliton is
independent of the choice of initial metrics. We will prove such a strong
uniqueness result in §7.3.
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7.2. Rotationally symmetric solitons on S2. In the previous sec-
tion, we prove that in the unstable case, the conical Ricci flow must
converge to a unique shrinking Ricci soliton metric gsol on (S2, β∞)
with

β∞ = βp∞ [p∞] + βq∞ [q∞], βp∞ + βq∞ =
k∑
j=1

βj , 0 ≤ βq∞ < βp∞ .

Therefore, gsol must be a rotationally symmetric soliton metric possibly
depending on the choice of the initial metric. Toric Kähler–Ricci soliton
metrics with conical singularities are completely classified in [19] on
compact toric manifolds, generalizing the work of [59].

We consider C∗ in S2 with holomorphic coordinates z = e
ρ
2

+
√
−1θ,

ρ ∈ (−∞,∞), θ ∈ [0, 2π). Then a rotationally conical soliton metric
gsol on S2 with conical points β∞ can be identified on C∗ as

gsol =

√
−1

2π
∂∂ϕ,

for some smooth function ϕ(z) = u(ρ). The function u = u(ρ) defined
for ρ ∈ (−∞,∞) satisfies the following properties from the results in
[19].

1) u′ > 0, u′′ > 0.
2) limρ→−∞ u

′(ρ) = −1, limρ→∞ u
′(ρ) = 1.

3) u0(e(1−βq∞ )ρ) = u(ρ) + ρ and u∞(e−(1−βp∞ )ρ) = u(ρ) − ρ ∈ are
both smooth functions on [0,∞).

4) The soliton equation can be expressed as

u′′ = e−Ru−cu
′+Rτρ,

where

R = 1− βp∞ + βq∞
2

= 1−
∑k

j=1 βj

2
is the average of the curvature and the constants c and τ are
defined by

τ =
βp∞ − βq∞

2− βp∞ − βq∞
=

∫ 1
−1 xe

cxdx∫ 1
−1 e

cxdx
.

The following lemma immediately follows from the definition of τ and
c, and the fact that βp∞ > βq∞ ≥ 0.

Lemma 7.5. τ ∈ (0, 1) and c > 0.

The following lemma shows that the curvature near the conical point
with greater weight βp∞ is smaller than R and the curvature near the

conical point with smaller weight βq∞ is greater than R.

Lemma 7.6. Let gsol be the limiting soliton metric on (S2, β∞). Then
there exist ε > 0 and r > 0 such that

R(gsol) < R− 4ε, on Bgsol(p∞, 2r),
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and

R(gsol) > R+ 4ε, on Bgsol(q∞, 2r).

Proof. By the calculations in [5] (c.f. [48]), the scalar curvature R of
gsol is given by

R =
v′′

u′′
, v = − log u′′.

Then straightforward calculations show that

R−R = −cR(u′ − τ)− c2u′′

by making use of the soliton equation. From the soliton equation,
lim|ρ|→∞ u

′′(ρ) = 0 because τ ∈ (−1, 1). Therefore,

lim
ρ→∞

(R(ρ)−R) = −cR(1− τ) < 0, lim
ρ→−∞

(R(ρ)−R) = cR(1 + τ) > 0,

and the lemma immediately follows. q.e.d.

The rest of the section is devoted to calculate the µ-functional for all
shrinking gradient Ricci solitons on S2 with conical singularities. We
define the following normalized W -functional

W (g, f) =

∫
S2

(
1

2−
∑k

i=1 βi
(R+ |∇f |2) + f

)
e−fg,

∫
S2
e−fg = 2,

with g ∈ c1(S2). Note that the singular time for the unnormalized
conical Ricci flow on (S2, β) is

τ = (2−
k∑
i=1

βi)
−1,

and so

W (g, f) = 2W

(
g, f + log

2−
∑k

i=1 βi
2π

, (2−
k∑
i=1

βi)
−1

)

+ 4− 2 log
2−

∑k
i=1 βi

2π
,

with

(4πτ)−1

∫
S2
e
−
(
f+log

2−
∑k
i=1 βi
2π

)
g = 1.

As usual, we define

µ(g) = inf
f
W (g, f),

∫
S2
e−fg = 2,

where the infimum is taken over functions f satisfying the conditions in
the definition of µ (c.f (2.1)).
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Suppose ((S2, β), gsol) is a gradient shrinking soliton with gsol ∈ c1(S2).
Then gsol is rotationally symmetric and satisfies

R(gsol) = (1− 1

2
(βp + βq)) + ∆gsolθsol, ∇

2
gsol

θsol =
1

2
(∆gsolθsol)gsol,

and ∫
S2
eθsolgsol = 2,

for a unique θsol.

Lemma 7.7. Suppose ((S2, β), gsol) is a gradient shrinking soliton.
Then

(7.1) W (gsol,−θsol) = 1−
∫
S2
θsole

θsolgsol.

Proof. Following the same argument as in Hamilton [23], one can
show that

R−∆θsol = (1− 1

2

k∑
i=1

βi), R+ |∇θsol|2 = −(1− 1

2

k∑
i=1

βi)(θsol + C).

Integrating by parts, we obtain

C = 1 +
1

2

∫
S2
θsole

θsolgsol,

and the lemma immediately follows. q.e.d.

We now compare W (gsol,−θsol) for different markings, and establish
a monotonicity formula for different conical shrinking soliton metrics.

Lemma 7.8. Let (S2, β) and (S2, β′) be two conical spheres with
β = βp[p] + βq[q], β

′ = β′p′ [p
′] + β′q′ [q

′], βp, βq, βp′ , βq′ ∈ [0, 1). Let

gsol,β, gsol,β′ ∈ c1(S2) be the shrinking gradient soliton metrics on (S2, β)
and (S2, β′). If βp + βq = β′p′ + β′q′ and |βp − βq| < |β′p′ − β′q′ |, then

W (gsol,β,−θsol,β) > W (gsol,β′ ,−θsol,β′).

Proof. It suffices to calculate the integral
∫
S2 θsole

θsolgsol. We can
apply the calculations in [19], since the soliton metrics are toric. The
polytope associated to (S2, c1(S2)) is P = [−1, 1] with defining functions
l0(x) = 1− x ≥ 0 and l∞(x) = 1 + x ≥ 0. The soliton equation for gsol
is given by

Ric(gsol) = (1− 1

2
(β0 + β∞))gsol + Lξgsol + β0[D0] + β∞[D∞],

where D0, D∞ are the two points fixed by the torus action, ξ is a
holomorphic vector field. We let η = |β0 − β∞|. By Theorem 1.1 in
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[19], one can solve the above equation if and only if

β0[D0] + β∞[D∞]

= (1− (1− 1

2
(β0 + β∞)l0(τ)))[D0]

+ (1− (1− 1

2
(β0 + β∞)l∞(τ)))[D∞].

Immediately one has

τ =
β∞ − β0

2− β0 − β∞
.

Obviously, |τ | is an increasing function in η since β0 +β∞ is fixed. Then
one can uniquely solve c from the following equation

τ =

∫ 1
−1 xe

cxdx∫ 1
−1 e

cxdx
.

In particular,

τ ′(c) =

(∫ 1

−1
ecxdx

)−2
(∫ 1

−1
x2ecxdx

∫ 1

−1
ecxdx−

(∫ 1

−1
xecxdx

)2
)
> 0.

Therefore, |c| is an increasing function in |τ |. From [59, 19],

θsol = log
2ecx∫ 1
−1 e

cxdx
,

and

F (c) =

∫
S2
θsole

θsolgsol = A−1

∫ 1

−1
(cx− logA)ecxdx, A =

1

2

∫ 1

−1
ecxdx.

Straightforward calculations show that

F ′(c) =
c

2A2

(∫ 1

−1
x2ecxdx

∫ 1

−1
ecxdx−

(∫ 1

−1
xecxdx

)2
)
.

Therefore, F ′(c) > 0 if c > 0 and F ′(c) < 0 if c < 0, and it immediately
implies that

∫
S2 θsole

θsolgsol is strictly increasing in terms of η. This
completes the proof of the lemma. q.e.d.

Let (S2, β) be the sphere with marked points β =
∑k

i=1 βi[pi], and
βk >

∑
i<k βi. We let I t J = {1, 2, ..., k} be a division of {1, 2, ..., k}

and define a sphere with new marked points (S2, βI,J) by

βI,J =
∑
i∈l

βi[p] +
∑
j∈J

βj [q].

Then we can order the finite set {µ(gsol,βI,J ,−θgsol,βI,J )}I,J by

µ1 > µ2 ≥ µ3 ≥ ... ≥ µN ,
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for some N and µ1 = W (gsol,βI,J ,−θgsol,βI,J ) with I = {k} and J =

{1, 2, ..., k− 1}. Theorem 1.3 would imply that the conical Ricci flow in
the unstable case will always converge to the conical Ricci soliton with
the highest µ-energy among the finite set µ1.

7.3. Uniqueness of the limiting soliton metrics. Now we prove
the unstable case of Theorem 1.3 by showing that the limiting soliton
metric does not depend on the choice of initial metric. In particular,
the limiting metric has the highest µ-energy µ1 among µ1, ..., µk. In
order to complete the proof of Theorem 1.3, it suffices to show that pk
converges to p∞ and p1, ..., pk−1 converge to q∞ by Lemma 7.2.

We consider the conical Ricci flow g(t) on the unstable pair (S2, β).
Let gsol be the limiting nontrivial soliton metric on (S2, β∞) with β∞ =
βp∞ [p∞] + βq∞ [q∞], 0 ≤ βq∞ < βp∞ .

Lemma 7.9. There exist t0 > 0 and r0 > 0 such that for all t ≥ t0
and r ≤ r0,

R(t) < R− 2ε, on Bg(t)(pk, r),

and
{p1, p2, ..., pk−1} ∩Bg(t0)(pk, r0) = φ.

Proof. First of all, by the Cheeger–Colding theory, (Bg(t)(pk, 2r), g(t))
converges in Gromov–Hausdorff topology to (Bgsol(p∞, 2r), gsol). Fur-
thermore, the convergence is smooth on Bgsol(p∞, 2r) \ {p∞} by Hamil-
ton’s compactness theorem.

We consider U = Bgsol(p∞, 2r) \ Bgsol(p∞, δ) for some sufficiently
small δ > 0 to be determined later. Then g(t) converges smoothly and
uniformly to gsol on U . In particular, there exist t0 > 0 and r0 > 0 such
that for all t ≥ t0 and r ≤ r0, we have on Bg(t)(pk, r) \Bg(t)(pk, 2δ),

R(t) < R− 3ε,

from Lemma 7.6. Furthermore, we can always assume that {p1, p2, ...,

pk−1} ∩Bg(t0)(pk, r0) = φ after choosing a smaller r0.
On the other hand, there exists K > 0, such that for all t ≥ t0,

sup
S2

|∇R|g(t) ≤ K.

Therefore, for all t ≥ t0, we have

sup
Bg(t)(pk,2δ)

R(t) ≤ R− 3ε+ 2δK < R− 2ε,

if we choose
δ < min(

ε

2K
,
r

4
).

The lemma then immediately follows. q.e.d.

We now will prove a monotonicity result for geodesic balls centered
at pk.
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Lemma 7.10. For any t0 ≤ t1 ≤ t2, 0 < r < r0, we have

Bg(t2)(pk, r) ⊂ Bg(t1)(pk, r),

where t0 and r0 are chosen as in Lemma 7.9.

Proof. For any t1 > t0 and 0 < r < r0, we define

S = {t > t1 | Bg(t)(pk, r) ∩
(
S2 \Bg(t1)(pk, r)

)
6= φ}.

We claim that

S = φ.

If S is not empty, then we define

T = inf S ∈ [t1,∞).

By the definition of T and continuity of (S2, g(t)) in Gromov–Hausdorff
topology,

Bg(T )(pk, r) ⊂ Bg(t1)(pk, r).

Since the curvature R is Lipschitz both in space and time, there exists
δ > 0 such that

sup
Bg(T )(pk,r)×[T,T+δ]

R(x, t) < R− ε.

The Ricci flow implies that

∂g

∂t
= −Ric+Rg > εg,

and so

g(t) ≥ eεtg(T ), T ≤ t ≤ T + δ.

This implies that for T ≤ t ≤ T + δ, the metric is monotonically in-
creasing on [T, T + δ] and so

Bg(t)(pk, r) ⊂ Bg(T )(pk, r).

Then it follows that for t ∈ [T, T + δ],

Bg(t)(pk, r) ⊂ Ω, or Bg(t)(pk, r) ∩
(
S2 \ Ω

)
= φ,

which contradicts the definition of T .
The above claim that S = φ immediately implies that

Bg(t2)(pk, r) ⊂ Bg(t1)(pk, r),

for all t2 ≥ t1 ≥ t0. This completes the proof of Lemma 7.10. q.e.d.

We can now complete the proof of Theorem 1.3 for the unstable case.
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Corollary 7.1. pk converges to p∞ and p1, ..., pk−1 converge to q∞
in Gromov–Hausdorff distance as t → ∞. Furthermore, the limiting
soliton gsol is the unique rotationally symmetric shrinking soliton metric
on (S2, g∞) with

βp∞ = βpk , βq∞ =
k−1∑
j=1

βj .

Proof. We first note that the limiting soliton can have at most two
singularities and the limiting point of any conical point must be a sin-
gular point. Then the first statement immediately follows from Lemma
7.10. The second statement follows by Lemma 7.2. q.e.d.

Lemma 7.11. Let

Dp1,...,pk−1
(t) = max

1≤i<j≤k−1
dg(t)(pi, pj),

where dg(t)(p, q) is the geodesic distance between p and q in the metric

space (S2, g(t)). Then Dp1,....,pk−1
(t) converges to 0 exponentially fast as

t→∞.

Proof. Note that p1, ..., pk−1 converge to q∞ by Corollary 7.1. By the
same argument used in Lemma 7.9, there exist ε > 0, t0 > 0 and r > 0
such that for t ≥ t0, we have on Bg(t)(p1, r),

R(t) > R+ 2ε, p1, ..., pk−1 ∈ Bg(t)(p1, r).

Then we apply similar argument in the proof of Lemma 7.10 to show
that Bg(t)(p1, r) is increasing in time for t ≥ t0. Then on the fixed
domain Bg(t0)(p1, r) and for t ≥ t0,

R(t) > R+ 2ε, g(t) ≤ e−εtg(t0).

Therefore, there exists C > 0 such that for all t ≥ t0,

Diamg(t)(Bg(t0)(p1, r)) ≤ Ce−
εt
2 ,

and the lemma follows immediately since p1, ..., pk−1 ∈ Bg(t0)(p1, r).
q.e.d.

Appendix A. The α-invariant for (S2, β)

The α-invariant [51] can be readily extended to the case of the sphere
with marked points. We define

α(S2, β) = supα,(A.1)

where α satisfies the condition

sup
ϕ∈PSH(S2,gFS)∩C∞(S2)

∫
S2
e−

1
2αχ(S

2,β)(ϕ−supS2 ϕ)
k∏
i=1

|σi|−βi(gFS)
1
2χ(S

2,β) <∞,

where σi ∈ H0(S2,K−1
S2 ) vanishes at pi of order 2, i = 1, ..., k.
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The following lemma is due to Berman [2]. We reproduce the short
proof below, for the convenience of the reader:

Lemma A.1. Assume that
∑k

j=1 βj < 2. Then

(A.2) α(S2, β) =
1− βk
χ(S2, β)

.

Proof. By a theorem of Demailly [8] in the smooth case, and extended
to the conical case by Berman [2], the α-invariant α(S2, β) is equal to
the log canonical threshold Lct(S2, β), which is defined as follows. Let
h be any hermitian metric on K−1

S2 . Then

Lct(S2, β) = supα,(A.3)

where α satisfies the condition∫
S2
|σ|−

α
m
χ(S2,β)

k∏
i=1

|σi|−βih
1
2
χ(S2,β)(1−α) <∞,(A.4)

for any m ∈ Z+, σ ∈ H0(S2,K−mS2 ).
Since βk is the largest among βi, we can calculate the integral near

pk. Without loss of generality we may assume pk = 0. Then for any
0 ≤ l ≤ 2m there is a σ ∈ H0(S2,K−mS2 ) which admits an expansion σ =

z`f(z) near 0 for some holomorphic function f(z) satisfying f(0) = 1.
Then we have ∫

S2
|σ|−

α
m
χ(S2,β)

k∏
i=1

|σi|−βi

=
√
−1

∫
|z|≤1

|z|−2α`
m
χ(S2,β)|z|−2βkdz ∧ dz̄ +O(1)

≤
√
−1

∫
|z|≤1

|z|−2αχ(S2,β)−2βkdz ∧ dz̄ +O(1),

which is finite for any α < 1−βk
χ(S2,β)

. The equality follows easily by apply-

ing a test holomorphic section σ in the anti-pluricanonical system. The
proof is complete. q.e.d.

The threshold for the conical alpha invariant of (S2, β) is 1
2 .

Corollary A.1. Assume that
∑k

j=1 βj < 2. If βk <
∑k−1

j=1 βj,

α(S2, β) >
1

2
.

If βk =
∑k−1

j=1 βj,

α(S2, β) =
1

2
.
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Appendix B. The F functional for pairs (S2, β)

It is well-known in the smooth case that the equation of constant
scalar curvature admits a variational formulation. As for the α-invariant,
this can be readily extended to the case of Riemann surfaces with
marked points. We can write the corresponding functional in two dif-
ferent ways, depending on whether we use the Fubini–Study metric gFS
or the metric gβ with conical singularities as reference metric.

With gFS as reference metric, we set for ϕ ∈ PSH(S2, gFS)∩L∞(S2),

Fβ(ϕ) =

√
−1

8π

∫
S2
∂ϕ ∧ ∂̄ϕ− 1

2

∫
S2
ϕ gFS

− 2

χ(S2, β)
log

(∫
S2
e−

1
2
χ(S2,β)ϕ

k∏
i=1

|σi|−βig
1
2
χ(S2,β)

FS

)
,(B.1)

while with gβ as reference metric, we set

Fβ(ϕ)(B.2)

=

√
−1

8π

∫
∂ϕ ∧ ∂̄ϕ− 1

2

∫
ϕgβ −

2

χ(S2, β)
log(

∫
S2
e−

1
2
χ(S2,β)ϕ+hβgβ).

In view of the fact that the potentials are always bounded with bounded
Dirichlet energy, integration by parts is justified and the two formula-
tions of the Fβ functional can be verified to agree. The Euler–Lagrange
equation for Fβ is exactly the equation for the stationary points of the
flow

(B.3)
∂ψ

∂t
(t) = log(

gFS +
√
−1

2π ∂∂̄ψ

gFS
)+

1

2
χ(S2, β)ψ+

1

2

k∑
j=1

βj log
|σj |2

gFS
.

It is a special case of the functional Fβ defined in [47] for paired Fano
manifolds and it satisfies the co-cycle condition.

We shall need the following simple property of Fβ, which is a straight-
forward adaptation of the similar property established in the smooth
case in [43]:

Lemma B.1. Let (S2, β) be a pair with
∑k

j=1 βj < 2. If α(S2, β) >

1/2, then there exists ε > 0 and Cε > 0 such that for all ϕ ∈
PSH(S2, gFS) ∩ L∞(S2),

(B.4) Fβ(ϕ) ≥ ε
√
−1

2π

∫
S2
∂ϕ ∧ ∂̄ϕ− Cε.

In particular, the equation (B.3) is solvable.

We remark that when (S2, β) is not stable, the functional Fβ is not
bounded below and so (S2, β) does not admit a constant curvature met-
ric. Combined with Lemma A.1, this can provide a complex geomet-
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ric proof for the criterion of Troyanov and Luo–Tian as suggested in
[56, 28].
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