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COMPARING THE MORSE INDEX AND THE FIRST
BETTI NUMBER OF MINIMAL HYPERSURFACES

Lucas Ambrozio, Alessandro Carlotto & Ben Sharp

Abstract

By extending and generalizing previous work by Ros and Savo,
we describe a method to show that in certain positively curved
ambient manifolds the Morse index of every closed minimal hy-
persurface is bounded from below by a linear function of its first
Betti number. The technique is flexible enough to prove that
such a relation between the index and the topology of minimal
hypersurfaces holds, for example, on all compact rank one sym-
metric spaces, on products of the circle with spheres of arbitrary
dimension and on suitably pinched submanifolds of the Euclidean
spaces. These results confirm a general conjecture due to Schoen
and Marques–Neves for a wide class of ambient spaces.

1. Introduction

Since Lawson [20] constructed closed embedded minimal surfaces of
arbitrary genus in the round three-dimensional sphere, many ingenious
ways of producing an abundance of closed embedded minimal hypersur-
faces in general Riemannian manifolds have been discovered.

A few remarkable examples show how powerful and diverse these
methods can be. While Hsiang and Lawson [14] have found all homo-
geneous minimal hypersurfaces of the round spheres in all dimensions,
Hsiang [12, 13] (and Hsiang–Sterling [15]) discovered infinitely many
embedded non-totally geodesic hyperspheres in round spheres of certain
dimensions (in particular, in four dimensions). Kapouleas showed how
to construct closed embedded minimal surfaces in three-manifolds with
a generic metric by gluing and desingularization methods (see [16] for
a survey of these methods). Based on a min-max theory for the area
functional developed by Almgren, Pitts [27] and Schoen and Simon [32]
proved that every (n+1)-dimensional closed Riemannian manifold con-
tains at least one embedded minimal hypersurface (containing possibly a
singular set of codimension seven). The basic idea is to apply the min-
max variational approach to one-parameter families of sweep-outs of
the ambient manifold by closed hypersurfaces. More recently, by using
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k-parameters sweep-outs, Marques and Neves [24] proved that under
the assumption of positiveness of the Ricci curvature, these ambient
spaces contain, in fact, infinitely many embedded minimal hypersur-
faces (which are, as in the previous result, smooth in low dimensions).
A broad overview of these methods and of many of their intriguing ap-
plications are provided in the ICM lectures by Marques [22] and, with
more emphasis on mix-max techniques, by Neves [26].

A different task is to understand the geometric and topological prop-
erties of this variety of examples. For instance, the construction by
Kapouleas–Yang [17] yields sequences of minimal surfaces with uni-
formly bounded area and unbounded genus. Simon and Smith [36] (see
also Colding and De Lellis [9]) have proven that their min-max method
applied to sweep-outs of the three dimensional sphere, endowed with an
arbitrary Riemannian metric, by one-parameter families of two dimen-
sional spheres produces an embedded minimal two-sphere. Still in three
dimensions, Ketover [18] proved that the genus of the min-max sur-
face is controlled in an effective way by the genus of the surfaces in the
sweep-outs (see also the previous work by De Lellis and Pellandini [11]).

More generally, one could be interested in understanding the general
properties of the set of embedded minimal hypersurfaces in a given
manifold. For example, it has been shown by Choi and Schoen [7] that
in an ambient three-manifold with positive Ricci curvature, the set of
all embedded minimal surfaces with genus bounded by a fixed constant
is compact in the strongest sense.

In addition to the most basic topological and geometric properties of
closed minimal hypersurfaces, there is an important analytic quantity,
the (Morse) index. Roughly speaking, the index of a minimal hypersur-
face counts the maximal number of directions the hypersurface can be
deformed in such way that its volume is decreased. In many situations,
the index of a minimal hypersurface controls its topology and geome-
try. The following examples are good illustrations of this phenomenon.
Schoen and Yau [33] proved that an embedded closed orientable sta-
ble (= index zero) minimal surface in an orientable three-manifold with
positive scalar curvature is necessarily a two-sphere. In these ambient
manifolds, Chodosh, Ketover and Máximo [5] have recently proved that
the set of closed embedded minimal surfaces with bounded index can-
not contain sequences of surfaces with unbounded area or genus (see
also the work of the second-named author for the case of bumpy met-
rics [4]). Going beyond three-dimensions, the compactness result of the
third-named author [34] (and later extended in the joint paper [1]) is
key in proving that, when the ambient (n + 1)-manifold has positive
Ricci curvature and 2 ≤ n ≤ 6, the set of closed embedded minimal
hypersurfaces with a fixed bound on their index and volume contains
only finitely many diffeomorphism types (more general results have been
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recently obtained by Buzano and the third-named author [2], see also
[5]). There are even cases where closed minimal hypersurfaces can be
classified by their index: Urbano [37] proved that the only embedded
minimal surfaces of the three-sphere that have index at most five are
the totally geodesic equators and the Clifford tori. This contribution
turned out to be crucial in the proof of the Willmore conjecture by
Marques and Neves [23]. In fact, it is expected that the index of a
hypersurface obtained by min-max methods is bounded from above by
the number of parameters of the family of sweep-outs considered and,
under extra assumptions, is equal to such number. A significant con-
tribution to this conjecture has been very recently presented in [25].
As the above examples show, this type of results provide a very impor-
tant tool to understand the min-max hypersurfaces, especially in higher
dimensions.

In this article, we shall be concerned with the general problem of
comparing two different “measures of complexity” of a minimal hyper-
surface inside a positively curved Riemannian manifold. In this respect,
it has been conjectured that the index controls the basic topological
invariants of minimal hypersurfaces in an effective way.

Conjecture. [Schoen, Marques–Neves [22, 26]] Let (N n+1, g) be a
closed Riemannian manifold with positive Ricci curvature. There ex-
ists a positive constant C such that, for every closed embedded minimal
hypersurface Mn, the following inequality holds

index(M) ≥ Cb1(M).

In fact, we expect a similar conclusion to hold, under the very same
assumptions on the ambient manifold, not only for b1(M) but for all
Betti numbers of Mn, namely we expect the Morse index of Mn to be
bounded from below by a positive constant times the sum of the Betti
numbers of the hypersurface in question. However, we remark that this
assertion is actually equivalent to the aforementioned conjecture unless
the dimension of the ambient manifold is greater or equal than five.

Notice that some positiveness assumption on the curvature is essen-
tial, as the manifolds (Σ2

γ × S1, g + dθ2), where (Σ2
γ , g) is an orientable

surface of arbitrary genus γ ≥ 2 with a metric of constant Gaussian
curvature −1, have non-positive sectional curvature and contain stable
minimal surfaces of genus γ.

A particular example of an ambient manifold for which this conjec-
ture has been already verified is the round sphere Sn+1 (of arbitrary
dimension). The result is due to Savo (see [30] and Theorem 5 be-
low). Roughly speaking, Savo’s approach to the problem was to use
each harmonic one-form on a minimal hypersurface Mn to produce a
set of functions that generate variations that decrease the area of the
hypersurface (in mean). Then it was argued that if the index of Mn
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were too small compared to its first Betti number (= dimension of the
space of harmonic one-forms, by Hodge’s Theorem), one would reach a
contradiction.

Savo’s work was preceded by the work of Ros (see [29] and refer-
ences therein for partially similar contributions). Considering flat three
dimensional tori, Ros observed that, when a harmonic one-form on a
closed minimal surface is viewed as a vector field of R3 along the sur-
face, its coordinates have the behavior described above. In particular,
he proved that the index of such surfaces is bounded from below by
an affine function (whose coefficients do not depend on the particular
surface) of their first Betti numbers (see Theorem 16 in [29]). In [38],
Urbano used essentially the same method to prove the analogous result
for closed minimal surfaces inside the product of the unit circle with a
two-dimensional sphere of radius greater or equal than one.

The aim of the present paper is to extend this approach to other
positively curved ambient manifolds, and to give a unified method to
address the above conjecture within this framework. We work in the
most general setting: given an ambient manifold (N n+1, g) that lies
isometrically inside some Euclidean space R

d (for some d big enough)
and a minimal embedded hypersurface Mn inside of it, we consider two
kinds of test functions constructed from a harmonic one-form on Mn,
both inspired by the works of Ros and Savo, both dependent on the
specific isometric embedding of the ambient manifold in the Euclidean
space (see Proposition 1 and Proposition 2 in Section 3). In particular,
we obtain the following result.

Theorem A. Let (N n+1, g) be a Riemannian manifold that is iso-
metrically embedded in some Euclidean space R

d. Let Mn be a closed
embedded minimal hypersurface of (N n+1, g).

Assume that for every non-zero vector field X on Mn,

(1)

∫
M

[
trM (RmN (·,X, ·,X)) +RicN (N,N)|X|2

]
dM

>

∫
M

[
(|II(·,X)|2 − |II(X,N)|2)+ (|II(·, N)|2 − |II(N,N)2|)|X|2

]
dM,

where RmN denotes the Riemann curvature tensor of N n+1, II denotes
the second fundamental form of N n+1 in R

d and N is a local unit normal
vector field on Mn.

Then

index(M) ≥
2

d(d− 1)
b1(M).

See Sections 2 and 3 for more details, and also for the precise geo-
metric meaning of the inequality (1).

Specializing the above result, we were able to check that the conjec-
ture quoted above is true in a number of ambient spaces. In particular,
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we prove the conjecture for the projective spaces RPn+1,CPm,HP
p, CaP2

endowed with their standard metrics. Together with the round sphere,
these spaces comprise all compact rank one symmetric spaces, i.e., all
compact symmetric spaces with positive sectional curvature (see [28]).

Theorem B. Any closed, embedded minimal hypersurface of a com-
pact rank one symmetric space is such that its first Betti number is
bounded from above by a constant times its index. The constant de-
pends only on the dimension of the ambient manifold.

As we shall see in Subsection 5.3 proving the index conjecture for
CP

n turns out to be rather subtle, as one needs to handle (in fact: to
rule out) the borderline case when equality holds in (1). This requires
a delicate ad hoc argument, which is presented in Appendix A.

Going beyond highly symmetric examples and the positive Ricci cur-
vature assumption, we also verified that the same control of the first
Betti number by the index also holds for minimal surfaces in sufficiently
pinched convex hypersurfaces of the Euclidean spaces (Theorem 12), in
three-manifolds that satisfy a pinching condition for the scalar curva-
ture (Theorem 13) and in the product of circles with spheres of any
dimension (Theorem 10). In fact, our methods also allow to prove the
index estimate for products of spheres Sp ×Sq unless both factors have
dimension equal to two (Theorem 11).

Furthermore, we would like to point out that when n = 2 and RicN >
0, the area estimate of Choi–Wang [8] and Choi–Schoen [7] coupled with
our upper bound on the first Betti number yields an effective affine
area bound on any minimal surface in (N 3, g) solely in terms of the
index.

We conclude this introduction with a few remarks. Firstly, we observe
that if the pinching condition in Proposition 3 holds for certain ambient
manifolds (N n+1, g) in R

d, then it will also hold, possibly with a slightly
larger η, for small C2 perturbations of (N n+1, g) in R

d+k, k ≥ 0. This,
in particular, shows that the method is flexible enough to deal with
isometric embeddings that are definitely not “rigid” nor very symmetric,
which seems to be a new and peculiar feature of our approach. Secondly,
although the methods used in this paper indicate that, under certain
curvature conditions of the ambient manifold, the topology of a minimal
hypersurface contributes to its index, the converse is not true. For
example, the infinitely many embedded minimal three-spheres in the
round four-sphere discovered by Hsiang have uniformly bounded area
but their indexes are not uniformly bounded (this fact can be seen as
consequence of the third-named author’s compactness theorem [34], see
[3] for further discussion and generalizations). Finally, the case of the
complex projective space (see Theorem 7) has special interest, since it
shows that our results are somehow peculiar to the codimension one
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scenario as there are plenty of algebraic curves of any genus in the
complex projective space that are area-minimizing.
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2. Basic material

In this section, we set some notations that will be used throughout
the paper and recall some relevant definitions and results.

2.1. Two-sided and one-sided hypersurfaces. Let (N n+1, g) be a
complete Riemannian manifold. Let Mn be a closed, immersed hyper-
surface in N n+1. We can distinguish these immersions by their normal
bundles: Mn is called two-sided when this bundle is trivial, and one-
sided otherwise.

When Mn is two-sided, we can choose a smooth normal unit vector
field N along Mn. When Mn is one-sided, we can construct a two-
to-one cover π : M̂n → Mn that is a two-sided immersion of M̂n into
N n+1. More precisely, M̂n is the set of pairs (x,N), where x belongs to
Mn and N is some unit vector in TxN normal to TxM , π is the obvious
projection, the deck transformation τ sends (x,N) to (x,−N) and the

field N̂((x,N)) = N gives a trivialization of the normal bundle of the

immersion π : M̂n → Mn ⊂ N n+1.
When N n+1 is orientable, Mn is one-sided if and only if Mn is non-

orientable, in which case the above construction defines precisely the
oriented double cover of Mn.

In order to handle the case when Mn may not be orientable, we
convene to denote by dM the Riemannian density of Mn (for which we



INDEX AND BETTI NUMBERS OF MINIMAL HYPERSURFACES 385

refer the reader, for instance, to the last section in chapter 14 of [21]).
We shall remind the reader that the divergence theorem does hold true
in such setting (see, e.g., Theorem 14.34 in [21]), which enables us to
perform integration by parts whenever needed. In any event, this is only
relevant for Subsection 5.2, 5.4 and 5.6 as in all other examples we are
about to analyze the manifold N n+1 is simply-connected, which ensures
that any closed embedded hypersurface Mn in N n+1 is automatically
two-sided and orientable.

2.2. Isometric embeddings. By Nash’s embedding theorem, we can
consider any ambient manifold (N n+1, g) to be isometrically embedded
in some Euclidean space R

d of sufficiently high dimension d. Let D
denote the Levi-Civita connection of the Euclidean space and ∇ denote
the Levi-Civita connection of (N n+1, g). The relationship between them
is given by the formula

DXY = ∇XY + II(X,Y ),

where X,Y are vectors fields tangent to N n+1 and II(X,Y ) is a section
of the normal bundle of N n+1 in R

d. II is the second fundamental form
of N n+1 in R

d.
A useful formula is the Gauss equation for the embedding of (N n+1, g)

in R
d: for all vector fields X,Y on N n+1,

(2) RmN (X,Y,X, Y ) = 〈II(X,X), II(Y, Y )〉 − |II(X,Y )|2,

where RmN denotes the Riemann curvature tensor of (N n+1, g). Ac-
cording to our convention, RmN (X,Y,X, Y ) gives the sectional curva-
ture of the two-dimensional plane generated by X and Y if X,Y are
orthonormal.

Similarly, we have the Gauss equation for Mn inside of (N n+1, g),

RmM(X,Y,X, Y ) = RmN (X,Y,X, Y )(3)

+ 〈A(X,X), A(Y, Y )〉 − |A(X,Y )|2,

where A denotes the second fundamental form of Mn in N n+1. Accord-
ing to our conventions, when Mn is two-sided with unit normal field
N , A is given by A(X,Y ) = −g(∇XN,Y )N for all X,Y on Mn. The
induced Riemannian connection on Mn will be denoted by ∇M .

2.3. The Morse index. A closed embedded hypersurface Mn in
(N n+1, g) is called minimal when the first variation of its n-dimensional
volume is zero for all variations generated by flows of vector fields
X ∈ X (N ). Equivalently, Mn is minimal when the trace of its sec-
ond fundamental form is identically zero.

The index form of an embedded minimal hypersurface Mn in N n+1

is the quadratic form Q on the set of smooth sections W of the normal
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bundle of Mn in N n+1 defined by

Q(W,W ) = −

∫
M

〈JM (W ),W 〉dM

=

∫
M

|∇⊥
MW |2 − (RicN (W,W ) + |A|2|W |2)dM,

where JM is the Jacobi operator acting on the normal bundle of Mn,

JMW = Δ⊥
MW +RicN (W )⊥ + |A|2W.

In the above formulae, ∇⊥
M denotes the connection of the normal

bundle of Mn, Δ⊥
M is the Laplacian of this connection, A denotes the

second fundamental form of Mn and the Ricci tensor of N n+1 is viewed
as an endomorphism of the tangent bundle of N n+1.

In fact, Q(W,W ) gives precisely the second variation of the volume
of Mn at t = 0 under a flow φt generated by any vector field X ∈ X (N )
that coincides with W on Mn (see, e.g., [10]).

The index of a closed embedded minimal hypersurfaceMn of N n+1 is
the maximal dimension of a vector space of sections of its normal bundle
restricted to which the index form is negative definite. Geometrically,
the index measures how many directions one can deform Mn to decrease
its volume.

The index can be more easily computed when Mn is two-sided. In
this case, the sections of the normal bundle can be identified with the
set of smooth functions φ on Mn, the index form of Mn corresponds to
the quadratic form

(4) Q(φ, φ) =

∫
M

|∇Mφ|2 − (RicN (N,N) + |A|2)φ2dM,

and the Jacobi operator can be seen as the Schrödinger type operator

(5) JMφ = ΔMφ+Ric(N,N)φ + |A|2φ.

The index of Mn is then the number of negative eigenvalues of JM .
When Mn is one-sided, the sections of its normal bundle can be

identified with the odd functions on the two-sided cover M̂n, i.e., the
smooth functions φ on M̂n such that φ◦τ = −φ. One can then compute
the index of Mn by counting the number of negative eigenvalues of JM̂
restricted to the space of odd functions on M̂n (see [37]).

2.4. Harmonic forms. (see, for example, [28]). In a closed Riemann-
ian manifold (Mn, g), the Hodge-Laplace operator is the second order
differential operator Δp acting on p-forms defined by

Δp = dd∗ + d∗d,
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where d : Ωp(M) → Ωp+1(M) is the exterior differential and d∗ :
Ωp(M) → Ωp−1(M) is the formal adjoint1 of d, defined with respect to
the metric g. A p-form ω is called harmonic when Δpω = 0.

As Mn is closed, ω is harmonic if and only if it is closed and co-closed,
i.e., if it satisfies the two equations dω = 0 and d∗ω = 0. Hodge’s The-
orem asserts that in a closed Riemannian manifold every De Rham co-
homology class contains precisely one harmonic representative. Hence,
the dimension of the space of harmonic p-forms coincides with the p-th
Betti number of Mn.

The Bochner–Weitzenböck formula relates the Hodge–Laplace oper-
ator with the usual (rough) Laplacian on forms:

Δpω = −Δω +Rp(ω),

where Rp is a zero-th order curvature term. Such term, while rather
complicated when 1 < p < n, has a remarkably simple expression when
p = 1, in which case this formula becomes

(6) Δ1ω = −Δω +RicM (ω�, ·).

Remark 2.1. Here and in the following we use the usual musical
isomorphisms to pass from vectors to one-forms. For example, if ω is
a one-form on (Mn, g), ω� is the unique vector field on Mn such that
ω(Y ) = g(ω�, Y ) for all vector fields Y . If X is a vector, ω a one-form

and θ a two-form, then g(X� ∧ω, θ) = g(ω, iXθ), where iXθ denotes the
contraction of the two form θ by the vector X, i.e., the one-form defined
by iXθ(Y ) = θ(X,Y ) for all vector fields Y .

When (Mn, g) is isometrically immersed in (N n+1, g), it is possible
to express the curvature term Rp of Mn in terms of the corresponding
operator in (N n+1, g) and the second fundamental form A (for explicit
formulae, see [31]).

3. The computations

We describe two methods for using the harmonic one-forms of a min-
imal hypersurface to generate interesting test functions for the index
form. The methods were inspired by the work of Ros [29], Urbano [37]
and Savo [30].

If Mn is a two-sided minimal hypersurface of N n+1 ⊂ R
d, the coor-

dinates in Λp
R
d of any p-form on Mn can be used to produce globally

defined functions on Mn, which in turn can be used as test functions
for the index form of Mn. We perform such computation in two cases:
the coordinates of a harmonic one-form ω on Mn, and the coordinates
of the two-form N � ∧ ω, for ω a harmonic one-form on Mn.

1It is well-known that the operator d∗ satisfies the identity d
∗ = (−1)n(p+1)+1

∗d∗

(where ∗ stands for the Hodge star operator) so that, as a result, both d
∗ and Δp

are globally well-defined even when M is not orientable.
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Remark 3.1. Here and in all the following sections, {e1, . . . , en} will
denote an arbitrary local orthonormal frame on the hypersurfaceMn. It
is immediate to check that all quadratic expressions involving summa-
tions on such basis are independent of the particular choice of the basis
itself, which implies that such quantities are globally defined on Mn.

3.1. First method: coordinates of ω.

Proposition 1. Let (N 3, g) be a Riemannian three-manifold isomet-
rically embedded in some Euclidean space R

d. Let M2 be a closed two-
sided immersed minimal surface of N 3. Given a harmonic one-form ω
on M2, let

ui = 〈ω�, θi〉, i = 1, . . . , d,

denote the coordinates of ω� in R
d with respect to some orthonormal

basis {θi}
d
i=1 of Rd. Then

(7)

d∑
i=1

Q(ui, ui) =

∫
M

[
2∑

k=1

|II(ek, ω
�)|2 −

RN

2
|ω|2

]
dM.

Proof. Let {e1, e2} be a local orthonormal frame on M2. The func-
tions ui = 〈ω�, θi〉 are such that

Dekui = 〈Dekω
�, θi〉.

Thus, plugging the functions ui = 〈ω�, θi〉 in the index form (4) and
summing up on i = 1, . . . , d gives

d∑
i=1

Q(ui, ui) =

∫
M

2∑
i=1

|Deiω
�|2 − (|A|2 +RicN (N,N))|ω|2dM.

Since we have the orthogonal decomposition

Dekω
� = ∇M

ek
ω� +A(ek, ω

�) + II(ei, ω
�),

for each k = 1, 2, it follows that

2∑
k=1

|Dekω
�|2 =

2∑
k=1

|∇M
ek
ω�|2 +

2∑
k=1

|A(ek, ω
�)|2 +

2∑
i=1

|II(ek, ω
�)|2.

Thus, we obtain

d∑
i=1

Q(ui, ui) =

∫
M

|∇Mω|2 +
2∑

i=1

|A(ek, ω
�)|2 +

2∑
i=1

|II(ek, ω
�)|2dM

−

∫
M

(|A|2 +RicN (N,N))|ω|2dM.
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Fixing a point on M2 and choosing {e1, e2} in such way that the
second fundamental form of M2 in N 3 is diagonalized (i.e., A(ei, ej) =
kiδijN for each i, j = 1, 2), it can be checked that

2∑
i=1

|A(ei, ω
�)|2 = k21〈e1, ω

�〉2 + k22〈e2, ω
�〉2 =

1

2
|A|2|ω|2,

since M2 is minimal. Hence,

(8)

d∑
i=1

Q(ui, ui) =

∫
M

(
|∇Mω|2 +

2∑
i=1

|II(ek, ω
�)|2

)
dM

−

∫
M

(
1

2
|A|2 +RicN (N,N)

)
|ω|2dM.

Contraction of the Gauss formula (3) for the minimal surface M2

gives the identity

2KM = RN − 2RicN (N,N)− |A|2,

where KM is the Gaussian curvature of M2. Moreover, since ω is har-
monic, integration of the Bochner–Weitzenböck formula for p = 1 (equa-
tion (6)) gives ∫

M

|∇Mω|2dM = −

∫
M

RicM (ω�, ω�)dM.

Since RicM (ω�, ω�) = KM |ω|2 as M2 is two-dimensional, formula (7)
follows now from substituting the above two identities into (8). q.e.d.

3.2. Second method: coordinates of N � ∧ ω.

Proposition 2. Let (N n+1, g) be a Riemannian manifold isometri-
cally embedded in some Euclidean space R

d. Let Mn be a closed two-
sided immersed minimal hypersurface of N n+1. Given a harmonic one-
form ω on Mn, let

uij = 〈N ∧ ω�, θij〉, i, j = 1, . . . , d, i < j,

denote the coordinates of N ∧ω� in Λ2
R
d with respect to some orthonor-

mal basis {θij}i<j of Λ2
R
d. Then

(9)
d∑

i<j

Q(uij , uij) =

∫
M

[
n∑

k=1

|II(ek, ω
�)|2 +

n∑
k=1

|II(ek, N)|2|ω|2

]
dM

−

∫
M

[
n∑

k=1

RmN (ek, ω
�, ek, ω

�) +RicN (N,N)|ω|2

]
dM.
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Proof. Let {e1, . . . , en} be a local orthonormal frame on Mn. Observe
that

|∇Muij |
2 =

n∑
k=1

|Dekuij|
2 =

d∑
k=1

〈Dek(N ∧ ω�), θij〉
2.

Hence, summing up the values of the index form (4) on the functions
uij for all i < j, we obtain

d∑
i<j

Q(uij, uij)(10)

=

∫
M

n∑
k=1

|Dek(N ∧ ω�)|2 − (RicN (N,N) + |A|2)|N ∧ ω�|2dM

=

∫
M

n∑
k=1

|Dek(N
� ∧ ω)|2 − (RicN (N,N) + |A|2)|N � ∧ ω|2dM.

Obviously, |N �∧ω| = |ω| since N is a unit vector field that is orthog-
onal to ω�. Moreover,

|Dek(N
� ∧ ω)|2 =|(DekN)� ∧ ω +N � ∧Dekω|

2

=〈(DekN)� ∧ ω, (DekN)� ∧ ω〉

+ 2〈DekN
� ∧ ω,N � ∧Dekω〉

+ 〈N � ∧Dekω,N
� ∧Dekω〉

=〈ω, iDekN
((DekN)� ∧ ω)〉

+ 2〈iN ((DekN)� ∧ ω),Dekω〉

+ 〈Dekω, iN (N � ∧Dekω)〉

=〈ω, (|DekN |2ω − (DekN)� ∧ iDek
Nω)〉

+ 2〈〈DekN,N〉ω − (DekN)� ∧ iNω,Dekω〉

+ 〈Dekω, (Dekω −N � ∧ iNDekω)〉

=|DekN |2|ω|2 − |iDek
Nω|2 + |Dekω|

2 − |iNDekω|
2.

The pairing between vectors and one-forms allow us to rewrite the
contractions in the above formula as

|Dek(N
� ∧ ω)|2 = |DekN |2|ω|2 − 〈ω�,DekN〉2 + |Dekω|

2 − 〈Dekω
�, N〉2

= |Dekω|
2 − 2〈∇ekω

�, N〉2 + |DekN |2|ω|2

= |Dekω|
2 − 2|A(ek, ω

�)|2 + |DekN |2|ω|2.

As one has the orthogonal decompositions

Dekω
� = ∇M

ek
ω� +A(ek, ω

�)N + II(ek, ω
�),
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and

DekN = ∇ekN + II(ek, N),

it follows that

|Dek(N
� ∧ ω)|2

= |∇M
ek
ω|2−|A(ek, ω

�)|2+|II(ek, ω
�)|2+|∇ekN |2|ω|2+|II(ek, N)|2|ω|2.

Summing up,

n∑
k=1

|Dek(N
� ∧ ω)|2 = |∇Mω|2 −

n∑
k=1

|A(ek, ω
�)|2

+

n∑
k=1

|II(ek, ω
�)|2 + |A|2|ω|2 +

n∑
k=1

|II(ek, N)|2|ω|2.

Substituting in equation (10), we obtain

d∑
i<j

Q(uij, uij) =

∫
M

[
n∑

k=1

|II(ek, ω
�)|2 +

n∑
k=1

|II(ek, N)|2|ω|2

]
dM

+

∫
M

[
|∇Mω|2 −

n∑
k=1

|A(ek, ω
�)|2 −RicN (N,N)|ω|2

]
dM.

Since ω is harmonic, integration of the Bochner–Weitzenböck formula
(6) and the Gauss equation (3) for the minimal surface Mn in N n+1

gives ∫
M

|∇Mω|2dM

= −

∫
M

n∑
i=1

RmN (ei, ω
�, ei, ω

�)dM +

∫
M

n∑
i=1

|A(ei, ω
�)|2dM.

The result follows. q.e.d.

Remark 3.2. Partially analogous computations for harmonic p-forms
instead of one-forms also yield formulae similar to (7) and (9). However,
there is an important difference. Whereas in the above computations
all the terms involving A cancel out in the final expression, for p-forms
the final formula will generally contain terms that depend on A. Cor-
respondingly, when p �= 1, n − 1 all index estimates one may derive by
means of this approach rely on L2-smallness assumptions on the sec-
ond fundamental form of Mn, which turn out to be rather restrictive
even in the very special case when the ambient manifold is the (n+ 1)-
dimensional round sphere.



392 L. AMBROZIO, A. CARLOTTO & B. SHARP

4. How the method works

In this section, we show that it is possible to estimate the number of
eigenvalues of the Jacobi operator of a minimal hypersurface below a
certain threshold η if there is a subspace of harmonic one-forms on this
hypersurface for which the sum of the curvature terms we introduced
in the previous section is bounded from above by η. We call this “a
concentration of the spectrum inequality”.

Proposition 3. Let (N n+1, g) be a Riemannian manifold isometri-
cally embedded in R

d. Let Mn be a two-sided immersed minimal hy-
persurface of N n+1. Assume there exists a real number η and a q-
dimensional vector space V of harmonic one-forms on Mn such that for
every ω ∈ V \ {0},

(11)

∫
M

[
n∑

k=1

|II(ek, ω
�)|2 +

n∑
k=1

|II(ek, N)|2|ω|2

]
dM

−

∫
M

[
n∑

k=1

RmN (ek, ω
�, ek, ω

�) +RicN (N,N)|ω|2

]
dM < η

∫
M

|ω|2dM.

Then

#{eigenvalues of the Jacobi operator of Mn that are < η} ≥
2

d(d− 1)
q.

Proof. (Compare [29] Theorem 16 and [30] Theorem 1.1). Let k be
the number of eigenvalues of the Jacobi operator (5) of Mn that are
below η. Denote by φ1, . . . , φk the eigenfunctions associated to the k
eigenvalues λ1 ≤ λ2 ≤ λ3 . . . ≤ λk of the Jacobi operator of Mn that
are strictly smaller than η.

Fix some global orthonormal basis {θij}i<j of Λ2
R
d and let uij =

〈N ∧ ω�, θij〉 be the test functions defined in Proposition 2. The map
that assigns to each ω ∈ V the vector[∫

M

uijφpdM

]
,

where i < j range from 1 to d and p ranges from 1 to k, is a linear map
from the q dimensional vector space V to a vector space of dimension(

d

2

)
k =

d(d− 1)

2
k.

Assume, by contradiction, that q > d(d−1)
2 k. Then there would exist

ω in V \ {0} such that
∫
M uijφpdM = 0 for all i < j and all p. Thus, as

each uij is L2-orthogonal to all the first k eigenfunctions φp, from the
Courant–Hilbert variational characterization of eigenvalues it follows
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that

d∑
i<j

Q(uij , uij) ≥ λk+1

d∑
i<j

∫
M

u2ijdM = λk+1

∫
M

|ω|2dM ≥ η

∫
M

|ω|2dM.

In view of Proposition 2, this is a contradiction with the assumption
that inequality (11) holds for all ω in V \ {0}. The result follows. q.e.d.

Remark 4.1. The same proof of the above proposition also gives
more refined information when the two-sided immersion Mn arises as
the two-sided cover of a one-sided immersed hypersurface in N n+1 (see
sections 2.1 and 2.3). If one, moreover, assumes that all harmonic one-
forms on the subspace V are such that all the corresponding functions
uij are odd with respect to the deck transformation of the cover, then
one can repeat the argument considering the restriction of the Jacobi
operator of Mn to the space of odd functions. It then follows that
the number of eigenvalues of the one-sided hypersurface covered by Mn

below the threshold η is bounded from below by 2q/d(d − 1).

As a corollary, in the case η = 0 we obtain an estimate on the number
of negative values of the Jacobi operator, that is, an index estimate:

Theorem A. Let (N n+1, g) be a Riemannian manifold that is iso-
metrically embedded in some Euclidean space R

d. Let Mn be a closed
embedded minimal hypersurface of (N n+1, g).

Assume that for every non-zero vector field X on Mn,

∫
M

[
n∑

k=1

RmN (ek,X, ek,X) +RicN (N,N)|X|2

]
dM

>

∫
M

[
n∑

k=1

|II(ek,X)|2 +
n∑

k=1

|II(ek, N)|2|X|2

]
dM.

Then

(12) index(M) ≥
2

d(d− 1)
b1(M).

Proof. Assume Mn is two-sided. Under the assumption of the corol-
lary, the hypothesis of Proposition 3 is automatically satisfied for η = 0
and V the set of all harmonic one-forms on Mn, whose dimension is
b1(M). Inequality (12) follows.

When Mn is one-sided, let π = M̂n → Mn ⊂ N n+1 be its two-
sided cover and let V be the set of harmonic one-forms on M̂n that are
invariant under the deck transformation τ : M̂n → M̂n. This space has
dimension at least b1(M), as it contains all the forms π∗ω, where ω is

harmonic on Mn (in fact, π∗ : H1(M ;R) → H1(M̂ ;R) is injective). The
result follows as a consequence of Proposition 3 (see Remark 4.1) once
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one checks that, by construction of M̂n, for all ω̂ in V, each function
ûij = 〈N̂ ∧ ω�, θij〉 satisfy

ûij(τ(x)) = 〈N̂ (τ(x))∧ω�(τ(x)), θij〉 = 〈−N̂(x)∧ω�(x), θij〉 = −ûij(x),

for all x in M̂n, i.e, all functions uij are odd with respect to the deck
transformation τ . q.e.d.

It is possible to show an exactly analogous concentration of the spec-
trum inequality under a hypothesis that is compatible with Proposi-
tion 1. Instead, by combining formula (8) for both the coordinates of
the one-form ω and the coordinates of its Hodge dual ∗ω, we shall prove
a slightly better result, in the sense that the pinching assumption is
weaker (and, thus, easier to verify in applications).

Proposition 4. Let (N 3, g) be a Riemannian manifold isometrically
embedded in R

d. Let M2 be a closed oriented embedded minimal surface
of N 3. Assume there exists η and a q-dimensional vector space V of
harmonic one-forms on Mn such that for every ω in V \ {0},
(13)∫

M

2∑
k=1

(
|II(ek, ω

�)|2 + |II(ek, ∗ω
�)|2

)
−RN |ω|2dM < 2η

∫
M

|ω|2dM.

Then
(14)

#{eigenvalues of the Jacobi operator of Mn that are < η} ≥
1

2d
q.

Proof. Let k denote the number of eigenvalues of JM that are strictly
less than η. Keeping the notations of the proof of Proposition 3 and
fixing an orthonormal basis {θi} of Λ1

R
d, consider the linear map that

assigns to each harmonic one-form ω in V the matrix

[

∫
M

uiφjdM,

∫
M

u∗iφjdM ],

which belongs to a 2dk-dimensional real vector space, for ui = 〈ω�, θi〉
and u∗i = 〈∗ω�, θi〉.

If q > 2dk there would exist some non-trivial harmonic one-form ω
such that the coordinates of both ω and ∗ω in R

d would be orthogonal
to all the first k eigenfunctions φ1, . . . , φk. But then

d∑
i=1

Q(ui, ui) +
d∑

i=1

Q(u∗i , u
∗
i ) ≥ 2λk+1

∫
M

|ω|2dM ≥ 2η

∫
M

|ω|2dM.

In view of Proposition 1, this is a contradiction with hypothesis (13).
Therefore, q ≤ 2dk, as we wanted to prove. q.e.d.
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5. Some applications

We present a gallery of examples of ambient manifolds (N n, g) for
which our general computations yield, for all of its closed embedded
minimal hypersurfaces Mn, the conjectured lower bound of the index
by the first Betti number. As it is clear from the formulae in Section 3,
the success of the method depends not only on the intrinsic geometry
of (N n, g), but also of the choice of some isometric embedding of it in
some Euclidean space. Our examples are such that there is either an
obvious or a “most beautiful” choice for this embedding.

5.1. Round spheres (after Savo).

Theorem 5 (Savo). Let Mn be a closed embedded minimal hyper-
surface of the unit sphere Sn+1 in R

n+2. If Mn is not totally geodesic,
then

index(M) ≥
2

(n+ 2)(n+ 1)
b1(M) + n+ 2.

Proof. The unit sphere in R
n+2 has constant sectional curvature equal

to one and is totally umbilic. In fact, its second fundamental form II
satisfies |II(X,Y )| = |〈X,Y 〉| for all tangent vector fields X and Y .

Thus, for any closed embedded minimal hypersurface Mn of Sn+1, it
is immediate to check that for any harmonic one-form ω on Mn,

n∑
k=1

|II(ek, ω
�)|2 +

n∑
k=1

|II(ek, N)|2|ω|2

−
n∑

k=1

RmN (ek, ω
�, ek, ω

�)−Ric(N,N)|ω|2

= −(2n− 2)|ω|2.

By Proposition 3, we conclude that

#{eigenvalues of JM that are less or equal than −2n+ 2}

≥
2

(n+ 2)(n + 1)
b1(M).

Moreover, it is possible to check that each coordinate of the unit
normal field N = (N1, . . . , Nn+2) of M

n satisfies the equation

JMNi − nNi = ΔMNi + |A|2Ni = 0,

and also to show that, when Mn is not totally geodesic, the multiplicity
of −n as an eigenvalue of JM is at least n + 2 (this dates back to J.
Simons [35], see, for example, [30], proof of Corollary 2.2). Thus, when
n ≥ 3 we can estimate the index of any embedded minimal non-totally
geodesic hypersurface Mn of the round sphere Sn+1 by

index(M) ≥
2

(n+ 2)(n+ 1)
b1(M) + n+ 2.
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The case n = 2 is somehow peculiar and an ad hoc argument is needed
to conclude, for which we refer the reader to Section 4 of [30]. q.e.d.

Remark 5.1. In ambient dimension three, Savo proved a better es-
timate by using formula (13) for the coordinates of harmonic one-forms
and by performing a detailed analysis of the dimension of the set of
harmonic one-forms whose coordinates all belong to the eigenspace of
the Jacobi operator associated to the eigenvalue −2 (see the proof of
Theorem 1.3 in [30]).

5.2. Real projective spaces.

Theorem 6. Let Mn be a closed embedded minimal hypersurface
of the real projective space RP

n+1 endowed with its metric of constant
sectional curvature one. Then

index(M) ≥
2

(n+ 2)(n + 1)
b1(M).

Proof. There is an obvious one-to-one correspondence between im-
mersed minimal hypersurfaces Mn of RP

n+1 and immersed minimal
hypersurfaces M̃n of Sn+1 that are invariant under the antipodal map
(all embedded minimal hypersurfaces of Sn+1 are connected). M̃n is a
two-to-one cover of Mn.

If Mn is a closed embedded two-sided hypersurface in RP
n+1 with

unit normal field N (or is the two-sided cover of a closed embedded

one-sided minimal hypersurface), then M̃n is two-sided in Sn+1 with

unit normal field Ñ such that

Ñ(−x) = −Ñ(x) for all x ∈ M̃n.

Given any harmonic one-form ω on Mn, its pull-back ω̃ in M̃n is also
harmonic, and such that ω̃(−x) = −ω̃(x) for all x ∈ M̃n. For these
forms, the coordinate functions

ũij = 〈Ñ ∧ ω̃�, θij〉, i, j = 1, . . . n+ 2, i < j,

satisfy

ũij(−x) = ũij(x).

Therefore, there are well-defined functions uij on Mn whose lifts to

M̃n are precisely ũij. Since the projection of Sn+1 on RP
n+1 is a local

isometry, when the functions uij are plugged in the index form of Mn

one obtains the same as when the functions ũij are plugged in the index

form of M̂n, that is

n+2∑
i<j

QM (uij , uij) = −(2n− 2)

∫
M

|ω|2dM < 0,
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by the computations in Theorem 5. Applying the general method (as
in the proof of Theorem A), we conclude that every embedded minimal
hypersurface of RPn+1 is such that

index(M) ≥
2

(n+ 2)(n + 1)
b1(M). q.e.d.

Remark 5.2. It is not possible to obtain an extra n+ 2 in the lower
bound for the index as in the case of spheres because Ñ is such that
Ñ(−x) = −Ñ(x) for all x in M̃n, which means that the coordinates

of Ñ do not descend to Mn to produce test functions for the index
form.

5.3. Complex and quaternionic projective spaces, and the Cay-
ley plane. In this section, we want to consider (N n+1, g) to be one of
the projective spaces:

N n+1 = CP
m (2m = n+ 1), HP

p (4p = n+ 1), CaP2 (16 = n+ 1),

endowed with their standard Riemannian metrics that are symmetric,
i.e., whose Riemman curvature tensor is parallel. In the case of CPm

this is just the standard Fubini-Study metric.
Up to normalization, all these metrics have sectional curvatures

bounded between 1 and 4. Moreover, each of them is Einstein. The
following table summarizes the relevant information about the curva-
ture of these spaces:

N n+1 RmN (X,Y,X, Y ), X,Y orthonormal RicN

CP
m 1 + 3g(X,JY )2 (n+ 3)g

HP
p 1 + 3g(X, IY )2 + 3g(X,JY )2 + 3g(X,KY )2 (n+ 9)g

CaP2 bounded between 1 and 4 36g

In the above formulae for the sectional curvatures, J denote the com-
patible complex structure of CP

m and I, J,K denote the compatible
complex structures of HP

m that satisfy the standard operational rules
of the quaternions.

There exists a beautiful family of isometric embeddings of these spaces
into an Euclidean space. These embeddings generalize the standard
Veronese embeddings of RPn in the space of symmetric (n+1)× (n+1)
matrices over R. We refer the reader to [6] (and the references threrein)
for a detailed account of these embeddings, which enjoy many other nice
geometric properties.

Following [6], let us give a brief description of these embeddings.
Denote by F either the field of complex numbersC or the division algebra
of quaternions H. Consider the action of the set of unit elements in F

on the unit sphere in F
m+1 by multiplication (from the right). The
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projective spaces FP
m are the quotient spaces obtained by identifying

points in the same orbit of this action.
Let M(m+1;F) denote the set of all (m+1)× (m+1) matrices with

coefficients in F. A Hermitian matrix is a matrix A in M(m+1;F) that

coincides with its transpose conjugate, A
t
. The set H(m + 1;F) of all

Hermitian matrices can be seen as an Euclidean space when endowed
with the metric

〈A,B〉 =
1

2
Re(tr(AB)).

This space has dimension (m + 1)2 if F = C or (2m + 1)(m + 1) if
F = H.

The map

[z1 : . . . : zm+1] ∈ FP
m �→ [zizj]ij ∈ H(m+ 1;F)

is well-defined and gives an embedding of FPm into H(m + 1;F). The
image of this map is the set

{A ∈ H(m+ 1;F); A2 = A, trA = 1},

and the induced metric is precisely the canonical metric on FP
m de-

scribed above.
The case of the Cayley plane CaP2 has a similar algebraic charac-

terization (see [6]). It can be seen as an embedded hypersurface of an
Euclidean space of dimension 27.

For the discussion that follows, the main property we need to know,
and that is shared by all of these embeddings, is that the second funda-
mental form II satisfies

(15) 〈II(X,X), II(X,X)〉 = 4 for all unit X ∈ X (N ),

see equations (3.2) and (5.1) in [6]. It follows by polarization of this
identity that for every pair of orthogonal unit vectors fields X and Y
that are tangent to N n+1,

(16) 〈II(X,X), II(Y, Y )〉+ 2|II(X,Y )|2 = 4.

Combining (16) and the Gauss equation (2), one obtains the following
formula, valid for all pairs of orthogonal vectors X and Y that are
tangent to N n+1:

(17) |II(X,Y )|2 =
1

3
(4−RmN (X,Y,X, Y )).

Given ω a harmonic one-form on a given closed embedded oriented
minimal hypersurface Mn of N n+1, it is possible to compute that, at
any given point p in Mn, if {ek} is an arbitrary orthonormal basis of
TpM ,

(18)

(
n∑

k=1

|II(ek, N)|2 −RicN (N,N)

)
|ω|2 =

4

3
(n −K)|ω|2,
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where K is the Einstein constant of (N n+1, g) given in third column of
Table 1. Moreover, at points where ω does not vanish it is possible to
choose an orthonormal basis {ek} of TpM such that e1 = ω�/|ω�|. Thus,
by (15) and (17)

(19)

n∑
k=1

(
|II(ek, ω

�)|2 −RmN (ek, ω
�, ek, ω

�)
)

=

(
|II(e1, e1)|

2 +
4

3

n∑
k=2

(1−RmN (ek, e1, ek, e1))

)
|ω|2

=
4

3
(n+ 2−K +RmN (N, e1, N, e1))|ω|

2.

Since RmN (N, e1, N, e1) is bounded between 1 and 4, from (18) and
(19) it follows that

n∑
k=1

|II(ek, ω
�)|2 +

n∑
k=1

|II(ek, N)|2|ω|2

−
n∑

k=1

RmN (ek, ω
�, ek, ω

�)−RicN (N,N)|ω|2

≤
8

3
(n+ 3−K)|ω|2.

Notice that equality holds if and only if RmN (N,ω�, N, ω�) = 4|ω|2

on all points of Mn. Reading the values of K from the above Table, it
is then immediate to check that∫

M

[
n∑

k=1

|II(ek, ω
�)|2 +

n∑
k=1

|II(ek, N)|2|ω|2

]
dM

−

∫
M

[
n∑

k=1

RmN (ek, ω
�, ek, ω

�) +RicN (N,N)|ω|2

]
dM ≤ 0,

where equality can only happen when N n+1 is the complex projective
plane CP

m and the harmonic form ω on Mn is such that RmN (N,ω�,
N, ω�) = |ω|2 + 3g(ω�, JN)2 = 4|ω|2. In turn, this implies at once (by
virtue of the Cauchy–Schwartz inequality) that there exists a smooth
function f : M → R such that ω� = fJN . We shall see in Appendix A
that, in this setting, necessarily f = 0 identically onMn (see Proposition
A.0 for a precise statement), and, hence, ω must be the trivial one-form.
As a result, the inequality in question must be strict for all non-zero
harmonic forms.

Combining all those facts, we have shown that it is possible to apply
Theorem A to obtain the following results.
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Theorem 7. Let Mn be a closed embedded minimal hypersurface of
the complex projective space CP

m, 2m = n+ 1. Then

index(M) ≥
2

m(m+ 2)(m+ 1)2
b1(M).

Theorem 8. Let Mn be a closed embedded minimal hypersurface of
the quaternionic projective space HP

p, 4p = n+ 1. Then

index(M) ≥
2

(2p+ 3)(2p + 1)(p + 1)p
b1(M).

Theorem 9. Let Mn be a closed embedded minimal hypersurface of
the Cayley plane CaP2. Then

index(M) ≥
1

351
b1(M).

5.4. Product of the circle and unit spheres. In this subsection, we
consider (N n+1, g) to be the Riemannian product of the unit circle S1

with the unit round sphere Sn. As these spaces have non-negative Ricci
curvature, this case goes beyond the situations described in the conjec-
ture stated in the Introduction. However, it is still possible to obtain
similar bounds for the Morse index of their embedded hypersurfaces.

The case of closed embedded minimal surfaces in S1×S2 was already
studied in detail by Urbano in [38] (see Theorem 4.8 in [38] for the
precise statement of his result). We remark that the proof in [38] used
the coordinates of harmonic one-forms as test functions for the index
form, i.e., the proof used formula (8) specialized to the case of the
canonical product embedding of S1 × S2 in R

5.
Thus, in the sequel we restrict ourselves to higher dimensions.

Theorem 10. Let Mn be a closed embedded minimal hypersurface of
S1 × Sn, n ≥ 3. Then

index(M) ≥
2

(n+ 3)(n + 2)
b1(M).

Proof. We consider the standard embedding of N n+1 = S1 × Sn into
R
n+3 = R

2 ×R
n+1. It is a product embedding of totally umbilic hyper-

surfaces. The tangent space of N n+1 decomposes as TS1 ⊕ TSn. Let
π1 : TN → TS1, π2 : TN → TSn denote the corresponding projections.

Since S1 is one-dimensional and Sn has the constant sectional curva-
tures equal to one, the Riemann curvature tensor of (N n+1, g) is given
by

RmN (X,Y,X, Y ) = |π2(X)|2||π2(Y )|2 − 〈π2(X), π2(Y )〉2,

for all X,Y ∈ X (N ). In particular,

RicN (X,X) = (n− 1)|π2(X)|2 for all X ∈ X (N ).
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The second fundamental form of N n+1 in R
n+3 is given by

|II(X,Y )|2 = 〈π1(X), π1(Y )〉2 + 〈π2(X), π2(Y )〉2

= 〈X,π1(Y )〉2 + 〈X,π2(Y )〉2.

Let Mn be an oriented minimal hypersurface Mn of N n+1 (or the
two-sided cover of a one-sided hypersurface) and ω be a harmonic one-
form on Mn. On one hand, we have

n∑
k=1

|II(ek, N)|2 =

n∑
k=1

〈ek, π1(N)〉2 +
n∑

k=1

〈ek, π2(N)〉2

(20)

= |π1(N)|2 − 〈N,π1(N)〉2 + |π2(N)|2 − 〈N,π2(N)〉2

= |π1(N)|2 − |π1(N)|4 + |π2(N)|2 − |π2(N)|4

= 1− |π1(N)|4 − |π2(N)|4,

and, analogously,

(21)

n∑
k=1

|II(ek, ω
�)|2 = |ω|2 − 〈N,π1(ω

�)〉2 − 〈N,π2(ω
�)〉2.

On the other hand, a similar computation gives

n∑
k=1

RmN (ek, ω
�, ek, ω

�) =

n∑
k=1

|π1(ek)|
2|π1(ω

�)|2 +
n∑

k=1

|π2(ek)|
2|π2(ω

�)|2

(22)

+ 〈N,π1(ω
�)〉2 + 〈N,π2(ω

�)〉2 − |ω�|2.

In order to proceed with the computation, we choose a convenient
orthonormal basis of TpN at some point p = (p1, p2) in S1 × Sn. Let
w denote the unit vector field on S1. The set of vectors on Tp2S

n

that are orthogonal to N constitute a vector subspace of dimension at
least n − 1. Therefore, we can choose an orthonormal basis for TpN
of the form {T, f1, f2, . . . , fn−1, N}, where {f1, f2, . . . , fn−1, fn} is an
orthonormal basis of Tp2S

n and the vectors T and N can be written as

T = cos(θ)w + sin(θ)fn,

N = − sin(θ)w + cos(θ)fn.

Furthermore, if we let ϕ ∈ [0, π] be the angle between the vectors ω�

and T in TpM we can express (20), (21), (22) and RicN (N,N) in terms
of the angles θ and ϕ, since, in particular,

|π1(ω
�)|2 = cos2(θ) cos2(ϕ)|ω|2,

|π2(ω
�)|2 = (sin2(ϕ) + sin2(θ) cos2(ϕ))|ω|2,



402 L. AMBROZIO, A. CARLOTTO & B. SHARP

as well as

〈π1(N), π1(ω
�)〉2 = 〈π2(N), π2(ω

�)〉2 = cos2(θ) sin2(θ) cos2(ϕ)|ω|2.

Hence, combining these equations we obtain the following formula
(for the opposite of the integrand in (9)):

n∑
k=1

RmN (ek, ω
�, ek, ω

�) +

n∑
k=1

RmN (ek, N, ek, N)|ω|2

−
n∑

k=1

|II(ek, ω
�)|2 −

n∑
k=1

|II(ek, N)|2|ω|2

=
(
(n− 1)|π2(N)|2 + |π1(N)|4 + |π2(N)|4 − 3

)
|ω|2

+ |π1(ω
�)|2

n∑
k=1

|π1(ek)|
2 + |π2(ω

�)|2
n∑

k=1

|π2(ek)|
2

+ 2〈π1(N), ω�〉2 + 2〈π2(N), ω�〉2

=((n− 1) cos2(θ) + cos4(θ) + sin4(θ)− 3)|ω|2

+ (cos2(θ))|π1(ω
�)|2 + ((n − 1) + sin2(θ))|π2(ω

�)|2

+ 4cos2(θ) sin2(θ) cos2(ϕ)|ω|2

=((n− 1) cos2(θ) + cos4(θ) + sin4(θ)− 3)|ω|2

+ (cos2(θ) + 2 sin2(θ))|π1(ω
�)|2 + ((n− 1) + sin2(θ))|π2(ω

�)|2

+ 2cos2(θ) sin2(θ) cos2(ϕ)|ω|2

=((n− 2) cos2(θ) + cos4(θ) + sin4(θ)− 1 + 2 cos2(θ) sin2(θ) cos2(ϕ))|ω|2

+ (n− 2)(sin2(ϕ) + sin2(θ) cos2(ϕ))|ω|2

=(n− 2)(cos2(θ) + sin2(θ) cos2(ϕ) + sin2(ϕ))|ω|2

+ (cos4(θ) + sin4(θ)− 1 + 2 cos2(θ) sin2(θ) cos2(ϕ))|ω|2.

As a result, using the fact that n ≥ 3 it is sufficient for us to prove
that when ϕ, θ ∈ [0, π]

q(θ, ϕ) = cos2(θ) + sin2(θ) cos2(ϕ) + sin2(ϕ)

+ cos4(θ) + sin4(θ)− 1 + 2 cos2(θ) sin2(θ) cos2(ϕ) > 0.

Replacing, in the expression for q, cos2(ϕ) = 1− sin2(ϕ) and making
use of basic trigonometric identities we easily see that, in fact,

q(θ, ϕ) = 1 + sin2(ϕ) cos2(θ)(2 cos2(θ)− 1),

so that patently q ≥ 1 for θ ∈ [0, π/4]∪[3π/4, π] while for θ ∈ [π/4, 3π/4]

q(θ, ϕ) ≥ 1 + cos2(θ)(2 cos2(θ)− 1) = 2 cos4(θ)− cos2(θ) + 1 ≥
7

8
.

By Theorem A, the proof is complete. q.e.d.



INDEX AND BETTI NUMBERS OF MINIMAL HYPERSURFACES 403

In fact, as we anticipated in the Introduction, a similar approach
allows to handle the case when the ambient manifold is the product of
two round spheres of arbitrary dimension (with the sole exception of
S2 × S2).

Theorem 11. Let Mn be a closed embedded minimal hypersurface of
Sp × Sq, p, q ≥ 2 and (p, q) �= (2, 2). Then

index(M) ≥
2

(p+ q + 2)(p + q + 1)
b1(M).

For the sake of brevity, we decided to omit the somewhat lenghty
proof of this assertion, which follows along the very same lines of the
argument we presented for S1 × Sn with complications of purely nota-
tional character.

5.5. Pinched convex hypersurfaces of the Euclidean space.

Theorem 12. Let (N n+1, g) be a closed embedded hypersurface of
R
n+2 whose principal curvatures k1 ≤ . . . ≤ kn+1 with respect to the

outward pointing unit normal ν are positive and satisfy the following
pinching condition:

kn+1

k1
<

√
n+ 1

2
.

Then, every closed embedded minimal hypersurface Mn of N n+1 is such
that

index(M) ≥
2

(n+ 2)(n + 1)
b1(M).

Proof. It is convenient to consider the shape operator S of N n+1, i.e.,
the endomorphism of the tangent bundle of N n+1 defined by

S : X ∈ X (N ) �→ −∇Xν ∈ X (N ).

S and II are related by II(X,Y ) = 〈S(X), Y 〉ν. Using the Gauss
equation (2) for N n+1, we can rewrite the integrand appearing in for-
mula (9) only in terms of S. Thereby, one obtains

n∑
k=1

|II(ek, ω
�)|2 +

n∑
k=1

|II(ek, N)|2|ω|2

−
n∑

k=1

RmN (ek, ω
�, ek, ω

�)−RicN (N,N)|ω|2

= −
(
〈S(ω�), ω�〉+ 〈S(N), N〉|ω|2

) n∑
k=1

〈S(ek), ek〉

+ 2

n∑
k=1

(
〈S(ω�), ek〉

2 + 〈S(N), ek〉
2|ω|2

)
.
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Choosing an orthonormal frame {e1, . . . , en, N} on N n+1 and observ-
ing that

k1|X|2 ≤ 〈S(X),X〉 ≤ kn+1|X|2 for all X ∈ X (N ),

it is possible to derive the following estimates:

n∑
k=1

〈S(ω�), ek〉
2 = |S(ω�)|2 − 〈S(ω�), N〉2 ≤ k2n+1|ω|

2,

n∑
k=1

〈S(N), ek〉
2|ω|2 = (|S(N)|2 − 〈S(N), N〉2)|ω|2 ≤ (k2n+1 − k21)|ω|

2,

(
〈S(ω�), ω�〉+ 〈S(N), N〉|ω|2

) n∑
k=1

〈S(ek), ek〉 ≥ 2nk21|ω|
2.

Therefore,

n∑
k=1

|II(ek, ω
�)|2 +

n∑
k=1

|II(ek, N)|2|ω|2

−
n∑

k=1

RmN (ek, ω
�, ek, ω

�)−RicN (N,N)|ω|2

≤ (4k2n+1 − 2(n + 1)k21)|ω|
2 ≤ 0,

by our pinching assumption. The result follows since the inequality
above is strict over the set where |ω|2 �= 0 which is open (and non-
empty since ω is assumed to be non-trivial). Thus, we get that (9) is
strictly negative and the result follows from Theorem A. q.e.d.

Remark 5.3. In dimension n = 2, by similar manipulations it is
possible to obtain from formula (8) a slightly better result in the sense
that the weaker pinching condition

k3
k1

<

√
5

3
,

still allows one to show that every closed minimal surface in such am-
bient space satisfies index(M) ≥ b1(M)/4. In particular, this implies
that (in the setting considered in this subsection) a two-sided closed
minimal surface of index one must have genus at most two, a conclusion
that is conjectured to be true in any ambient three-manifold of positive
Ricci curvature. We would like to thank Fernando Codá Marques for
pointing out this connection.

5.6. Pinched three-manifolds.

Theorem 13. Let (N 3, g) be a closed Riemannian three-manifold
with positive scalar curvature. Assume there is an isometric embedding
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of (N 3, g) into some Euclidean space R
d such that

RN >
1

2
| 
HN |2.

Then, any closed oriented minimal hypersurface M2 of N 3 is such
that

index(M) ≥
1

2d
b1(M).

Proof. The result will follow immediately from Proposition 4 once we
verify that∫

M

2∑
k=1

(
|II(ek, ω

�)|2 + |II(ek, ∗ω
�)|2

)
−RN |ω|2dM < 0,

for all harmonic one-forms ω on an oriented minimal surface M2 in
(N 3, g).

The contraction of the Gauss equation for N 3 gives

RN = | 
H|2 − |II|2,

where 
H = trII denotes the mean curvature vector of N 3 in R
d. Since

at points where ω does not vanish {e1 = ω�/|ω�|, e2 = ∗ω�/|ω�|} is an
orthonormal basis of the tangent space, we have

2∑
k=1

(
|II(ek, ω

�)|2 + |II(ek, ∗ω
�)|2

)
−RN |ω|2

=

2∑
i,j=1

(|II(ei, ej)|
2 −RN )|ω|2

≤ (|II|2 −RN )|ω|2 ≤ (| 
H|2 − 2RN )|ω|2 ≤ 0,

by the pinching assumption. Once again this inequality is strict when
|ω|2 �= 0 which occurs on a non-empty open set. Thus, once we integrate
the result follows. q.e.d.

Appendix A. The borderline case in complex projective
spaces

Let (N n+1, g) be the complex projective space of (real) dimension
2m endowed with the Fubini-Study metric, namely (CPm, gFS). Let us
recall here that such complex manifold is Kähler, which implies that
the associated almost-complex structure J is parallel with respect to
the Levi-Civita connection (i.e., ∇J = 0), a fact that we are about to
exploit in the sequel of this appendix.

If Mn is a closed, embeded minimal hypersurface in such ambient
manifold, we have already proven in Subsection 5.3 the inequality
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∫
M

[
n∑

k=1

|II(ek, ω
�)|2 +

n∑
k=1

|II(ek, N)|2|ω|2

]
dM

−

∫
M

[
n∑

k=1

RmN (ek, ω
�, ek, ω

�) +RicN (N,N)|ω|2

]
dM ≤ 0,

with equality only when the harmonic form ω on Mn is such that
RmN (N,ω�, N, ω�) = |ω|2 + 3g(ω�, JN)2 = 4|ω|2 and (by virtue of the
Cauchy–Schwartz inequality) this happens if and only if there exists a
smooth function f : M → R such that ω� = fJN .

The key point of this appendix, which completes the proof of Theo-
rem 7 is the following assertion:

Proposition A.0. Let Mn be a closed, embedded minimal hypersur-
face in (CPm, gFS). Suppose that a harmonic one-form ω is proportional

to (JN)� at each point of Mn. Then such form vanishes identically on
Mn.

Let us see why. Before getting to the proof, we shall present some
preliminary lemmata.

Remark A.1. From now onwards, we shall set JN = U in order to
have a distinguished notation for this vector. Also, we let η = U �. Fur-
thermore, we shall denote here (coherently with the rest of the article)
by ∇ the Levi-Civita connection of (N n+1, g) and by ∇M the induced
connection on the hypersurface Mn. More generally, we shall adopt a
superscript/subscript when referring to differential operators on Mn.

Lemma A.1. In the setting above, the following assertions are true:

a) g(∇Mf, U) = 0;
b) f∇UN = −J∇Mf .

Proof. We shall start by recalling that divM (η) = 0, which is rather
standard (see, e.g., pg. 286 of [19]). Once we know this, taking the
divergence of ω (and recalling the first-order characterization of har-
monicity, see Subsection 2.4) gives

0 = divMω = η(∇Mf) = g(U,∇Mf),

that is, f is constant along each flow line of the flux generated by the
vector field U = JN .

For what concerns part b), taking the exterior derivative of ω = fη
and evaluating it for X = JN and an arbitrary Y (a section of TM),
we have

0 = dω(JN, Y ) = df(JN)η(Y )− df(Y )η(JN) + fdη(JN, Y )

= −df(Y ) + f(JN(η(Y ))− Y (η(JN)) − η([JN, Y ]))

= −df(Y ) + f((∇M
JNη)(Y )− (∇M

Y η)(JN))
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= −df(Y ) + fg(∇M
JNJN, Y )− fg(∇M

Y JN, JN)

= −df(Y ) + fg(∇JNJN, Y )− fg(∇Y JN, JN)

= −df(Y ) + fg(J∇JNN,Y ) + fg(J∇Y N,JN)

= −df(Y )− fg(∇JNN,JY ) + fg(∇Y N,N)

= −df(Y )− fg(∇JNN,JY )

(since: η(JN) = 1 identically and g(∇Y N,N) = 0 because g(N,N) = 1
identically, and we have used that J is a skew-symmetric operator and
the ambient manifold is Kähler, which ensures that ∇J = 0). That
is, we have obtained f∇JNN = −J∇Mf , which completes the proof.

q.e.d.

Lemma A.2. In the setting above, we have

RicM (ω�, ω�) = (2m− 2)f2 − |∇Mf |2.

Proof. Tracing the Gauss equation (3) gives, when Mn is minimal,
the equation

RicM (U,U) = RicN (U,U)−RmN (U,N,U,N) − |A(U, ·)|2.

Now, it has been recalled that in our setting

RmN (N,ω�, N, ω�) = 4|ω|2,

so that, using also the fact that (CPm, gFS) is Einstein with constant
n+ 3 = 2m+ 2, we obtain

RicM (U,U) = (2m− 2)− |A(U, ·)|2,

which proves the asserted identity once we make use of part b) of
Lemma A.1. q.e.d.

Lemma A.3. In the setting above,

|∇Mf |2 ≤ |∇Mω|2.

Proof. Differentiating ω� = f(JN), we have ∇M
X ω� = (∇M

X f)JN +

f∇M
X JN for every vector field X tangent to Mn. Therefore,

|∇M
X ω�|2 = |∇M

X f |2 + 2f(∇M
X f)g(JN,∇M

X JN) + f2|∇M
X JN |2.

Since 2g(JN,∇M
X JN) = Xg(JN, JN) = Xg(N,N) = 0, we obtain

|∇M
X ω�|2 = |∇M

X f |2 + f2|∇M
X JN |2 ≥ |∇M

X f |2,

for all tangent vector fields X. The conclusion follows. q.e.d.

Now, let us proceed with the proof of Proposition A.0.

Proof. The standard Bochner identity for one-forms asserts that

Δ1α = −Δα+RicM (α�, ·),
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for any smooth one-form α. To avoid ambiguities, let us observe that
Δ = ΔM stands for the standard/elementary Laplace–Beltrami opera-
tor on M . Hence, if ω is harmonic, as we are assuming, then

Δω = RicM (ω�, ·).

This is an equation between one-forms so we can choose the vector
field to test it with, so let us evaluate both sides on ω�. If we do so and
then integrate over the manifold M we get to the identity

(2m− 2)

∫
M

|ω|2 dM +

∫
M

(|∇Mω|2 − |∇Mf |2) dM = 0,

where we have used Lemma A.2 for the right-hand side. Since m ≥ 2,
then Lemma A.3 ensures that ω is the trivial one-form and we are done.

q.e.d.

References

[1] L. Ambrozio, A. Carlotto, B. Sharp, Compactness of the space of minimal hy-

persurfaces with bounded volume and p-th Jacobi eigenvalue, J. Geom. Anal. 26
(2016), no. 4, 2591–2601.

[2] R. Buzano, B. Sharp, Qualitative and quantitative estimates for minimal

hypersurfaces with bounded index and area, Transactions of the American
Mathematical Society (to appear), preprint arXiv:1512.01047 [math.DG], DOI:
https://doi.org/10.1090/tran/7168.

[3] A. Carlotto, Minimal hyperspheres of arbitrarily large Morse index, Comm. Anal.
Geom (to appear) 28 (2020), no. 1, preprint arXiv:1504.02066 [math.DG].

[4] A. Carlotto, Generic finiteness of minimal surfaces with bounded Morse index,
Ann. Scuola Norm. Sup. Pisa XVII (2017), no. 3, 1153–1171.

[5] O. Chodosh, D. Ketover, D. Maximo, Minimal hypersurfaces with bounded index,
Invent. Math. 209 (2017), no. 3, 617–664.

[6] B.-Y. Chen, On the first eigenvalue of Laplacian of compact minimal subman-

ifolds of rank one symmetric spaces, Chinese J. Math. 11 (1983), no. 4, 1–15,
MR 0732862, Zbl 0514.53052.

[7] H. I. Choi, R. Schoen, The space of minimal embeddings of a surface into a

three-dimensional manifold of positive Ricci curvature, Invent. Math. 81 (1985),
no. 3, 387–394, MR 0807063, Zbl 0577.53044.

[8] H. I. Choi, A. N. Wang, A first eigenvalue estimate for minimal hypersurfaces,
J. Differential Geom. 18 (1983), no. 3, 559–562, MR 0723817, Zbl 0523.53055.

[9] T. Colding, C. De Lellis, The min-max construction of minimal surfaces. Surveys

in differential geometry, Vol. VIII (Boston, MA, 2002), 75–107, Surv. Differ.
Geom., VIII, Int. Press, Somerville, MA, 2003, MR 2039986, Zbl 1051.53052.

[10] T. Colding, W. Minicozzi II, A Course in Minimal Surfaces, AMS Graduate
studies in Mathematics, 2011, MR 2780140, Zbl 1242.53007.

[11] C. De Lellis, F. Pellandini, Genus bounds for minimal surfaces arising from min-

max constructions, J. Reine Angew. Math. 644 (2010), 47–99, MR 2671775, Zbl
1201.53009.

[12] W. Y. Hsiang, Minimal cones and the spherical Bernstein problem. I, Ann. of
Math. (2) 118 (1983), no. 1, 61–73, MR 0707161, Zbl 0522.53051.



INDEX AND BETTI NUMBERS OF MINIMAL HYPERSURFACES 409

[13] W. Y. Hsiang, Minimal cones and the spherical Bernstein problem. II, Invent.
Math. 74 (1983), no. 1, 351–369, MR 0724010, Zbl 0532.53045.

[14] W. Hsiang, B. Lawson, Minimal submanifolds of low cohomogeneity, J. Differ-
ential Geometry 5 (1971), 1–38, MR 0298593, Zbl 0219.53045.

[15] W. Y. Hsiang, I. Sterling Minimal cones and the spherical Bernstein problem.

III, Invent. Math. 85 (1986), no. 2, 223–247, MR 0846927, Zbl 0615.53054.

[16] N. Kapouleas, Doubling and desingularization constructions for minimal sur-

faces, Surveys in geometric analysis and relativity Adv. Lect. Math. (ALM), Int.
Press, Somerville, MA 20 (2011) 281–325, 2011. MR 2906930, Zbl 1268.53007.

[17] N. Kapouleas, S.-D. Yang, Minimal surfaces in the three-sphere by doubling the

Clifford torus, Amer. J. Math. 132 (2010), no. 2, 257–295, MR 2654775, Zbl
1198.53060.

[18] D. Ketover, Degeneration of Min-Max Sequences in 3-manifolds, preprint
arXiv:1312.2666 [math.DG].

[19] M. Kon, Real minimal hypersurfaces in a complex projective space, Proc. Amer.
Math. Soc. 79 (1980), no. 2, 285–288, MR 0565355, Zbl 0435.53041.

[20] B. Lawson, Complete minimal surfaces in S
3, Ann. of Math. 92 (1970), 335–374,

MR 0270280, Zbl 0205.52001.

[21] J. L. Lee, Introduction to smooth manifolds Graduate Texts in Mathematics, 218.
Springer-Verlag, New York, 2003. xviii+628 pp, MR 1930091, Zbl 1030.53001.

[22] F. Marques, Minimal surfaces - variational theory and applications, Proceedings
of the International Congress of Mathematicians, Seoul 2014.

[23] F. Marques, A. Neves, Min-max theory and the Willmore conjecture, Ann. of
Math. (2) 179 (2014), no. 2, 683–782, MR 3152944, Zbl 1297.49079.

[24] F. Marques, A. Neves, Existence of infinitely many minimal hypersurfaces in

positive Ricci curvature, Invent. Math. 209 (2017), no. 2, 577–616.

[25] F. Marques, A. Neves, Morse index and multiplicity of min-max minimal hyper-

surfaces, Camb. J. Math. 4 (2016), no. 4, 463–511.

[26] A. Neves, New applications of Min-max Theory, Proceedings of the International
Congress of Mathematicians, Seoul 2014.

[27] J. Pitts, Existence and regularity of minimal surfaces on Riemannian manifolds,
Mathematical Notes, 27. Princeton University Press, Princeton, N.J.; University
of Tokyo Press, Tokyo, 1981, MR 062602, Zbl 0462.58003.

[28] P. Petersen, Riemannian geometry. Second edition, Graduate Texts in Math-
ematics, 171. Springer, New York, 2006. xvi+401 pp, MR 2243772, Zbl
1220.53002.

[29] A. Ros, One-sided complete stable minimal surfaces, J. Differential Geom. 74
(2006), no. 1, 69–92, MR 2260928, Zbl 1110.53009.

[30] A. Savo, Index bounds for minimal hypersurfaces of the sphere, Indiana Univ.
Math. J. 59 (2010), no. 3, 823–837, MR 2779062, Zbl 1209.53052.

[31] A. Savo, The Bochner formula for isometric immersions, Pacific J. Math. 272
(2014), no. 2, 395–422, MR 3284892, Zbl 06406050.

[32] R. Schoen, L. Simon, Regularity of stable minimal hypersurfaces, Comm. Pure
Appl. Math. 34 (1981), no. 6, 741–797, MR 0634285, Zbl 0497.49034.

[33] R. Schoen, S.T. Yau, Existence of incompressible minimal surfaces and the topol-

ogy of three-dimensional manifolds with non-negative scalar curvature, Ann. of
Math (2) 110 (1979), no. 1, 127–142, MR 0541332, Zbl 0431.53051.



410 L. AMBROZIO, A. CARLOTTO & B. SHARP

[34] B. Sharp, Compactness of minimal hypersurfaces with bounded index, J. Differ-
ential Geom. 106 (2017), no. 2, 317–339.

[35] J. Simons, Minimal varieties in Riemannian manifolds, Ann. of Math. 88, 62–
105 (1968), MR 0233295, Zbl 0181.49702.

[36] F. Smith, On the existence of embedded minimal 2-spheres in the 3-sphere, en-
dowed with an arbitrary Riemannian metric, PhD thesis (under the direction of
L. Simon), University of Melbourne, 1982.

[37] F. Urbano, Minimal surfaces with low index in the three-dimensional sphere,
Proc. Amer. Math. Soc. 108 (1990), no. 4, 989–992, MR 1007516, Zbl
0691.53049.

[38] F. Urbano, Second variation of one-sided complete minimal surfaces, Rev. Mat.
Iberoam. 29 (2013), no. 2, 479–494, MR 3047425, Zbl 1320.53068.

Imperial College London

South Kensington Campus

London SW7 2AZ

United Kingdom

E-mail address: l.ambrozio@imperial.ac.uk

ETH Inst. für Theoretische Studien

Clausiusstrasse 47

8092 Zürich
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