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PROOF OF THE RIEMANNIAN PENROSE
INEQUALITY WITH CHARGE FOR MULTIPLE BLACK

HOLES

Marcus Khuri, Gilbert Weinstein & Sumio Yamada

Abstract

We present a proof of the Riemannian Penrose inequality with
charge in the context of asymptotically flat initial data sets for
the Einstein–Maxwell equations, having possibly multiple black
holes with no charged matter outside the horizon, and satisfying
the relevant dominant energy condition. The proof is based on a
generalization of Hubert Bray’s conformal flow of metrics adapted
to this setting.

1. Introduction

In a seminal paper [26] (see also [27]), in which he proposed the cele-
brated cosmic censorship conjecture, R. Penrose also proposed a related
inequality, now referred to as the Penrose Inequality. The inequality
is derived from cosmic censorship via a heuristic argument relying on
Hawking’s area theorem [14]. Consider an asymptotically flat Cauchy
surface in a spacetime satisfying the dominant energy condition, hav-
ing ADM mass m, and containing an event horizon of area A = 4πρ2,
which undergoes gravitational collapse and settles to a Kerr–Newman
solution. Since the ADM mass m∞ of the final state is no greater than
m, the area radius ρ∞ is no less than ρ, and the final state must satisfy
m∞ ≥ 1

2ρ∞ in order to avoid naked singularities, it must have been the

case that m ≥ 1
2ρ also at the beginning of the evolution. A counterex-

ample to the Penrose inequality would, therefore, suggest data which
leads under the Einstein evolution to naked singularities, and a proof of
the Penrose inequality may be viewed as evidence in support of cosmic
censorship.

The event horizon is indiscernible in the original slice without know-
ing the full evolution, however, one may, without disturbing this inequal-
ity, replace the event horizon by the outermost minimal area enclosure
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of the apparent horizon (the boundary of the region admitting trapped
surfaces). The inequality further simplifies in the time-symmetric case,
in which the outermost minimal area enclosure of the apparent horizon
coincides with the outermost minimal surface, and the dominant energy
condition reduces simply to nonnegative scalar curvature. This leads to
the Riemannian version of the inequality: the ADM mass m and the
area radius r of the outermost minimal surface in an asymptotically flat
3-manifold of nonnegative scalar curvature, satisfy

(1.1) m ≥ ρ

2
,

with equality if and only if the manifold is isometric to the canonical
slice of the Schwarzschild spacetime. Note that this characterizes the
canonical slice of Schwarzschild as the unique minimizer of m among all
such 3-manifolds admitting an outermost horizon of area A = 4πρ2.

This inequality was first proved in the special case where the hori-
zon is connected by Huisken and Ilmanen [15] using the inverse mean
curvature flow, an approach proposed by Jang and Wald [17], following
Geroch [10] who had shown that the Hawking mass is nondecreasing
under the flow. The inequality was proven in full generality by Bray
[1] using a conformal flow of the initial Riemannian metric, and the
positive mass theorem [28], [31].

We now turn to the charged case which is somewhat more subtle. It is
natural to conjecture as above that the Reissner–Nordström spacetime,
the charged analog of Schwarzschild, is the unique minimizer of m, given
ρ and q. Since Reissner–Nordström satisfies m = 1

2(ρ+ q2/ρ) where q is
the total charge, one is thus lead to conjecture that in any asymptotically
flat data satisfying an appropriate energy condition it holds

(1.2) m ≥ 1

2

(
ρ+

q2

ρ

)
,

with equality if and only if the initial data is the canonical slice of
Reissner–Nordström. This follows from [15], and is based on Jang [16],
but only for a connected horizon, since the proof relies on inverse mean
curvature flow. In fact, (1.2) can fail if the horizon is not connected,
and a counterexample based on the Majumdar–Papapetrou spacetime
with two black holes was constructed in [30]. This counterexample
nonetheless does not suggest a counterexample to cosmic censorship.
This is because the right-hand side of (1.2) is not monotone increasing
in ρ. Indeed, already Jang observed that (1.2) is equivalent to two
inequalities:

(1.3) m−
√
m2 − q2 ≤ ρ ≤ m+

√
m2 − q2.

Cosmic censorship suggests that the upper bound always holds, while
the counterexample in [30] violates the lower bound. It turns out, how-
ever, that the lower bound also holds, and, furthermore, is motivated by
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cosmic censorship in the case of a single black hole, or more generally
when ρ ≥ |q| (see [7]).

In this paper, we prove the upper bound in (1.3) for multiple black
holes. By the positive mass theorem with charge, m ≥ |q| with equality
if and only if the data is Majumbdar–Papapetrou [12]; see [5], [19] for
the rigidity result. Hence if ρ ≤ |q|, the upper bound in (1.3) follows
immediately

(1.4) ρ ≤ |q| ≤ m ≤ m+
√

m2 − q2.

It thus only remains to prove the upper bound under the additional
hypothesis |q| < ρ. Under this hypothesis, it is the lower bound that
follows immediately

(1.5) m ≤ |q|+
√
m2 − q2 < ρ+

√
m2 − q2.

In fact, the condition |q| ≤ ρ is always valid for a single horizon, in light
of its stability [11], [20], however, for multiple horizons this inequality is
indeed a nontrivial restriction. In view of all the above, the upper bound
in (1.3) is equivalent to (1.2) under the additional hypothesis |q| ≤ ρ.
The proof of this latter statement will be based on a generalization of
Bray’s conformal flow. It should also be noted that the right-hand side
of (1.2) is nondecreasing as a function of ρ (with fixed q), precisely when
|q| ≤ ρ. Thus, (1.2) with the auxiliary area-charge inequality may also
be derived using the heuristic Penrose argument.

The inequalities discussed in the previous paragraphs are most easily
visualized in Figure 1. The white area is the positive mass theorem m ≥
0. The light shaded area is the Penrose inequality, and the other two
darker shaded areas are the charged Penrose inequality. The inequality
represented by the region to the left of the dashed vertical line ρ = |q|,
and above the solid horizontal line m = |q|, follows from the charged
positive mass theorem. Moreover, the dotted curve in this region is
the lower bound in (1.3), or a continuation of the equality curve from
(1.2); the black dot represents the counterexample in [30]. This paper
deals with the proof of the inequality represented by the darkest shaded
region, to the right of ρ = |q| and above m = 1

2(ρ + q2/ρ), which is
the upper bound in (1.3) with |q| ≤ ρ, or (1.2) with |q| ≤ ρ. Lastly, it
should be noted that every configuration with one black hole component
lies to the right of the vertical dashed line ρ = |q|, or equivalently,
every configuration to the left of the vertical line has multiple black
hole components.

We end the introduction with a few definitions and the statement of
our main theorem and its corollaries. An initial data set (M, g,E,B)
consists of a 3-manifold M , a Riemannian metric g, and vector fields E
and B. It will be assumed that the data satisfy the Maxwell constraints
with no charges outside the horizon divg E = divg B = 0, and that the
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Figure 1. Graphical representation of geometric inequalities.

charged dominant energy condition

(1.6) 16πμEM = Rg − 2(|E|2g + |B|2g) ≥ 0

is valid, where Rg is the scalar curvature of g and μEM is the energy
density of the matter fields after contributions from the electromagnetic
field have been removed. It should be noted that typically the charged
dominant energy condition is given by the slightly stronger statement
μEM ≥ |JEM |g, where 4πJEM = E×B is minus one half the momentum
density of the electromagnetic field. It turns out, however, that for the
results of the current paper the hypothesis (1.6) is sufficient. Moreover,
in the case of equality for (1.2), it will be shown that E andB are linearly
dependent so that JEM = 0. Typically when Penrose-type inequalities
are saturated, the vanishing of the momentum density arises at least
in part due to the stronger version of the charged dominant energy
condition. Nevertheless, the same result holds here under the weaker
form of the energy condition (1.6).

We assume further that the data is strongly asymptotically flat,
meaning that there is a compact set K such that M \ K is the finite
union of disjoint ends, and in the coordinates given on each end the
fields decay according to

(1.7) gij = δij +O2(|x|−1), Ei = O1(|x|−2), Bi = O1(|x|−2),
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and Rg is integrable. This guarantees that the ADM mass and the total
electric and magnetic charges

m =
1

16π

∫
S∞

(gij,j − gjj,i)ν
i dA,(1.8)

qe =
1

4π

∫
S∞

Eiν
i dA, qb =

1

4π

∫
S∞

Biν
i dA(1.9)

are well defined, with squared total charge q2 = q2e + q2b . Here ν is the
outer unit normal, and the limit is taken in a designated end. Without
loss of generality, we assume that the magnetic charge qb = 0, and so
from now on q = qe. This can always be achieved by a fixed rotation
in (E,B) space. Conformally compactifying all but the designated end,
we can now restrict our attention to surfaces which bound compact
regions, and define S2 to enclose S1 to mean S1 = ∂K1, S2 = ∂K2

and K1 ⊂ K2. An outermost horizon is a compact minimal surface not
enclosed in any other compact minimal surface. The following results
were first discussed in the announcement [21].

Theorem 1.1. Let (M, g,E,B) be a strongly asymptotically flat ini-
tial data set with outermost minimal surface boundary of area A = 4πρ2,
satisfying the charged dominant energy condition and the Maxwell con-
straints without charged matter. If |q| ≤ ρ, then (1.2) holds with equality
if and only if the data set arises as the canonical slice of the Reissner–
Nordström spacetime.

Corollary 1.2. Let (M, g,E,B) be a strongly asymptotically flat ini-
tial data set with outermost minimal surface boundary of area A = 4πρ2,
satisfying the charged dominant energy condition and the Maxwell con-
straints without charged matter. Then the upper bound in (1.3) holds
with equality if and only if the data set arises as the canonical slice of
the Reissner–Nordström spacetime.

Corollary 1.3. Assume that the above hypotheses hold. If q and ρ
are fixed with |q| ≤ ρ, then the canonical Reissner–Nordström slice is the
unique minimizer of m. Moreover, if m and q are fixed with m ≥ |q|,
then the canonical Reissner–Nordström slice is the unique maximizer
of ρ.

In the case when charged matter is present, and, in particular, is not
compactly supported, counterexamples exist [22]. The full version of
the inequality in the non-time-symmetric case remains an open prob-
lem. A reduction argument similar to that proposed by Bray and the
first author in [3], [4], has been given in [9] (see also [18]). However,
it only applies to the case of a single black hole, as it is based on a
coupling of the static Jang equation with inverse mean curvature flow.
Coupling the static Jang equation to Bray’s conformal flow is possible
and also leads to a reduction argument for the Penrose inequality; this
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was briefly discussed in [4]. It seems likely then that a coupling to
the charged conformal flow presented in this paper, should reduce the
general charged Penrose inequality to the time-symmetric case as well.
Whether the coupled system admits a solution with the appropriate
boundary and asymptotic behavior is then an important open question.

This paper is organized as follows. In the next two sections, a gener-
alized version of Bray’s conformal flow will be defined, and its existence
will be established. In Section 4, it will be shown that the flowing outer-
most minimal surfaces move out into the asymptotic end and eventually
exhaust the manifold. In Bray’s original flow this exhaustion always oc-
curs, however, for the charged conformal flow, the exhaustion can only
happen when |q| ≤ ρ, and is one of the most interesting and surprising
differences between this flow and the original. Section 5 is dedicated
to monotonicity of the mass, which follows from a modified doubling
argument in analogy to the original flow. In Section 6 we solve a quasi-
linear elliptic equation, whose solution plays an important part in the
proof of monotonicity, and in Section 7 proofs of the main theorem will
be given. It should be pointed out that another difference between the
strategy here, and that of Bray for the uncharged inequality, is that our
proof reduces the case of multiple horizon components to the case of
one component, whereas Bray’s proof does not rely on knowledge of the
single component case. Lastly, two appendices are added which include
an auxiliary a priori estimate, and the model example for the new flow.

2. The charged conformal flow

The goal here is to construct a flow (Mt, gt, Et, Bt) of asymptoti-
cally flat initial data for the Einstein–Maxwell equations, starting from
the given initial data (M, g,E,B) at t = 0, and which preserves the
boundary area |∂Mt|gt , total charge qt, Maxwell constraints, the charged
dominant energy condition, and exhibits a nonincreasing ADM mass
m(t). Moreover, this flow should reduce to Bray’s conformal flow when
|E|g = |B|g = 0, and should proceed by coordinate rescalings in the
standard initial data for Reissner–Nordström. This flow, defined below,
will be referred to as the charged conformal flow.

Consider the conformal flow of metrics defined by gt = u4t g, with
u0 ≡ 1. Given the metric gt, define ∂Mt to be the outermost minimal
area enclosure of ∂M in (M, gt), and denote the region enclosed by ∂Mt

and spatial infinity by Mt. It will turn out that ∂Mt does not intersect
∂M , and hence it is an outermost minimal surface. Also set Ei

t = u−6
t Ei

and Bi
t = u−6

t Bi. Given gt, Et, Bt, and ∂Mt, define vt to be the unique
solution of the Dirichlet problem

(2.1) Δgtvt −
(|Et|2gt + |Bt|2gt

)
vt = 0, on Mt,

(2.2) vt = 0 on ∂Mt, vt → −1 as r → ∞.
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By expanding the solution in spherical harmonics, it follows that

(2.3) vt = −1 +
γt
r
+O

(
1

r2

)
as r → ∞,

for some constant γt > 0. On M \Mt set vt ≡ 0. The function vt will
act as the logarithmic velocity of the flow d

dtut = vtut. Thus given vt,

define ut = exp
(∫ t

0 vsds
)
.

The existence and regularity of this flow is similar to that of the origi-
nal conformal flow, and will be discussed in the next section. Moreover,
it is clear that it reduces to Bray’s flow when the electromagnetic field
vanishes, and indeed is trivial in the Reissner–Nordström solution as is
shown in Appendix B. We now prove that it satisfies the other desired
properties.

Theorem 2.1. For all t ≥ 0 it holds that qt = q, |∂tM |gt = |∂M |g,
divgt Et = divgt Bt = 0 and

(2.4) Rgt ≥ 2
(|Et|2gt + |Bt|2gt

)
.

Proof. The same arguments used by Bray [1] apply to show that the
area remains constant throughout the flow (see Section 3 below). In
order to show that the charge remains constant, observe that |Et|2gt =

u−8
t |E|2g, and hence

(2.5) 4πqt =

∫
S∞

gt(Et, νt)dAgt =

∫
S∞

g(E, ν)dAg = 4πq.

Furthermore,

divgt Et =
1√

det gt
∂i

(√
det gtE

i
t

)
(2.6)

=
u−6
t√
det g

∂i

(√
det gEi

)
= u−6

t divg E = 0,

and, similarly, for the magnetic field B.
It remains to show that the charged dominant energy condition re-

mains preserved throughout the flow. Let Lg denote the conformal
Laplacian, then by a standard formula

(2.7) u5tRgt = −8Lgut = −8

(
Δgut − 1

8
Rgut

)
,

so that with help from the conformal covariance of Lg it follows that

d

dt
(u8tRgt) =

d

dt
[u3t (u

5
tRgt)](2.8)

= 3u2t

(
d

dt
ut

)
u5tRgt + u3t

d

dt
(−8Lgut)

= 3vtu
8
tRgt − 8u3tLg(utvt)
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= 3vtu
8
tRgt − 8u8tLgtvt

= 3vtu
8
tRgt − 8u8t

(
Δgtvt −

1

8
Rgtvt

)
= 4vtu

8
tRgt − 8vtu

8
t (|Et|2gt + |Bt|2gt).

Then since d
dt(u

8
t |Et|2gt) = d

dt(u
8
t |Bt|2gt) = 0, we have

(2.9)
d

dt
[u8t
(
Rgt − 2|Et|2gt − 2|Bt|2gt

)
] = 4vtu

8
t

(
Rgt − 2|Et|2gt − 2|Bt|2gt

)
,

so that

u8t
(
Rgt − 2|Et|2gt − 2|Bt|2gt

)
= e

∫ t
0 4vsds

(
Rg − 2|E|2g − 2|B|2g

)
= u4t

(
Rg − 2|E|2g − 2|B|2g

)
(2.10)

≥ 0. q.e.d.

Monotonicity of the mass is of course more difficult and relegated to
its own section, Section 5. Notice also that we do not prove that the
flow converges to the canonical Reissner–Nordström data, in analogy
with the fact that the original conformal flow converges to the canonical
Schwarzschild data. While we strongly believe that this result holds for
the charged conformal flow, it is not needed to prove the main theorem
and is hence left for future investigation.

3. Existence of the flow

In this section, we prove that the charged conformal flow exists, by
employing the same discretization procedure developed Bray. The pre-
sentation will closely follow that in [1]. For each ε ∈ (0, 12) a family of
approximate solutions uεt(x) will easily be constructed, and the solution
shall arise from the limit

(3.1) ut(x) = lim
ε→0

uεt(x).

Given the metric gεt = (uεt)
4g (with uε0 ≡ 1), define for t ≥ 0

(3.2)

∂M ε
t =

⎧⎪⎪⎨⎪⎪⎩
∂M if t = 0,
the outermost minimal area enclosure
of ∂M ε

t−ε in (M, gεt) if t = kε with k ∈ Z+,
∂M ε

�t�ε otherwise,

where

(3.3) 
t�ε := ε

⌊
t

ε

⌋
.

Let M ε
t denote the region enclosed between ∂M ε

t and spatial infinity.
Moreover, given ∂M ε

t we may define
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(3.4) uεt(x) = exp
(∫ t

0
vεs(x) ds

)
,

where vεt is the solution of the Dirichlet problem
(3.5)⎧⎪⎨⎪⎩

Δgε�t�ε
vεt −

(
|Eε

�t�ε |2gε�t�ε + |Bε
�t�ε |2gε�t�ε

)
vεt = 0 on M ε

t ,

vεt = 0 on ∂M ε
t ,

vεt → −1 as |x| → ∞,

with vεt(x) ≡ 0 on M \ M ε
t and (Eε

t )
j = (uεt)

−6Ej , (Bε
t )

j = (uεt)
−6Bj .

Note that (3.4) directly implies that uεt(x) → e−t as |x| → ∞.
Now observe that ∂M ε

t and hence vεt(x) are fixed for t ∈ [kε, (k+1)ε).
Furthermore, for t = kε with k ∈ Z+, ∂M ε

t does not touch ∂M ε
t−ε

because ∂M ε
t−ε has negative mean curvature in (M, gεt). This follows

from the fact that ∂νu
ε
t|∂Mε

t−ε
< 0, where ν is the unit outer normal

pointing to spatial infinity. To see that this is, in fact, the case, first
observe that ∂νu

ε
t−ε|∂Mε

t−ε
= 0 since ∂M ε

(k−1)ε is minimal in (M, gε(k−1)ε),

and ∂νv
ε
t−ε|∂Mε

t−ε
< 0 from the Hopf lemma. Therefore, using uεt =

uεt−ε exp
(
εvε(k−1)ε

)
we find that

(3.6)

∂νu
ε
t

∣∣∣
∂Mε

t−ε

= uεt−ε∂ν exp
(
εvε(k−1)ε(x)

)∣∣∣
∂Mε

t−ε

= εuεt∂νv
ε
t−ε

∣∣∣
∂Mε

t−ε

< 0.

This inequality says that by pushing the surface ∂M ε
t−ε outwards, the

area can be reduced in (M, gεt). Hence, ∂M ε
t−ε acts as a barrier in

(M, gεt). As the outermost condition implies the outer-minimizing con-
dition, ∂M ε

t is actually a strictly outer minimizing horizon of (M, gεt),
and is smooth since gεt is smooth outside ∂M ε

t−ε.
The same arguments presented in [1] yield the following facts. Not

only are the surfaces ∂M ε
t smooth, but any limits of these surfaces are

smooth. Furthermore, from the definition of ∂M ε
t , it is apparent that

for ε > 0 the horizon ∂M ε
t2 encloses ∂M ε

t1 for all t2 ≥ t1 ≥ 0. Also, the
horizon ∂M ε

t is the outermost minimal area enclosure of ∂M in (M, gεt)
when t = kε with k ∈ Z+.

Lemma 3.1. The functions uεt (x) are positive, bounded, locally Lip-
schitz functions (in x and t) with uniform Lipschitz constants indepen-
dent of ε.

Proof. Positivity is obvious from the definition of uεt. By the maxi-
mum principle, vεt cannot achieve a nonnegative maximum. This then
implies that uεt(x) ≤ 1. That uεt(x) is Lipschitz in t follows from its
definition and the fact that −1 < vεt (x) ≤ 0. That uεt(x) is Lipschitz
in x follows from the fact that vεt(x) is Lipschitz in x (with Lipschitz
constant depending on t), which follows from Corollary 15 of [1]. q.e.d.
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Corollary 3.2. There exists a subsequence {εi} converging to zero
such that

(3.7) ut(x) = lim
εi→0

uεit (x)

exists, is locally Lipschitz in x and t, and the convergence is locally
uniform. Hence we may define

(3.8) gt = lim
εi→0

gεit = u4t (x)g,

for t ≥ 0.

Define {Σ̃γ(t)} to be the collections of limit surfaces of ∂M εi
t in the

limit as εi approaches 0. As discussed in [1], the limiting surfaces

{Σ̃γ(t)} are all smooth.

Proposition 3.3. The surface Σ̃γ2(t2) encloses Σ̃γ1(t1) for all t2 >
t1 ≥ 0 and for any γ1 and γ2.

Proof. The same arguments as in the proof of Theorem 5 in [1] apply
here, except for one technical point that needs to be addressed. Namely,
in [1], it is used that vεt is a harmonic function so that the maximum
principle applies. In our setting, this function should be replaced by
uεtv

ε
t , since here v

ε
t represents the logarithmic velocity d

dtu
ε
t = vεtu

ε
t, while

in [1] vεt represents the velocity
d
dtu

ε
t = vεt . Thus it remains to show that

uεtv
ε
t satisfies an equation outside ∂M ε

t , to which the maximum principle
applies. To see this, note that (2.10) holds with ε, and use a standard
property for the conformal Laplacian to obtain

Δg(u
ε
tv

ε
t) = (uεt)

5Δgεt
vεt −

1

8
Rgεt

(uεt)
5vεt +

1

8
Rgu

ε
tv

ε
t(3.9)

= vεt(u
ε
t)

5
(
|Eε

t |2gεt + |Bε
t |2gεt
)
− 1

8
Rgεt

(uεt)
5vεt +

1

8
Rgu

ε
tv

ε
t

=

[
3

4
(uεt)

4
(
|Eε

t |2gεt + |Bε
t |2gεt
)
+

1

4

(|E|2g + |B|2g
)]

(uεtv
ε
t).

Since the term in brackets on the right-hand side is nonnegative, it
follows that the resulting equation for uεtv

ε
t admits a maximum principle.

q.e.d.

Define ∂Mt to be the outermost minimal area enclosure of the original
horizon ∂M in (M, gt). Apart from the proposition above, the rest of
the proof of existence of the flow is identical to the arguments in [1]. In
particular, we have the following result.

Theorem 3.4. The surface ∂Mt2 encloses ∂Mt1 for all t2 > t1 ≥ 0,
and the areas remain constant |∂Mt|gt = |∂M |g for all t ≥ 0. Further-
more, the set J of t(≥ 0) at which point the surface “jumps”, namely
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when

(3.10) lim
s→t−

∂Ms �= lim
s→t+

∂Ms

is countable, and for t /∈ J , Σ̃γ(t) is single valued. Given the horizon
∂Mt, vt may be defined as in Section 2, and serves as the logarithmic
velocity of the flow d

dtut = vtut.

4. Exhaustion

The existence of the charged conformal flow, and its properties listed
in Sections 2 and 3, are independent of the area/charge inequality
|∂M |g ≥ 4πq2, or equivalently ρ ≥ |q| as expressed in the introduc-
tion. It is then noteworthy and perhaps surprising, that the property of
exhaustion, which states that the flowing surfaces ∂Mt eventually en-
close any bounded set, essentially holds1 if and only if the area/charge
inequality is valid. In fact, this section is the only place in the paper
where the area/charge inequality plays a role. As in [1], the proof will
follow two basic steps. The first consists of showing that ∂Mt cannot,
for all t ≥ 0, be enclosed by any fixed large coordinate sphere in the as-
ymptotic end, and the second entails showing that it is not possible for
∂Mt to be only partially contained, for all t ≥ 0, in a large coordinate
sphere. It turns out that the second step may be proved directly from
the same arguments in [1], and does not require the area/charge inequal-
ity. Thus, we will focus here on the first step in which the area/charge
inequality is needed.

Before proceeding, we show that the area/charge inequality is a nec-
essary condition for exhaustion. Note that if exhaustion occurs, then
eventually the surfaces ∂Mt become connected.

Lemma 4.1. If for some t ≥ 0, ∂Mt is connected, then |∂M |g ≥
4πq2.

Proof. Since the areas and charges are preserved throughout the flow,
it suffices to prove the conclusion at time t. Observe that by the second
variation of area formula

(4.1) 0 ≤
∫
∂Mt

[−ψΔ∂Mtψ − (| IIt |2 +Ricgt(ν, ν))ψ
2 +H2

t ψ
2
]
dAt,

for any ψ ∈ C∞(∂Mt), where IIt is the second fundamental form and
Ricgt(ν, ν) is the Ricci curvature in the normal direction. Since ∂Mt is
a minimal surface, the Gauss equations yield

1It is proven that the strict area/charge inequality is sufficient for exhaustion, and
that the nonstrict area/charge inequality is necessary for exhaustion.
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| IIt |2 +Ricgt(ν, ν) = | IIt |2 + 1

2
Rgt −Kt +

1

2
H2

t − 1

2
| IIt |2(4.2)

=
1

2
| IIt |2 + 1

2
Rgt −Kt,

where Kt is Gaussian curvature. It follows that

(4.3) 0 ≤
∫
∂Mt

(
|∇ψ|2 − 1

2
| IIt |2ψ2 − 1

2
Rgtψ

2 +Ktψ
2

)
dAt.

Choose ψ ≡ 1, and note that since ∂Mt has spherical topology, the
Gauss–Bonnet theorem and (2.4) imply that

4π ≥
∫
∂Mt

1

2

(| IIt |2 +Rgt

)
dAt(4.4)

≥
∫
∂Mt

(|Et|2gt + |Bt|2gt
)
dAt

≥
∫
∂Mt

(|Et · ν|2 + |Bt · ν|2
)
dAt

≥ |∂Mt|−1
gt

[(∫
∂Mt

Et · νdAt

)2

+

(∫
∂Mt

Bt · νdAt

)2
]

=
(4π)2q2t
|∂Mt|gt

,

where we have used Jensen’s inequality and the fact that the Maxwell
fields are divergence free (Theorem 2.1). q.e.d.

We will now show that the strict area/charge inequality is also a
sufficient condition for exhaustion. This will require some preparation.
In [1], it was assumed without loss of generality that the initial data
possessed harmonic asymptotics. Similarly, for the results of this sec-
tion, we may assume that the initial data (M, g,E,B) possess the so
called charged harmonic asymptotics, developed by Corvino in [6]. This
means that in the asymptotic end g = U4

0 δ (where δ is the Euclidean

metric) for some function U0 satisfying Rg = −8U−5
0 ΔδU0 = 2|E|2g, with

Ei = U−6
0 Ei

δ and Eδ = −qe∇r−1. Observe that the magnetic field is
excluded here, since when the asymptotics are imposed B has the same
form as E with qe replaced by qb. However, as mentioned in the intro-
duction, nothing is lost by assuming qb = 0 (qe = q), so that B = 0
in the end with such asymptotics. It should also be noted that the
asymptotics used here for the electric field differ slightly from those in
[6], where E = U−6

0 ∇χ for some function χ = −qr−1 +O(r−2) which is
harmonic in the end; the choice of χ ensures that E is divergence free
on M . Thus, in our version of the asymptotics, E is no longer diver-
gence free everywhere, a property which is of no use for the results in
the current section.
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Write Ut = utU0 and Vt = vtutU0. Then in the asymptotic end

LδUt = U5
t Lgt1 = −1

8
U5
t Rgt ,

LδVt = U5
t Lgtvt = U5

t

(
|Et|2gtvt −

1

8
Rgtvt

)
.

(4.5)

According to the charged harmonic asymptotics and (2.10) we have that
Rgt = 2|Et|2gt = 2U−8

t |Eδ|2δ , therefore,

(4.6) ΔδUt = −1

4
|Eδ|2δU−3

t , ΔδVt =
3

4
U−4
t |Eδ|2δVt.

Let Sr(t) be a large coordinate sphere in the asymptotic end, and define

Ṽt to be the unique solution of the boundary value problem
(4.7)

ΔδṼt =
3

4
Ũ−4
t |Eδ|2δ Ṽt, Ṽt = 0 on Sr(t), Ṽt → −e−t as |x| → ∞,

where Ũt is the function Ut in the conformal flow of the Reissner–
Nordström initial data (see Appendix B). Note that Ṽt is the velocity
function Vt in the conformal flow of the Reissner–Nordström initial data,
and, in particular,

(4.8) Ṽt =
−e−2t + e2t m̃

2−q2

4|x|2√
e−2t + m̃

|x| + e2t m̃
2−q2

4|x|2
,

for some constant m̃. We choose m̃ so that the boundary condition of
(4.7) is satisfied, namely

(4.9) m̃ =
√

4e−4tr(t)2 + q2.

It follows that

(4.10) Ũt =

(
e−2t +

√
4e−4tr(t)2 + q2

|x| + e−2t r(t)
2

|x|2
)1/2

.

For reasons that will become clear in the proof of Proposition 4.4
below, we would like to compare the solution of the conformal flow Ut, or
more precisely a radial approximation Ût, with the model solution from
the Reissner–Nordström example Ũt. The desired radial approximation
is given as the unique (radial) solution of

ΔδÛt = −1

4
|Eδ|2δÛ−3

t ,

Ût =

(
1

4πr(t)2

∫
Sr(t)

U4
t dAδ

)1/4

on Sr(t),

Ût → e−t as |x| → ∞.

(4.11)
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The corresponding radial velocity function V̂t =
d
dt Ût is the unique so-

lution of the boundary value problem

ΔδV̂t =
3

4
Û−3
t |Eδ|2δ V̂t,

V̂t =
d

dt
[Ût(r(t))] on Sr(t),

V̂t → −e−t as |x| → ∞.

(4.12)

It turns out that Ût has a relatively simple explicit form.

Lemma 4.2. Let r(t) = ε
√
A0e

2t with A0 = |∂M |g. If ε is sufficiently
small, then there exists a constant α > −1

2q
2, depending on Ut|Sr(t)

, such
that

Û4
t (x) =e−4t +

e−2t
√

8
3

(
α+ 1

2q
2
)

|x| +
α

|x|2(4.13)

+
e2t
√

8
3

(
α+ 1

2q
2
)
(α− q2)

6|x|3 +
e4t(α− q2)2

36|x|4 .

Proof. Consider the equation satisfied by Û4
t :

(4.14) ΔδÛ
4
t = −|Eδ|2δ +

3

4
Û−4
t |∇Û4

t |2δ .
Since the equation and all coefficients are analytic in their arguments,
we may assume that the solution is given by an expansion

(4.15) Û4
t = e−4t +

c1
|x| +

c2
|x|2 +

c3
|x|3 + · · · .

We then proceed to calculate each term in (4.14). For instance,

(4.16) ΔδÛ
4
t =

2c2
|x|4 +

6c3
|x|5 +

12c4
|x|6 +

20c5
|x|7 +

30c6
|x|8 + · · · ,

so that

Û4
t ΔδÛ

4
t =

2e−4tc2
|x|4 +

2c1c2 + 6e−4tc3
|x|5 +

2c22 + 6c1c3 + 12e−4tc4
|x|6(4.17)

+
8c2c3 + 12c1c4 + 20e−4tc5

|x|7

+
2c2c4 + 6c23 + 12c2c4 + 20c1c5 + 30e−4tc6

|x|8 + · · · .

Next observe that

(4.18) ∂rÛ
4
t = − c1

|x|2 − 2c2
|x|3 − 3c3

|x|4 − 4c4
|x|5 − 5c5

|x|6 − · · · ,
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which yields

|∇Û4
t |2 =|∂rÛ4

t |2(4.19)

=
c21
|x|4 +

4c1c2
|x|5 +

4c22 + 6c1c3
|x|6 +

8c1c4 + 12c2c3
|x|7

+
9c23 + 16c2c4 + 10c1c5

|x|8 + · · · .

Finally,

(4.20) Û4
t |Eδ|2 = e−4tq2

|x|4 +
c1q

2

|x|5 +
c2q

2

|x|6 +
c3q

2

|x|7 +
c4q

2

|x|8 + · · · .

By combining these expansions and using equation (4.14), we find
the following relations

2e−4tc2 = −e−4tq2 +
3

4
c21,

6e−4tc3 + 2c1c2 = −c1q
2 + 3c1c2,

12e−4tc4 + 6c1c3 + 2c22 = −q2c2 + 3c22 +
9

2
c1c3,

20e−4tc5 + 12c1c4 + 6c2c3 + 2c2c3 = −q2c3 + 6c1c4 + 9c2c3.

(4.21)

From this we can solve for the constants ci:

c2 =
3

8
e4tc21 −

1

2
q2,

c3 =
1

16
e8tc31 −

1

4
e4tq2c1,

c4 =
3

48
e4tq4 − 1

32
e8tc21q

2 +
1

256
e12tc41,

ci = 0, i ≥ 5.

(4.22)

Although the higher order terms for i > 5 have not been computed here,
one may deduce that they all vanish by simply checking that (4.15), with
these coefficients, solves (4.14). The constant c1 may be chosen in order
to realize the correct boundary condition.

Let us now obtain the form (4.13). The first task is to show that
c1 > 0. To see this, first recall the result of Bray and Iga [2], which
states that

(4.23) U4
t ≥ cA0

|x|2 outside of Sr(t),

for some positive constant c. Since the average value of U4
t agrees with

that of Û4
t on Sr(t), we find that

(4.24) Û4
t ≥ cε−2e−4t > e−4t on Sr(t),
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if ε is small enough. Moreover, Û4
t → e−4t as |x| → ∞. From equation

(4.14), it is clear that Û4
t cannot obtain an interior minimum, thus

(4.25) Û4
t > e−4t outside of Sr(t).

It follows that c1 > 0. Now solve for ci in terms of c2 to produce

c1 = e−2t

√
8

3

(
c2 +

1

2
q2
)
, c3 =

e2t

6

√
8

3

(
c2 +

1

2
q2
)
(c2 − q2),

c4 =
1

36
e4t(c2 − q2)2.

(4.26)

The desired result is obtained by setting α = c2 and noting that α >
−1

2q
2 by (4.22). q.e.d.

Notice that the Reissner–Nordström conformal factors have a similar
expansion to that of Ût, namely

Ũ4
t =

(
e−2t +

√
4e−4tr(t)2 + q2

|x| +
e−2tr(t)2

|x|2
)2

(4.27)

=e−4t +
2e−2t

√
4e−4tr(t)2 + q2

|x| +
6e−4tr(t)2 + q2

|x|2

+
2e−2tr(t)2

√
4e−4tr(t)2 + q2

|x|3 +
e−4tr(t)4

|x|4 .

This is not too surprising, since Ũt satisfies the same equation (4.14) as

Û4
t , and has the same asymptotic behavior as |x| → ∞. Observe also

that

(4.28) Ṽt =
d

dt
Ũt = −

e−2t
(
1− r(t)2

|x|2
)

(
e−2t −

√
4e−4tr(t)2+q2

|x| + e2t r(t)
2

|x|2
)1/2

satisfies
(4.29)

ΔδṼt =
3

4
Ũ−4
t |Eδ|2δ Ṽt, Ṽt = 0 on Sr(t), Ṽt → −e−t as |x| → ∞.

The next lemma gives the foundational estimate on which the exhaus-
tion proof is based. It is also the primary place where the area/charge
inequality is required.

Lemma 4.3. Let r(t) = ε
√
A0e

2t with A0 = |∂M |g. If A0 > 4πq2

and ε is sufficiently small, then

(4.30) Ût(x) ≥ Ũt(x) for |x| ≥ r(t).
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Proof. Note that by setting α = q2 + 6e−4tr(t)2, Ût becomes Ũt. In
fact, by directly comparing the coefficients in the expressions for these
two functions, it is apparent that the desired result follows if
(4.31)
α− q2 ≥ 6e−4tr(t)2 = 6ε2A0 and (α− q2)2 ≥ 36e−8tr(t)4 = 36ε4A2

0.

Observe that since |Sr(t)|gt ≥ |∂Mt|gt = |∂M |g, we have

A0

4π
≤ 1

4π

∫
Sr(t)

U4
t dAδ(4.32)

=
1

4π

∫
Sr(t)

Û4
t dAδ

=ε2A0 + ε
√

A0

√
8

3

(
α+

1

2
q2
)
+ α

+
1

6ε
√
A0

√
8

3

(
α+

1

2
q2
)
(α− q2) +

(α− q2)2

36ε2A0
.

Suppose that both inequalities in (4.31) are violated, then

A0

4π
<2ε2A0 + ε

√
A0

√
8

3

(
3

2
q2 + 6ε2A0

)
+ q2(4.33)

+ 6ε2A0 + ε

√
8A0

3

(
3

2
q2 + 6ε2A0

)
.

However, this is impossible for small ε, since A0 > 4πq2 independent of
ε. Therefore, at least one of the inequalities in (4.31) must be satisfied.
If the first inequality is satisfied, then so is the second. So assume now
that the second inequality is satisfied but not the first. The only way
that this can happen is if α − q2 < −6ε2A0. We claim, however, that
α ≥ q2 as a result of the positive mass theorem with charge [12], and
hence (4.31) holds.

To verify the claim, consider the initial data (R3 \ {0}, Û4
t δ, Û

−6
t Eδ),

which satisfies the charged dominant energy condition, the Maxwell

constraint, and has mass m̂ = 1
2

√
8
3

(
α+ 1

2q
2
)
. Note that although Ût

was initially defined in (4.11) only on R
3 \Br(t), the explicit expression

for Ût in Lemma 4.2 is valid on R
3 \ {0}. If α = q2 then we are done,

so assume that α �= q2. Then according to the expansion of Ût, this
initial data set has an asymptotically flat end corresponding to {0},
and, therefore, a minimal surface exists which separates the two ends.
We may now apply the positive mass theorem with charge to conclude
that m̂ ≥ |q|, and the claim follows. q.e.d.
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We have now finished the preparation, and are ready to establish the
first step in the proof of exhaustion.

Proposition 4.4. Let r(t) = ε
√
A0e

2t with A0 = |∂M |g. If A0 >
4πq2 and ε is sufficiently small, then ∂Mt cannot be entirely enclosed
by the coordinate sphere Sr(t) for all t.

Proof. The proof is by contradiction. Thus assume that ∂Mt is en-
tirely enclosed by Sr(t) for all t ≥ t. It will then be shown that if t is
sufficiently large, then ∂Mt is not the outermost minimal area enclosure
of ∂M with respect to the metric gt, yielding a contradiction.

Consider the equation satisfied by the difference Wt = Ṽt − V̂t

(4.34) ΔδWt =
3

4
Û−4
t |Eδ|2δWt +

3

4
(Ũ−4

t − Û−4
t )Ṽt|Eδ|2δ .

Moreover, Wt → 0 as |x| → ∞, and

(4.35) V̂t(r(t)) =
d

dt
[Ût(r(t))] < 0 = Ṽt(r(t)),

so that Wt > 0 on Sr(t). In (4.35) we used the formula (4.13) to show

that d
dt [Ût(r(t))] < 0. Since Ũ−4

t − Û−4
t ≥ 0 by Lemma 4.3, we may

apply the maximum principle to conclude that Wt ≥ 0 outside Sr(t).
The remaining arguments proceed similar to those in the proof of

Theorem 12 in [1]. From the above, we have that V̂t ≤ Ṽt outside of

Sr(t).
2 This allows an estimate of Ût from above, since V̂t =

d
dt Ût. In

this direction, first notice that

Ṽt =−
e−2t

(
1− r(t)2

|x|2
)

(
e−2t −

√
4e−4tr(t)2+q2

|x| + e2t r(t)
2

|x|2
)1/2

(4.36)

≤−
e−2t

(
1− r(t)2

|x|2
)

(
e−2t + 2e−2tr(t)

|x| + e2t r(t)
2

|x|2
)1/2

=− e−t

(
1− r(t)

|x|
)
.

Now choose a constant c > 0 such that Ût(x) ≤ e−t+ c
|x| for all x outside

of Sr(t). Then for all x outside of Sr(t),

Ût(x) = Ût(x) +

∫ t

t
V̂sds(4.37)

≤ Ût(x) +

∫ t

t
Ṽsds ≤ e−t +

1

|x|
[
c+ ε

√
A0(e

t − et)
]
.

2It may also be possible to prove this inequality directly from the explicit formulas

for V̂t and Ṽt, with help from the area/charge inequality.
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It follows that

|Sr(t)|gt =
∫
Sr(t)

U4
t dAδ =

∫
Sr(t)

Û4
t dAδ

≤4πr(t)2Û4
t (r(t)) ≤ 4πε2A0[2 +O(ε−1e−t)]4.

(4.38)

Therefore, for ε sufficiently small and t ≥ t sufficiently large |Sr(t)|gt <
A0. q.e.d.

We are now ready to state the main result of this section.

Theorem 4.5. If |∂M |g > 4πq2, then the collection of subdomains
{Mt} exhausts the manifold M . In particular, the flowing surfaces ∂Mt

eventually become connected (topological 2-spheres) for all sufficiently
large times.

Given Proposition 4.4, the proof of this statement is identical to that
which appears in Section 10 of [1], after noting that Ut is superharmonic
by (4.6).

5. Monotonicity of the mass

Monotonicity of the mass is proven with a doubling argument similar
to that in [1]. However, here, the doubling procedure is based on the
proof of uniqueness for the Reissner–Nordström black hole given by
Masood-ul-Alam [23]. Let (M−

t ∪ M+
t , g±t ) be the doubled manifold

with M±
t representing two copies of Mt glued along their boundaries

and g±t = (w±
t )

4gt, where

(5.1) w±
t =

1

2

√
(1± vt)2 − φ2

t .

The function vt (which approximates vt) and φt imitate the roles played
in the static case by the norm of the Killing field and the electromagnetic
potential, respectively. Ultimately though, these functions are chosen
to impart positivity to the scalar curvature of g±t . In [23], conformal
factors having the same structure as (5.1), and built with the afore-
mentioned pieces of static data, were used in the doubling argument.
Moreover, in this setting of the black hole uniqueness result, the static
electrovacuum equations imply nonnegativity of the scalar curvature for
the doubled manifold with the aid of a computation similar to that of
Lemma 5.3 below.

In order to define vt, let τ0 be sufficiently small, and set τ(x) =
distgt(x, ∂Mt). Denote surfaces of constant distance to the boundary
and the domain consisting of points whose distance to the boundary
is larger than τ , by Sτ and M(τ), respectively. Then vt is the unique
solution of the boundary value problem

(5.2) Δgtvt − ftvt = 0 on Mt, vt = 0 on ∂Mt,
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(5.3) vt = −1 +
γt
r

+O

(
1

r2

)
as r → ∞,

where

(5.4) ft =

{
λ2η(τ) τ < 5

4τ0|Et|2gt + |Bt|2gt on M(2τ0)

}
.

Here λ is a small parameter to be determined, η is a cut-off function
such that η(τ) = 1 − 2τ−1

0 (τ − τ0) for 3
4τ0 < τ < 5

4τ0, η(τ) = 0 for

τ < 1
2τ0, |η′(τ)| ≤ cτ−1

0 , and |η′′(τ)| ≤ cτ−2
0 . On the transition region

5
4τ0 < τ < 2τ0, ft is defined so that

(5.5) ft ≤ λ2η

(
5

4
τ0

)
+ |Et|2gt + |Bt|2gt =

1

2
λ2 + |Et|2gt + |Bt|2gt ,

and so as to make a smooth positive function on M(τ0).
The function φt is also defined piecewise. Namely it will be shown in

the next section that if λ, τ0 > 0 and τ0 is sufficiently small, then there
is a positive solution of the following Dirichlet problem

(5.6) Δgtφt − ∇vt · ∇φt

vt
=

Λ

φt

∣∣∣∣ft − |∇φt|2
v2t

∣∣∣∣ on M(τ0),

(5.7) φt = λτ40 on Sτ0 , φt → 0 as r → ∞,

where Λ is a positive constants to be specified. On the interior region
define

(5.8) φt = λτ40 + ∂τφt|Sτ0
(τ − τ0)η(τ) when 0 ≤ τ ≤ τ0,

where there is a slight abuse of notation in that ∂τφt|Sτ0
is defined for

all 0 ≤ τ ≤ τ0 by the fact that it is constant along the geodesic flow.
Observe that φt is C

1,1 across Sτ0 , and thus φt is C
1,1(Mt).

The constructions above cut-off contributions from the electromag-
netic energy density near the horizon. The purpose of this modification
is to avoid possible singular behavior in the pseudo-potential φt at the
horizon. Heuristically, this does not affect the main arguments used to
establish monotonicity of the mass, since the first variation (5.25) of the
mass depends on the monopoles γt and γt, which are arbitrarily close
(Theorem 5.2) as a result of the cut-off taking place on a sufficiently
small region. Notice also that if |E|g = |B|g = 0 and λ = 0 then ft = 0,
which implies that φt = 0 and vt = vt. It follows that in the absence
of the electromagnetic field, the conformal factors (5.1) reduce, modulo
the choice of λ, to the same expressions used in [1]. Let us now establish
positivity of the conformal factors.

Lemma 5.1. If λ, τ0 are appropriately small, and Λ > 1, then (1±
vt)

2 − φ2
t > 0 on Mt.
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Proof. Observe that (1± vt)
2 − φ2

t = (1± vt + φt)(1± vt − φt). Thus
since vt < 0 and φt > 0, it is enough to show that 1+ vt −φt > 0. First
we show this on M(2τ0). Equations (5.2) and (5.6) imply that

Δgt(1 + vt − φt) +
∇φt · ∇(1 + vt − φt)

vt
(5.9)

=

(
|Et|2gt + |Bt|2gt −

|∇φt|2
v2t

)
vt − Λ

φt

∣∣∣∣ft − |∇φt|2
v2t

∣∣∣∣
≤ −

(
Λ

φt
+ vt

) ∣∣∣∣ft − |∇φt|2
v2t

∣∣∣∣+ (|Et|2gt + |Bt|2gt − ft)vt

≤ −
(
Λ

φt
+ vt

) ∣∣∣∣ft − |∇φt|2
v2t

∣∣∣∣ .
Also

(5.10) (1 + vt − φt)|S2τ0
> 0, (1 + vt − φt) → 0 as r → ∞,

if λ, τ0 are small enough. Clearly the right-hand side of (5.9) is nonpos-
itive if Λ > 1. This is due to the fact that φt ≤ λτ40 and |vt| < 1 by the
maximum principle. Thus, by the minimum principle 1 + vt − φt > 0
on M(2τ0).

Let us now consider the remaining region. Again use the fact that
φt ≤ λτ40 on the region between Sτ0 and S2τ0 . Moreover, in Appendix A
it is shown that φt ≤ c(τ0)λ for τ < τ0. Hence, since |vt| ≤ cτ0 on Mt \
M(2τ0) (by the mean value theorem), if λ, τ0 are chosen appropriately
(small), then 1 + vt − φt > 0 for τ < 2τ0. q.e.d.

In order to justify the use of vt in place of vt, in connection with
monotonicity of the mass, it must be established that the monopoles of
these two functions at spatial infinity remain arbitrarily close.

Theorem 5.2. If an upper bound for λ is fixed, then |γt−γt| ≤ cτ
1/4
0

where c is independent of λ and τ0.

Proof. We have

(5.11) Δgt(vt − vt)− ft(vt − vt) = (|Et|2gt + |Bt|2gt − ft)vt on Mt,

(5.12) (vt−vt)|∂Mt = 0, (vt−vt) =
γt − γt

r
+O

(
1

r2

)
as r → ∞.

Thus

−4π(γt − γt) =

∫
Mt

Δgt(vt − vt) +

∫
∂Mt

∂τ (vt − vt)(5.13)

=

∫
Mt

[ft(vt − vt) + (|Et|2gt + |Bt|2gt − ft)vt]

+

∫
∂Mt

∂τ (vt − vt),
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and hence

|γt − γt| ≤ C
(|vt − vt|C1(∂Mt)+ ‖ ft(vt − vt) ‖L1(Mt)

)
(5.14)

+ C ‖ |Et|2gt + |Bt|2gt − ft ‖L1(Mt) .

In order to estimate |vt − vt|C1(∂Mt), use that

(5.15) |vt − vt|C1(∂Mt) ≤ |vt − vt|C1(Mt) ≤ C ‖ vt − vt ‖W 2,p(Mt),

for p > 3. By the Lp estimates for (5.11)
(5.16)
‖ vt − vt ‖W 2,p(Mt)≤ C(‖ |Et|2gt + |Bt|2gt − ft ‖Lp(Mt) + ‖ vt − vt ‖Lp(Mt)).

We choose p large enough and even, and estimate ‖ vt − vt ‖Lp(Mt). To

do this, multiply the equation (5.11) by (vt − vt)
p
3
−1 and integrate by

parts. It follows that
(5.17)∫
Mt

(p
3
− 1
)(6

p

)2

|∇(vt − vt)
p
6 |2 + ft|vt − vt|

p
3 = −

∫
Mt

(vt − vt)
p
3
−1ht,

where ht = vt(|Et|2gt + |Bt|2gt −ft). Since (vt−vt)
p
6 = 0 on ∂Mt and van-

ishes sufficiently fast as r → ∞, we may apply the Gagliardo–Nirenberg–
Sobolev inequality to obtain∫

Mt

|vt − vt|p =
∫
Mt

(
|vt − vt|

p
6

)6
(5.18)

≤ C

(∫
Mt

|∇(vt − vt)
p
6 |2
)3

≤ C

(∫
Mt

|vt − vt|
p
3
−1|ht|

)3

≤ C

(∫
Mt

(
|vt − vt|

p
3
−1
)q) 3

q
(∫

Mt

|ht|p
) 3

p

,

where p−1+ q−1 = 1. We want q(p3 − 1) = p, which implies q = 3p
p−3 and

p = 3p
2p+3 . Thus

(5.19)
‖ vt − vt ‖Lp(Mt)

≤ C ‖ht ‖
L

3p
2p+3 (Mt)

≤C ‖ |Et|2gt + |Bt|2gt − ft ‖
L

3p
2p+3 (Mt)

.

It follows that

‖ vt − vt ‖W 2,p(Mt)

≤C

(
‖ |Et|2gt + |Bt|2gt − ft ‖

L
3p

2p+3 (Mt)
+ ‖ |Et|2gt + |Bt|2gt − ft ‖Lp(Mt)

)
.

(5.20)
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Notice also that if B(r) denotes the domain contained within the
coordinate sphere Sr in the asymptotic end, then for r0 sufficiently large
(5.21)

‖ ft(vt − vt) ‖L1(Mt)≤ C

(∫
B(r0)

|vt − vt|+
∫
Mt\B(r0)

r−4|vt − vt|
)
,

since ft ≤ cr−4 on Mt \B(r0). Thus

‖ ft(vt − vt) ‖L1(Mt)≤C Vol(B(r0))
1
q ‖ vt − vt ‖Lp(B(r0))

+ C ‖ r−4 ‖Lq(Mt\B(r0))‖ vt − vt ‖Lp(Mt\B(r0)),

(5.22)

so that

(5.23) ‖ ft(vt − vt) ‖L1(Mt)≤ C ‖ vt − vt ‖Lp(Mt) .

Therefore,

|γt − γt|

≤C

(
‖ |Et|2gt + |Bt|2gt − ft ‖

L
3p

2p+3 (Mt)
+ ‖ |Et|2gt + |Bt|2gt − ft ‖Lp(Mt)

)
,

(5.24)

for p > 3.
Recall the definition of ft in (5.4). We see that |Et|2gt + |Bt|2gt −ft ≡ 0

except on a set of small measure depending on τ0. In particular, by
choosing p = 4 we obtain the desired result. q.e.d.

As in Bray’s doubling argument [1], we have that the time derivative
of the mass of gt is given by

(5.25) m′
t = −2(mt − e−2tγt) = −2m̃t + 2e−2t(γt − γt),

where m̃t = mt− e−2tγt is the mass of the doubled manifold. Note that
φt can be ignored in this computation, since φt = O(r−1) as r → ∞.
Moreover, since ∂τφt = 0 at ∂Mt, the mean curvatures across the glued
boundaries agree. Therefore, as φt ∈ C1,1(Mt) and vt ∈ C∞(Mt), we
may apply the positive mass theorem with corners [25], [29] to conclude
that m̃t ≥ 0, provided the scalar curvature of the doubled manifold is
nonnegative. Thus, it remains to show that the scalar curvature is
nonnegative.

Lemma 5.3. The scalar curvature of the doubled manifold is given
by

Rg±t
=

1

2
(vt)

−2(w±
t )

−8

∣∣∣∣φtvt∇vt − 1

2
(v2t + φ2

t − 1)∇φt

∣∣∣∣2
(5.26)

+ (w±
t )

−4(Rgt − 2|Et|2gt − 2|Bt|2gt)+ 2(w±
t )

−4(|Et|2gt + |Bt|2gt − ft)
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+
1

2
(w±

t )
−6((1± vt)

2 − φ2
t ∓ 4vt(1± vt))

(
ft − |∇φt|2

v2t

)
+

1

2
(w±

t )
−6φt

(
Δgtφt − ∇vt · ∇φt

vt

)
.

Proof. A standard formula yields

(5.27) Rg−t
= −8(w−

t )
−5

(
Δgtw

−
t − 1

8
Rgtw

−
t

)
.

Next, observe that

(5.28) ∇w−
t = −1

2

(1− vt)∇vt + φt∇φt√
(1− vt)2 − φ2

t

,

so

Δgtw
−
t =− 1

2

(1− vt)Δgtvt + φtΔgtφt√
(1− vt)2 − φ2

t

+
1

2

|∇vt|2 − |∇φt|2√
(1− vt)2 − φ2

t

(5.29)

− 1

2

|(1− vt)∇vt + φt∇φt|2
((1− vt)2 − φ2

t )
3/2

.

It follows that

Rg−t
=
1

2
(vt)

−2(w−
t )

−8

∣∣∣∣φtvt∇vt − 1

2
(v2t + φ2

t − 1)∇φt

∣∣∣∣2
+ (w−

t )
−4(Rgt − 2|Et|2gt − 2|Bt|2gt)

+ 2(w−
t )

−4(|Et|2gt + |Bt|2gt − ft) + 2(w−
t )

−6(1− vt)(Δgtvt − ftvt)

+
1

2
(w−

t )
−6((1− vt)

2 − φ2
t + 4vt(1− vt))

(
ft − |∇φt|2

v2t

)
+

1

2
(w−

t )
−6φt

(
Δgtφt − ∇vt · ∇φt

vt

)
.

(5.30)

Since vt satisfies (5.2), we obtain the desired result for Rg−t
. A similar

calculation yields the formula for Rg+t
. q.e.d.

We are now ready to establish monotonicity of the mass.

Theorem 5.4. The mass mt is nonincreasing.

Proof. First, we note that there exist small perturbations gt → gεt ,
Et → Eε

t , Bt → Bε
t for which a strict charged dominant energy condition

holds on Mt, and, in particular,

(5.31) Rgεt
− 2

(
|Eε

t |2gεt + |Bε
t |2gεt

)
≥ Cε

t on Mt \M(τ0),

for some constant Cε
t > 0. Here ε is the perturbation parameter, and

Cε
t → 0 as ε → 0. Moreover, this perturbation may be constructed

to preserve the property of minimality for the boundary, as well as the
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divergence free property of the Maxwell fields. After the perturbation,
although ∂Mt is minimal it may not be outermost, however, for the
present purpose the outermost condition is not necessary. That is, the
doubling argument only requires that the boundary be minimal, not
outermost. Let us now construct the desired deformation. Fix a smooth
positive function � which vanishes sufficiently fast at spatial infinity, and
solve the semi-linear boundary value problem

(5.32) Δgtzt,ε −
1

8
Rgtzt,ε +

1

8
(Rgt + ε�) z−3

t,ε = 0 on Mt,

(5.33) ∂τzt,ε = 0 on ∂Mt, zt,ε → 1 as r → ∞.

It is easily seen that a smooth positive solution exists for small ε, and
is pointwise close to 1, by the implicit function theorem. Furthermore,
equation (5.32) implies that the conformal metric gεt = z4t,εgt has scalar

curvature Rgεt
= (Rgt + ε�) z−8

t,ε , and the Neumann boundary condition
guarantees that the boundary is still a minimal surface with respect to
the new metric. Now define (Eε

t )
i = z−6

t,ε E
i
t and (Bε

t )
i = z−6

t,ε B
i
t, so that

the perturbed Maxwell fields remain divergence free. Lastly, a strict
charged dominant energy condition holds
(5.34)

Rgεt
= (Rgt + ε�) z−8

t,ε ≥ 2z−8
t,ε

(|Et|2gt + |Bt|2gt
)
+

ε

2
�> 2

(
|Eε

t |2gεt + |Bε
t |2gεt

)
.

The constant Cε
t may then be taken to be minMt\M(τ0)

ε
2�.

We will now apply the doubling argument to (Mt, g
ε
t , E

ε
t , B

ε
t ). Note

that since λ, τ0 > 0 are small enough, Theorem 6.9 guarantees existence
of the conformal factors (5.1). According to (5.25)

(5.35) m′
t = −2m̃ε

t + 2e−2t(γt − γt) + θεt ,

where θεt → 0 as ε → 0. Since |γt − γt| and θεt may be made arbitrarily
small, it will follow that m′

t ≤ 0 if the mass of the doubled manifold is
nonnegative m̃ε

t ≥ 0. In light of the discussion preceding Lemma 5.3,
it suffices to show that the scalar curvature of the doubled manifold is
nonnegative. This will be accomplished in two cases associated with
different regions. For convenience, in what follows, the superscript ε
will be omitted from most of the notation.

Case 1. τ ≥ τ0.

In this region, with the help of (5.34), we find that

Rg±t
≥ 1

2
(w±

t )
−6((1± vt)

2 − φ2
t ∓ 4vt(1± vt))

(
ft − |∇φt|2

v2t

)
+

Λ

2
(w±

t )
−6

∣∣∣∣ft− |∇φt|2
v2t

∣∣∣∣+(w±
t )

−4
[ε
2
�+2

(|Et|2gt+ |Bt|2gt − ft
)]
.

(5.36)
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The first line on the right-hand side is clearly nonnegative if Λ ≥ 12,
since |vt| < 1. Moreover, the second line is nonnegative for τ ≥ 2τ0
in light of (5.4), and is nonnegative for τ0 ≤ τ ≤ 2τ0 by (5.5) if λ is
sufficiently small, depending on ε.

Case 2. 0 ≤ τ < τ0.

In this region (5.31) holds, and |vt|, φt, ft ∼ 0, w±
t ∼ 1. Therefore,

(5.26) implies
(5.37)

Rg±t
≥ 1

2
(w±

t )
−6

[
Cε
t − 4ft − 2

|∇φt|2
v2t

+ φt

(
Δgtφt − ∇vt · ∇φt

vt

)]
.

According to (5.8) we may write

(5.38) φt = λτ40 + β(x, τ)(τ − τ0)η(τ) when 0 ≤ τ < τ0,

where x are coordinates on Sτ and β(x, τ) = ∂τφt(x, τ0). Then
(5.39)

|∂τφt| ≤ |β|, |∂2
τφt| ≤ cτ−1

0 |β|, |∇φt| ≤ cτ0|∇β|, |∇2
φt| ≤ cτ0|∇2

β|,
where ∇ represents the induced connection on Sτ . Estimates for β are
established in Appendix A (Theorem A.1), namely

(5.40) |β|+ |∇β|+ |∇2
β| ≤ c(τ0, ε)λ.

Here, unlike in the appendix, the constant c(τ0, ε) depends on ε since
φt depends on the perturbed initial data. It follows that

φt

∣∣∣∣Δgtφt − ∇vt · ∇φt

vt

∣∣∣∣ = φt

∣∣∣∣Δφt + ∂2
τφt +H∂τφt − ∇vt · ∇φt

vt

∣∣∣∣
≤ cφt

(
τ−1
0 |β|+ τ0(|∇β|+ |∇2

β|)
)

≤ c(τ0, ε)λ
2.

(5.41)

Similarly,
(5.42)

|∇φt|2
v2t

≤ c

( |∂τφt|2 + |∇φt|2
τ20

)
≤ c

(
τ−2
0 |β|2 + |∇β|2) ≤ c(τ0, ε)λ

2.

Therefore, by choosing λ sufficiently small, dependent on ε and τ0, we
find that the scalar curvature is nonnegative. q.e.d.

6. Existence of the conformal factor

In this section, we will show that a positive solution of the Dirichlet
problem (5.6), (5.7) exists, by constructing solutions to an auxiliary
problem on a finite domain and then taking a limit as the finite domains
exhaust M(τ0).
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Let M(τ0, r0) denote the complement in Mt of the region of distance
less than τ0 from ∂Mt and the region outside Sr0 in the asymptotically
flat end. Define

(6.1) ft,r0 =

⎧⎪⎨⎪⎩
λ2η(τ) τ < 5

4τ0
|Et|2gt + |Bt|2gt on M(2τ0,

1
4r0)

δ2

r40
χ(r) 1

2r0 < r

⎫⎪⎬⎪⎭ ,

which agrees with ft on M(0, 14r0). Here δ > 0 is a small parameter
to be determined and χ is a smooth cut-off function with χ ≡ 1 on
1
2r0 < r < r0 + 1, χ ≡ 0 on r > 2r0, |∇χ| ≤ cr−1

0 , and |∇2χ| ≤ cr−2
0 .

On the transition region 1
4r0 < r < 1

2r0, ft,r0 is chosen so as to make
a smooth positive function. Next, solve (5.2), (5.3) with ft replaced
by ft,r0

(6.2) Δgtvt,r0 − ft,r0vt,r0 = 0 on Mt, vt,r0 = 0 on ∂Mt,

(6.3) vt,r0 = −1 +
γt,r0
r

+O

(
1

r2

)
as r → ∞.

The first main task is to establish existence of a positive solution to the
auxiliary Dirichlet problem
(6.4)

Δgtφt,r0 −
∇vt,r0 · ∇φt,r0

vt,r0
=

Λ

φt,r0

∣∣∣∣∣ft,r0 − |∇φt,r0 |2gt
v2t,r0

∣∣∣∣∣ on M(τ0, r0),

(6.5) φt = λτ40 on Sτ0 , φt =
δ

4r0
on Sr0 .

A priori estimates will be shown to hold independent of r0, so that
the desired solution of (5.6), (5.7) will arise as the limit φt,r0 → φt as
r0 → ∞.

The following version of the Leray–Schauder fixed point theorem will
be applied to (6.4), (6.5). In what follows, we will temporarily drop all
references to the subindices t and r0 associated with functions, as well
as the subscript gt associated with operators and norms.

Theorem 6.1. Suppose that B is a Banach space with norm ‖ · ‖,
C ⊂ B is a closed convex subset, φ0 is a point of C, T : C × [0, 1] → C is
continuous and compact with T (φ, 0) = φ0, for all φ ∈ C, and suppose
that there is a fixed constant Γ > 0 such that

(6.6) ‖ φ ‖< Γ

is satisfied whenever φ ∈ C satisfies T (φ, s) = φ for some s ∈ [0, 1].
Then there exists φ ∈ C such that T (φ, 1) = φ.

Note that this version of the theorem is slightly more general than
that given in [13] (Theorem 11.6). The only difference is that T is
defined on C instead of B. This generalization is easily obtained using
Dugundji’s extension theorem [8] (Theorem 7.2).
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In order to set up the fixed point theorem, fix a positive function
� ∈ C∞(M) with � ∼ r−3 as r → ∞, and consider the regularized
equation
(6.7)

Δφ− ∇v · ∇φ

v
=

sΛφ

(sφ+ ε)2

∣∣∣∣f − |∇φ|2
v2

∣∣∣∣+ (1− s)�φ on M(τ0, r0),

(6.8) φ = λτ40 on Sτ0 , φ =
δ

4r0
on Sr0 .

In equation (6.7), there are actually two regularizations at play. One
is the ε-regularization which avoids problems when φ vanishes, and the
other is a capillarity regularization associated with the extra term (1−
s)�φ, which aids in establishing C1 estimates when s is sufficiently far
away from the important value 1. Later we will let ε → 0 in order to
obtain a solution of (6.4).

Let C be the cone of nonnegative C2(M(τ0, r0)) functions; note that
since M(τ0, r0) is closed, this is the space of functions which are C2 up
to the boundary. It is clear that C is closed and convex. Define the map
T : C × [0, 1] → C by T (φ, s) = ψ, where ψ solves

Δψ − ∇v · ∇ψ

v
−
(

sΛ

(sφ+ ε)2

∣∣∣∣f − |∇φ|2
v2

∣∣∣∣+ (1− s)�

)
ψ = 0

(6.9)

on M(τ0, r0),

(6.10) ψ = λτ40 on Sτ0 , ψ =
δ

4r0
on Sr0 .

Then given φ ∈ C there exists a unique solution ψ ∈ C2,α(M(τ0, r0)) by
elliptic theory, for any 0 < α < 1. Moreover, ψ > 0 by the maximum
principle, so ψ ∈ C. The Schauder estimates imply that

(6.11) |ψ|C2,α(M(τ0,r0)) ≤ C(|φ|C1,α(M(τ0,r0)), ε),

and that T is continuous. Since C2,α ↪→ C2 is compact, we also find
that T is compact.

Next observe that if s = 0 then ψ does not depend on φ. Thus, in
order to apply the Leray–Schauder fixed point theorem, it remains only
to prove the a priori estimate

(6.12) |φ|C2,α(M(τ0,r0)) ≤ C,

for a fixed point T (φ, s) = φ, where C is independent of s. Note that
a fixed point satisfies the boundary value problem (6.7), (6.8). The
estimate (6.12) will be established in several steps. First, maximum
principle techniques produce C0 bounds and also reduce C1 bounds
to boundary gradient estimates, which are then obtained with a local
barrier argument. A positive subsolution is then constructed, which
allows a boot-strap procedure to yield higher order bounds.
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Proposition 6.2. For any s and ε, supM(τ0,r0) φ ≤ max{λτ40 , δ
4r0

}.
Proof. This follows directly from the maximum principle applied to

(6.7), (6.8). q.e.d.

Proposition 6.3. If Λ > 8 then there exists a constant C indepen-
dent of s, ε, and r0 such that

(6.13) sup
M(τ0,r0)

|∇φ| ≤ C(1 + |f |C1) + sup
∂M(τ0,r0)

|∇φ|.

Proof. We will apply a maximum principle argument to the equation
satisfied by |∇φ|. Observe that

Δ|∇φ| = ∇j

(
φi∇ijφ

|∇φ|
)

(6.14)

=
|∇2φ|2
|∇φ| +

φi∇j∇i∇jφ

|∇φ| − φi(∇ijφ)φ
l∇j

lφ

|∇φ|3

=
|∇2φ|2
|∇φ| +

φi∂iΔφ

|∇φ| +
Rijφ

iφj

|∇φ| − |∇|∇φ||2
|∇φ| ,

where Rij denotes components of the Ricci tensor. Suppose that a global
interior maximum exists for |∇φ|. Then at this point we may assume
that

(6.15)
|∇φ|2
v2

>
C2(1 + |f |C1)2

v2
≥ 2f,

for some constant C > 0, otherwise the desired result holds immediately.
Thus by (6.7) and (6.14), and setting h(φ) = sΛφ(sφ+ ε)−2, it follows
that

Δ|∇φ| = |∇2φ|2
|∇φ| +

1

|∇φ|
(
φi∇ilv∇lφ

v
+

φi∇lv∇l
iφ

v
− (∇v · ∇φ)2

v2

)(6.16)

+ h′|∇φ|
( |∇φ|2

v2
− f

)
+

h

|∇φ|
(
φi∂i|∇φ|2

v2
− 2

(∇φ · ∇v)

v3
|∇φ|2 −∇φ · ∇f

)
+

Rijφ
iφj

|∇φ| − |∇|∇φ||2
|∇φ| + (1− s)

φi∂i (�φ)

|∇φ| .

At the maximum

(6.17) 0 = ∂i|∇φ|2 = 2φj∇j
iφ, Δ|∇φ| ≤ 0.

Hence

0 ≥|∇2φ|2
|∇φ| +

h′

v2
|∇φ|3 − 2h|∇v|

|v|3 |∇φ|2 + ((1− s)�− |h′|f − c(x)
) |∇φ|

− h|∇f | − (1− s)|∇�|φ,

(6.18)
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for some positive function c(x) independent of s, ε, and r0, and falling-
off at least on the order of r−3 in the asymptotic end.

Let {e1, e2, e3 = ∇φ
|∇φ|} be an orthonormal basis of tangent vectors at

the maximum point, then with the help of (6.17)
(6.19)

|∇2φ|2 =
∑

i,j=1,2

[∇2φ(ei, ej)
]2 ≥ 1

2

⎡⎣∑
i=1,2

∇2φ(ei, ei)

⎤⎦2

=
1

2
(Δφ)2 .

Moreover, using (6.7) and (6.15) produces
(6.20)

(Δφ)2 ≥ h2

4v4
|∇φ|4−2h|∇v|

|v|3 |∇φ|3−2(1− s)�φ|∇v|
|v| |∇φ|−2hf |∇v|

|v| |∇φ|.

Combining this with (6.18) then yields

0 ≥
(

h2

8v4
+

h′

v2

)
|∇φ|3 − 3h|∇v|

|v|3 |∇φ|2 + ((1− s)�− |h′|f − c(x)
) |∇φ|

− h|∇f | − (1− s)|∇�|φ− (1− s)�φ|∇v|
|v| − hf |∇v|

|v| .

(6.21)

Let us now calculate

h′ +
1

8
h2 =

sΛ(−sφ+ ε)

(sφ+ ε)3
+

s2Λ2φ2

8(sφ+ ε)4

=
Λ

8

[
(Λ− 8s)(sφ+ ε)2 + ε(16s− 2Λ)(sφ+ ε) + Λε2

(sφ+ ε)4

]
.

(6.22)

By Young’s inequality

(6.23) ε(16s− 2Λ)(sφ+ ε) ≤ Λε2 +
(8s− Λ)2(sφ+ ε)2

Λ
,

and hence

(6.24) h′ +
1

8
h2 ≥ s(Λ− 8s)

(sφ+ ε)2
.

Then since |v| ≤ 1,

(6.25)
h2

8v4
+

h′

v2
≥ s(Λ− 8s)

(sφ+ ε)2v2
.

We are now in a position to obtain a contradiction to the assumption
(6.15), if C is chosen sufficiently large and independent of s, ε, and r0.
If s ≤ 1

2 , then apply (6.15) and (6.25) to dominate all terms in (6.18)
involving h. That is,
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(6.26)(
h2

8v4
+

h′

v2

)
|∇φ|3 − 3h|∇v|

|v|3 |∇φ|2 − |h′|f |∇φ| − h|∇f | − hf |∇v|
|v| > 0,

if C is large enough. Similarly, if s ≥ 1
2 , then (6.15) and (6.25) may

be used to dominate all terms in (6.18) whether or not they involve h.
Furthermore, for s ≤ 1

2 , (1−s)�|∇φ| may be used to dominate all terms
not involving h. That is,

(6.27) ((1− s)�− c(x)) |∇φ| − (1− s)|∇�|φ− (1− s)�φ|∇v|
|v| > 0,

if C is large enough. Notice that inequalities (6.26) and (6.27) are not
consistent with (6.18). We conclude that there must exist a finite C,
independent of s, ε, and r0, such that |∇φ| ≤ C(1 + |f |C1) at a global
interior max, if this point exists. If the global maximum is not attained
on the interior, then it must be obtained on the boundary, and the
desired result (6.13) follows. q.e.d.

We will now establish boundary gradient estimates by constructing
appropriate local barriers.

Lemma 6.4. If λτ40 ≥ δ
4r0

, and τ0 > 0 is sufficiently small, then
there exists a constant C independent of s, ε, λ, and τ0 such that

(6.28) |∇φ|Sτ0
≤ Cλτ0.

Proof. Since φ is constant on Sτ0 it suffices to estimate the normal de-
rivative. As λτ40 ≥ δ

4r0
, an upper barrier is trivial to construct. Namely,

by the maximum principle φ ≤ λτ40 globally. Hence we have

(6.29) ∂τφ|Sτ0
≤ 0.

A lower barrier will now be constructed as the solution to an Eikonal
equation near the boundary

(6.30) |∇φ|2 = fv2 on D(τ0, τ1), φ = λτ40 on Sτ0 ,

where τ1 = τ0 + τ
5/2
0 and D(τ0, τ1) denotes the domain enclosed by Sτ0

and Sτ1 . Note that the surface Sτ0 is noncharacteristic for this initial
value problem, since it is possible to solve for ∂τφ|Sτ0

. We claim that
there is a solution with φ < 0 on Sτ1 . This will follow from an implicit
function theorem argument. First construct an approximate solution
φ0. Expand

(6.31) v = v0 + v1(τ − τ0) +O(|τ − τ0|2),
and observe that since ∂τv|∂M < 0 we have ∂τv|Sτ0

= v1 < 0, and also

−cτ0 ≤ v0 ≤ −c−1τ0. Then plugging (6.31) into equation (6.30), and
using f = λ2[1− 2τ−1

0 (τ − τ0)] on D(τ0, τ1), yields
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(6.32)

φ0=λτ40+λv0(τ−τ0)+
λ

2

(
v1 − τ−1

0 v0
)
(τ−τ0)

2+· · ·+O

(
λ|τ − τ0|N+1

τN−1
0

)
,

with

(6.33) |∇φ0|2 = fv2 +O

(
λ2|τ − τ0|N

τN−2
0

)
,

for any large N , depending on how many terms are given in φ0. Below,
N ≥ 3 is sufficient.

Consider now the linearized equation

(6.34) Lϕ := ∇φ0 · ∇ϕ = ψ on D(τ0, τ1), ϕ = 0 on Sτ0 .

Since ∂τφ0|Sτ0
= λv0 �= 0, the method of characteristics shows that we

can always solve this initial value problem. Moreover, L : C̃1 → C0 is

an isomorphism if C̃1 consists of all C1 functions vanishing on Sτ0 . We
may now apply the implicit function theorem to obtain a local smooth

solution φ of (6.30) for |τ0 − τ1| = τ
5/2
0 sufficiently small.

To show that φ|Sτ1
< 0, choose τ0 sufficiently small so that φ0|Sτ1

< 0.
This is satisfied if

(6.35) λτ40 < λ|v0||τ1 − τ0| ∼ λτ
7/2
0 .

It follows that

(6.36) φ = φ0 + (φ− φ0) = φ0 +O

(
λ|τ − τ0|N

τN−2
0

)
< 0 on Sτ1 ,

if τ0 is sufficiently small.
Continuing with the proof of the boundary gradient estimate, we will

use φ as a lower barrier. To see that φ is a subsolution of (6.7) on
D(τ0, τ1), calculate

Δφ = ∂2
τφ+H∂τφ+ΔSτφ(6.37)

= ∂2
τφ0 +H∂τφ0 +ΔSτφ0 +O

(
λ|τ1 − τ0|N−2

τN−2
0

)

= λ(v1 − τ−1
0 v0) +O

(
λ|τ1 − τ0|

τ0

)
,

and

∇v · ∇φ

v
=

∂τv∂τφ

v
+

∇v · ∇φ

v

(6.38)

=
∂τv∂τφ0

v
+

∇v · ∇φ0

v
+O

(
λ|τ1 − τ0|N−1

τN−1
0

)
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=

(
1

τ
+O(1)

)
(λv0 +O(λ|τ1 − τ0|)) +O

(
λ|τ1 − τ0|

τ0

)
=

λv0
τ

+O

(
λ|v0|+ λ|τ1 − τ0|

τ0

)
,

where we have used v = ṽτ+O(τ2) with ṽ < 0; ∇ represents the induced
connection on Sτ . On the other side of (6.7), equation (6.30) eliminates
one term and the other satisfies

(6.39) (1− s)�φ ≤ cλτ30 .

Now observe that
(6.40)
v1 = ∂τv|Sτ0

= ∂τv|∂M +O(τ0), v0 = v|Sτ0
= ∂τv|∂Mτ0 +O(τ20 ),

which implies

(6.41) v1−
(

1

τ0
+

1

τ

)
v0 = −τ0

τ
∂τv|∂M +O(τ0) ≥ 2c+O

( |τ1 − τ0|
τ0

)
,

for some constant c > 0. Hence, if τ0 is sufficiently small

Δφ− ∇v · ∇φ

v
= λ

[
v1 −

(
1

τ0
+

1

τ

)
v0

]
+O

(
λ|v0|+ λ|τ1 − τ0|

τ0

)
≥ 2cλ+O(λτ

3/2
0 ) > 0.

(6.42)

Note that this positive lower bound is a result of the choice f = λ2[1−
2τ−1

0 (τ − τ0)] on D(τ0, τ1), and is the reason for defining f in this way.
In light of (6.30) and (6.39), we find that φ is a subsolution of (6.7) in
the following sense

(6.43) Δφ− ∇v · ∇φ

v
>

sΛφ

(sφ+ ε)2

∣∣∣∣∣f − |∇φ|2
v2

∣∣∣∣∣+ (1− s)�φ.

It is important that the coefficient sΛφ
(sφ+ε)2

involves φ instead of φ, for the

comparison argument below. This motivates using the Eikonal equation
(6.30) to construct the subsolution.

Having shown that φ is a subsolution, we now compare it with φ.
Note that

Δ(φ− φ)− ∇v · ∇(φ− φ)

v
<

sΛφ

(sφ+ ε)2

(∣∣∣∣f − |∇φ|2
v2

∣∣∣∣−
∣∣∣∣∣f − |∇φ|2

v2

∣∣∣∣∣
)

+ (1− s)�(φ− φ),

(6.44)

and

(6.45) (φ− φ)|Sτ0
= 0, (φ− φ)|Sτ1

> 0.
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At an interior minimum of φ−φ, |∇φ| = |∇φ| and Δ(φ−φ) ≥ 0, which
yields a contradiction. We conclude that φ − φ ≥ 0 on D(τ0, τ1), and
hence ∂τφ|Sτ0

≥ ∂τφ|Sτ0
. Since

(6.46)

∂τφ = ∂τφ0 +O

(
λ|τ1 − τ0|N−1

τN−1
0

)
= λv0 +O

(
λ|τ1 − τ0|

τ0

)
≥ −cλτ0,

the desired result follows. q.e.d.

Using similar methods a boundary gradient estimate may be estab-
lished at Sr0 .

Lemma 6.5. If r0 is sufficiently large, then

(6.47) |∇φ|Sr0
≤ 2

r0
.

Proof. Let r1 = 1
2r0. An upper barrier may be constructed in the

form

(6.48) φ =
δ

4r0
+ a(r0 − r) for r ∈ [r1, r0].

A basic calculation shows that

(6.49) Δφ− ∇v · ∇φ

v
= −2a

r
+O

( a

r2

)
.

Hence, if a > 0 and r0 is large enough, φ is a supersolution

Δφ− ∇v · ∇φ

v
= −2a

r
+O

( a

r2

)
(6.50)

< 0 ≤ sΛφ

(sφ+ ε)2

∣∣∣∣f − |∇φ|2
v2

∣∣∣∣+ (1− s)�φ.

Moreover, if a = 2r−1
0 , then

(6.51) φ|Sr1
=

δ

4r0
+ 1 > λτ40 = sup

M(τ0,r0)
φ.

A comparison argument then implies that φ ≥ φ for r1 ≤ r ≤ r0.
Therefore,

(6.52) ∂rφ|Sr0
≥ − 2

r0
.

As in the proof of Lemma 6.4, a lower barrier will be constructed as
a solution to the Eikonal equation

(6.53) |∇φ|2 = fv2 on B(r1, r0), φ =
δ

4r0
on Sr0 ,

where B(r1, r0) is the region between Sr1 and Sr0 . Note that Sr0 is
noncharacteristic for this initial value problem, since it is possible to
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solve for ∂rφ|Sr0
. In order to apply the implicit function theorem, an

approximate solution may be found in the form

(6.54) φ0 =
δ

4r0
− δ

r20
(r0 − r).

Using the fact that f = δ2

r40
, a direct calculation produces

(6.55) |∇φ0|2 − fv2 = O

(
δ2

rr40

)
.

The implicit function theorem now yields a solution

(6.56) φ = φ0 +O

(
δ

r20

)
.

Moreover,

(6.57) φ|Sr1
= − δ

4r0
+O

(
δ

r20

)
< 0,

if r0 is large enough.
In order to show that φ is a subsolution on B(r1, r0), observe that

(6.58) Δφ = ∂2
rφ+

2

r
∂rφ+O(r−1|∇2φ|+ r−2|∇φ|) = 2δ

rr20
+O

(
δ

r40

)
,

and

(6.59)
∇v · ∇φ

v
= O

( |∇φ|
r2

)
= O

(
δ

r40

)
.

On the other side of equation (6.7), one term is eliminated with the aid
of (6.53) and the other satisfies

(6.60) (1− s)�|φ| = O

(
δ

r40

)
,

since � ≤ cr−3. It follows that

Δφ− ∇v · ∇φ

v
=

2δ

rr20
+O

(
δ

r40

)
≥ 2δ

r30
+O

(
δ

r40

)
> O

(
δ

r40

)
=

sΛφ

(sφ+ ε)2

∣∣∣∣∣f − |∇φ|2
v2

∣∣∣∣∣+ (1− s)�φ.

(6.61)

A comparison argument now shows that φ ≥ φ on B(r1, r0), which yields

(6.62) ∂rφ|Sr0
≤ δ

2r20
,

if r0 is sufficiently large. q.e.d.
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By combining Proposition 6.3, Lemma 6.4, and Lemma 6.5 we obtain
global C1 bounds.

Corollary 6.6. If τ0 > 0 is sufficiently small, r0 is sufficiently large,
and Λ > 8 then there exists a constant C independent of s, ε, and r0
such that

(6.63) sup
M(τ0,r0)

|∇φ| ≤ C(1 + |f |C1).

We are now in position to establish a basic existence results.

Theorem 6.7. If λ, τ0 > 0, τ0 is sufficiently small, r0 is suffi-
ciently large, and Λ > 8 then there exists a positive solution φr0,ε ∈
C2,α(M(τ0, r0)), for any α ∈ [0, 1), of (6.7), (6.8) with s = 1.

Proof. In order to apply the Leray–Schauder theorem, it suffices to
establish a C2,α estimate. Observe that with the aid of Proposition 6.2
and Corollary 6.6, and the fact that sφ + ε ≥ ε > 0, we have Δφ −
∇v·∇φ

v ∈ L∞ and the corresponding bound is independent of s. This

implies that φ ∈ W 2,p for any p, and hence φ ∈ C1,α for any α < 1,
again independent of s. Thus Δφ − ∇v·∇φ

v ∈ C0,α, which implies that

φ ∈ C2,α. That is,

(6.64) |φ|C2,α(M(τ0,r0)) ≤ C,

where C is independent of s. This guarantees the existence of a positive
solution φr0,ε ∈ C2,α(M(τ0, r0)) of (6.7), (6.8) with s = 1, which satisfies
(6.64). q.e.d.

In order to proceed further towards the goal of establishing C2,α es-
timates independent of ε, a uniform positive lower bound for φr0,ε is
needed. To this end let us rewrite (6.7), with s = 1, as an equation for
ζ := (φr0,ε + ε)3. Observe that

(6.65) Δζ = 3(φr0,ε + ε)2Δφr0,ε + 6(φ+ ε)|∇φr0,ε|2,
and

(6.66)
∇v · ∇ζ

v
=

3(∇v · ∇φr0,ε)

v
(φr0,ε + ε)2.

It follows that

(6.67) Δζ−∇v · ∇ζ

v
= 3Λ[(φr0,ε+ε)−ε]

∣∣∣∣f − |∇φr0,ε|2
v2

∣∣∣∣+6|∇φr0,ε|2ζ
1
3 .

Hence

(6.68) Δζ − ∇v · ∇ζ

v
− Φζ

1
3 = −3εΛ

∣∣∣∣f − |∇φr0,ε|2
v2

∣∣∣∣ ≤ 0,

where

(6.69) Φ = 3Λ

∣∣∣∣f − |∇φr0,ε|2
v2

∣∣∣∣+ 6|∇φr0,ε|2,
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and

(6.70) ζ|Sτ0
= (λτ40 + ε)3, ζ|Sr0

=

(
δ

4r0
+ ε

)3

.

According to the C0 and C1 estimates Φ ≤ Φ0, where Φ0 is a function
independent of ε, r0, and φr0,ε.

Suppose that there exists a solution of the Dirichlet problem

(6.71) Δζ − ∇v · ∇ζ

v
− Φ0ζ

1
3 = 0 on M(τ0, r0),

(6.72) ζ = (λτ40 )
3 on Sτ0 , ζ =

(
δ

4r0

)3

on Sr0 .

By the maximum principle the solution is positive. Moreover, it is
independent of ε, and φr0,ε, and ζ ≥ ζ. To see this, use a comparison
argument. Observe that

(6.73) Δ(ζ − ζ)− ∇v · ∇(ζ − ζ)

v
≤ Φζ

1
3 − Φ0ζ

1
3 ,

(6.74) (ζ − ζ)|Sτ0
> 0, (ζ − ζ)|Sr0

> 0.

Suppose that ζ− ζ < 0 somewhere, and let x0 be the point at which the

global minimum is achieved. Then ζ
1
3 (x0) < ζ

1
3 (x0), |∇(ζ−ζ)(x0)| = 0,

and Δ(ζ − ζ)(x0) ≥ 0, so that

0 ≤ Δ(ζ − ζ)(x0)−
∇v · ∇(ζ − ζ)

v
(x0)(6.75)

≤ Φζ
1
3 (x0)− Φ0ζ

1
3 (x0)

≤ ζ
1
3 (Φ− Φ0)(x0) < 0.

This contradiction implies that ζ ≥ ζ on all of M(τ0, r0), and yields the

desired uniform positive lower bound. Hence (φr0,ε + ε)3 ≥ ζ or rather

φr0,ε ≥ ζ
1
3 −ε. Since ζ > 0 is independent of ε, we find that φr0,ε ≥ 1

2ζ
1
3

for all sufficiently small ε.

Proposition 6.8. If λ, τ0 > 0 then there exists a smooth positive

function ζ independent of ε, and φr0,ε, such that φr0,ε ≥ ζ
1
3 − ε on

M(τ0, r0). In particular, φr0,ε ≥ 1
2ζ

1
3 for all sufficiently small ε.

Proof. It only remains to establish the existence of ζ. Write the
equation as

(6.76) div

(∇ζ

v

)
− Φ0

v
ζ

1
3 = 0,

and consider the functional

(6.77) I[ζ] =

∫
M(τ0,r0)

1

2

|∇ζ|2
|v| +

3

4

Φ0

|v| ζ
4
3 .
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We will minimize it over all H1(M(τ0, r0))-functions with the fixed
boundary values as in (6.72). To show that this functional is bounded
from below, apply Hölder’s inequality and use Vol(M(τ0, r0)) < ∞ to
find

(6.78)

∫
M(τ0,r0)

Φ0

|v| ζ
4
3 ≤ σ ‖ ζ ‖2L2 +c1,

where σ is a small parameter. Moreover, by Poincaré’s inequality∫
M(τ0,r0)

|∇ζ|2 =
∫
M(τ0,r0)

|∇(ζ − (λτ40 )
3)|2(6.79)

≥
∫
M(τ0,r0)

c−1
2 |ζ − (λτ40 )

3|2

=

∫
M(τ0,r0)

c−1
2 (ζ2 − 2(λτ40 )

3ζ + (λτ40 )
6)

≥
∫
M(τ0,r0)

2c−1
2 ζ2 − c3.

It follows that if σ is sufficiently small then

(6.80) I[ζ] ≥ c−1
4 ‖ ζ ‖2H1 −c5,

and hence I[ζ] is bounded from below.
By direct methods in the calculus of variations, there is a minimizing

sequence that has a weakly convergent (in H1) subsequence ζi ⇀ ζ.

Then since H1 ↪→ L2 is compact, ζi → ζ strongly in L2. In particular,

ζi → ζ in L
4
3 , so that

(6.81)

∫
M(τ0,r0)

ζ
4
3
i →

∫
M(τ0,r0)

ζ
4
3 .

Since the H1 norm is weakly lower semicontinuous, it follows that ζ
realizes the infimum, and is hence a weak solution.

Now use elliptic regularity. Since ζ
1
3 ∈ L6, by (6.71) we have Δζ −

∇v·∇ζ

v ∈ L6, which implies that ζ ∈ W 2,6 ↪→ C1, 1
2 . This in turn implies

ζ
1
3 ∈ C0, so that ζ ∈ W 2,p for any p > 1, and hence ζ ∈ C1,α for any

α < 1. Since ζ > 0 it follows that ζ
1
3 ∈ C0,α, and hence ζ ∈ C2,α.

Boot-strapping then produces ζ ∈ C∞. q.e.d.

Having established a uniform lower bound, we may let ε → 0 and
r0 → ∞ to obtain the main existence result.

Theorem 6.9. If λ, τ0 > 0, τ0 is sufficiently small, and Λ > 8, then
there exists a positive solution φt ∈ C2,α(M(τ0)), for any α ∈ [0, 1), of
(5.6), (5.7).
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Proof. In light of the uniform lower bound in Proposition 6.8, the
same arguments appearing in the proof of Theorem 6.7 yield a C2,α

estimate (6.64), with C independent of ε. Thus, after possibly passing
to a subsequence φr0,ε → φt,r0 as ε → 0, yielding a positive solution of
(6.4), (6.5) which also satisfies (6.64).

We will now let r0 → ∞. In order to control the decay at spatial
infinity, we construct a global upper barrier by solving

Δφt,r0 −
∇vt,r0 · φt,r0

vt
= 0 on M(τ0),

φt,r0 |Sτ0
= 1, φt,r0 =

ct,r0
r

+O

(
1

r2

)
as r → ∞,

(6.82)

where ct,r0 is a positive constant. Since vt,r0 smoothly converges to vt
as r0 → ∞, it holds that ct,r0 → ct > 0 and φt,r0 → φt, the solution of
(6.82) with vt,r0 replaced by vt. Thus if δ is chosen sufficiently small

(independent of r0), then φt,r0 |Sr0
> φt,r0 |Sr0

. A standard comparison

argument now applies to yield φt,r0 > φt,r0 on M(τ0, r0).
Let ζ

t,r0
denote the lower bound which arises from the construction

in Proposition 6.8. Since Φ0 and sup ζ
t,r0

are controlled independent of

r0, higher order a priori estimates for ζ
t,r0

are also independent of r0,

so that ζ
t,r0

→ ζ
t
on compact subsets as r0 → ∞, where ζ

t
> 0 satisfies

equation (6.71) with vt,r0 replaced by vt. Therefore, since ζ
1
3
t,r0

≤ φt,r0 ,
the function φt,r0 is uniformly bounded below by a positive constant
on any compact subset, independent of r0. As the C0 and C1 bounds
of Proposition 6.2 and Corollary 6.6 are also independent of r0, C

2,α

estimates on compact subsets may be established analogously to (6.64)
and independently of r0. This implies that, after possibly passing to a
subsequence, φt,r0 → φt as r0 → ∞, where φt satisfies (5.6). Moreover,

since ζ
1
3
t ≤ φt ≤ φt, (5.7) is also valid and φt is strictly positive. q.e.d.

Remark 6.10. It is unlikely that higher order regularity better than
C2,α is possible, due to the presence of an absolute value on the right-
hand side of (5.6).

7. Proof of the main theorem

The purpose of this section is to prove Theorem 1.1. First observe
that if ρ = |q|, or equivalently |∂M |g = 4πq2, then the Penrose inequal-
ity with charge (1.2) is equivalent to the positive mass theorem with
charge m ≥ |q|, which has already been established in [12]. The case of
equality for this theorem, asserts that the initial data must be isomet-
ric to the canonical slice of the Majumdar–Papapetrou spacetime [5].
However, such initial data does not possess a minimal surface boundary,
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and hence does not fall under the hypotheses of Theorem 1.1. Hence,
when the area/charge inequality is saturated we must have m > |q|.

Now assume that |∂M |g > 4πq2, so that, in particular, Theorem 4.5
applies. Note that the results of Section 4 require a perturbation of the
initial data to achieve charged harmonic asymptotics, thus we assume
here that such a perturbation has been made. Theorems 2.1 and 5.4
imply that the areas |∂Mt|gt and charges qt remain constant throughout
the flow, while the mass m(t) is nonincreasing. Moreover, Theorem 4.5
guarantees that for some finite time t the minimal boundary ∂Mt is
connected. Consider now the initial data set (Mt, gt, Et, Bt). It satisfies
all the hypotheses of the Penrose inequality with charge for a single
black hole, namely the boundary is an outermost minimal surface, the
charged dominant energy condition is valid, and the Maxwell constraints
holds without charged matter. As the inequality has been proven for a
single black hole [15], [16], it follows that
(7.1)

m(0) ≥ m(t) ≥
√

|∂Mt|gt
16π

+

√
π

|∂Mt|gt
q2t =

√
|∂M0|g0
16π

+

√
π

|∂M0|g0
q20.

Since this holds for an arbitrarily small perturbation of the data, (1.2)
holds for the original initial data. Notice that we avoid the convergence
issue concerning the flow, by employing the inverse mean curvature flow
once the minimal surface becomes connected. Whether the charged
conformal flow converges to the canonical Reissner–Nordström data is
an interesting question, which we strongly believe has an affirmative
answer. Ultimately though, it is not necessary for the current result,
and so it will be left for future investigation.

It remains to establish the rigidity statement, whose proof is outlined
as follows. First, it will be shown that saturation of the Penrose in-
equality with charge forces the mass to be constant along the charged
conformal flow. From the first derivative formula, this implies that the
mass of the doubled manifold is arbitrarily small, and hence the doubled
manifold must have trivial topology. In this case the original initial data
has only a single boundary component, and previous results [9] then ap-
ply to yield the desired conclusion. We now provide a detailed account.

Here it is not necessary to perturb the initial data to achieve charged
harmonic asymptotics. Suppose that equality holds in (1.2). We con-
clude that the mass remains constant throughout the flow m′(t) = 0.
To see this, suppose not, then

(7.2) m(t̃) <

√
|∂M0|g0
16π

+

√
π

|∂M0|g0
q20,

for some t̃. A contradiction is obtained by applying the results of the
previous paragraph to the initial data set (Mt̃, gt̃, Et̃, Bt̃). Equation
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(5.35) now implies that

(7.3) e−2t(γt − γt) +
1

2
θεt = m̃ε(t) for all t ≥ 0,

where m̃ε(t) is the mass of the doubled manifold (M+
t ∪ M−

t , (gεt )
+ ∪

(gεt )
−) and gεt is defined in the proof of Theorem 5.4.

We claim that the doubled manifold must be diffeomorphic to R
3. To

see this, suppose that it is not true. Then ∂Mt must have two or more
components. According to the result of Meeks–Simon–Yau [24], there
is then an outermost minimal surface St(ε, τ0) in the doubled manifold
which encloses the nontrivial topology. Since the scalar curvature of the
doubled manifold is nonnegative, the Penrose inequality and (7.3) then
yield

(7.4) e−2t(γt − γt) +
1

2
θεt ≥

√
|St(ε, τ0)|(gεt )+∪(gεt )−

16π
for all t ≥ 0.

For each fixed t, Theorem 5.2 shows that |γt − γt| → 0 as τ0 → 0, and
from the proof of Theorem 5.4 we have θεt → 0 as ε → 0. On the other
hand, φt → 0 and vt → vt both in C0 as τ0 → 0 and ε → 0 (note that
higher order convergence of φt is not generally possible), so that the
conformal factors defining the doubled metric converge as w±

t → 1±vt
2

in C0. Let g̃±t =
(
1±vt
2

)4
gt. It follows that

(7.5) |St(ε, τ0)|(gεt )+∪(gεt )− ≥ 1

2
|St(ε, τ0)|g̃+t ∪g̃−t ,

for τ0, ε sufficiently small. There is, however, a positive lower bound
for the area of any surface enclosing the nontrivial topology in (M+

t ∪
M−

t , g̃+t ∪ g̃−t ). Hence there is a positive lower bound independent of
τ0 and ε for the right-hand side of (7.5). This leads to a contradic-
tion with (7.4) for sufficiently small τ0 and ε. Therefore, the doubled
manifold must have trivial topology, or equivalently ∂Mt consists of one
component for all t ≥ 0.

Rigidity for the Penrose inequality with charge in the case of one
black hole was established in [9]. This result relies on monotonicity of
the so called charged Hawking mass

(7.6) MCH(S) =

√
|S|
16π

(
1 +

4πq2

|S| − 1

16π

∫
S
H2dA

)
,

under inverse mean curvature flow. In [9] only the electric field was
present, and q in (7.6) represented the total electric charge. However,
the same proof applies when both the electric and magnetic fields are
present, if q2 = q2e + q2b . It follows that (M, g) is isometric to the canon-
ical slice of the Reissner–Nordström spacetime, and E = −qe∇r−1,
B = −qb∇r−1 in the usual anisotropic coordinates. This concludes the
proof.
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Appendix A. Estimates at Sτ0

In this section, we will establish the estimates for φt at Sτ0 appearing
in (5.40). For simplicity, the subindex t will be suppressed. Note that by
the Hopf lemma ∂τφ|Sτ0

< 0, so the level sets of φ foliate a neighborhood
of Sτ0 . Consider the domain

(A.1) Ωρ = {x ∈ M | σλτ40 < φ < λτ40 },
where σ is sufficiently small to guarantee that Ωσ ⊂ D(τ0,

5
4τ0), the

domain enclosed by Sτ0 and S 5
4
τ0
. Then f = λ2[1 − 2τ−1

0 (τ − τ0)]

on Ωσ. We may then apply the method of proof for Proposition 6.3
to obtain a C1 estimate on Ωσ. The key inequality which leads to
the desired estimate is the analogue of (6.18). Namely using (6.25),
c−1τ0 ≤ |v| ≤ cτ0, and s = 1, ε = 0 we find that at a global maximum
for |∇φ|,
(A.2)

0 ≥ c−1(Λ− 8)

τ20φ
2

|∇φ|3 − cΛ

τ30φ
|∇φ|2 − c

(
Λf

φ2
+ 1

)
|∇φ| − Λ

φ
|∇f | − cΛf

τ0φ
,

for some constant c > 0 independent of λ, τ0, and σ. It is clear that if
|∇φ| > c0λτ0 for c0 sufficiently large, then a contradiction is obtained
from (A.2). We conclude that at a global interior maximum, there exists
a finite constant c such that |∇φ| ≤ cλτ0. It follows that

(A.3) sup
Ωσ

|∇φ| ≤ cλτ0 + sup
∂Ωσ

|∇φ|.

The boundary of Ωσ consists of two types of components. One is Sτ0 ,
where a gradient estimate has already been established in Lemma 6.4.
The other type of component is also a level set of φ, and possesses
a neighborhood in which f has the desired expression, so Lemma 6.4
applies here as well to yield |∇φ|∂Ωσ ≤ cλτ0. Together with (A.3), this
implies that

(A.4) sup
Ωσ

|∇φ| ≤ cλτ0.

We now claim that Sτ0 ⊂ Ωσ for some τ0 > τ0 independent of λ. To
see this, let x be coordinates on Sτ , and observe that (A.4) implies

(A.5) φ(x, τ)− φ(x, τ0) =

∫ τ

τ0

∂τφ(x, ς)dς ≥ −cλτ0(τ − τ0),

so that

(A.6) φ(x, τ) ≥ λτ40 − cλτ0(τ − τ0).

Thus, if τ0 = τ0 +
1
2cτ

3
0 then

(A.7) φ|Sτ0
≥ 1

2
λτ40 > σλτ40 ,
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assuming that σ < 1/2. This verifies the claim. It follows that Vol(Ωσ) ≥
C0 > 0 where C0 is independent of λ. Therefore, the constants appear-
ing in the Lp and Schauder estimates, as well as the Sobolev embeddings,
are independent of λ.

By the Lp estimates and the equation (5.6) satisfied by φ,

‖ φ ‖W 2,p(Ωσ)≤cΛ
(‖ φ−1f ‖Lp(Ωσ) + ‖ φ−1|∇φ|2 ‖Lp(Ωσ)

)
(A.8)

+ c
(‖ φ ‖Lp(Ωσ) + ‖ φ ‖W 2,p(∂Ωσ)

)
,

where the constant c depends on τ0 but not on λ. With the aid of (A.4),
σλτ40 ≤ φ ≤ λτ40 , and f ≤ λ2, this implies that
(A.9)

‖ φ ‖W 2,p(Ωσ)≤ c(τ0)λ, which yields |φ|C1,α(Ωσ) ≤ c(τ0)λ.

By the Schauder estimates

|φ|C2,α(Ωσ) ≤cΛ
(|φ−1f |C0,α(Ωσ) + |φ−1|∇φ|2|C0,α(Ωσ)

)
(A.10)

+ c
(|φ|C0(Ωσ) + |φ|C2,α(∂Ωσ)

)
≤c(τ0)λ.

Due to the absolute value on the right-hand side of (5.6), C2,α-estimates
are generally the highest order estimates possible. However, since one-
sided derivatives of the absolute value of a smooth function are Lipschitz,
taking the one-sided derivative ∂τ at Sτ0 yields an equation for ∂τφ
whose right-hand side is Lipschitz near Sτ0 . Then C2,α-estimates follow
for ∂τφ. We have thus proven the following theorem.

Theorem A.1. If τ0 is sufficiently small and Λ > 8, then the solution
of (5.6), (5.7) constructed in Theorem 6.9 satisfies

(A.11) |∇2∂τφt|Sτ0
+ |∇2φt|Sτ0

+ |∇φt|Sτ0
+ φt|Sτ0

≤ c(τ0)λ,

where c(τ0) is independent of λ.

Appendix B. The Reissner–Nordström Flow

In this section, we construct the charged conformal flow in the canon-
ical slice of the Reissner–Nordström spacetime. Consider the exte-
rior Reissner–Nordström metric with mass m and squared total charge
q2 = q2e + q2b , in non-isotropic coordinates,

−
(
1− 2m

r
+

q2

r2

)
dt

2
+

(
1− 2m

r
+

q2

r2

)−1

dr2 + r2dσ2,(B.1)

r ≥ m+
√

m2 − q2,
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where dσ2 is the round metric on the 2-sphere. The electric and mag-
netic fields are given by

Ei = −
(
1− 2m

r
+

q2

r2

)−1

∂i

(qe
r

)
,

Bi = −
(
1− 2m

r
+

q2

r2

)−1

∂i

(qb
r

)
.

(B.2)

Change coordinates by

(B.3) r = r +m+
m2 − q2

4r
,

to obtain the expression of the metric in isotropic coordinates
(B.4)

−
(

1− m2−q2

4r2

1 + m
r + m2−q2

4r2

)2

dt
2
+

(
1 +

m

r
+

m2 − q2

4r2

)2

δ, r ≥
√
m2 − q2

2
,

with corresponding electric and magnetic fields

Ei = −
(
1 +

m

r
+

m2 − q2

4r2

)−1

∂i

(qe
r

)
,(B.5)

Bi = −
(
1 +

m

r
+

m2 − q2

4r2

)−1

∂i

(qb
r

)
,(B.6)

where δ is the Euclidean metric.
We may write the Reissner–Nordström spacetime metric as −V 2dt

2
+

g. In isotropic coordinates g = U4δ, where

(B.7) U(x) =

√
1 +

m

r
+

m2 − q2

4r2
.

The electric field may now be expressed as

(B.8) Ei = −V −1∂i

(
qe
ρ

)
in non-isotropic coordinates,

(B.9) Ei = −U−2∂i

(qe
r

)
in isotropic coordinates.

Notice that this makes sense from previous formulas, since (in isotropic
coordinates) we know that Ei = U−6Ei

δ is divergence free whenever
Eδ is divergence free with respect to δ; this is of course the case, as
Eδ = qe∇r−1. We can also check that the electric fields agree in the
two different coordinates:

Erdr =
1

V

qe
r2

dr =
1

V

qe
r2

dr

dr
dr =

1

V

qe
r2

(
1− m2 − q2

4r2

)
dr

=
1

V

qe
r2U4

(
1− m2 − q2

4r2

)
dr = −U−2∂r

(qe
r

)
dr = Erdr.

(B.10)

Similar considerations hold for the magnetic field.
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The conformal flow gt = u4t g is given by rescaling coordinates by
x �→ e−2tx, thus

(B.11) ut(x) =

√
e−2t + m

r + e2t(m2−q2)
4r2√

1 + m
r + m2−q2

4r2

.

In order to calculate the flow velocity vt, observe that

(B.12) vt =
d

dt
log ut =

−e−2t + e2t m
2−q2

4r2

e−2t + m
r + e2t m

2−q2

4r2

.

As usual vt = 0 on the minimal surface ∂Mt = {r =

√
m2−q2

2 e2t}, and
vt → −1 as r → ∞. Set Ut = utU , then gt = U4

t δ. In order to calculate
the equation satisfied by vt, recall the identities

(B.13) Lgtvt = U−5
t Lδ(Utvt), Rgt = −8U−5

t LδUt = −8U−5
t ΔδUt.

It follows that

Δgtvt =
1

8
Rgtvt + U−5

t Δδ(Utvt)(B.14)

= −U−5
t vtΔδUt + U−5

t (UtΔδvt + 2∇Ut · ∇vt + vtΔδUt)

= U−4
t (Δδvt + 2∇ logUt · ∇vt).

A computation shows that

Δδvt =∂2
rvt +

2

r
∂rvt(B.15)

=
m2−q2

r4
+ e2t m(m2−q2)

2r5(
e−2t + m

r + e2t m
2−q2

4r2

)2
−

2
(
e−2t m

r2
+ m2−q2

r3
+ e2t m(m2−q2)

4r4

)(
m
r2

+ e2t m
2−q2

2r3

)
(
e−2t + m

r + e2t m
2−q2

4r2

)3 ,

and

∂rvt = −e−2t m
r2

+ m2−q2

r3
+ e2t m(m2−q2)

4r2(
e−2t + m

r + e2t m
2−q2

4r2

)2 ,(B.16)

∂r logUt = −
m
r2

+ e2t m
2−q2

2r3

2
(
e−2t + m

r + e2t m
2−q2

4r2

) .(B.17)

Therefore,

(B.18) Δgtvt =
q2r−4(

e−2t + m
r + e2t m

2−q2

4r2

)4 vt.
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However, since Ei
t = U−6

t Ei
δ we have

(B.19) |Et|2gt = U−8
t |Eδ|2δ =

q2er
−4(

e−2t + m
r + e2t m

2−q2

4r2

)4 ,
with an identical formula for the squared norm of the magnetic field
when qe is replaced by qb. It is also true that Rgt = 2

(|Et|2gt + |Bt|2gt
)
,

which may be verified from the identity

(B.20) Rgt = −8U−5
t LδUt = −8U−5

t ΔδUt.

Thus, the equation satisfied by the velocity function is

(B.21) Δgtvt −
(|Et|2gt + |Bt|2gt

)
vt = 0 or Δgtvt −

1

2
Rgtvt = 0.

We remark that this equation for vt is precisely the one satisfied by
the warping factor of the Reissner–Nordström spacetime. In fact, the

Reissner–Nordström spacetime metric may be written as −v2t dt
2
+ u4t g.

This structure is also valid for the Schwarzschild spacetime if ut and vt
arise from Bray’s original conformal flow. Given an arbitrary metric g,
this shows how to associate a static spacetime with (M, g), namely use
the conformal factor and velocity functions from the conformal flow, to
generate a static spacetime as above.
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