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ON SHORT TIME EXISTENCE FOR THE PLANAR
NETWORK FLOW

Tom Ilmanen, André Neves & Felix Schulze

Abstract

We prove the existence of the flow by curvature of regular planar
networks starting from an initial network which is non-regular.
The proof relies on a monotonicity formula for expanding solutions
and a local regularity result for the network flow in the spirit
of B. White’s local regularity theorem for mean curvature flow.
We also show a pseudolocality theorem for mean curvature flow
in any codimension, assuming only that the initial submanifold
can be locally written as a graph with sufficiently small Lipschitz
constant.

1. Introduction

A natural generalization of the flow of smooth hypersurfaces by mean
curvature is the flow of surface clusters, where three hypersurfaces can
meet under equal angles, forming a liquid edge. These edges then again
can meet on lower dimensional strata. The simplest such configuration,
which already includes many aspects of the situation in higher dimen-
sions, is the flow by curvature of a network of curves in the plane.

In brief, we consider a planar network to be a finite union of embedded
curves of non-zero length, which only intersect at their endpoints. We
require that at each such point, called a multiple point, a finite number,
but at least two endpoints come together. We call a network regular if at
each multiple point three ends of segments meet, forming angles of 2π/3.
Without this condition, but requiring that the segments have mutually
distinct exterior unit tangents at each multiple point, we call such a
network non-regular. A solution to the planar network flow is a smooth
family of regular, planar networks, such that the normal component of
the speed under the evolution at every point on each segment is given
by the curvature vector of the segment at the point. For a more precise
definition see Section 2.

Since the evolution by curvature of a regular network is the gradient
flow of the length functional it is natural to assume that at regular times
only triple points are present and the angles formed by the segments are
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balanced. This is supported by the fact that only the balanced config-
uration with three segments meeting infinitesimally minimizes length
around each multiple point, if one allows as competitors connected net-
works with additional segments.

After the pioneering work of Brakke [3], whose definition of moving
varifolds includes the evolution of networks described here, and the fun-
damental results on curve shortening flow of embedded closed curves
by Gage/Hamilton and Grayson [9, 10], the first thorough analytical
treatment of the flow of networks was undertaken by Mantegazza, No-
vaga and Tortorelli [15]. Aside from establishing short time existence
of the network flow starting from a regular initial network, their focus is
mainly on the evolution of three arcs with three fixed endpoints, meet-
ing at one interior triple point. In this special setting they obtain long
time existence and convergence under certain hypotheses. In a recent
preprint by Magni, Mantegazza and Novaga [13] it is shown that these
hypotheses are actually fulfilled, provided none of the arcs contracts to
zero length. Existence and convergence properties of the network flow
in other special configurations have been studied in [2, 11, 16, 22, 21].

It is conjectured that at a singular time of the flow no tangent flow
which is a static line of higher multiplicity can develop. An immediate
consequence of this conjecture is that at any singular time, the length
of one of the segments shrinks to zero, and at least two triple junctions
collide. It, thus, can be expected that at the singular time a non-regular
network forms.

In the present paper we show that starting from a non-regular initial
network, a smooth evolution of regular networks exists. In this evolu-
tion it might happen that out of non-regular initial multiple points new
segments are created.

Theorem 1.1. Let γ0 be a non-regular, connected planar network
with bounded curvature as in Definition 2.1. Then there exists T > 0
and a smooth connected solution of the planar network flow of regular
networks (γt)0<t<T such that γt → γ0 in the varifold topology as t↘ 0.
Away from the non-regular multiple points of γ0 the convergence is in
C∞loc. Furthermore, there exists a constant C > 0 such that

sup
γt
|k| ≤ C√

t
,

and the length of the shortest segment of γt is bounded from below by
C−1
√
t.

Remarks 1.2. i) The proof uses a local monotonicity formula, which
only works if the network is locally tree-like, i.e., contains locally no
loops. In the proof we glue small tree-like self-similarly expanding net-
works into γ0 around non-regular multiple points. These tree-like, con-
nected, self-similarly expanding networks always exist. Nevertheless,
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there are also non tree-like self-similarly expanding networks, which
would correspond to the creation of new bounded regions in the com-
plement of the network out of non-regular multiple points. Our proof
would not work gluing in this type of expanders.

ii) The proof of this result presented here yields, only with minor mod-
ifications, also the corresponding statement for non-regular initial net-
works with bounded curvature and fixed endpoints.

iii) Using a relaxation scheme via the Allen–Cahn equation Sáez [20] has
shown that regular, smooth solutions starting from a non-regular initial
network, which are tree-like, and satisfy the estimates on the curvature
and the length of the shortest segment as above, are unique in their
topological class. This yields a corresponding uniqueness statement for
our constructed solutions in this case.

The method of proof relies on a monotone integral quantity, which
implies that self-similarly expanding solutions are attractive under the
flow. This monotone integral quantity has already been applied by the
second author in the setting of Lagrangian Mean Curvature Flow in
several places, see [17, 18, 19]. The second main ingredient is a local
regularity result in the spirit of White’s local regularity theorem for
smooth mean curvature flow [26].

In the statement of the following local regularity result, ΘS1 is the
Gaussian density of the self-similarly shrinking circle. Note that ΘS1 =√

(2π/e) > 3/2. The quantity Θ(x, t, r) is the Gaussian density at scale
r > 0, centered at the point (x, t). For details and the definition of
proper flows, see Section 8.

Theorem 1.3. Let (γt)t∈[0,T ) be a smooth, proper and regular planar

network flow in Bρ(x0)× (t0−ρ2, t0) which reaches the point x0 at time
t0 ∈ (0, T ]. Let 0 < ε, η < 1. There exist C = C(ε, η) such that if

(1.1) Θ(x, t, r) ≤ ΘS1 − ε
for all (x, t) ∈ Bρ(x0) × (t0 − ρ2, t0) and 0 < r < ηρ for some η > 0,
where (1 + η)ρ2 ≤ t0 < T , then

|k|2(x, t) ≤ C

σ2ρ2

for (x, t) ∈
(
γt ∩B(1−σ)ρ(x0)

)
× (t0 − (1− σ)2ρ2, t0) and all σ ∈ (0, 1).

Remarks 1.4. i) One can, furthermore, show that there is a constant
κ = κ(ε, η) > 0 such that the length of each segment which intersects
B(1−σ)ρ(x0)× (t0− (1−σ)2ρ2, t0) is bounded from below by κ ·σρ. This
implies corresponding scaling invariant estimates on all higher deriva-
tives of the curvature.

ii) We also prove a corresponding result if the evolving network is locally
tree-like, i.e., does not contain any closed loops of length less than δ > 0
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and the Gaussian density ratios are bounded from above by 2− ε.
iii) Note that the result implies that any regular smooth flow, which
is sufficiently close in measure to the static configuration consisting of
three half-lines meeting under equal angles, is smoothly close. Recently
Tonegawa and Wickramasekera [24] have shown that this is also true
for integer Brakke flows.

To get sufficiently good local control away from the multiple junctions
we also show the following pseudolocality theorem. Since it also holds
for mean curvature flow, we formulate it in full generality. A similar
estimate assuming initial control on the second fundamental form has
been shown by Chen and Yin [5] and assuming control on up to fourth
derivatives by Brendle and Huisken [4].

In the following, for any point x ∈ Rn+k we write x = (x̂, x̃) where x̂
is the orthogonal projection of x on the Rn-factor and x̃ the orthogonal
projection on the Rk factor. We define the cylinder CR(x0) ⊂ Rn+k by

Cr(x) = {x ∈ Rn+k | |x̂− x̂0| < r, |x̃− x̃0| < r}.
Furthermore, we write Bn

r (x0) = {(x̂, x̃0) ∈ Rn+k |x̂− x̂0| < r}.

Theorem 1.5. Let (Mn
t )0≤t<T be a smooth mean curvature flow of

embedded n-dimensional submanifolds in Rn+k with area ratios bounded
by D. Then for any η > 0, there exists ε, δ > 0, depending only on
n, k, η,D, such that if x0 ∈ M0 and M0 ∩ C1(x0) can be written as
graph(u), where u : Bn(x0) → Rk with Lipschitz constant less than ε,
then

Mt ∩ Cδ(x0) t ∈ [0, δ2) ∩ [0, T )

is a graph over Bn
δ (x0) with Lipschitz constant less than η and height

bounded by ηδ.

Remarks 1.6. i) In codimension one the local estimates of Ecker and
Huisken [8] yield that a local bound on the second fundamental form or
higher derivatives thereof on M0 ∩Cδ(x0) imply a corresponding bound
in Mt ∩ Cδ/2(x0) for t ∈ [0, δ2/4) ∩ [0, T ).

ii) By localizing Huisken’s monotonicity formula, see, for example, [7]
or [25], the result is still true for local mean curvature flows without an
assumption on the area ratios.

iii) The proof of this result uses the local regularity theorem of White
[26]. By replacing this with Brakke’s local regularity theorem for Brakke
flows [3], see also [12, 23], the above statement is still true if one only
assumes initially that (Mn

t )0≤t<T is an integer Brakke flow, provided
that the flow has no sudden mass loss in C1(x0).

Proof outline. The cone-like structure at the non-regular multiple
points suggests that the regular evolution out of such a point should be
close to a self-similarly expanding solution. Given such a non-regular
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initial network γ0 we glue in, around each non-regular multiple point,
a tree-like, self-similarly expanding, regular solution at scale s1/2 to ob-
tain an approximating network γs0. Since the curvature of γs0 is of the

scale s−1/2 and the shortest segment of length proportional to s1/2 we
obtain from standard short-time existence a solution γst only up to a
time proportional to s.

To show that these solutions exist for a time T0 > 0 independent
of s we use the local monotonicity formula to show that the solutions
γst are close in an integrated sense to a self-similarly expanding solution
around each non-regular multiple point. The uniqueness of self-similarly
solutions in their ‘topological class’, together with a compactness argu-
ment then yields that there are many times such that γst is close to the
corresponding self-similarly expanding solution in C1,α around each of
the non-regular multiple points. This in turn gives that the Gaussian
density ratios on the appropriate scale are less than 3/2 + ε. Theorem
1.3 then gives estimates on the curvature which are independent of s,
together with lower bounds on the length of the shortest segment which
yields existence up to a time T0, independent of s. Passing to the limit
s→ 0 we obtain the desired solution.

The proof of the local regularity result, Theorem 1.3, follows the proof
of White [26] and the alternative proof Ecker [7]. To make this proof
work in the case of networks, in a first part we show that the only self-
similarly shrinking networks with Gaussian density less than ΘS1 are
a constant line through the origin, or three half-lines meeting at equal
angles at the origin. The second part is that we show that any smooth
network flow which is weakly close to three half-lines meeting at equal
angles is also smoothly close. To do this we localize the interior integral
estimates in [15].

Structure of the paper. In Section 2, we give the basic definitions.
The monotonicity formula for expanding solutions is presented in Sec-
tion 3. In Section 4, we give a proof for the uniqueness of self-expanders
in their topological class, together with a lemma showing that networks
which are in a weak integral sense close to the self-expander are actu-
ally C1,α-close. Stating the necessary conditions for an approximating
sequence γs0 we show the estimates on the Gaussian density ratios in
Section 5. In Section 6, we give the omitted proofs of some technical
lemmas from Section 5. Following this, we show that we can construct
such an approximating sequence by gluing in a self-expander at the right
scale into γ0 in Section 7 and give the proof of Theorem 1.1.

In Section 8, we first localize the higher order integral estimates from
[15] and then investigate tangent flows to the network flow and self-
similarly shrinking solutions. We complete this section by proving the
local regularity result, Theorem 1.3.

In Section 9, we prove the pseudolocality result Theorem 1.5.
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We finish the paper with an appendix containing several helpful tech-
nical results.

Acknowledgments. The third author is grateful to R. Mazzeo and M.
Sáez for many helpful discussions.

2. Definitions and set-up

Definition 2.1 (Regular and non-regular network). We define a reg-
ular, planar network γ as follows.

i) There is a finite number of points S = {ai}ni=1 on γ such that γ \S
is a finite union of smooth, embedded curves of positive length
(branches).

ii) If σ is a non-compact branch of γ then it approaches a half-line P
at infinity, i.e.,

lim
R→∞

dist(σ \BR(0), P \BR(0)) = 0.

We will, furthermore, assume that the curvature of such a non-
compact branch is uniformly bounded.

iii) Each point in S, called a triple point, is the endpoint of three
curves {σj}3j=1 satisfying the following condition: If Tj denotes
the exterior unit tangent vector induced by each σj , then

T1 + T2 + T3 = 0.

We call a network non-regular if each point in S is an endpoint of at
least two line segments {σj}kj=1 k ≥ 2, and the induced exterior unit
tangent vectors are mutually distinct

Ti 6= Tj for i 6= j.

We will call such a point a non-regular multiple point.

Consider a smooth family of regular, planar networks (γt)0≤t<T , i.e.,
γt2 is a smooth deformation of γt1 . This implies that the number of
triple points in St = {ai(t)}ni=1 stays fixed. So we can assume that there
exists a smooth family of regular parameterizations (Nt)0≤t<T of the
evolving network. We will call (γt)0≤t<T a solution to the network flow
if the deformation vector

dN

dt
= X satisfies X⊥ = ~k

at each non-singular point.

Remarks 2.2. i) As a consequence, using the above notation, at each
triple point

3∑
j=1

〈~kj , JTj〉 = 〈X, JT1 + JT2 + JT3〉 = 0,

where J is the complex structure.
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ii) Note that for a network without triple points, i.e., a union of curves,
this is curve shortening flow.

iii) A network flow still satisfies the avoidance principle when compar-
ing to smooth solutions of curve shortening flow. Comparing with big
shrinking circles it is easy to see that any half-line P at infinity will
remain fixed under the flow.

iv) Note that ii) in Definition 2.1 implies that such a network has
bounded length ratios, i.e., there exists D > 0 such that

H1(γ ∩Br(0)) ≤ Dr.
v) By the work of Mantegazza, Novaga and Tortorelli [15, 14] it is known
that for a given smooth, regular, planar network a smooth solution to
the network flow exists, at least for a short time, provided it is compact
with possible fixed endpoints. It is shown there that the solution exists
as long as the curvature of the evolving network stays bounded, and
none of the lengths of the branches goes to zero. This statement can
be easily extended to the case of regular networks with non-compact
branches as in Definition 2.1, see the beginning of Section 7.

vi) It would also be possible to study networks with fixed or moving
endpoints. To avoid the non-conceptual, but technical difficulties arising
from the contribution of the endpoints, we do not consider this case.

Definition 2.3. Let χ be a regular network with finitely many triple
points. We say that χ is of class Ck,α where k ≥ 1, 0 ≤ α ≤ 1 if
there exists δ > 0 and a collection of points (pi) ⊂ χ, either finitely or
countably many, such that

a) the collection of balls (B3δ/4(pi)) covers χ,
b) each ball Bδ(pi) contains at most one triple point. If it contains no

triple point, then B3δ/4(pi) ∩ χ can be written as a graph over its

affine tangent line at pi, where the graph function has Ck,α-norm
less than one,

c) if Bδ(pi) contains a triple point, then pi is the triple point, and
χ∩Bδ(pi) consists of three curves meeting at pi. Each of the curves
in B3δ/4(pi) can be written as a graph over the corresponding affine

tangent half-line at pi where the graph function has Ck,α-norm less
than one.

We say that another regular network σ is ε-close to χ in Ck,α, if σ is
contained in the δ/2-neighborhood of χ and the triple junctions of σ are
in one to one correspondence with the triple junctions of χ, with the
triple junctions of σ being in a δ/2-neighborhood of the triple junctions
of χ. Furthermore, in case b) in the above local graph representation,
σ ∩ B3δ/4(pi) can be written as a graph as well, where the difference

of the graph functions is less than ε in Ck,α. In case c) we assume
that there exist unit vectors Ni such that σ ∩ B3δ/4(pi) can be written
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as χ + uiNi, where the ui are defined on a connected sub-domain of
Bδ(pi)∩χ and continuous. Restricted to each of the three local branches
of χ we assume that the Ck,α-norm of ui is less than ε with respect to
arc-length parametrization on each branch.

3. Monotonicity formulas

Let θ̃t be the angle that the tangent vector of γt makes with the x-
axis. This is a well defined function up to multiple of π away from the
triple junction points. Because at each of these points the angle jumps
by 2π/3, there is a well defined function θt which is continuous on γt
and coincides with θ̃t up to a multiple of π/3. An important observation

is that ~k = J∇θt, where J is the complex structure.
Set λ = xdy − ydx. We assume that the planar network γt has no

loops, so we can define βt to be such that

dβt = λγt .

Note that βt is Lipschitz because its gradient is bounded linearly and,
thus, βt grows at most quadratically.

Finally, for any x0 ∈ R2 and t0, define for t < t0 the backwards heat
kernel centered at (x0, t0):

(3.1) ρx0,t0(x, t) =
1√

4π(t0 − t)
e
− |x−x0|

2

4(t0−t) .

Lemma 3.1. The following evolution equations hold away from the
triple junction points:

dθt
dt

= ∆θt + 〈∇θt, X〉;(i)

dβt
dt

= ∆βt + 〈∇βt, X〉 − 2θt;(ii)

dρx0,t0
dt

= −∆ρx0,t0 + 〈∇ρx0,t0 , X〉

−
∣∣∣∣~k +

(x− x0)⊥

2(t0 − t)

∣∣∣∣2 ρx0,t0 + |~k|2ρx0,t0 .
(iii)

Proof. The derivation of these equations proceeds as in the smooth
case except that now we have a tangential motion that needs to be taken
into account. For this reason we will only show the second formula.

The family of functions βt can be chosen so that its time derivative is
continuous. Then, denoting by LX the Lie derivative in the X direction,
we obtain from Cartan’s formula

d(dβt/dt) = LXλ = d(Xyλ) +Xydλ = d(Xyλ)− 2dθt,

where in the last equality we use the fact that

(Xydλ)γt = (X⊥ydλ)γt = (J∇θtydλ)γt = −2dθt.
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Therefore,
d(dβt/dt+ 2θt −Xyλ) = 0.

Note that the function which has differential zero is continuous on γt
and so we can add a time dependent constant to each βt to obtain that

dβt
dt

= 〈X, Jx〉 − 2θt.

The desired formula follows from 〈X, Jx〉 = ∆βt + 〈X,∇βt〉. q.e.d.

Lemma 3.2. Let f be in C2(R). The following identities hold:

d

dt

∫
γt

f(θt)ρx0,t0 dµ = −
∫
γt

f ′′(θt)|~k|2ρx0,t0 dµ

−
∫
γt

f(θt)

∣∣∣∣~k +
(x− x0)⊥

2(t0 − t)

∣∣∣∣2 ρx0,t0 dµ.(i)

d

dt

∫
γt

f(βt + 2tθt)ρx0,t0 dµ =

−
∫
γt

f ′′(βt + 2tθt)|x⊥ − 2t~k|2ρx0,t0 dµ

−
∫
γt

f(βt + 2tθt)

∣∣∣∣~k +
(x− x0)⊥

2(t0 − t)

∣∣∣∣2 ρx0,t0 dµ.
(ii)

Proof. We prove the second identity. Set αt = βt + 2tθt. Then

df(αt)

dt
= ∆f(αt)− f ′′(αt)|∇αt|2 + 〈∇f(αt), X〉,

and so

d

dt

∫
γt

f(αt)ρx0,t0 dµ =

∫
γt

ρx0,t0∆f(αt)− f(αt)∆ρx0,t0 dµ

+

∫
γt

div(X>f(αt)ρx0,t0)dµ−
∫
γt

f ′′(αt)|x⊥ − 2t~k|2ρx0,t0 dµ

−
∫
γt

f(αt)

∣∣∣∣~k +
(x− x0)⊥

2(t0 − t)

∣∣∣∣2 ρx0,t0dµ.
We need to show that the first two integral terms vanish. Decompose γt
into k smooth curves {σj}kj=1. Then, we obtain from Green’s formulas∫

γt

ρx0,t0∆f(αt)− f(αt)∆ρx0,t0 dµ

=

k∑
j=1

∫
∂σj

ρx0,t0〈∇f(αt), ν〉 − f(αt)〈∇ρx0,t0 , ν〉 dµ,

where ν is the exterior unit normal to each σj . It is straightforward
to see that if σj is non-compact then the boundary term at “infinity”
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vanishes. Let x1 be a triple junction point meeting three line segments,
which we relabel as σ1, σ2, and σ3. Then, at the point x1

3∑
i=1

〈∇f(αt), νi〉 =
3∑
i=1

f ′〈Jx1 − 2tJ~ki, νi〉

= f ′〈Jx1 − 2tJX, ν1 + ν2 + ν3〉 = 0.

The same argument shows that

3∑
i=1

〈∇ρx0,t0 , νi〉 = 0,

and so ∫
γt

ρx0,t0∆f(αt)− f(αt)∆ρx0,t0 dµ = 0.

For the second integral term we use again the decomposition∫
γt

div(X>f(αt)ρx0,t0) dµ =

k∑
j=1

∫
σj

div(X>f(αt)ρx0,t0) dµ,

and one can argue as before to conclude that∫
γt

div(X>f(αt)ρx0,t0) dµ = 0. q.e.d.

In the applications later, the evolving network will only be locally tree-
like, i.e., only locally without loops. To apply the above monotonicity
formula we have to localize it. We assume that (γt)0≤t<T is a smooth
solution to the network flow such that γt ∩ B4 does not contain any
closed loop for all 0 ≤ t < T . As before, we define β locally on γt ∩B4.

Let ϕ be a smooth cut-off function such that ϕ = 1 on B2, ϕ = 0 on
R2 \B3 and 0 ≤ ϕ ≤ 1.

Lemma 3.3. The following estimate holds:

d

dt

∫
γt

ϕ|βt + 2tθt|2ρx0,t0 dµ ≤ −
∫
γt

ϕ|x⊥ − 2t~k|2ρx0,t0dµ

+ C

∫
γt∩(B3\B2)

|βt + 2tθt|2ρx0,t0 dµ.

Proof. We have( d
dt
−∆γt

)
ϕ = −∆R2ϕ+D2ϕ(ν, ν) + 〈∇ϕ,XT 〉

≤ CχB3\B2
+ 〈∇ϕ,XT 〉.
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As in the proof of Lemma 3.2 we set αt = βt + 2tθt. Then( d
dt
−∆

)
ϕα2

t ≤ −2〈∇ϕ,∇α2
t 〉 − 2ϕ|∇αt|2 + 〈∇(ϕα2

t ), X
T 〉

+ CχB3\B2
α2
t

≤ −ϕ|∇αt|2 + 〈∇(ϕα2
t ), X

T 〉+ CχB3\B2
α2
t ,

where we estimated

|〈∇ϕ,∇α2
t 〉| ≤ 2|Dϕ||αt||∇αt| ≤ 4

|Dϕ|2

ϕ
α2
t +

1

2
ϕ|∇αt|2

≤ CχB3\B2
α2
t +

1

2
ϕ|∇αt|2.

The rest follows as in the proof of the previous lemma. q.e.d.

4. Uniqueness of self-expanders

Consider the negatively curved metric

g = exp(|x|2)(dx2
1 + dx2

2).

A network ψ is said to be a geodesic for g if, when parametrized propor-
tionally to arc-length, is a critical point for the length functional when
restricted to variations with compact support. The network is said to

be a self-expander if ~k = ψ⊥ on each branch and we say that the self-
expander is regular if it has only triple junctions and the angles at each
triple junction are 2π/3.

Given a function u or a curve ψ, we denote by u′, u′′, ψ′, and ψ′′, the
correspondent derivatives with respect to the space parameter.

In this section, we show that regular self-expanders are unique in
their topological class.

Lemma 4.1 (Ilmanen and White). A network ψ is a regular self-
expander if and only if it is a geodesic for g.

Proof. Let (ψs)0≤s≤ε be a compactly supported continuous deforma-
tion of ψ which is a C1 deformation when restricted to each branch.
Each network ψs has only triple junctions. If we set

X =
dψs
ds

and T =
ψ′s
|ψ′s|

,

then, assuming parametrization proportional to arc-length, we have for
each branch

(4.1)
d

ds

∫ b

a
(g(ψ′s, ψ

′
s))

1/2dt =
d

ds

∫ b

a
exp(|x|2/2)|ψ′s|dt

=
(
〈T,X〉 exp(|x|2/2)

]b
a

+

∫ b

a
〈x⊥ − ~k,X〉|ψ′s| exp(|x|2/2)dt.
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If ψ is a geodesic then by choosing variations X compactly supported on

each branch we obtain that, indeed, x⊥ = ~k on each branch. Choosing
variations supported on a neighborhood of each triple junction we obtain
that

T1 + T2 + T3 = 0,

where T1, T2, T3 denote the outward unit tangent vectors at each triple
junction and so ψ is a regular self-expander. Likewise, if ψ is a regular
self-expander, it is simple to see that it is a critical point for the length
functional. q.e.d.

Definition 4.2. We say that a self-expander ψ has an end asymptotic
to a half-line L = {xeiα |x ≥ 0} if, for R large enough, a connected
component ψ̄ of ψ \BR can be parametrized as

ψ̄ = {xeiα + u(x)ei(α+π/2) | for all x ≥ R}, where lim
x→∞

u(x) = 0.

Lemma 4.3. Let P be a union of half-lines meeting at the origin and
ψ a self-expander for which

lim
r→∞

dist(ψ \Br, P ) = 0.

Then ψ is asymptotic to P in the sense of Definition 4.2. Moreover,
the decay of u for x ≥ R is given by

|u| ≤ C1e
−x2/2, |u′| ≤ C1x

−1e−x
2/2, |u′′| ≤ C2e

−x2/2,

and

|u(3)| ≤ C3xe
−x2/2, |u(4)| ≤ C4x

2e−x
2/2,

where each Ci depends only on R, u(R) and u′(R).

Proof. In [22] it is shown that each asymptotic end of a self-expander
is asymptotic to a half-line. Even more the graph function u decays
exponentially. Since ψ is a self-expander the function u satisfies

u′′ = (1 + (u′)2)(u− xu′).

By possibly changing orientation, a simple application of the maximum
principle (see [22]) implies that we can assume without loss of generality
that u > 0 and u′ < 0, if the self expander is not identical with the half-
line. The function v = u− xu′ is strictly positive and satisfies

v′ = −x(1 + (u′)2)v < −xv.

Integrating this inequality yields the first two estimates. Inserting that
into the equation for u′′ we get the third estimate and the fourth and
fifth estimates come from computing u(3), u(4), and using the previous
derived estimates. q.e.d.
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We say that two self-expanders ψ0 and ψ1 are asymptotic to each
other if their ends are asymptotic to the same half-lines. In this setting,
we say they have the same topological class if there is a smooth family
of maps

Ft : ψ0 −→ R2, 0 ≤ t ≤ 1,

such that F0 is the identity, F1(ψ0) = ψ1, the distance between any two
triple junctions of Ft(ψ0) is uniformly bounded below, and

lim
r→∞

sup
{
|dFt|Ft(x) |x ∈ γ0 \Br(0)

}
= 0 for every 0 ≤ t ≤ 1.

Theorem 4.4. If ψ0 and ψ1 are two regular self-expanders asymp-
totic to each other and in the same topological class, then they coincide.

Proof. Let (x0
i )i∈A and (x1

i )i∈A denote the triple junctions (finite set)
of ψ0 and ψ1 respectively. Because the networks are in the same topo-
logical class, we can rearrange the elements of (x0

i )i∈A so that each x0
i

is connected to x1
i by the existing deformation of ψ0 into ψ1. Denote by

(xsi )0≤s≤1 the unique geodesic connecting these points.
For each s we consider the network ψs such that if x0

i is connected
to x0

j by a geodesic, then xsi is connected to xsj through a geodesic as
well. To handle the non-compact branches we proceed as follows. Let
P denote a common asymptotic half-line to ψ0 and ψ1, which means
that there are geodesics γ0 ⊂ ψ0, γ1 ⊂ ψ1 asymptotic to P at infinity
and starting at some points x0

i and x1
i respectively. Define γs to be the

unique geodesic starting at xsi and asymptotic to P . Because these are
geodesics with respect to a negatively curved metric it is easy to see
that if γs intersects γs′ then they must coincide.

Hence, we have constructed a smooth family of triple-junction net-
works (ψs)0≤s≤1 connecting ψ0 and ψ1 and such that:

i) The triple-junctions (xsi )i∈A of ψs connect the triple-junctions of
ψ0 to the ones of ψ1 and, for each index i fixed, the path (xsi )0≤s≤1

is a geodesic with respect to the metric g.
ii) Each branch of ψs is a geodesic for g.
iii) There is R large enough so that ψs \BR(0) has N connected com-

ponents, each asymptotic to a half-line Lj , j = 1, . . . , N . We can
find angles αj such that each end of ψs becomes parametrized as

ψs(x) = xeiαj + uj,s(x)ei(αj+π/2) for all x ≥ R.

This follows from Lemma 4.3.
iv) The vector

X =
d

ds
ψs

is continuous, C1 when restricted to each branch, and

X = O(e−r
2/2), ∇X = O(r−1e−r

2/2).
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Moreover,

αj,s =
duj,s
ds

satisfies

|αj,s| = O(e−x
2/2) |α′j,s| = O(x−1e−x

2/2).

It is enough to provide justification for the second set of esti-
mates. For ease of notation we omit the indexes s and j on αj,s
and uj,s. We have

α′′ = (1 + (u′)2)(α− xα′) + 2u′α′(u− xu′).

We can assume without loss of generality that α(R) ≥ 0. More-
over, it follows from our construction that

lim
x→∞

|α(x)|+ |α′(x)| = 0.

A simple application of the maximum principle shows that α can-
not have negative local minimum or a positive local maximum.
Hence, α ≥ 0 and α′ ≤ 0. The function β = α− xα′ satisfies

β′ = −x(1 + (u′)2)β − 2xu′α′(u− xu′) ≤ −xβ,

because u′(u−xu′) ≤ 0 (see proof of Lemma 4.3), and integration
of this inequality implies property iv).

Denote by L the length function with respect to the metric g and
consider the family of functions

Ft(s) = L(ψs ∩B2R(0))

+
N∑
j=1

∫ t

2R
exp((x2 + u2

j,s)/2)
√

1 + (u′j,s)
2dx

−N
∫ t

2R
exp(x2/2)dx.

The decays given in Lemma 4.3 imply the existence of a constant C
such that for every t ≤ t′

(4.2) ‖Ft − Ft′‖C3 ≤ C exp(−t),

and so when t tends to infinity Ft converges uniformly in C2 to a function
F . Furthermore, if s = 0 or s = 1, we have from combining (4.1) with
property iv) that

lim
t→∞

dFt
ds

(s) = 0,

and, thus, F has a critical point when s = 0 or s = 1.
A standard computation shows that on each compact branch we have

(assuming parametrization proportional to arc-length)
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d2

ds2

∫ b

a
(g(ψ′s, ψ

′
s))

1/2dt =

∫ b

a
|ψ′s|−1(|(∇ψ′sX)⊥|2

− Rm(X,ψ′s, ψ
′
s, X))dt+

(
|ψ′s|−1g(∇XX,ψ′s)

]b
a

=

∫ b

a
|ψ′s|−1(|(∇ψ′sX)⊥|2 − Rm(X,ψ′s, ψ

′
s, X))dt,

where we used property i) on the second equality and all the geometric
quantities are computed with respect to the metric g. Combining this
identity with property iv) we have

d2Ft
ds2

=

∫
ψs∩Bt(0)

|ψ′s|−2(|(∇ψ′sX)⊥|2 − Rm(X,ψ′s, ψ
′
s, X))dl +O(e−t).

The Gaussian curvature of g is equal to −e−|x|2 and so the integrals
above are bounded independently of t. Therefore, we obtain from (4.2)
that

d2F

ds2
(s) =

∫
ψs

|ψ′s|−2(|(∇ψ′sX)⊥|2 − Rm(X,ψ′s, ψ
′
s, X))dl ≥ 0,

where the last inequality comes form the fact that g has strictly negative
Gaussian curvature. As a result, F is a convex function with two critical
points and, hence, identically constant. The formula above implies that
X must be a constant multiple of ψ′s and, thus, it must vanish at all
triple-junction points. The fact that X is continuous implies that X is
identically zero and this proves the desired result. q.e.d.

Before using this Theorem to prove a compactness result we need one
more definition.

Definition 4.5. Two regular networks σ0 and σ1 are in the same
(ν, η, r, R,C) topological class if there is a smooth family (σ̂t)0≤t≤1 of
networks, with possible boundary points, such that for every 0 ≤ t ≤ 1

a) the distance between any two triple junctions of σ̂t is bigger or
equal to η;

b) all the triple junctions of σ̂t are contained in Br(0) and the bound-
ary points of σ̂t are contained outside BR(0), with r ≤ R;

c) For every R ≥ s ≥ r

dist(σ̂t \Bs, P ) ≤ ν + C exp(−s2/C);

d) σ0 ∩BR ⊆ σ̂0 and σ1 ∩BR ⊆ σ̂1.

We can now state the following corollary.

Corollary 4.6. Let ψ be a regular self-expander with ends asymptotic
to a union of half-lines P . Fix r1, η, C1, D1, α < 1/2, and R.

For every ε, there are R1 ≥ R, β, and ν, all depending on ε, r1, η,
C1, D1, α, P , R,, so that if σ is a regular network that satisfies:
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i)

H1(σ ∩Br(x)) ≤ D1r for all x and r;

ii) ∫
σ∩BR1

(0)
|~k − x⊥|2dH1 ≤ β;

iii) σ and ψ are in the same (ν, η1, r1, R1, C1) topological class

then σ must be ε-close in C1,α(BR1(0)) to ψ.

Proof. We start by finding R1 ≥ R and ν so that if σ is a regular
self-expander in the same (2ν, η/2, r1 + 1, R1 − 1, C1) topological class
as ψ then σ must be ε/2-close in C1,α(BR1(0)) to ψ.

Suppose not. Then we can find a sequence of self-expanders σi with
Ri tending to infinity, νi tending to zero, and such that σi is not ε/2-
close in C1,α(BRi(0)) to ψ. Let bi denote a smooth branch of σi that
connects σi ∩ {|x| = Ri} to one of the triple junctions inside B2r1(0).
Because of c) and Lemma 4.3, there is some r2 such that, for every i
large enough, bi \ Br2(0) can be written as a graph of a function with
C1,α norm less than ε/4 and defined over part of P \ Br2 . As a result,
if σi is not ε/2-close in C1,α(BRi(0)) to ψ, we can find r3 such that σi
is not ε/2-close in C1,α(Br3(0)) to ψ for every i large enough. Because
each branch of σi is a geodesic of g, it is simple to see that we have
uniform length bounds for σi. Standard compactness arguments show
that a subsequence of σi converges in C1,α to regular self-expander σ
which, in virtue of property c), is asymptotic to P at infinity. If we can
show that ψ and σ are in the same topological class, then Theorem 4.4
implies that they have to coincide and this is a contradiction.

Arguing as in Theorem 4.4, we can change the family (σ̂it)0≤t≤1 of

networks given by hypothesis iii) and construct a family (ψ̂it)0≤t≤1 of
networks connecting ψ ∩ BRi−1(0) to σi ∩ BRi−1(0) such that all the
branches are geodesics for g, and those which intersect {|x| = Ri − 1}
have a uniform decay towards the half-lines of P (ψ̂it should satisfy,
with obvious modifications, properties i)–iv) described in the proof of
Theorem 4.4). Making i tending to infinity, it is easy to recognize that

(ψ̂it)0≤t≤1 converges to a family of networks (ψ̂t)0≤t≤1 connecting ψ to σ
and satisfying properties i)–iv) mentioned in Theorem 4.4. Hence, the
self-expanders must be in the same topological class.

Set ε1 = min{ε/2, ν, η/2, r1, 1/2}, and let σ be a regular network
satisfying the hypothesis of the lemma. Condition i) and ii) imply that∫

BR1
(0)∩σ

|~k|2dH1 ≤ β +

∫
BR1

(0)∩σ
|x⊥|2dH1 ≤ β +D1R

3
1.

Thus, we have uniform C1,1/2 estimates for σ in BR1(0). A standard
compactness argument shows that by taking β small enough, we can
assume that σ is ε1-close in C1,α to a regular self-expander ψ′ in BR1(0).



ON SHORT TIME EXISTENCE FOR THE PLANAR NETWORK FLOW 55

By the reasoning before, we, thus, get that ψ′ is ε/2-close in C1,α to ψ
in BR1(0) and this implies the desired result. q.e.d.

5. Main theorem

To show the short-time existence result for non-regular initial net-
works, we will use a special family of approximating regular networks.
We will state the needed properties of such an approximating family
below and show in the sequel the needed estimates for the proof of the
short-time existence result. We will show in Section 7 that for any
non-regular initial network such an approximating family exists.

Fix a regular self expander ψ which is asymptotic to a union of half-
lines denoted by P . Note that, by Lemma 4.3, P coincides with the
blow-down of ψ. For any x0 ∈ R2 and t > 0 denote

Φ(x0, t)(x) = ρx0,0(x,−t) =
1√
4πt

exp

(
−|x− x0|2

4t

)
.

We also use the notation

A(r,R) = {x ∈ R2 : r ≤ |x| ≤ R}.
Let (γs)0<s≤c be a family of regular networks on R2 such that for every
0 < s ≤ c :

H1) There is a constant D1 such that

H1(γs ∩Br(x)) ≤ D1r for all x and r.

H2) There is a constant D2 such that for every s and x in γs

|θs(x)|+ |βs(x)| ≤ D2(|x|2 + 1).

H3) γ̃s = γs√
2s

converges in C1,α
loc to ψ. Without loss of generality we

assume that
lim
s→0

(θs + β̃s) = 0,

where β̃s is primitive for the Liouville form of γ̃s.
H4) The connected components of P ∩ A(r0

√
s, 4) are in one-to-one

correspondence with the connected components of

γs ∩A(r0

√
s, 4),

and if θ is the angle that a half-line in P makes with the x-axis,
there is a function us such that a connected component σ of γs ∩
A(r0

√
s, 4) can be parametrized as

σ = {xeiθ + us(x)ei(θ+π/2) | for all r0

√
s ≤ x ≤ 4}.

Moreover, the function us satisfies

|us(x)|+ |x|
∣∣∣∣dusdx

∣∣∣∣+ |x|2
∣∣∣∣d2us
dx2

∣∣∣∣ ≤ D3

(
|x|2 + (2s)1/2 exp

(
−|x|2/4s

))
for some constant D3.
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Assume that (γst )t≥0 is a smooth solution to network flow with initial
condition γs and denote by Θs

t (x, r) the Gaussian density of γst

(5.1) Θs
t (x0, r) =

∫
γst

Φ(x0, r
2)dH1.

Note that in our previous notation we have Θs
t (x0, r) = Θ(x0, t+ r2, r)

with respect to the flow (γst ). We will show

Theorem 5.1. There are s1, δ1, and τ1 depending on α < 1/2, D1,
D2, D3, ψ, r0, and ε0, so that if

t ≤ δ1, r
2 ≤ τ1t, and s ≤ s1,

then

Θs
t (x0, r) ≤ 3/2 + ε0

for every x0 in B1(0).

Proof. Throughout the proof it will be understood that, unless stated,
all constants will depend only on α < 1/2, D1, D2, D3, ψ, r0, and ε0.
All the lemmas will be proven in Section 6.

Set

γ̃st =
1

(2(s+ t))1/2
γst .

We start by proving estimates that hold either for short-time or far from
the origin. They will be simple consequences of Huisken’s monotonicity
formula.

Lemma 5.2. [Far from origin estimate] There are δ1 and K0 so that
if r2 ≤ t ≤ δ1, then

Θs
t (x0, r) ≤ 3/2 + ε0

for every x0 with 1 ≥ |x0| ≥ K0

√
2t.

[Short-time estimate] There are s1 and q1 such that if s ≤ s1, r2, t ≤
q1s, then

(5.2) Θs
t (x, r) ≤ 3/2 + ε0

for every x in B1(0).

Remark 5.3. 1) It follows from the second estimate that we need
only to prove Theorem 5.1 when t ≥ q1s.

2) Setting

Θ̃s
t (x, r) =

∫
γ̃st

Φ(x, r2)dH1,

and in virtue of

Θs
t (x0, r) = Θ̃s

t

(
x0

(2(s+ t))1/2
,

r

(2(s+ t))1/2

)
,

in order to prove Theorem 5.1 it suffices to find s1, δ1, and τ1
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such that for every s ≤ s1, q1s ≤ t ≤ δ1, r2 ≤ τ1, and y0 with
|y0| ≤ (2(s+ t))−1/2, we have

Θ̃s
t (y0, r) ≤ 3/2 + ε0.

3) Set
τ1 = q1/(2(q1 + 1)).

The second estimate in the lemma implies that for s ≤ s1, t ≤ q1s,
and r2 ≤ τ1 we have

Θ̃s
t (y0, r) ≤ 3/2 + ε0

for every |y0| ≤ (2(s + t))−1/2. The first estimate in Lemma 5.2
implies that for r2 ≤ τ1, s ≤ s1 and q1s ≤ t ≤ δ1,

Θ̃s
t (y0, r) ≤ 3/2 + ε0

for every y0 with K0 ≤ |y0| ≤ (2(s+ t))−1/2.

From now on, consider K0, q1, s1, and δ1, given by Lemma 5.2 and
set τ1 = q1/(2(q1 + 1)).

In the next two lemmas we control the asymptotic behavior of γ̃st .
The proof will be a bit involving because it is important that r1 does
not depend on ν.

Lemma 5.4 (Proximity to P ). There are C1 and r1 so that for every
ν we can find s2, and δ2 for which the following holds. If s ≤ s2, t ≤ δ2,
and r ≤ 2, then

dist(y0, P ) ≤ ν+C1 exp(−|y0|2/C1) if y0 ∈ γ̃st ∩A
(
r1, (s+ t)−1/8

)
,

and

Θ̃s
t (y0, r) ≤ 1 + ε0/2 + ν if y0 ∈ A

(
r1, (s+ t)−1/8

)
.

Denote by F st the normal deformation

F st : γs −→ R2,

such that γst = F st (γs) and set F̃ st = (2(s + t))−1/2F st so that γ̃st =

F̃ st (γs). Using the previous lemma with ν = ε0/2 we obtain, as we shall
see in Section 6,

Lemma 5.5. There are r2, δ3, s3, and L, such that if t ≤ δ3 and
s ≤ s3 then

|F̃ s0 (x)− F̃ st (x)| ≤ L whenever F̃ s0 (x) ∈ A(r2, (s+ t)−1/8/2).

Consider C1 and r1 given by Lemma 5.4, r2, δ3, s3, and L given by
Lemma 5.5, and choose η1 = η1(τ1) given by Lemma 10.2. We then
set r3 = max{r0, r1, r2, 1}. Apply Corollary 4.6 where we consider R =√

1 + 2q1K0 + r3, ε = ε(ψ, α) to be the one given by Lemma 10.1, r1

to be r3, and η1, C1, D1, α, and P to be the constants already defined.
Then, we get the existence of R1, β, and ν for which Corollary 4.6 holds.
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Consider now s2 = s2(ν), δ2 = δ2(ν) given by Lemma 5.4 and set
s4 = min{s1, s2, s3}, δ4 = min{δ1, δ2, δ3}. Finally, decrease s4, δ4 if
necessary so that

(s4 + δ4)−1/8 ≥ 2R1.

The next lemma is essential to prove Theorem 5.1 and its content
is that the proximity of γ̃st to a self-expander can be controlled in an
integral sense. It is the only place where we use the evolution equations
derived in Section 3.

Choose a > 1 such (1 + 2q1)/a > 1 and set q = q1/a.

Lemma 5.6. There are δ0, and s0 so that for every

qs ≤ T ≤ δ0 and s ≤ s0,

we have
1

(a− 1)T

∫ aT

T

∫
γ̃st∩BR1

|~k − x⊥|2dH1dt ≤ β.

Consider δ0, s0 for which the lemma holds and set s5 = min{s0, s4},
δ5 = min{δ0, δ4}. Decrease s5 if necessary so that q1s5 ≤ δ5.

Having all the constants properly defined, we can now finish the proof.
Set

T0 = sup{T | Θ̃s
t (x, r) ≤ 3/2 + ε0 for all x ∈ BK0(0), r2 ≤ τ1, t ≤ T}.

It suffices to show that T0 ≥ δ5 for every s ≤ s5. Remark 5.3 1) implies
that T0 ≥ q1s.

Suppose that T0 < δ5 and set T = T0/a. Lemma 5.6 implies the
existence of T ≤ t1 ≤ T0 so that∫

γ̃st1
∩BR1

|~k − x⊥|2dH1 ≤ β.

We now check that Corollary 4.6 can be applied with σ being γ̃st1 .
Conditions i) and ii) are trivially satisfied. For every 0 ≤ t ≤ t1 set

σ̂t = F̃ st (γs ∩BR1+L(0)).

During the proof of Lemma 5.5 we chose r2 so that

Θ̃s
t (x, r) ≤ 1 + ε0

for every r ≤ 2 and x in A(r2, (s + t)−1/8). This implies that all the
triple junctions of σ̂t are inside Br3(0). Lemma 5.5 implies that the
boundary points of σ̂t lie outside BR1(0), and so condition iii) b) is met.
Condition iii) a) holds because Remark 5.3 3) implies that, for every x
in BR1(0), r2 ≤ τ1, and t ≤ t1

Θ̃s
t (x, r) ≤ 3/2 + ε0,

and so Lemma 10.2 can be applied with R = R1. Condition iii) c)
is satisfied because of Lemma 5.4. Condition iii) d) is not immedi-

ately satisfied because σ̂0 coincides with part of (2s)−1/2γs instead of ψ.
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Nonetheless, using hypothesis H3) and picking s5 smaller if necessary,
one can extend the family (σ̂t)0≤t≤t1 so that condition iii) d), indeed,
holds.

Therefore, we get from Corollary 4.6 that γ̃st1 is ε-close in C1,α(BR1(0))
to ψ. Denote by (γ̂sl )l≥0 the solution to network flow with initial condi-
tion γ̃st1 . A simple computation shows that

γ̂sl =
√

1 + 2lγ̃st1+lλ2 ,

where λ2 = 2(s+ t1). Applying Lemma 10.1 we conclude that for every
l ≤ q1

Θ̃s
t1+lλ2(x, r) = Θ̂s

l (
√

1 + 2lx,
√

1 + 2lr) ≤ 3/2 + ε0

provided √
1 + 2l|x| ≤ R1 − 1 and (1 + 2l)r2 ≤ q1.

Hence, for all t1 ≤ t ≤ t1(1 + 2q1),

Θ̃s
t (x, r) ≤ 3/2 + ε0

for every x in BK0(0) and r2 ≤ τ1, which implies that T0 ≥ t1(1 + 2q1).
This is a contradiction because

t1(1 + 2q1) ≥ T (1 + 2q1) = T0(1 + 2q1)/a > T0. q.e.d.

6. Omitted proofs from Section 5

We prove the various lemmas used in the previous section.

Proof of Lemma 5.2. We start by showing the existence of K0 so that
for every y0 in R2 with |y0| ≥ K0 and λ > 0∫

λ(γs∩B3(0))
Φ(y0, 1)dH1 ≤ 3/2 + ε0/2.

We argue by contradiction and assume the existence of yi tending to
infinity, λi, and si, for which

(6.1)

∫
λi(γsi∩B3(0))

Φ(yi, 1)dH1 ≥ 3/2 + ε0/2.

The first remark is that (λi)i∈N has to be an unbounded sequence, be-
cause for some universal constant C and for all i sufficiently large∫

λi(γsi∩B3(0))
Φ(yi, 1)dH1 ≤ Cλi exp(−|yi|2/8 + Cλ2

i )H1(γsi ∩B3(0)).

The second remark is that from hypothesis H3) and H4) it follows the
existence of D4 depending only on ψ, r0 and D3, so that on γs ∩B3(0)

|~k| ≤ D4

(
1 + s−1/2e−

|x|2
4s

)
,
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and, thus, setting σi = λiγ
si and li = λ2

i si, we have on σi ∩B3λi(0)

|~k| ≤ D4

(
λ−1
i + li

−1/2e
− |x|

2

4li

)
.

Because yi is tending to infinity, it is easy to recognize that the curvature
goes to zero uniformly on compact sets centered around yi. As a result,
σi − yi converges to either a line, or a union of half-lines. We first
note that one only needs to consider the case limi→∞ li =∞, otherwise
H3) and |yi| → ∞ yield a contradiction to (6.1). Furthermore, all the

triple junctions of σi are inside a ball of radius proportional to l
1/2
i and

the shortest distance between them is also proportional to l
1/2
i . Hence,

because yi is getting arbitrarily large, we see that σi − yi converges to
either plane or a union of three half-lines. This contradicts inequality
(6.1).

Hypothesis H1) ensures us that we can choose δ1 so that for every x0

in B1(0) and l ≤ 2δ1 ∫
γs\B3(0)

Φ(x0, l)dH1 ≤ ε0/2.

The monotonicity formula implies that for r2, t ≤ δ1.

Θs
t (x0, r) ≤

∫
γs

Φ(x0, r
2 + t)dH1

=

∫
γs\B3(0)

Φ(x0, r
2 + t)dH1 +

∫
γs∩B3(0)

Φ(x0, r
2 + t)dH1

≤ ε0/2 +

∫
(r2+t)−1/2(γs∩B3(0))

Φ(x0/
√
r2 + t, 1)dH1

≤ 3/2 + ε0,

provided |x0| ≥ K0

√
r2 + t. This proves the first statement.

Pick

ε = ε(ψ, α), q1 = q1(ψ, α)

given by Lemma 10.1 and apply this lemma with

σt = (2s)−1/2γs2st and R = K0
√
q1 + 1.

Note that by hypothesis H3) we can choose s1 so that, for every s ≤ s1,
σ0 is ε-close to ψ in C1,α(BR(0)) and s1q1 ≤ δ1. Scale invariance implies
that for every s ≤ s1, r2 ≤ t ≤ q1s, and x in B√2sq1K0

(0),

Θs
t (x, r) ≤ 3/2 + ε0.

This proves the second statement because the ball B√2sq1K0
(0) contains

B√2tK0
(0) if t ≤ q1s. q.e.d.

Proof of Lemma 5.4. Set

l = t(2(s+ t))−1 and σs = (2(s+ t))−1/2γs.
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Note that l ≤ 1. Moreover, for s2 = s2(r0) and δ2 = δ2(r0) small we
have that

σs ∩A
(
r0, 3(s+ t)−1/8

)
is graphical over P ∩ A

(
r0, 3(s+ t)−1/8

)
and if vs is a function arising

from the graphical decomposition then

|vs(x)|+ |x||dvs/dx|+ |x|2
∣∣d2vs/dx

2
∣∣

≤ D3

(
2(t+ s)1/2|x|2 + exp(−|x|2/2)

)
,

which means that, by choosing s2 = s2(D3, r0), δ2 = δ2(D3, r0) small
enough and choosing r1 = r1(r0, D3) ≥ max{r0, 1} large enough, we can
ensure that

(6.2) |vs(x)|+ |x||dvs/dx| ≤ D3

(
2(t+ s)1/2|x|2 + exp(−|x|2/2)

)
≤ 1

on A
(
r1, 3(s+ t)−1/8

)
.

From now on pick

y0 ∈ γ̃st ∩A
(

3r1 + 1, (s+ t)−1/8
)
.

From the monotonicity formula we have that

1 ≤ Θs
0(y0(2(s+ t))1/2,

√
t) =

∫
σs

Φ(y0, l)dH1 = A+B + C,

where

A =

∫
σs\B

3(s+t)−1/8

Φ(y0, l)dH1,

B =

∫
σs∩Br1

Φ(y0, l)dH1,

C =

∫
σs∩A(r1,3(s+t)−1/8)

Φ(y0, l)dH1.

For every x with |x| ≥ 3(s+ t)−1/8, the bounds for y0 imply that

|x− y0|2 ≥ |x|2/3 + |y0|2,
and so

Φ(y0, l) ≤
√

3 exp(−|y0|2/(4l))Φ(0, 3l).

Thus, we can find C1 = C1(D1) for which

A =

∫
σs\B

3(s+t)−1/8

Φ(y0, l)dH1

≤
√

3 exp(−|y0|2/(4l))
∫
σs\B

3(s+t)−1/8

Φ(0, 3l)dH1

≤ C1 exp(−|y0|2/C1).
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To estimate the second term we proceed in the same way. For every
|x| ≤ r1, the bounds for y0 imply that

|x− y0|2 ≥ |x|2 + |y0|2/3,
and so

Φ(y0, l) ≤ exp(−|y0|2/(12l))Φ(0, l) for every |x| ≤ r1.

Thus, we can find C1 = C1(D1) for which

B ≤ exp(−|y0|2/(12l))

∫
σs∩Br1

Φ(0, l)dH1 ≤ C1 exp(−|y0|2/C1).

Finally, we estimate the third term. Denote by Pi the half-lines such
that P = {Pi}Ni=1, by ai the orthogonal projection of y0 on the line
determined by Pi, and by bi the projection of y0 onto the normal space
of Pi so that

dist(y0, P ) = min{|bi|} = |b1|.
Furthermore, denote by σsi the component of

σs ∩A
(
r1, 3(s+ t)−1/8

)
,

which is graphical over Pi ∩ A
(
r1, 3(s+ t)−1/8

)
and by vis the corre-

spondent graph function. It is easy to recognize that for i = 2, . . . , N ,
we have |bi| ≥ c|y0|, where c = c(P ) is some positive constant. Relabel
r1 = r1(r0, D3, P ) such that (6.2) holds with c/

√
2 instead of 1 on the

right hand side. Hence,

(vis − bi)2 ≥ (c2/2)|y0|2,
and so there is C1 = C1(D1, P ) such that∫

σsi

Φ(y0, l)dH1 ≤ 2(4πl)−1/2

∫
exp

(
−(c2/2)|y0|2 + (x− ai)2

4l

)
dx

≤ C1 exp(−|y0|2/C1).

As a result, we combine all these estimates and obtain that for some
C1 = C1(D1, P )

1 ≤
∫
σs1

Φ(y0, l)dH1 + C1 exp(−|y0|2/C1).

We relabel r1 one last time and find r1 = r1(D1, D3, r0, ψ, α) so that

C1 exp(−r2
1/C1) ≤ 1/2.

This combined with H1) implies that there exists a constant c = c(D1)
such that

1/4 ≤
∫
σs1∩Bc√l(y0)

Φ(y0, l)dH1 ≤ 2 sup
|x−a1|≤c

√
l

exp

(
−|v

1
s − b1|2

4l

)
.
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By (6.2), the variation of v1
s(x) over the interval |x−a1| ≤ c

√
l is O(

√
l)

and, thus, there exists a constant c̃ = c̃(D1, P ) such that

sup
|x−a1|≤c

√
l

|v1
s − b1|2

4l
≤ c̃.

Therefore, using that λ ≤ (1−exp(−λ)) exp(c̃) for λ ∈ [0, c̃], we see that
we can find C1 = C1(D1, P ) for which∫
|x−a1|≤c

√
l

(v1
s − b1)2

4l

exp(−(x− a1)2(4l)−1)

(4πl)1/2
dx

≤ C
∫
|x−a1|≤c

√
l

(
1− exp

(
−(v1

s − b1)2

4l

))
exp(−(x− a1)2(4l)−1)

(4πl)1/2
dx

≤ C
(∫
{x≥r1}

√
1 + (dv1

s/dx)2
exp(−(x− a1)2(4l)−1)

(4πl)1/2
dx

−
∫
σs1\Br1 (0)

Φ(y0, l)dH1

)

≤ C

(∫
{x≥r1}

√
1 + (dv1

s/dx)2
exp(−(x− a1)2(4l)−1)

(4πl)1/2
dx− 1

)
+ C1 exp(−|y0|2/C1)

≤
∫
{x≥r1}

C(dv1
s/dx)2 exp(−(x− a1)2(4l)−1)

(4πl)1/2
dx+ C1 exp(−|y0|2/C1),

and, thus,

b21 ≤ C1

∫
{x≥r1}

(
(v1
s)

2 + (dv1
s/dx)2

) exp(−(x− a1)2(4l)−1)

(4πl)1/2
dx

+ C1 exp(−|y0|2/C1).

We observe that |a1| ≥ c|y0| for some constant c = c(P ) and that for
every 0 ≤ l ≤ 1 we have

(x+ a)2

2
+
x2

4l
≥ a2

8
+
x2

8l
.

Thus, we obtain from (6.2) that, for some constant C1 = C1(D1, D3, P ),∫
(dv1

s/dx)2 exp(−(x− a1)2(4l)−1)

(4πl)1/2
dx

≤ D3

∫ (√
s+ t|x|+ exp(−x2/2)

) exp(−(x− a1)2(4l)−1)

(4πl)1/2
dx

≤ C1

√
s+ t+D3

∫
exp(−x2/2)

exp(−(x− a1)2(4l)−1)

(4πl)1/2
dx



64 T. ILMANEN, A. NEVES & F. SCHULZE

≤ C1

√
s+ t+D3

∫
exp(−(x+ a1)2/2)

exp(−x2(4l)−1)

(4πl)1/2
dx

≤ C1

√
s+ t+D3 exp(−a2

1/8)

∫
exp(−x2(8l)−1)

(4πl)1/2
dx

≤ C1

√
s+ t+ C1 exp (−|y0|2/C1).

The same type of estimate holds for the term∫
(v1
s)

2 exp(−(x− a1)2(4l)−1)

(4πl)1/2
dx,

and so we can choose s2 and δ2 both depending on D1, D3, ψ, r0, α, and
ν, such that for every s ≤ s2 and t ≤ δ2 we have

b1 = dist(y0, P ) ≤ ν + C1 exp(−|y0|2/C1).

We now show that, by relabeling r1, s2, and δ2 if necessary, we also
have

Θ̃s
t (y0, r) ≤ 1 + ε0/2 + ν

for every r ≤ 1. The argument is almost identical to what we have
just done and so we will just point out the differences. We keep the
same notation and assumptions. Arguing in the very same way as we
did before, we obtain the existence of C1 = C1(D1, D3, P ) and r1 =
r1(D1, D3, r0, ψ, α) for which

Θ̃s
t (y0, r) ≤

∫
σs

Φ(y0, l + r2)dH1

≤
∫
σs1

Φ(y0, l + r2)dH1 + C1 exp(−|y0|2/C1)

≤
∫ √

1 + (dv1
s/dx)2

exp
(
−(x− a1)2(4(l + r2))−1

)
(4π(l + r2))1/2

dx

+ C1 exp(−|y0|2/C1)

≤ 1 + C1

∫
|dv1

s/dx|
exp

(
−(x− a1)2(4(l + r2))−1

)
(4π(l + r2))1/2

dx

+ C1 exp(−|y0|2/C1)

≤ 1 + C1

√
s+ t+ C1

∫
exp(−x2/2)

exp
(
−(x− a1)2(4(l + r2))−1

)
(4π(l + r2))1/2

dx

+ C1 exp(−|y0|2/C1).

Using the fact that 0 ≤ l ≤ 1 we obtain

Θ̃s
t (y0, r) ≤ 1

+ C1

√
s+ t+ C1

∫
exp(−(x+ a1)2/2)

exp
(
−x2(4(l + r2))−1

)
(4π(l + r2))1/2

dx
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+ C1 exp(−|y0|2/C1)

≤ 1 + C1

√
s+ t+ C1 exp(−a2

1/40)

∫
exp

(
−x2(8(l + r2))−1

)
(4π(l + r2))1/2

dx

+ C1 exp(−|y0|2/C1)

≤ 1 + C1

√
s+ t+ C1 exp(−|y0|2/C1)

≤ 1 + ε0/2 + C1

√
s+ t.

Thus, like before, we can choose s2, δ2 for which the result holds.
q.e.d.

Proof of Lemma 5.5. From scale invariance and applying Lemma 5.4
with ν = ε/2, we can find r2 ≥ 1, δ3, and s3 such that if t ≤ δ3, and
s ≤ s3, then

Θs
t (x, r) ≤ 1 + ε0,

whenever r ≤ 2(2(s+ t))1/2 and

x ∈ A
(
r2(2(s+ t))1/2, (2(s+ t))1/2(s+ t)−1/8

)
.

Hence, from White’s regularity Theorem [26], we obtain the existence
of a universal constant C for which∣∣∣∣dF stdt (p)

∣∣∣∣ = |~k| ≤ Ct−1/2,

whenever

F st (p) ∈ A
(

3r2(2(s+ t))1/2/2, 3(2(s+ t))1/2(s+ t)−1/8/4
)
.

Choosing a larger r2 (depending on C and the previous r2) and δ3, s3

smaller if necessary, we obtain after integrating the previous inequality
that

|F st (p)− F s0 (p)| ≤ 2C
√
t,

whenever

F s0 (p) ∈ A
(
r2(2(s+ t))1/2, (2(s+ t))1/2(s+ t)−1/8/2

)
.

This finishes the proof. q.e.d.

Lemma 6.1. There exists δ5 > 0, s.t. for 0 < s, t < δ5 it holds that

(6.3) |~k(x)|+ |θst (x)|+ |βst (x)| ≤ D4 ∀x ∈ γst ∩A(1/3, 3).

Proof. By assumption H4) the estimate is true for t = 0 and s suf-
ficiently small. H4), furthermore, implies that for s sufficiently small,
each component of γs ∩ A(1/8, 8) is a graph, uniformly small C2-norm
over a half-line P . By Theorem 1.5 this implies that there exists δ5 > 0
such that γst ∩A(1/6, 6) remains a graph with small gradient over P for
0 ≤ t ≤ δ5. This already implies the first two estimates of the statement,
since θst is continuous in t.
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The estimates of Ecker and Huisken, [8], for graphical mean curvature
flow then imply that

γst ∩A(1/5, 5)

remains is a graph over P with small C2-norm for 0 ≤ t ≤ δ5. Let
(N s

t )0≤t≤T be a smooth parametrization of the evolving network. Since
γst ∩ A(1/5, 5) is free of triple junctions we can locally reparametrize
(N s

t )0≤t≤min(T,δ5) such that( ∂
∂t
N
)T

= XT = 0

on A(1/4, 4). Since X = ~k, we have by the evolution equation for βt
that, ∣∣∣ d

dt
βt

∣∣∣ ≤ |〈X, Jx〉|+ 2|θt| ≤ C.

Decreasing δ5 further if necessary, this implies the second part of state-
ment. q.e.d.

Proof of Lemma 5.6. Set T0 = R2(aT + s) +aT . During this proof C
denotes a constant which is allowed to depend also on a,R, and q (but
not T and s). We have from the localized monotonicity formula applied
to 2(s+ t)θs + βs (see Lemma 3.3) that

1

(a− 1)T

∫ aT

T

∫
γ̃st∩BR(0)

|~k − x⊥|2dH1dt

=
1

(a− 1)T

∫ aT

T
(2(s+ t))−3/2

∫
γst∩BR

√
2(s+t)

(0)
|2(s+ t)~k − x⊥|2dH1dt

=
1

(a− 1)T

∫ aT

T
(2(s+t))−3/2

∫
γst∩BR

√
2(s+t)

(0)
|∇(2(s+t)θs+βs)|2dH1dt

≤ C

T

∫ aT

T
(s+t)−3/2(T0−t)1/2

∫
γst

ϕ|∇(2(s+t)θs+βs)|2ρ(0, T0−t)dH1dt

≤ C

T
(s+ T )−3/2(T0 − T )1/2

∫
γsT

ϕ(2(s+ T )θs + βs)2ρ(0, T0 − T )dH1

+
C

T
(s+T )−3/2(T0−T )1/2

∫ aT

T

∫
γst∩A(2,3)

(2(s+t)θst+β
s
t )

2ρ(0, T0−t) dH1dt

≤ C

T
(s+ T )−3/2(T0 − T )1/2

∫
γs0

ϕ(2sθs + βs)2ρ(0, T0)dH1

+
C

T
(s+T )−3/2(T0−T )1/2

∫ aT

0

∫
γst∩A(2,3)

(2(s+t)θst+β
s
t )

2ρ(0, T0−t) dH1dt
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≤ C

T (s+ T )

∫
γs0

ϕ(2sθs + βs)2ρ(0, T0)dH1

+
C

T (s+ T )

∫ aT

0

∫
γst∩A(2,3)

(2(s+ t)θst + βst )
2ρ(0, T0 − t) dH1dt

= A+B.

For the second term, using Lemma 6.1, we have

B ≤ C((s+ aT ) + 1)

T (s+ T )

∫ aT

0

∫
γst∩A(2,3)

|x|4ρ(0, T0 − t)dH1dt

≤ C((s+ aT ) + 1)

T (s+ T )

∫ aT

0
(T0 − t)2

∫
(T0−t)−1/2(γst∩A(2,3))

|x|4ρ(0, 1)dH1dt

≤ C((s+ aT ) + 1)T 3
0

T (s+ T )
sup

0<t<aT

∫
(T0−t)−1/2(γst∩A(2,3))

|x|4e−|x|2/4dH1

≤ CT0 sup
0<t<aT

∫
(T0−t)−1/2(γst∩A(2,3))

|x|4e−|x|2/4dH1.

Note that
T0 ≤ R2δ0(a+ 1/q) + aδ0,

and so we can choose δ0 small enough so that B ≤ β/2.
We now estimate the first term. Recall that if β is primitive for the

Liouville form on the network γ, then βl = l−2β is primitive for the
Liouville form on l−1γ. Set

λ =
s

T + s
and l =

√
2(T + s).

Then

A ≤ C

T (s+ T )

∫
γs∩B3

(2sθs + βs)2ρ(0, T0)dH1

=
C(s+ T )

T

∫
l−1(γs∩B3)

(λθs + βsl )
2ρ(0, l−2T0)dH1

≤ C
∫
l−1(γs∩B3)

(λθs + βsl )
2ρ(0, l−2T0)dH1,

where the last equality follows because T ≥ qs. Consider

F (T, s) =

∫
l−1(γs∩B3)

(λθs + βsl )
2ρ(0, l−2T0)dH1,

where we remark the existence of a constant C (independent of T and
s) such that

C−1 ≤ l−2T0 ≤ C.
Given any β1 small it is enough to show the existence of s0 and δ0 so
that if qs ≤ T ≤ δ0 and s ≤ s0 then

F (T, s) ≤ β1.
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We now argue by contradiction and assume the existence of si and
Ti (with qsi ≤ Ti) converging to zero for which F (Ti, si) ≥ β1. We also
assume that l−2

i T0 converges to T1.
Suppose first that λi (as defined above) has a subsequence converging

to a positive number λ. In that case

l−1
i γsi = λ

1/2
i γ̃si

converges in C1,α
loc to λ1/2ψ. Hypothesis H3) implies that

lim
i
F (Ti, si) ≤ lim

i
λ2
i

∫
γ̃si

(θs + β̃si)2ρ(0, l−2
i λ−1

i T0)dH1 = 0.

Suppose now that λi has a subsequence converging to zero. It follows
at once that

lim
i

∫
l−1
i

(
γsi∩Br0

√
si

)(λiθ
si + βsili )2ρ(0, l−2

i T0)dH1 = 0.

Note that by hypothesis H4)

l−1
i γsi ∩A(r0(λi/2)1/2, 3l−1

i )

is graphical over P and if vi is the function arising from the graphical
decomposition of l−1

i γsi then

|vi(x)|+ |x||dvi/dx|+ |x|2
∣∣d2vi/dx

2
∣∣ ≤ D3

(
li|x|2 + (λi)

1/2e
− |x|

2

2λi

)
.

Therefore, we have that

(6.4) |∇βsili | = |x
⊥| = |xv′i − vi|√

1 + (v′i)
2
≤ D3

(
li|x|2 + (λi)

1/2
)
.

We now argue that for any connected component of

l−1
i γsi ∩A(r0(λi/2)1/2, 3l−1

i ),

there is xi converging to zero for which bi = βsili (xi) also converges to

zero. From hypothesis H3) we see that any connected components of

ψ̃si ∩A(2r0, 3r0) contains yi such that

lim
i

(θsi(yi) + β̃si(yi)) = 0.

Setting xi = λiyi, it is simple to see that bi = λiβ̃
si(yi) tends to zero.

Therefore, we can use gradient estimate (6.4) and the graphical de-
composition to conclude the existence of a constant C independent of i
such that

|βsili (x)| ≤ C
(
li|x|3 + (λi)

1/2|x|
)

+ bi on A(r0(λi/2)1/2, 3l−1
i ).

Hence,

lim
i
F (Ti, si) = lim

i

∫
l−1
i γsi∩A(r0(λi/2)1/2,3l−1

i )
(λiθ

si + βsili )2ρ(0, l−2
i T0)dH1
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= lim
i

∫
l−1
i γsi∩A(r0(λi/2)1/2,3l−1

i )
(βsili )2ρ(0, l−2

i T0)dH1

≤ lim
i
C(l2i + λi + b2i )

∫
l−1
i γsi

(|x|6 + |x|2 + 1)ρ(0, l−2
i T0)dH1 = 0.

This is a contradiction. q.e.d.

7. Short-time existence

We will show, in this section, that one can glue a scaled self-expander
at scale s into the initial network around a non-regular multiple point to
obtain a sequence of regular networks γs which satisfy the hypotheses
H1)–H4) in Section 5. We will show that combining Theorem 5.1 and
1.3 then proves short time existence of the network flow for non-regular
initial networks, Theorem 1.1.

We will first discuss the question of short-time existence for regular
networks with unbounded branches. By the definition of a regular net-
work there exists an R0 > 0 such that outside of BR0 the initial network
γ0 consists of a finite number of non-compact branches γi0, i = 1, . . . , n
which can be written as graphs over corresponding half-lines Pi. Since
the curvature of γ0 is bounded and the γi0 approach the half-lines Pi
at infinity, we assume that each γi0 can be written as a normal graph
over Pi with small C1-norm. We define the points qik := γi0 ∩ ∂Bk for
k ≥ k0 > R0; k, k0 ∈ N. By the results in [15, 14] there exists a maxi-
mal solution (γk,t)0≤t<Tk of the network flow, starting at γ0 ∩ Bk with
fixed endpoints qik. Using Proposition 8.1 in Bk0 and Theorem 1.5 to
control the boundary points as well as estimates of Ecker and Huisken
for graphical mean curvature flow to control the parts outside of Bk0 to
see that there is T > 0 such that Tk ≥ T for all k ≥ k0, together with
uniform estimates on the curvature. We, thus, take a limit k → ∞ to
obtain a solution to the network flow, starting at γ0.

Now let γ be a non-regular initial network with bounded curvature.
For simplicity let us assume that γ has only one non-regular multiple
point at the origin.

If the multiple point consists only of two branches meeting at an angle
different than π, then smoothing the cone point and using estimates for
graphical mean curvature flow, see, for example, the proof of Lemma 6.1,
one easily constructs a solution starting at γ as claimed in Theorem 1.1.

So we can assume that at the origin at least three branches meet, and
let Tj , j = 1, . . . , n, be the exterior unit normals. We denote with

Pj = {−tTj | t ≥ 0}

be the corresponding half-lines. Since γ has bounded curvature, we can
assume, by scaling γ if necessary, that γ ∩B5 consists of n branches γj
corresponding to the half-lines Pj ; and if θj is the angle that Pj makes
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with the x-axis, there is a function uj such that γj can be parametrized
as

γj = {xeiθj + uj(x)ei(θj+π/2) | 0 ≤ x ≤ 5}.
Note that the assumption that γ has bounded curvature implies

(7.1) |uj(x)| ≤ Cx2 and
∣∣∣ d
dx
uj(x)

∣∣∣ ≤ Cx.
In [22] it was shown that for n = 3 there exists a unique tree-like self-
expander ψ asymptotic to P := ∪nj=1Pj . In the case n > 3 the existence

of tree-like, connected self-expanders was shown by Mazzeo–Saez [16].
Note that Lemma 4.3 gives the asymptotics of ψ outside a large ball
Br0 .

We now aim to glue ψs :=
√

2s · ψ into γ to get a family satisfying

the conditions H1)–H4). Let vjs be the graph function corresponding to

the branch ψjs on A(r0

√
2s, 4). By Lemma 4.3 we have the estimate

|vjs| ≤ (2s)1/2Ce−x
2/4s , |(vjs)′| ≤ x−1(2s)1/2Ce−x

2/4s ,

|(vjs)′′| ≤ (2s)−1/2Ce−x
2/4s.

(7.2)

Let ϕ : R+ → [0, 1] be a cut-off function s.t. ϕ = 1 on [0, 1] and ϕ = 0

on [2,∞). We define γs via the graph function ujs in the gluing region
A(r0

√
2s, 4) by

ujs := ϕ(s−1/4x)vjs(x) + (1− ϕ(s−1/4x))uj(x) .

It can easily be checked that γs satisfies the assumptions H1)–H3). From
(7.1) and (7.2) we see that

|ujs| ≤ C
(
x2 + (2s)1/2e−x

2/4s
)
.

Furthermore,

(ujs)
′ = s−1/4ϕ′(s−1/4x)vjs(x) + ϕ(s−1/4x)(vjs)

′(x)

− s−1/4ϕ′(s−1/4x)uj(x) + (1− ϕ(s−1/4x))(uj)′(x) .

We have x−1 ≤ s−1/4 ≤ 2x−1 on {ϕ′(s−1/4x) 6= 0} and so we can
estimate

x|(ujs)′| ≤ C(|vjs(x)|+ x|(vjs)′(x)|+ |uj(x)|+ x|(uj)′(x)|

≤ C
(
x2 + (2s)1/2e−x

2/4s
)
.

The estimate for (ujs)′′ follows similarly, which shows that also H4) is
satisfied.

Proof of Theorem 1.1. As discussed at the beginning of this section
there exits a smooth solution to the network flow (γst )0≤t≤Ts for some
Ts > 0. We now aim to show that there exists a T0 > 0 such that
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Ts ≥ T0 for all s > 0 and that there are time interior estimates on k
and all its higher derivatives for all positive times, independent of s.

Using Theorem 1.5 and interior estimates for higher derivatives of the
curvature we see that we can pick a smooth family of points Pj(t, s) ∈
γjs∩A(1/3, 1/2) such that assumptions (8.7) and (8.8) are satisfied, with
constants independent of s for 0 ≤ t < min{Ts, δ}, where δ > 0 does
not depend on s. Then Proposition 8.1 gives estimates on the curvature
and its derivatives, independent of s on R2 \B1/2 × (0,min{Ts, δ}).

To get the desired estimates on B1/2 we aim to apply Theorem 5.1
and Theorem 1.3. Fix ε0 > 0 such that 3/2+ε0 < ΘS1 , and let s1, δ1, τ1

be determined by Theorem 5.1.
Pick 0 < t0 < min{Ts, δ1, δ} and x0 ∈ B1/2. Let ρ := (t0/2)1/2. Note

that Bρ(x0) ⊂ B1. Theorem 5.1 then implies that the Gaussian density
ratios

Θ(x, t, r) ≤ 3/2 + ε0

for all (x, t) ∈ Bρ(x0) × (t0 − ρ2, t0) and r ≤ √τ1ρ. Thus, by Theorem
1.3 with σ = 1, there exists C, depending only on ε0, τ1 such that

|k|(x0, t0) ≤ C

t
1/2
0

,

together with the corresponding estimates on all higher derivatives. By
Remark 1.4 there is a κ > 0, depending only on ε0, τ1 such that the

length of the shortest segment is bounded from below by κ · t1/20 .
Together with the estimate on (R2\B1/2)×(0,min{Ts, δ}) this implies

that Ts ≥ T0 := min{δ, δ1}. By the estimates on the curvature, which
are independent of s we can take a subsequential limit of the flows
(γst )0<t<T̄ as s → 0 to obtain a limiting flow (γt)0<t<T̄ starting at the
non-regular network γ.

Note that by Theorem 1.5 and the interior estimates of Ecker/Huisken,
away from any triple and multiple point, the flow (γt)0<t<T̄ attains the
initial network γ in C∞. Furthermore, by the above estimate in B1 and
Proposition 8.1 we have

|k| ≤ C

t1/2
.

The estimate on the length of the shortest segment passes to the limit
as well. q.e.d.

8. Local regularity

In this section, we will prove some local regularity results for the
network flow.

Integral estimates. We will need to localize the integral estimates in
the work of Mantegazza, Novaga and Tortorelli [15]. In the following
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we will outline what modifications of the original proofs are needed to
obtain the estimates in the local case. The setup is as follows.

Let (γt)t∈[0,T ) be a regular, smooth solution of the network flow on

R2. Let N : γ0 × [0, T )→ R2 be a smooth and regular parametrization
of the flow. We denote the tangential component of the deformation
vector by

(8.1) ~λ = XT .

As defined before we denote with Tj the exterior unit tangent vector
induced by each σj at each triple point. We then define

(8.2) ki = 〈~ki, JTi〉 and λi = 〈~λ, Ti〉.

The balancing condition at each triple point then implies

(8.3) k1 + k2 + k3 = 0 and λ1 + λ2 + λ3 = 0.

We would like to point out that our setup differs to the one in [15]

in that we do not want to prescribe the tangential component ~λ of
the deformation vector. If one aims to prove a short-time existence
result, one has to specify the tangential velocity. Nevertheless, and this
is important in the following discussion, the integral estimates on the
curvature and higher derivatives of the curvature of the evolving network
do not depend on the choice of tangential velocity. Another point is
that the calculations in [15] are done only for a network consisting
of three curves, meeting at one common triple point, and with three
fixed endpoints. As already mentioned there, see Remark 3.24 in [15],
these calculations generalize without any changes to networks with more
than one triple point, but with fixed endpoints. In the following we will
explain how to generalize these estimates to networks with arbitrary
tangential speed, more than one triple point and any number of moving
endpoints.

We assume that along each segment σi we have fixed an orientation
and, thus, the unit tangent vector field τ along is well defined. Note
that at each endpoint p of σi we have

τ(p) = ±Ti,

depending on the chosen orientation. We fix the unit normal vector field
ν along N by requiring that

Jτ = ν.

This convention implies that the curvature k of N is given by

k = 〈~k, ν〉 = 〈∂sτ, ν〉 = −〈∂sν, τ〉,

where s is the arc-length parameter along σi(t). Similarly we define

λ = 〈X, τ〉 = 〈~λ, τ〉.
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Note that this implies again that at an endpoint p of σi it holds that

k(p) = ±ki and λ(p) = ±λi.
It then can be easily checked that the evolution equations for τ, ν and k

do not depend on the choice of the tangential speed ~λ and are given by

∂tτ = (〈∇k, τ〉+ kλ)ν,(8.4)

∂tν = −(〈∇k, τ〉+ kλ)τ,(8.5)

∂tk = ∆k + 〈∇k,~λ〉+ k3,(8.6)

see (2.4), (2.5) and (2.6) in [15]. Furthermore, the estimates and rela-
tions between the curvatures ki and the tangential speeds λi at a triple
point, following (2.6) until (2.10) in [15], remain valid. As well the
evolution equation for higher derivatives of the curvature and the rela-
tions between time and spacial derivatives given in Lemma 3.7 and the
calculus rules in Remark 3.9 in [15] are not affected.

This ensures that all the calculations for integrals of the curvature
and its derivatives are identical up to contributions from the boundary
points. To control the influence of the boundary points we make the
following assumption.

Assumption. We assume that the evolving network (γt)t∈[0,T ) has
boundary points Ql(t), where l = 1, . . . , N . We assume that these
boundary points are all disjoint and at each of this points it holds that

(8.7) XT |(P (t),t) = ~λ(Ql(t), t) = 0

for all t ∈ [0, T ). Furthermore, we assume that there are positive con-
stants Cj such that

(8.8) sup
l∈{1,...,N}

|∇jk|
∣∣
(Ql(t),t)

≤ Cj

for all j = 0, 1, . . . , j0, where j0 ∈ N, t ∈ [0, T ).

With this assumption the additional terms in the evolution of the

integral of the square of ∂jsk can be controlled. To demonstrate this,
and for the reader’s convenience, we will do this calculation explicitly,
compare with (3.4) in [15].

d

dt

∫
γt

|∇jk|2ds = 2

∫
γt

∇jk ∂t∇jk ds

+

∫
γt

|∇jk|2(div(~λ)− k2) ds

= 2

∫
γt

∇jk∆∇jk +∇~λ∇
jk∇jk ds

+

∫
γt

pj+3(∇jk)∇jk ds+

∫
γt

|∇jk|2(div(~λ)− k2) ds
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= −2

∫
γt

|∇j+1k|2ds+

∫
γt

div(~λ|∇jk|2) ds

+

∫
γt

p2j+4(∇jk) ds+
∑

3-points

3∑
i=1

〈Ti,∇|∇jk|2〉
∣∣∣∣
3-point

(8.9)

+
N∑
l=1

〈Tl,∇|∇jk|2〉
∣∣∣∣
Ql

= −2

∫
γt

|∇j+1k|2ds+

∫
γt

p2j+4(∇jk) ds

∑
3-points

3∑
i=1

〈Ti,∇|∇jk|2〉+ λi|∇jk|2
∣∣∣∣
3-point

+
N∑
l=1

〈Tl,∇|∇jk|2〉
∣∣∣∣
Ql

.

In the special case j = 0 one gets

d

dt

∫
γt

k2ds = −2

∫
γt

|∇k|2ds+

∫
γt

k4 ds

+
∑

3-points

3∑
i=1

〈Ti,∇(k2)〉+ λik
2

∣∣∣∣
3-point

+
N∑
l=1

〈Tl,∇(k2)〉
∣∣∣∣
Ql

.

The relations at the triple points, see (2.10) in [15], imply that at each
triple point

3∑
i=1

2〈Ti,∇(k2)〉+ λik
2

∣∣∣∣
3-point

= 0.

Thus, the order of differentiation at the triple point can lowered by one
order, and one gets

d

dt

∫
γt

k2ds = −2

∫
γt

|∇k|2ds+

∫
γt

k4 ds

−
∑

3-points

3∑
i=1

λik
2

∣∣∣∣
3-point

+

N∑
l=1

〈Tl,∇(k2)〉
∣∣∣∣
Ql

.

(8.10)

Following verbatim the computations in [15] on can use interpolation
inequalities for Lp-norms of k and higher derivatives of k to absorb the
term ∫

γt

k4 ds,

and the boundary terms at the triple-points. Note that the contributions
at the boundary points Ql are bounded by NC0C1. This leads to the



ON SHORT TIME EXISTENCE FOR THE PLANAR NETWORK FLOW 75

estimate, compare (3.10) in [15],

(8.11)
d

dt

∫
γt

k2ds ≤ C
(

1 +

∫
γt

k2 ds

)3

,

where C depends only on a bound for the inverses of the lengths of
the segments the evolving network and NC0C1. This inequality implies
that the L2-norm of k cannot grow to quickly. It can be, furthermore,
shown that an estimate for the L2-norm of every even derivative ∇jk is
true, which depends only on the L2-norm of k, a bound for the inverses
of the lengths of the segments of the evolving network and NCjCj+1.
Compare here the proof of Proposition 3.13 in [15].

A bound for the inverses of the lengths of the segments l(σi) of the
evolving network, depending on the initial network and

∫
k2 is also

true. Note that since at the endpoints Ql we have λl = 0 there is no
extra contribution there. As in the proof of Proposition 3.15 in [15] one
obtains

(8.12)
d

dt

(
1 +

∫
γt

k2 +
∑
i

1

l(σi)

)
≤ C

(
1 +

∫
γt

k2 +
∑
i

1

l(σi)

)3

,

where C depends only on NC0C1. Thus, also the length of the shortest
segment remains bounded from below for a short time. Thus, there
exists a T0 > 0, depending only on the L2-norm of the curvature of γ0,
the inverses of the lengths of the segments of γ0, and N,C1, C2 such that
on [0, T0] the L2-norm of k and the inverse of the length of the shortest
segment remains uniformly bounded.

To obtain estimates for higher derivatives of k which are interior
in time, Mantegazza, Novaga and Tortorelli look, for j even, at the
evolution of integrals of the form,∫

γt

k2 +
t

2!
|∇k|2 + · · ·+ tj

j!
|∇jk|2 ds.

By (8.9) we get for the time derivative of such a quantity in our case
only the additional boundary term

N∑
l=1

j∑
i=0

ti

i!
〈Tl,∇|∇ik|2〉

∣∣∣∣
Ql

,

which by our assumption (8.8) is bounded on finite time intervals. So
arguing as in [15] we obtain, compare p. 273 there, that on [0, T0]∫

γt

k2 +
t

2!
|∇k|2 + · · ·+ tj

j!
|∇jk|2 ds ≤ C̃j .

Here the constants C̃j depend only on the L2-norm of the curvature of
γ0, the inverses of the lengths of the segments of γ0 and the constants
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C1, . . . , Cj+1. Using interpolation inequalities, see Remark 3.12 in [15],
we can, thus, state the following Proposition.

Proposition 8.1. Let (γt)t∈[0,T ) be a smooth solution to the net-
work flow, with N endpoints, satisfying the assumptions (8.7) and (8.8).
Then there exists T0 > 0, depending only on the L2-norm of the curva-
ture of γ0, the inverses of the lengths of the segments of γ0, and N,C1, C2

such that for all 0 < t < min{T, T0} it holds for all j > 0 that

|∇jk| ≤ Ĉj · t−
j
2
− 1

4 ,

where Ĉj depends only on the L2-norm of the curvature of γ0, the
inverses of the lengths of the segments of γ0, N and the constants
C1, . . . , Cj+1.

Generalized self-similarly shrinking networks. In the following we
define a degenerate regular network. It can be seen as a C1-limit of
regular networks, where it is allowed that the lengths of some segments
go to zero.

Definition 8.2 (Degenerate regular network). We consider a con-
nected graph G consisting of a finite number of edges ei, 1 ≤ i ≤ N1

and vertices vj , 1 ≤ j ≤ N2. We assume that the edges are either home-
omorphic to the interval [0, 1], with two boundary points, or homeomor-
phic to [0,∞), with one boundary point. We assume that at the vertices
always three such boundary points meet. We, furthermore, assume that
there exists a continuous map Ψ : G → TR2, x 7→ (Ψ(x),Ψ′(x)) such
that if ei is homeomorphic to a finite interval, then either

i) Ψ restricted to ei is the smooth, regular parametrization of a curve
in R2 up to the endpoints, with self-intersections possibly only at
the endpoints, or

ii) Ψ is degenerate, i.e., it maps to a fixed point (p, v) ∈ TpR2 with
|v| = 1, for some p ∈ R2.

If the edge is homeomorphic to a half-line we assume the first case. At
each vertex we assume that the three tangent directions of the curves
meeting there form 120-degree angles. We call (G,Ψ) as above a de-
generate regular network if there exists a sequence of homeomorphisms
Ψk : G→ R2 as above, such that Ψk → Ψ in C1, where we assume that
the Ψk are actually embeddings, i.e., Ψk(G) are regular networks. If
one or several edges are mapped under Ψ to a single point p in R2, we
call this sub-network the core at p. Note that for a degenerate regular
network, the core at a point p is always a connected sub-network.

We call (G,Ψ) a generalized self-similarly shrinking network, if Ψ
is a degenerate embedding in the sense above, and Ψ|ei satisfies the
self-shrinker equation

~k = −x
⊥

2
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for all 1 ≤ i ≤ N1. The evolving self-similar solution for t ∈ (−∞, 0) is
then given by

Nt =
√
−tΨ.

The most basic example of a generalized self-similarly shrinking solution
with triple points is the union of three half-lines, meeting at the origin
under a 120-degree condition. We will call this solution the standard
triod.

The following Lemma is from [11], for the convenience of the reader
we give the proof in here.

Lemma 8.3 (Hättenschweiler). Let (G,Ψ) be a generalized self-simi-
larly shrinking network, such that G is a tree. Then Ψ(G) consists of
half-lines emanating from the origin, with possibly a core at the origin.

Proof. First note that any non-degenerate self-similar shrinking curve
is a member of the one-parameter family of curves classified by Abresch
and Langer in [1]. Their classification result implies the following. If
the curve contains the origin, then it is a straight line through the
origin. Otherwise it is contained in a compact subset of R2, but it is
still diffeomorphic to a line. In the latter case, any such curve has a
constant winding direction with respect to the origin. Aside from the
circle, any other solution has a countable, non-vanishing number of self-
intersections.

Let us consider Γ′ ⊂ Γ := ψ(G), which consists of Γ with all half-
lines going to infinity removed. For θ ∈ S1 let S(θ) be the half-line,
emanating from the origin in direction of θ. Consider

R(θ) := sup{|x| |x ∈ Γ′ ∩ S(θ)}.
If Γ′ is not only the core at the origin, there exists a ϕ0 such that
R(ϕ0) = |S(ϕ)∩γi| > 0, where γi is a non-degenerate curve of Ψ. Since
the γi’s don’t change their winding direction we have

R(ϕ) = |γi(ϕ)|
for all ϕ ∈ {ϕ | γi ∩ S(ϕ) 6= ∅}. At an endpoint of γi we have R(·) > 0
otherwise γ would have been a half-line, starting at the origin. At this
endpoint, also if it has a core, there is always another γi′ which continues
smoothly with the same winding direction, R(ϕ) stays positive and

R(ϕ) = |γi′(ϕ)|
for all ϕ ∈ {ϕ | γi′∩S(ϕ) 6= ∅}. This also implies thatR(ϕ) is continuous.
Continuing until ϕ reaches again ϕ0 we find a closed non-contractible
loop in Γ′, which yields a contradiction. q.e.d.

Let us assume that (γt)0≤t<T is a network flow. Huisken’s monotonic-
ity formula implies that the function

Θx0,t0(t) :=

∫
γt

ρx0,t0 ds
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is decreasing in time for t< t0, and the limit Θ(x0, t0) := limt↗t0 Θx0,t0(t)
is the Gaussian density at (x0, t0). The function Θx0,t0(t) is constant
in time if and only if the evolving network is a self-similarly shrinking
network, centered at the space-time point (x0, t0).

The Gaussian density of the shrinking sphere can easily computed to
be

ΘS1 =

√
2π

e
.

Note that ΘS1 > 3/2. For a generalized self-similar shrinking network
γ we denote Θγ :=

∫
γ ρ0,0(·,−1) ds.

Lemma 8.4. Let γ be a generalized self-similarly shrinking network
and assume that Θγ < ΘS1. Then γ is tree-like, and, thus, either a
multiplicity one line, or the standard triod.

Proof. By the work of Colding–Minicozzi, [6], it holds that

(8.13) Θγ =

∫
γ
ρ0,0(·,−1) ds = sup

x0∈R2,t0>−1

∫
γ
ρx0,t0(·,−1) ds.

Assume that γ is not tree-like. Let us first assume that the complement
of γ in R2 contains no bounded component. It is easy to see from the
proof of the previous lemma that this implies that γ consists of at least
six half-lines emanating from the origin, together with a core. Thus,
would imply that Θγ ≥ 3, a contradiction.

Let B be a bounded component of the complement of γ and γ̃ the
sub-network of γ which bounds B, counted with unit multiplicity. Since
γ̃ is smooth with corners, and no triple junctions, we can evolve it by
classical curve shortening flow until it shrinks at (x0, t0) to a ‘round’
point. By the monotonicity formula this implies that∫

γ̃
ρx0,t0 ds ≥ ΘS1 .

By (8.13) this implies

Θγ ≥
∫
γ
ρx0,t0 ds ≥

∫
γ̃
ρx0,t0 ds ≥ ΘS1 . q.e.d.

Given a sequence λi ↗ ∞ and a space-time point (x0, t0), where
0 < t0 ≤ T the standard parabolic rescaling around (x0, t0) of the flow
is given by

γiτ = λi
(
γλ−2

i τ+t0
− x0

)
,

where τ ∈ [−λ2
i t0, λ

2
i (T − t0)). Recall that the monotonicity formula

implies

Θx0,t0(t)−Θ(x0, t0) =

t0∫
t

∫
γσ

∣∣∣~k +
(x− x0)⊥

2(t0 − σ)

∣∣∣2ρx0,t0(·, σ) ds dσ.
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Changing variables according to the parabolic rescaling, we obtain

Θx0,t0(t)−Θ(x0, t0) =

0∫
λ2i (t−t0)

∫
γiτ

∣∣∣~k − x⊥

2τ

∣∣∣2ρ0,0(·, τ) ds dτ,

or for fixed time τ0 ∈ (−λ2
i t0, 0),

(8.14) Θx0,t0(t0 + λ−2
i τ0)−Θ(x0, t0) =

0∫
τ0

∫
γiτ

∣∣∣~k − x⊥

2τ

∣∣∣2ρ0,0(·, τ) ds dτ.

We now give a slightly modified version of the Blowup-Lemma in [11].

Lemma 8.5. There exists a subsequence (λi) (relabeled again the
same) such that for almost all τ ∈ (−∞, 0) and for any α ∈ (0, 1/2)

γiτ → γ̄τ

in C1,α
loc ∩W

2,2
loc , where Γ̄τ is a generalized self-similarly shrinking network

at time τ . This convergence also holds in the sense of radon measures
for all τ . Note that the subsequence does not depend on τ and also not
the limit (except for scaling).

Proof. We first choose a subsequence such that the rescalings con-
verge as Brakke flows to a self-similarly shrinking tangent flow. Let

fi(τ) :=

∫
γiτ

∣∣∣~k − x⊥

2τ

∣∣∣2ρ0,0(·, τ) ds.

Note that (8.14) implies that fi → 0 in L1
loc((−∞, 0]). Thus, there

exists a subsequence such that fi converges point-wise a.e. to zero.
This implies that that for any R > 0∫

γiτ∩BR(0)

|k|2ds ≤ C,

independent of i. By choosing a further subsequence we can assume that
Γiτ converges in C1,α

loc to a degenerate network. Note that each limiting

segment, which is non-degenerate is in W 2,2
loc and is a weak solution of

~k =
x⊥

2τ
.

By elliptic regularity, each such segment is actually smooth, and, thus,
the limiting network is a generalized self-similarly shrinking network
at time τ . But since this limit has to coincide in measure with the
limiting Brakke-flow it is unique, and the whole sequence converges.
The convergence in W 2,2

loc is implied by the weak convergence in W 2,2

and the fact that fi(τ)→ 0. q.e.d.



80 T. ILMANEN, A. NEVES & F. SCHULZE

This can be strengthened, if the limit has unit density.

Lemma 8.6. Assume that a sequence of rescalings as above converges
in the sense of Brakke flows to a regular self-similarly shrinking network,

(γit)→ (γ̄t).

Then this convergence is smooth on all compact subsets of R2×(−∞, 0).

Proof. By the Lemma before we can choose a further subsequence
such that we have Γiτ → Γ̄τ in C1,α

loc ∩W
2,2
loc for almost every τ . Now

take any set of the form Ω = B̄R(0)× [a, b], a < b < 0, where we choose
R big enough, such that ∂BR(0) intersects Γ̄τ for τ ∈ [a − 2, b] only in
the straight lines going out to infinity (if they exist). Since for almost
every τ we have convergence in C1,α we know that the Gaussian density
ratios in this set are less than 1 + ε for all τ ∈ [a − 3/2, b]. Thus,
there can be no triple points present, and by the estimates of White
[26], we can choose i0 big enough such that |∇jk| is small on Γi for
all j ≥ 0 on BR+1 \ BR for all τ ∈ [a − 1, b] and all i > i0. Now for
any given ε, δ > 0 we choose i0 even bigger such that there exists times
τj , j = 0, . . . , N := 2[(b− a+ 1)/δ] + 1 such that

|τ0 − a+ 1|, |τN − b| ≤ δ, |τj+1 − τj | ≤ δ

for all 0 ≤ j ≤ N − 1 and

‖Γiτj − Γ̄τj‖W 2,2(BR+1) ≤ ε

for all i > i0. We now fix ε > 0 and adjust δ > 0 accordingly such that
we can ensure that by (8.12) that

‖Γiτ‖W 2,2(BR+1) ≤ C

for all τ ∈ [a, b] and i > i0. The higher order interior estimates then
prove smooth subsequential convergence. For this argument we had cho-
sen a subsequence, but since we can always choose such a subsequence,
the whole sequence converges. q.e.d.

Regularity results. In the following we will give some regularity re-
sults for ‘proper’ flows, where we say that a flow is a proper flow, given
by its space-time track M in an open subset U of space-time, if

M =M∩ U,

compare with section 2.3 in [26].

Theorem 8.7. Let (γit)0<t<T be a sequence of smooth network flows
with uniformly bounded length ratios which converges locally as Brakke
flows to the standard triod. Then this convergence is smooth.
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Proof. We can assume that the triple point of the standard triod is
at the origin. Fix T ′ > T . Then for any 0 < t1 < t2 < T we have∫

γitj

Φ0,T ′ ds→
3

2
where j = 1, 2.

Then as in the proof of Lemma 8.5 we obtain that there is subsequence
where we have C1,α-convergence to the standard triod for a.e. t ∈
(t1, t2). Note that by White’s regularity theorem the convergence is
smooth away from the triple point, and that out of combinatorial reasons
no core can develop at the triple point of the standard triod. As in the
proof of Lemma 8.6 we can then show that the convergence is actually
smooth. q.e.d.

In the following we will prove a local regularity result in the spirit of
Brian White’s result for mean curvature flow [26]. We follow here the
alternative proof of Ecker [7, Theorem 5.6]. The Gaussian density ratios
are defined as

(8.15) Θ(x, t, r) := Θt−r2(x, t).

In the case of proper flows, which are only defined in an open subset of
space-time one has to localize Huisken’s monotonicity formula. Com-
pare with section 10 in [25] and Remark 4.16 together with Proposition
4.17 in [7]. To keep the presentation simpler, we will only give proofs
of the next two theorems for flows defined on all of R2 and leave the
modifications in the case of proper flows to the reader.

Theorem 8.8. Let (γt)t∈[0,T ) be a smooth, proper and regular planar

network flow in Bρ(x0)× (t0−ρ2, t0) which reaches the point x0 at time
t0 ∈ (0, T ]. Assume that for some ε > 0 it holds that

(8.16) Θ(x, t, r) ≤ 2− ε

for all (x, t) ∈ Bρ(x0) × (t0 − ρ2, t0) and 0 < r < ηρ for some η > 0,
where (1 + η)ρ2 ≤ t0 < T . Furthermore, assume that γt ∩ Bρ(x0) has
no closed loops of length less than δρ > 0 for all t ∈ (t0 − (1 + η)ρ2, t0)
for some δ > 0. Then there exists C = C(ε, η, δ) such that

|k|2(x, t) ≤ C

σ2ρ2

for (x, t) ∈
(
γt ∩B(1−σ)ρ(x0)

)
× (t0 − (1− σ)2ρ2, t0) and all σ ∈ (0, 1).

Remark 8.9. Note that the bound on the curvature, together with
the balancing condition and (8.16), gives that there is a constant κ =
κ(ε, η, δ) > 0 such that the length of each segment which intersects
B(1−σ)ρ(x0)× (t0− (1−σ)2ρ2, t0) is bounded from below by κ ·σρ. This
implies, using Theorem 8.1, corresponding scaling invariant estimates
on all higher derivatives of the curvature.
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Proof. We can first assume that t0 < T , and pass to limits later.
By translation and scaling we can, furthermore, assume that x0 = 0
and ρ = 1. We can now follow more or less verbatim the proof of
Theorem 5.6 in [7]. Supposing that the statement is not correct we can

find a sequence of smooth, regular network flows (γjt ), defined for t ∈
[−1−η, 0], reaching the point (0, 0) and satisfying the above conditions,
but

(8.17) ζ2
j := sup

σ∈(0,1)

(
σ2 sup

(−(1−σ)2,0)

sup
γit∩B1−σ

|k|2
)
→∞

as j →∞. We can find σj ∈ (0, 1) such that

ζ2
j = σ2

j sup
(−(1−σj)2,0)

sup
γit∩B1−σj

|k|2,

and yj ∈ γjτj ∩ B̄1−σj at a time τj ∈ [−(1− σj)2, 0] so that

(8.18) ζ2
j = σ2

j |k(yj , τj)|2.
We now take

λj = |k(yj , τj)|−1,

and define

γ̃js =
1

λj

(
γj
λ2js+τj

− yj
)

for s ∈ [−λ2
jσ

2
j /4, 0]. As in the proof of Theorem 5.6 in [7] we see that

(8.19) 0 ∈ γ̃j0, |k(0, 0)| = 1,

and
sup

(−λ−2
j σ2

j /4,0)

sup
γ̃js∩Bλ−1

j
σj/2

|k|2 ≤ 4

for every j ≥ 1. Since λ−2
j σ2

j = ζ2
j →∞ we see that up to a subsequence,

labeled again the same,

(8.20) γ̃js → γ̃∞s

converges locally uniformly R2 × R in C1,α to a limiting C1,1-solution
γ̃∞s of the network flow. Note that this limiting solution is defined for
s ∈ (−∞, 0] and possibly degenerate, i.e., cores and higher density lines
can develop. But note that (8.16) implies that on γ̃∞s

(8.21) Θ(x, t, r) ≤ 2− ε
for all r > 0 and (x, t) in R2×(−∞, 0]. Together with the fact that γ̃∞s is
uniformly bounded in C1,1, this implies that γ̃∞ is non-degenerate, i.e.,
there are no higher densities and no cores. Furthermore, the assumption
on the lower bound for the length of closed loops implies that γ̃∞ is tree-
like. The estimate (8.21) yields that the tangent flow at −∞ is either
a static unit density line, or the standard triod and limr→−∞Θ(x, t, r)



ON SHORT TIME EXISTENCE FOR THE PLANAR NETWORK FLOW 83

is either 1 or 3/2. In the first case this implies that γ̃∞ is a static unit
density line. But then White’s local regularity theorem implies that the
convergence in (8.20) is smooth. This gives a contradiction to (8.19). In
the second case γ̃∞ has to have a triple point, and, thus, is the standard
triod. Then Proposition 8.7 gives a contradiction as before. q.e.d.

Without the assumption on the length of the shortest loops, we prove
a similar statement if the Gaussian densities are less than ΘS1 :

Proof of Theorem 1.3. The proof is nearly identical to the proof of
Theorem 8.8. Rescaling and translating such that x0 = 0 and ρ = 1 we
assume that as a contradiction we have a sequence of smooth, regular

network flows (γjt ) defined for t ∈ [−1− η, 0], reaching (0, 0), satisfying
(8.17) and

(8.22) Θ(x, t, r) ≤ ΘS1 − ε
for all (x, t) ∈ B1×(−1, 0) and 0 < r < η. Rescaling as before we obtain
a limiting C1,1 solution (γ̃∞s ) which satisfies

Θ(x, t, r) ≤ ΘS1 − ε
for all r > 0 and (x, t) ∈ R2(−∞, 0]. By Lemma 8.4 this implies that the
tangent flow at −∞ is either a static unit density line, or the standard
triod. We reach a contradiction as in the proof of the previous theorem.

q.e.d.

9. A pseudolocality result for mean curvature flow

We recall the following setup from the introduction. For any point
x ∈ Rn+k we write x = (x̂, x̃) where x̂ is the orthogonal projection of x
on the Rn-factor and x̃ the orthogonal projection on the Rk factor. We
define the cylinder CR(x0) ⊂ Rn+k by

Cr(x) = {x ∈ Rn+k | |x̂− x̂0| < r, |x̃− x̃0| < r}.
Furthermore, we write Bn

r (x0) = {(x̂, x̃0) ∈ Rn+k |x̂− x̂0| < r}.

Proof of Theorem 1.5. We first assume that T ≥ 1. Translating x0 to
0 and rescaling with a factor R > 0 we can assume that M0 ∩ CR(0) =
graph(u) where u : Bn

R(0)→ Rk with Lipschitz constant less than ε. We
want to show that there exists R � 1 such that Mt ∩ C1(0) is a graph
with Lipschitz constant less than η and height bounded by η/2 for all
t ∈ [0, 1].

Recall that by [26], if all Gaussian density ratios up to scale 1 centered
at (x, t) ∈ B2(0)× [0, 1] are bounded above by 1 + ε0 then

|A|M1(x) ≤ C(ε0)

for all x ∈ M1 ∩ C1(0). Furthermore, a compactness argument implies
that C(ε0)→ 0 as ε→ 0. This implies that we can choose 0 < ε1 < ε0
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such that if the Gaussian density ratios up to scale 1 centered at (x, t) ∈
B2(0)× [0, 1] are bounded by 1 + ε1 and

M1 ∩ C1(0) ⊂ C1 ∩ {|ỹ| ≤ η/2},

then M1∩C1(0) is a graph over Bn
1 (0) with Lipschitz constant bounded

above by η.
Now assume that y ∈ C2(0) ∩ {|ŷ| ≤ η/2}. We then have for R ≥

2, r ≤ 1 that

Θ0(y, r) =

∫
M0∩CR

1

(4πr2)n/2
e−
|x−y|2

4r2 dHn(x)

+

∫
M0\CR

1

(4πr2)n/2
e−
|x−y|2

4r2 dHn(x)

≤
∫

BnR(0)

1

(4πr2)n/2
e−
|x̂−ŷ|2

4r2

(
det( 1 +Du> ◦Du)

)1/2
dx̂n

+ e−
(R−3)2

8r2

∫
M0\CR

1

(4πr2)n/2
e−
|x−y|2

8r2 dHn(x)

≤ (1 + ε2)n/2 + Ce−
(R−3)2

8r2 ≤ 1 + ε1,

(9.1)

provided ε ≤ ε2 and R ≥ R0 ≥ 3.
By assumption we have that supBnR(0) |u| ≤ εR. Let us assume that

ε is small enough, depending on R, such that

(9.2) εR ≤ η/4.

Now let y ∈ C2(0) \ {|ỹ| ≤ η/2}. We can then estimate

Θ0(y, r) =

∫
M0∩CR

1

(4πr2)n/2
e−
|x−y|2

4r2 dHn(x)

+

∫
M0\CR

1

(4πr2)n/2
e−
|x−y|2

4r2 dHn(x)

≤
∫

BnR(0)

1

(4πr2)n/2
e−
|u(x̂)−ỹ|2+|x̂−ŷ|2

4r2

(
det( 1 +Du> ◦Du)

)1/2
dx̂n

+ e−
(R−3)2

8r2

∫
M0\CR

1

(4πr2)n/2
e−
|x−y|2

8r2 dHn(x)

≤ e−
η2

64r2 (1 + ε2)n/2 + Ce−
(R−3)2

8r2 .
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Now we choose R = R1 ≥ R0 such that

Ce−
(R1−2)2

8 < 1− e−
η2

128 .

Then choose ε ≤ min{ε2, 4
−1ηR−1

1 } such that

e−
η2

64 (1 + ε2)n/2 < e−
η2

128 .

Note that the first assumption on ε implies that (9.2) is satisfied. We
see that that Θ0(y, r) < 1 for all y ∈ C2 \ {|ŷ| ≤ η/2}. Using the
monotonicity of the Gaussian density ratios this yields that

Mt ∩ C2(0) ⊂ C2(0) ∩ {|ŷ| ≤ η/2}
for all t ∈ [0, 1] and by the choice of ε and estimate (9.1) that

Θ(x, t, r) ≤ 1 + ε1

for all (x, t) ∈ C2(0)× [0, 1] and scales r up to one. By the choice of ε1

this gives that M1 ∩C1(0) is a smooth graph over Bn
1 (0) with Lipschitz

constant bounded above by η.
We want to show that this is also true for Mt ∩ C1(0) for any 0 <

t < 1. Pick t0 ∈ (0, 1) and let λ = t
−1/2
0 . Let (Mλ

t )0≤t≤λ2T be the flow,

parabolically rescaled by λ. Note that for any x0 ∈Mλ
0 ∩C(λ−1)R1

(0) we
can shift x0 to 0 and see that our previous assumptions are satisfied for
this flow. That yields that Mλ

1 ∩C1(x0) is a smooth graph over Bn
1 (x̂0)

with Lipschitz constant bounded above by η. Note that this property is
scaling invariant. Scaling back this implies that Mt0∩C(1−t1/20 )R1+t

1/2
0

(0)

is a graph over Bn

(1−t1/20 )R1+t
1/2
0

(0) with Lipschitz constant less than η.

Since (1− t1/20 )R1 + t1/2 ≥ 2− t1/20 ≥ 1 this implies the statement.

If T < 1 we can first rescale the flow by a factor λ = T−1/2 as above
and then scale back to get the result for 0 < t < T . q.e.d.

10. Appendix

We derive some useful technical results. In what follows σ0 is a reg-
ular network with (σt)0≤t<T being a regular solution for network flow.
Moreover, χ is a fixed regular network in R2 and ε0 is a universal con-
stant less than 1/2.

Lemma 10.1. Fix ε0 and α. There exist ε = ε(χ, ε0, α) and q1 =
q1(χ, ε0, α) so that, for every R ≥ 2, if σ0 is ε-close to χ in C1,α(BR(0)),
then for every r2, t ≤ q1 and y ∈ BR−1(0)

Θt(y, r) ≤ 3/2 + ε0.

Proof. We argue by contradiction. Suppose there are sequences
(εi)i∈N, (ri)i∈N, (ti)i∈N all converging to zero, (Ri)i∈N with Ri ≥ 2 for
all i, (yi)i∈N with yi ∈ BRi−1(0), and (σit)0≤t≤ti a sequence of regular
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solutions to network flow for which σi0 is εi-close to χ in C1,α(BRi(0))
and

Θti(yi, ri) > 3/2 + ε0.

The fact that σi is εi-close to χ in C1,α(BRi(0)) means that

a) there are functions ui defined on C0(χ ∩ BRi(0)) which are C1,α

when restricted to each branch and the C1,α norm on each branch
converges to zero;

b) there are unit vectors Ni defined on χ∩BRi(0) such that 〈Ni, ν〉 is
a smooth function on each branch that converges uniformly to one,
where ν denotes a unit normal vector on the respective branch;

c)
σi0 ∩BRi(0) = χ ∩BRi(0) + uiNi.

Set λi =
√
r2
i + ti. It is simple to recognize that we can find functions

vi defined on λ−1
i χ such that

λ−1
i σi0 ∩BRiλ−1

i
(0) = λ−1

i χ ∩BRiλ−1
i

(0) + viNi.

Because the C0,α norm of the first derivatives of vi converges uniformly
to zero on each branch of λ−1

i χ ∩ BRiλ−1
i

(0) we obtain that if the limit

of λ−1
i (σi0− yi) in the varifold sense is not empty, then it must be either

a line or three half-lines meeting at a common point. In any case we
have

lim
i

∫
λ−1
i (σi0−yi)

(4π)−1/2 exp(−|x|2/4)dH1 ≤ 3/2.

This contradicts the fact that, using the monotonicity formula,

3/2 + ε0 < Θti(yi, ri) ≤ Θ0(yi, λi)

=

∫
λ−1
i (σi0−yi)

(4π)−1/2 exp(−|x|2/4)dH1. q.e.d.

Assume that σ is non-compact, asymptotic to half-lines at infinity, and
contains no closed loops.

Lemma 10.2. Fix ε0, R > 2, and τ . There is η = η(τ) such that if

Θ(x, r) ≤ 3/2 + ε0 < 2

for every x in BR(0) and r2 ≤ τ , then the distance between any two
triple junctions in BR(0) is greater than η.

Proof. Choose T > 0 so that∫ T

0
(4π)−1/2 exp(−t2/4)dt = 1/2 + ε0/16− 1/32,

and r1 > 0 so that∫ r1

0
(4π)−1/2 exp(−t2/4)dt = 1/32− ε0/16.
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Suppose that σ has two triple junctions in BR(0) at a distance η smaller
than τr1. Denote the midpoint between the triple junctions by y and
consider the network γ = τ−1(σ − y) which has two triple junctions x1

and −x1 inside Br1(0). Because γ has no closed loops we can find paths
a1, b1, a2, and b2 contained in γ such that a1, a2 and b1, b2 connect x1

and −x1 respectively to a point at a distance T from the origin and
a1 ∩ a2 = {x1}, b1 ∩ b2 = {−x1}, ai ∩ bj = ∅.

Consider the metric g = (4π)−1 exp(−|x|2/2)(dx2
1 + dx2

2) on R2 and
denote its distance function by dg. Straight lines containing the origin
are geodesics for g and so any point with |p| = T has

dg(x, p) ≥ 1/2 + ε0/8− 1/16 for any x ∈ Br1(0).

Thus,

3/2 + ε0 ≥ Θ(y, τ) =

∫
γ
(4π)−1/2 exp(−|x|2/4)dH1

≥
2∑
i=1

(∫
ai

(4π)−1/2 exp(−|x|2/4)dH1 +

∫
bi

(4π)−1/2 exp(−|x|2/4)dH1

)

=

2∑
i=1

(∫
ai

dlg +

∫
bi

dlg

)
≥ 4(1/2 + ε0/8− 1/16) = 7/4 + ε0/2.

This is impossible because ε0 < 1/2. q.e.d.
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