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COMPACTNESS OF MINIMAL HYPERSURFACES

WITH BOUNDED INDEX

Ben Sharp

Abstract

We prove a compactness result for minimal hypersurfaces with
bounded index and volume, which can be thought of as an ex-
tension of the compactness theorem of Choi–Schoen [4] to higher
dimensions.

1. Introduction

Compactness theorems for minimal hypersurfaces are integral to prov-
ing existence results and allow for a deeper understanding of the space of
minimal hypersurfaces admitted by a closed manifold. Due to the recent
work of Marques–Neves [13] minimal hypersurfaces exist in abundance
at least in the case of positive Ricci curvature for the ambient metric.
Moreover, since these minimal surfaces are smooth and have bounded
volume, we have some control on their index due to results of Ejiri–
Micallef [8, Theorem 4.3] when n = 2, and Cheng–Tysk [3, Theorem
3] for n ≥ 3 (we remark that the index bounds of Ejiri–Micallef when
n = 2 require a more subtle treatment than the higher dimensional case
of Cheng–Tysk which follows by an adapted argument of Li–Yau on es-
timating the index of operators in Euclidean space [12]). Thus it makes
sense to study their compactness theory.

In general, smooth minimal submanifolds are analytically well con-
trolled if they have bounded volume, and point-wise bounded second
fundamental form A – at which point we know that such manifolds are
uniformly graphical about each of their points, and that these graphs are
analytically well controlled. Therefore, given any sequence of minimal
submanifolds with a uniform bound on volume and second fundamental
form, a smooth compactness theorem easily follows. In the case of mini-
mal surfaces M2 ↪→ N3 the work of Choi–Schoen [4] gives us something
stronger: if N satisfies RicN ≥ α > 0 then the space of closed, embed-
ded minimal hypersurfaces with bounded genus γ is strongly compact
in the smooth topology – there is some smooth minimal hypersurface
for which a subsequence converges locally graphically to this limit. In
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other words, a bound on the genus gives rise to a point-wise bound on
the second fundamental form, and global control on area.

In higher dimensions n ≥ 3 andMn ↪→ Nn+1, again with RicN ≥ α >

0, control on topology of Mn can never give a strong compactness theory
due to counter-examples for the spherical Bernstein problem of Wu-Yi
Hsiang [11]. In particular, when N = S4 with the round metric, there
exists a sequence of smooth embedded {M3

k} ⊂ S4 such that; H3(Mk) ≤
Λ < ∞, M3

k
∼= S3 (but are not great spheres in S4) and Mk converge (as

varifolds) to a singular M3 ⊂ S4 – it has two singularities at antipodal

points of S4 and M3 is topologically T 2×[0,1]
∼ where the equivalence ∼

pinches the top and bottom tori T 2×{1}, T 2×{0} to points. Therefore,
any generalisation of Choi–Schoen to higher dimensions would involve
control on some other quantities.

If we go back to n = 2 we remark that a genus bound gives a bound
on area due to a result of Choi–Wang [5] (when M is two-sided) and
Choi–Schoen [4] (for general M): if an embedded minimal surface M2

in N3 has Euler characteristic χ(M), letting π1(N) be the fundamental
group of N and again RicN ≥ α > 0 then

H2(M) ≤ 16π

α

(
2

|π1(N)| −
1

2
χ(M)

)
.

Furthermore, a bound on genus and area gives a bound on index due to
results of Ejiri–Micallef [8, Theorem 4.3]:

index(M) ≤ C(N)(H2(M) + γ − 1) ≤ C(N)
16π

α

(
1

|π1(N)| − χ(M)

)
,

where the first inequality holds without control on the codimension or a
lower bound on RicN and C(N) depends linearly on the dimension, and
on the second fundamental form of some isometric embedding of N into
a Euclidean space. Here index(M) is the Morse index – the number
of negative eigenvalues associated with the Jacobi (second variation)
operator for minimal hypersurfaces M ⊂ N :

Q(v, v) :=

ˆ
M

|∇⊥v|2 − |A|2|v|2 −RicN (v, v) dVM ,

where v ∈ Γ(NM) is a section of the normal bundle and ∇⊥ is the
normal connection. Thus when n = 2 we clearly have

(1) index(M) +H2(M) ≤ C(N)
16π

α

(
1

|π1(N)| − χ(M)

)
.

We remark that if M is two-sided then we can consider Q to be defined
on smooth functions over M since every such v = fν for some choice of
unit normal ν and f ∈ C∞(M). We obtain

(2) Q(v, v) = Q(f, f) :=

ˆ
M

|∇f |2 − (|A|2 +RicN (ν, ν))f2 dVM .
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Thus, in all dimensions, if RicN ≥ α > 0 then Q(f, f) < 0 whenever
f ≡ 1. Therefore, there are no stable (index zero) two-sided minimal
hypersurfaces in such N . By considering a totally geodesic RP

2 ⊂ RP
3

we can see that there exist one-sided and stable minimal hypersurfaces
in manifolds of positive Ricci curvature.

It now seems reasonable to question whether bounded volume and
index is sufficient for a compactness theorem in all dimensions?

In [15] Schoen–Simon prove a regularity and compactness theorem
for orientable hypersurfaces with bounded volume which are stationary
(minimal) and stable (index zero) in arbitrary closed N . As an appli-
cation of such a result they extend the work of Almgren [2] and Pitts
[14] to prove existence and regularity of minimal hypersurfaces in closed
manifolds.

The theorems in [15] are proved under the assumption that M ∈
IVn(N

n+1) (the space of integrable varifolds) with Hn−2(sing(M)) = 0
(in general, due to Allard’s regularity Theorem (see, e.g., [16] or [1]),
any stationary integral varifold M is smooth in an open and dense sub-
set, denoted reg(M), and we let sing(M) = spt(M)\reg(M) denote
the singular set). The results of Schoen–Simon follow from an in-depth
local analysis of stable minimal hypersurfaces, with all estimates proven
about points in M under normal coordinates for N . The assumption on
the singular set allows for the use of suitable test functions in the sec-
ond variation formula (2) – a-priori one can only test Q with functions
supported away from the singular set but this can be relaxed under the
restriction Hn−2(sing(M)) = 0. The main technical result [15, Theo-
rem 1] being that if a stable hypersurface is sufficiently Hausdorff close
to a plane in normal coordinates, then the surface must decompose (on
a possibly smaller region) into a multi-valued smooth graph over this
plane and is, therefore, a smooth minimal hypersurface here. The reg-
ularity and compactness theorems [15, Theorems 2 and 3] then follow
by a suitably adapted dimension-reduction argument of Federer coupled
with the results of Simons [18] that stable cones C in R

n+1 are hyper-
planes when n ≤ 6, can have an isolated singularity when n = 7, and
Hn−7+β(sing(C)) = 0 for all β > 0 when n ≥ 8.

Here we will use the local results of Schoen–Simon in order to prove a
compactness theorem for minimal hypersurfaces with bounded volume
and index when 2 ≤ n ≤ 6. The rough idea being to use a notion of
almost minimising (or almost stable) due to Pitts [14]; if we have a
sequence of say, index one smooth hypersurfaces {Mk} with bounded
volume, then we know they varifold converge to some stationary limit
M by Allard’s compactness theorem [1]. Now, pick a point in M and
let Bε(x) be some small ambient ball. If Bε(x) ∩Mk is stable for all k
(up to subsequence), then M ∩Bε(x) would be almost minimising in the
sense of Pitts and we have the strong regularity results of Schoen–Simon
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to apply here. Moreover, if Bε(x) ∩Mk is unstable for all k sufficiently
large, there cannot be a second ball in Mk\Bε(x) which is unstable –
otherwise the index of the approaching Mk would eventually be two cf.
Lemma 3.1.

We prove, moreover, that the convergence must be graphical over
most ofM – away from a finite set of points – and if the number of leaves
in the convergence is eventually equal to one, the convergence is smooth
and graphical everywhere, with the limit having the same index bound
as the approaching hypersurfaces. Furthermore, if the number of leaves
in the convergence is bigger than one then the limit must be stable if it is
two-sided. An easy corollary of this result is that if the ambient manifold
has strictly positive Ricci curvature RicN ≥ α > 0, then the space of
finite volume and index minimal hypersurfaces is strongly compact in
the smooth topology. In view of (1) we, therefore, have recovered the
result of Choi–Schoen [4] when n = 2 and extended this appropriately
for higher dimensions.

Acknowledgements. I would like to thank André Neves for the in-
spiration for this work and many useful discussions. I was supported
throughout by Professor Neves’ European Research Council StG agree-
ment number P34897, and his Leverhulme prize 2013.

2. Statement of results

Central to our argument is the following result of Schoen–Simon [15,
Corollary 1]. Here, we need only assume that Nn+1 is a complete C3

Riemannian manifold. Following [15, p. 784] (with slightly different
notation), let p be a fixed point in N , σ the injectivity radius at p and
ρ0 ∈ (0, σ). BN

ρ (p) is the open geodesic ball of radius ρ ≤ ρ0 and centre
p. Finally, μ1 is a constant such that

sup
Bn+1

ρ0
(0)

∣∣∣∣∂gij∂xk

∣∣∣∣ ≤ μ1, sup
Bn+1

ρ0
(0)

∣∣∣∣ ∂2gij

∂xk∂xl

∣∣∣∣ ≤ μ2
1,

where {xi} are normal coordinates with respect to BN
ρ0(p) and gij are the

metric components in these coordinates. In [15] they use the notation
that M = reg(M) and M̄ = reg(M) ∪ sing(M) = spt(M) when M is
viewed as an integral n-varifold, i.e., M ∈ IVn(N

n+1). We will use the
more standard notation reg(M), sing(M) and spt(M) – see [16] for an
introduction to varifolds.

Theorem 2.1. [15, Corollary 1] Suppose M ∈ IVn(N
n+1) is sta-

tionary with reg(M) embedded and orientable. Let p ∈ spt(M) with
Hn(M ∩BN

ρ0(p)) < ∞, Hn−2(sing(M) ∩BN
ρ0(p)) = 0, and suppose that

M is stable in BN
ρ0(p) with respect to the area functional. Then

Hα(sing(M) ∩BN
ρ0
2

(p)) = 0, α ≥ 0, α > n− 7.
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If n ≤ 6 and ρ−n
0 Hn(M ∩BN

ρ0(p)) ≤ μ then

sup
BN

ρ0
2

(p)

|A| ≤ C

ρ0
,

for some C = C(n, μ, μ1ρ0) < ∞.

Remark 2.2. We point out here that in the case n = 2 a triv-
ial extension allows one to have the same result as above but with the
assumption H0(sing(M)) < ∞ – we discuss this in the appendix. More-
over, we mention that a highly non-trivial extension of this work, due to
Neshan Wickramasekera [20] would in particular allow one to assume
only that Hn−1(sing(M)) = 0 for all dimensions.

Here we prove the following in the smooth setting, but we note that it
will hold assuming lower regularity of N . Let BN

ρ0(p) for p ∈ reg(M) be

as above. In normal coordinates Bn+1
ρ0 (0) (we will assume that TxM =

R
n = {zn+1 = 0} ⊂ R

n+1), let Cρ = Bn
ρ (0)×R where Bn denotes a ball

in R
n = TxM . We will say that Mk → M smoothly and graphically at

p ∈ M if for all sufficiently large k, there exists some ρ ≤ ρ0 and smooth
functions u1k, . . . , u

L
k : Bn

ρ → R such that Mk ∩ Cρ is the collection of

graphs of the uik and uik → 0 in Ck for all k ≥ 2. Thus we can also

find ρ > 0 such that we can consider the uik to be defined on M ∩BN
ρ .

We note that if the convergence is smooth and graphical away from a
finite set Y and M is connected and embedded (so that M\Y is also
connected) then the number of leaves in the convergence is a constant
over M\Y.

Given a smooth closed Riemannian manifold Nn+1 we will denote by
M

n(N) the class of closed, smooth, and embedded minimal hypersur-
faces M ⊂ N . Furthermore, given Λ ∈ R and I ∈ N let

M(Λ, I) := {M ∈ M
n(N) : Hn(M) ≤ Λ, index(M) ≤ I}.

Theorem 2.3. Let 2 ≤ n ≤ 6 and Nn+1 be a smooth closed Rie-
mannian manifold. Let {Mn

k } ⊂ M(Λ, I) for some fixed constants
Λ ∈ R, I ∈ N independent of k. Then up to subsequence, there ex-
ists M ⊂ M(Λ, I) and m ∈ N where Mk → mM in the varifold sense.

Now, assuming that Mk 
= M eventually, we have that the conver-
gence is smooth and graphical with multiplicity m for all x ∈ M\Y
where Y = {yi}Ki=1 ⊂ M is a finite set with K ≤ I. Furthermore, the
following dichotomy holds:

• if the number of sheets m = 1 then Y = ∅, i.e., the convergence is
smooth and graphical everywhere, moreover, nullity(M) ≥ 1 and
– if M is two-sided and Mk ∩M = ∅ eventually then M is stable
– if M is two-sided and Mk∩M 
= ∅ eventually then index(M)≥ 1

• if the number of sheets m ≥ 2
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– if N has RicN > 0 then M cannot be one-sided
– if M is two-sided then it is stable with nullity(M) = 1.

Remark 2.4. We note that in the case where m ≥ 2 and M is one-
sided it is still possible to construct a non-trivial Jacobi field over the
two-sided immersion associated with M (given a one-sided M we can

always construct a double cover π : M̃ → M so that the immersion
M̃ ⊂ N induced by π and the embedding of M is two-sided). Thus if
the sequence is non-trivial then it is always possible to produce a Jacobi
field along some (possibly immersed) minimal hypersurface.

The index bound is necessary to obtain the above convergence by
considering a family of Scherk surfaces, or a family of Costa–Hoffmann–
Meeks surfaces with genus going to infinity in a Euclidean ball.

We also remark again that control on the topology and volume alone
is not enough to ensure such a compactness result, given the examples
of Hsiang [11] mentioned in the introduction.

We recall the result of Choi–Schoen [4]:

Theorem 2.5. [4, Theorem 1] Let N be a compact 3-dimensional
manifold with positive Ricci curvature. Then the space of compact em-
bedded minimal surfaces of fixed topological type in N is compact in the
Ck topology for any k ≥ 2. Furthermore, if N is real analytic, then this
space is a compact finite-dimensional real analytic variety.

A corollary of our main theorem is the following strong compactness
result for embedded, closed minimal hypersurfaces in closed manifolds
Nn+1 with RicN > 0 and 2 ≤ n ≤ 6. We remark that, viewing (2),
such manifolds do not admit two-sided stable minimal hypersurfaces.
In view of (1) we note that this recovers Theorem 2.5 when we restrict
to n = 2.

Corollary 2.6. Let Nn+1 be a closed Riemannian manifold with
RicN > 0 and 2 ≤ n ≤ 6. The class M(Λ, I) is compact in the Ck

topology for all k ≥ 2.

Remark 2.7. Notice that by an easy argument we have the existence
of some C = C(Λ, I,N) such that for anyM ∈ M(Λ, I) where RicN > 0
(see also [4, Theorem 2])

sup
M

|A| ≤ C.

We also have that eventually the graphical, single-sheeted conver-
gence implies that Mk is diffeomorphic to M for sufficiently large k.
Thus there exists some C̃ = C̃(Λ, I,N, i) such that for anyM ∈ M(Λ, I)
with RicN > 0, letting bi(M) denote the ith Betti number we must have

bi(M) ≤ C̃.



COMPACTNESS OF MINIMAL HYPERSURFACES 323

Proof of Corollary 2.6. The proof is trivial given Theorem 2.3 – given
a sequence in this class we know that if we do not have smooth, single
sheeted graphical convergence to some limit M then M is two sided and
it is stable, which cannot happen because RicN > 0. q.e.d.

3. Supporting results

Whilst our main concern here is with smooth hypersurfaces, we some-
times work within the class of integrable varifolds – see [16] for an in-
troduction. Thus we will assume that we are working with M ∈ IVn(N)
(the space of integral n-varifolds in N) and we let

reg(M) :={x ∈ spt(M)|Bε(x) ∩ spt(M)

is properly embedded and C2 for some ε > 0.},
with sing(M) = spt(M)\reg(M). Therefore, Hn−1(sing(M)) = 0 and
reg(M) being orientable generalises the notion of closed orientable hy-
persurfaces. For us N is a smooth manifold, so wherever M is stationary
and C2, it must be smooth.

The first variation of volume with respect to C1
c vector fields X ∈

Γ(TN), corresponds to the derivative of the variation of M , ψt(M)
induced by X. Therefore, M is stationary if

0 =
∂

∂t t=0

V ol(ψt(M)) =

ˆ
M

divM (X) dHn =: δM (X),

for all compactly supported C1 vector fieldsX, whereX(x) = ∂ψt(x)
∂t |

t=0
.

Since we are considering closed N we can assume that N ↪→ R
N is iso-

metrically embedded and consider the first and second variation formula
for M ⊂ R

N – except we obviously restrict to vector fields X ∈ Γ(TN).
The stability of M in some open set U ⊂ N , is the assumption of posi-
tivity of the second variation, derived in [16] for M ⊂ R

N :

0 ≤ ∂2

∂t2 t=0

(V ol(ψt(M)))

=

ˆ
M

divM (Z) + (divM (X))2 +
∑
i

|(∇τiX)⊥|2 dHn

−
ˆ
M

∑
i,j

(∇τiX · τj)(∇τjX · τi) dHn

=: δ2M (X),

for all X ∈ Γ(TRN ), such that X(x) ∈ TxN for all x ∈ N and X is

compactly supported in some open Ũ ⊂ R
n+1 where Ũ ∩N = U . Here

Z(x) = ∂2ψt(x)
∂t2

|
t=0

= ∇XX and {τi} is some orthonormal basis of M

at a given point x. If X is supported away from sing(M), then setting
X⊥ to be the projection of X to the normal bundle NM ⊂ TN and ∇⊥
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the normal connection in NM we have

δ2M (X) =

ˆ
M

|∇⊥X⊥|2 − |A|2|X⊥|2 −Ric(X⊥,X⊥) dHn

= Q(X⊥,X⊥).

Thus if M is two-sided in N , setting f = 〈X, ν〉 ∈ C1
c (reg(M)), for

some unit normal ν along reg(M) then it can be checked that

δ2M (X) =

ˆ
M

|∇f |2 − (|A|2 +RicN (ν, ν))f2 dHn = Q(f, f).

In the case that M is two-sided and Hn−2(sing(M)) = 0, stability is
equivalent to the positivity of Q(f, f) along bounded and locally Lip-
schitz functions f (possibly non-zero over the singularities of spt(M)),
which follows from an easy cut-off argument.

Furthermore, ifM is two-sided and n = 2 we can relax the assumption
on the singular set to H0(sing(M)) < ∞ and still work with such f

– this is discussed in the appendix and the distinction is important
for us. We remark that the results of Schoen–Simon can be trivially
extended to the case that H0(sing(M)) < ∞ when n = 2 due to this
fact. Actually, in [20] a much more general regularity and compactness
theory is developed for stable minimal hypersurfaces, where a weaker
assumption on the singular set is imposed in all dimensions; in particular
one need only assume that Hn−1(sing(M)) = 0 to recover the results
of Schoen–Simon.

It is worth mentioning here that if Mk → M varifold converge then
we have both δMk

(X) → δM (X) and δ2Mk
(X) → δ2M (X) for any X ∈

C1
c (TN). In particular, if there are K disjoint open sets U1 . . . UK on

which M is unstable, then eventually Mk is unstable on each Ui for
1 ≤ i ≤ K and thus has index(Mk) ≥ K cf. Lemma 3.1. We also
note Allard’s compactness theorem: for a sequence of bounded mass
and stationary {Mk} ⊂ IVn(N) there exists some bounded mass and
stationary M ∈ IVn(N) such that a subsequence converges in the sense
of varifolds (i.e., in the sense of Radon measures on the Grassmann
bundle of n-planes in TN); moreover, if Hn(Mk) is uniformly bounded
then they converge in Hausdorff distance also – a consequence of the
monotonicity formula. Thus if Mk are connected then M must be as
well.

Lemma 3.1. Suppose M ↪→ N is a smooth, embedded hypersurface
with index(M) = I. Given any collection of I + 1 open sets {Ui}I+1

i=1 ,
Ui ⊂ N and Ui ∩Uj = ∅ when i 
= j then we must have that M is stable
in Ui for some 1 ≤ i ≤ I + 1.

Proof. We proceed by contradiction; suppose that there exists some
collection of {Ui} as above but for all 1 ≤ i ≤ I + 1 there exists Xi ∈
C1
c (Ui) with δ2M (Xi) < 0. Letting X⊥

i be the projection of Xi along the
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normal bundle of M , we have a collection of I + 1 mutually orthogonal
sections (all of which are non-zero) and with Q(X⊥

i ,X⊥
i ) < 0 for all i.

Thus index(M) > I, a contradiction. q.e.d.

4. Proof of Theorem 2.3

Proof of Theorem 2.3. Allard’s compactness theorem [1, chapter 6] tells
us that there exists some V ∈ IVn(N) such that (up to subsequence)
Mk → V in the varifold sense (and thus in Hausdorff distance), with
V stationary, integral and connected. We let M = spt(V ) and we can,
moreover, choose a subsequence and assume wlog that index(Mk) = I

for all k.
Before we continue the proof we need a lemma which is an easy

corollary of the work of Schoen–Simon, Theorem 2.1.

Lemma 4.1. Let x ∈ M with M as above and σN be the injectivity
radius of N . Assuming the hypotheses of Theorem 2.3, if there exist

R ∈ (0, σ
N

2 ), k0 ∈ N such that for all k ≥ k0 we have Mk is stable in

BN
R (x) then M ∩ BN

R
2

(x) is smooth and the convergence is smooth and

graphical for all y ∈ BN
R
2

(x) ∩M , again up to a subsequence.

Proof of Lemma 4.1. Theorem 2.1 tells us that for any y ∈ Mk∩BN
3R
4

(x)

we must have

sup
BN

R
4

(y)

|Ak| ≤ C,

where C = C(N,n,Λ, R) < ∞. This follows because N is compact;
there is a uniform upper bound on

μ1 := sup
y∈N

max

⎧⎪⎪⎨
⎪⎪⎩

sup
Bn+1

σN
2

(0)

∣∣∣∣∂gij∂xk

∣∣∣∣ ,
√√√√√ sup

Bn+1

σN
2

(0)

∣∣∣∣ ∂2gij

∂xk∂xl

∣∣∣∣

⎫⎪⎪⎬
⎪⎪⎭

,

where the above is taken over normal coordinate balls centred at y.
Moreover, Mk∩BN

r (x) must be orientable for r < σN and all k since BN
r

is simply connected. An easy covering argument gives that B 3R
4

(x)∩Mk

have uniformly bounded second fundamental form and volume and a
standard compactness argument finishes the proof. q.e.d.

Claim 1. The singular set of M has at most I points.

Suppose for a contradiction that there are at least I + 1 points
{xi}I+1

i=1 ⊂ sing(M) and fix

ε0 <
1

2
min{min

i �=j
dg(xi, xj), σ

N}.
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Lemma 4.1 tells us that there must be some subsequence (not re-labelled)
such that Mk is unstable in BN

ε0(xi) for all 1 ≤ i ≤ I + 1. By construc-
tion we have I + 1 disjoint open sets and Lemma 3.1 tells us that for
each k, Mk must be stable in one of them, a contradiction. Thus we
have proved the claim.

We now investigate what kind of convergence we have over M . By
Lemma 4.1 (and arguing exactly as in Claim 1) we know that there
is a finite set Y = {yi}Ki=1 ⊂ M such that the convergence is smooth
and graphical over x ∈ M\Y and K ≤ I – note that we must have
sing(M) ⊂ Y. Now for any open Ω ⊂⊂ M\Y, there exists a finite
cover of Ω and local graphs over each element in the cover. Letting
k be sufficiently large (so that the Hausdorff distance of Mk to M is
sufficiently small) we can consider the part of Mk over Ω to be within
a normal tubular neighbourhood of Ω, therefore, there exist layered
graphs from Ω parameterising Mk and defined on these components.

Claim 2. For each xi ∈ sing(M) there exists some εi such that M
is stable in BN

εi (xi)\{xi}.
Again we argue by contradiction. Suppose, therefore, that for all

ε > 0 there exists some Xε ∈ C1
c (B

N
ε (xi)\{xi}) such that δ2M (Xε) < 0.

Pick

εi1 > 0 and X1 ∈ C1
c (B

N
εi1

(xi)\{xi}) satisfying δ2M (X1) < 0.

Now pick 0 < εi2 < εi1 so that spt(X1) ⊂ BN
εi1

(xi)\BN
εi2

(xi) and of

course there exists some X2 ∈ C1
c (B

N
εi2

(xi)\{xi}) with δ2M (X2) < 0

by assumption. The same argument produces 0 < εi3 < εi2 , X3 ∈
C1
c (B

N
εi3

(xi)\{xi}) with δ2M (X3) < 0 and spt(X2) ⊂ BN
εi2

(xi)\BN
εi3

(xi).

In this way we can construct infinitely many Xs with disjoint supports
and for which δ2M (Xs) < 0 for all s. Since Mk → V in the sense of
varifolds, given any S > I we can find k sufficiently large for which
δ2Mk

(Xs) < 0 for all s ≤ S. Each Xs restricts to each Mk to produce
S non-zero and mutually orthogonal vector fields contributing to the
index of Mk and we have our contradiction.

Therefore, for all xi ∈ sing(M), M\{xi} is stable locally about each
xi so

Hn−2(sing(M))

{
= 0 if n ≥ 3,
< ∞ if n = 2.

By the regularity results of Schoen–Simon cf. Theorem 2.1 and Remark
2.2 we end up with the desired regularity of M .

Note that the number of leavesm is eventually a constant integer since
M is smooth and connected (and, therefore, M with a finite number of
small discs removed is also connected). Thus we see that V = mM .

Claim 3. index(M) ≤ I.
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Assume for a contradiction that index(M) > I, i.e., there exist I +1

section {si}I+1
i=1 ⊂ Γ(NM) which are L2 – orthonormal and

Q(si, si) = −λi λi > 0.

Now let Xi be an arbitrary C1 extension of si to the rest of N . We
know that eventually we must have δ2Mk

(Xi) < 0 for all i, therefore, the

sections ski = X
⊥k
i (Xi projected onto the normal bundle of NMk ⊂ TN)

must be linearly dependant for all k – otherwise index(Mk) > I.
Thus there exist μk

1, . . . , μ
k
I+1 ∈ R not all zero such that μk

1s
k
1 +

· · · + μk
I+1s

k
I+1 = 0. We can take a subsequence and re-order so that

max{|μk
i |} = |μk

I+1|, then dividing through by −μk
I+1 and re-labelling

we can assume that skI+1 = μk
1s

k
1 + · · · + μk

Is
k
I with all of the |μk

i | ≤ 1.
Now, we know that

(3)

ˆ
Mk

|X�k
i |2 dHn → 0, as k → ∞,

which follows from the monotonicity formula (X�k
i is the projection of

X onto TMk). For all small ε > 0 note that over

M\(∪yi∈YB
N
ε (yi)),

the convergence is smooth and graphical thusˆ
Mk\(∪yi∈YBN

ε (yi))
|X�k

i |2 dHn → 0, as k → ∞.

By the monotonicity formula (see, e.g., [16, Remark 17.9 (3)])ˆ
Mk∩BN

ε (yi)
|X�k

i |2 dHn ≤ C sup |Xi|2εn,

where C = C(Hn(Mk)), and (3) follows.
Therefore, we also have that

lim
k→∞

ˆ
Mk

〈ski , skj 〉 dHn = lim
k→∞

(ˆ
Mk

〈Xi,Xj〉 − 〈X�k
i ,X

�k
j 〉 dHn

)

=

ˆ
M
〈si, sj〉 dHn = δij .

Hence for i < I + 1

0 = lim
k→∞

ˆ
Mk

〈sI+1, s
k
i 〉 dHn

= lim
k→∞

ˆ
Mk

〈μk
1s

k
1 + · · ·+ μk

Is
k
I , s

k
i 〉 dHn

= lim
k→∞

μk
i
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implying that μk
i → 0 for all i. But then it is easy to see that this

implies limk→∞
´
Mk

|skI+1|2 = 0 which is a contradiction and the claim

follows.

Claim 4. If the number of leaves in the convergence is eventually
one then the convergence is smooth and graphical over all of M .

Initially all we know is that this is the case over M\Y, but the full
statement will follow from Allard’s regularity theorem. Let ε > 0 and
suppose the convergence is not graphical over some point x ∈ M . We
know we can pick r(x, ε) > 0 sufficiently small such that (we may denote
‖M‖(U) =

´
U∩M dHn since M has multiplicity one)

‖M‖(BN
r (x))

rn
≤ 1 + ε.

Now by varifold convergence we know that (since r is sufficiently small
and ‖M‖(∂BN

r (x)) = 0)

‖Mk‖(BN
r (x)) → ‖M‖(BN

r (x)) ≤ (1 + ε)rn,

thus for all sufficiently large k

‖Mk‖(BN
r (x)) ≤ (1 + 2ε)rn.

Now pick r > η = η(ε, r, n) > 0 to be specified later. Again by Hausdorff
convergence we get that for all sufficiently large k, and any yk ∈ Mk ∩
BN

η (x)

‖Mk‖(BN
r−η(yk)) ≤ ‖Mk‖(BN

r (x)) ≤ (1 + 2ε)rn

= (1 + 2ε)(r − η + η)n ≤ (1 + 3ε)(r − η)n,

where now we have picked η sufficiently small so that the last inequality
holds true.

Since ε was arbitrary, we can apply Allard’s regularity theorem and
conclude (in particular) thatMk∩Bη(x) is smooth for all k with uniform
L∞ control on the second fundamental form. Thus the convergence must
be graphical everywhere over M and we have proved the claim.

If N has positive Ricci curvature and M is one-sided we lift every-
thing to the universal cover π : Ñ → N . By Frankel’s theorem [9,

Generalised Hadamard Theorem], since RicÑ > 0, the lifts M̃k and M̃

are all connected (if not, any two components must intersect which is a

contradiction). Also, Ñ is simply connected so we must have that M̃k

and M̃ are orientable (and thus two-sided) embedded minimal hyper-
surfaces. Furthermore, we still have smooth graphical convergence of
the M̃k to M̃ away from Ỹ = π−1Y, and the number of sheets is again
≥ 2. Thus we reduce to the below (Claims 5 and 6): we will prove that

M̃ is a stable, two-sided minimal surface in Ñ which contradicts the
positivity of the Ricci curvature.
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If N is arbitrary and M is one-sided then when m = 1 it is possible
to follow the below arguments in order to construct a Jacobi field along
M . If m ≥ 2 one must use a double cover M̃ of M and immerse it
into N as a two-sided minimal hypersurface in order to construct a
Jacobi field on M̃ . Either way the below analytical arguments can be
applied to these situations via some simple topological constructions so
we leave the details to the reader and content ourselves to deal only
with two-sided limits M .

The rest of the proof now concerns the situation where M is two-
sided and the graphical convergence is a single leaf or the graphical
convergence has more than one leaf.

We now follow the ideas developed in [17], see also [6]. If the number
of leaves is bigger than one, or there is a single leaf always lying on
one side of M then we now prove that index(M) = 0, i.e., M is sta-
ble. Roughly speaking, if a sequence of minimal hypersurfaces converge
smoothly and graphically to some fixed minimal surface, then eventually
one should see a smooth variation of the limit through minimal surfaces
– i.e., there must be a solution to the Jacobi equation. This is given
explicitly by suitably re-normalising the geodesic distance between the
limit and the approaching surfaces as in [17]. If a single sheet converges
totally on one side then this is always positive, moreover, if there are
many sheets, then over most of M we can construct a positive solu-
tion (the signed distance between the top and bottom sheet). In either
case, we end up with a signed solution to the Jacobi operator. Once we
know there is a strictly positive solution then this must correspond to
the lowest eigenvalue and there can be no index (by standard minimax
methods).

In the case that the convergence is single sheeted and on both sides
(i.e., Mk ∩ M 
= ∅ – we will assume that Mk 
= M otherwise the con-
clusion is trivial), the procedure gives a solution to the Jacobi equation
which is neither strictly positive or negative, thus the first eigenvalue is
negative by standard minimax arguments.

We give the details in the case that the number of sheets is ≥ 2, and
leave the case of single sheeted convergence mostly to the reader since
it follows easily from the below.

Claim 5. If the number of sheets is ≥ 2 and M is two-sided then
there exists a smooth positive solution the Jacobi equation over M\Y.

Given any compact domain Ω ⊂⊂ M\Y we know that we can find
δ > 0 and k sufficiently large such that there is some set of functions
{u1k < u2k < · · · < uLk } ∈ C∞(Ω), L > 1 such that

Mk ∩Ωδ = {Expx(ν(x)u
1
k(x)), . . . , Expx(ν(x)u

L
k (x))},

where Ωδ is a δ-normal neighbourhood of Ω. Now consider the following
path of smooth hypersurfaces in Ωδ, for vk(x, t) := tuLk (x)+(1− t)u1k(x)
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given by

Σk(t) := {Expx(ν(x)vk(x, t)) : x ∈ Ω},
and notice that any compactly supported ambient vector field Z ∈
C1
c (Ωδ), gives rise to variations of Σk(t), denoted

Σk(t, s) = {Ψk
t,s(x) = ψs(Expx(ν(x)vk(x, t))) : x ∈ Ω}

= (ψs)�(Σk(t)),

where ψs is a family of diffeomorphisms induced by Z, i.e., Z(x) =
∂ψs(x)

∂s
s=0

. We have

∂

∂s s=0

V ol(Σk(t, s)) =

ˆ
Σk(t)

divΣk(t)(Z) dHn,

and this is a smooth function of t by the definition of Σk(t). We also
know that this quantity is null when t = 0, 1 for all k, thus there exists
some tk ∈ (0, 1) such that (by following the computations in [16, Section
9] except we have considered the two parameter variation of Ω – once
again we have considered Ω ⊂ N ⊂⊂ R

N and restricted to variations
which are tangent to N)

0 =
∂

∂t t=tk

∂

∂s s=0

V ol(Σk(t, s))

=

ˆ
Σk(tk)

divΣk(tk)(Vk) + (divΣk(tk)(Xk))(divΣk(tk)(Z)) +

+

n∑
i=1

(∇τk,iXk)
⊥ · (∇τk,iZ)⊥ +

−
n∑

i,j=1

(τk,i · ∇τk,jXk)(τk,j · ∇τk,iZ) dHn,(4)

where

Xk(Ψ
k
t,0(x)) =

∂Ψk
t,s(x)

∂t
s=0

, Z(Ψk
t,0(x)) =

∂Ψk
t,s(x)

∂s
s=0

and

Vk(Ψ
k
t,0(x)) =

∂2Ψk
t,s(x)

∂t∂s
s=0

,

and {τk,i} is some orthonormal basis for Σk(t) at any given point. We
could have also written

Xk(y) = dν(x)vk(x,t)Expx(ν(x)(u
L
k (x)− u1k(x))) where

y = Expx(ν(x)vk(x, tk)),

and Vk = ∇Xk
Z.

We also know that vk(x, t) → 0 uniformly and smoothly in x as
k → ∞ (since ulk → 0 uniformly and smoothly see also [6], [17]), for any
t ∈ [0, 1], l ∈ [1, L] and thus Σk(t) converges smoothly and graphically
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to Ω. Moreover, Z, Vk are compactly supported on each Σk(t). Thus,
restricting to vector fields Z that are normal along Ω (i.e., are written
as η(x)ν(x) for some η ∈ C∞

c (Ω)), standard integration by parts and

submanifold formulae lead to: that h̃k(x) = uLk (x)−u1k(x) solves, for all
η ∈ C∞

c (Ω),

0 =

ˆ
Ω
∇h̃k · ∇η − (|A|2 +Ric(ν, ν))h̃kη dVΩ +(5)

+

ˆ
Ω

(
divΩ(ak∇h̃k) + bk · ∇h̃k + ckh̃k

)
η dVΩ,

where ak, bk, ck go to zero smoothly and uniformly on Ω – see [17, p.
333] (to see this notice that if (4) holds on Ω then we recover (5) with
ak, bk, ck all zero – but as k → ∞ we are converging smoothly to this
situation where Σk(tk) converges to Ω smoothly and graphically). Now

consider Ω′ ⊂⊂ Ω and re-normalise hk(x) := h̃k(y0)
−1h̃k(x) for some

fixed y0 ∈ Ω′. We have a Harnack estimate for hk since it is a posi-
tive solution to a uniformly elliptic equation with smooth coefficients,
whence [10, Corollary 8.21] gives an L∞ estimate and [10, Theorem
9.11] gives a C1,α estimate which one can easily bootstrap to give smooth
control of hk over compact subsets Ω′′ ⊂⊂ Ω′. Thus we can conclude
that (since hk > 0) we converge locally and smoothly to a non-trivial
solution h : M\{yi} → R≥0 of

(6) −ΔMh− (|A|2 +Ric(ν, ν))h = 0,

and for any Ω ⊂⊂ M\Y we have smooth estimates for h. Moreover, the
maximum principle tells us that h > 0 on M\Y.

We point out here that when the number of sheets is one then we
follow the above ideas, except that we set vk(x, t) = tuk(x) which is

defined over all of M . Thus h̃k(x) = uk(x) solves (5) over all of M and

we can re-normalise hk(x) := ‖h̃k‖−1
L2(M)

h̃k(x). Then standard elliptic

estimates (similarly to the above [10, Theorem 9.11] gives a W 2,2 es-
timate, but then a simple bootstrapping argument gives smoothness)
give smooth control and convergence of hk to a non-trivial limit h sat-
isfying (6) on M . In the case that we have one-sided convergence then
hk > 0 which is preserved in the limit (by the maximum principle and
that ‖hk‖L2 = 1), thus we have a signed solution to the Jacobi operator
h and the limit must be stable (by minimax methods). In the case that
we have two-sided convergence then h cannot be either strictly positive
or negative, therefore, there must exist at least one negative eigenvalue
by minimax methods.

Claim 6. The solution h to (6) extends to a smooth positive solution
to the Jacobi equation over all of M .
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To see this it suffices to check that h is bounded over the yi ∈ Y
and thus it is a weak signed solution to the Jacobi equation on M , with
a global bound, yielding full regularity over all of M . The maximum
principle tells us that it must remain strictly positive on M . In other
words M must be stable by a standard minimax argument.

We use an argument which can also be found in [6]: let yi ∈ Y and for
η sufficiently small consider {z1, . . . , zn} geodesic normal coordinates on
BM

2η (yi). Extend these to exponential normal coordinates {z1, . . . , zn+1}
on some small neighbourhood U in N about yi. In z coordinates con-
sider a cylindrical neighbourhood C0 = Bn

η × (−c0, c0) in R
n+1 for c0

small. Given ε > 0 we can find k sufficiently large so that the graphs
‖uik‖C2,α(∂Bn

η )
< ε, moreover, letting x = (z1, . . . , zn) we can extend

each uik to the interior of Bn
η by wi

k(x) = |x|2uik( x
|x|). We can thus en-

sure that ‖wi
k‖C2,α(Bn

η )
≤ K0‖uik‖C2,α(∂Bn

η )
< K0ε. By the proposition

in the appendix of [19], setting η, c0 and then ε sufficiently small (i.e.,
k sufficiently large) we can foliate C0 by minimal graphs (with respect
to N) vik,t over B

n
η such that

vik,t(x) = t+ wi
k(x) = t+ uik(x) for x ∈ ∂Bn

η , t ∈ [−c0, c0],

and

‖vik,0‖C2,α(Bn
η )

≤ K1‖uik‖C2,α(∂Bn
η )
,

where the latter follows easily from the proof in [19] and the fact that
‖wi

k‖C2,α(Bn
η )

≤ K0‖uik‖C2,α(∂Bn
η )

(K1 is some uniform constant indepen-

dent of k). We note that the result of White is only proved when n = 2
but it follows trivially in higher dimensions – see [19, Remark 2].

Setting vik = vik,0 we know that the difference Vk := vLk − v1k solves

some uniformly elliptic differential equation (see [7, pp. 237–238] in the
case that n = 2)

LkVk = akij(Vk)xixj + bki (Vk)xi = ckVk.

Letting gij be the metric components of N in z-coordinates, we have

that the coefficients akij, b
k
i , ck are all uniformly controlled by

{‖uik‖C2,α(∂Bn
η )
}i=1,L, gij ,

∂gij

∂zl
,
∂2gij

∂zl∂zq
.

Moreover, when {‖uik‖C2,α(∂Bn
η )
}i=1,L are sufficiently small (i.e., k suffi-

ciently large), then akij is uniformly elliptic, independently of k. Thus

there is some K2 > 0 such that |akij | + |bki | + |ck| ≤ K2 and akijξ
iξj ≥

1
K2

|ξ|2 for all ξ ∈ R
n. By the weak maximum principle, in particular

[10, Theorem 3.7]

sup
Bn

η

Vk ≤ sup
∂Bn

η

Vk +K3 sup
Bn

η

Vk,
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where for η sufficiently small, we can assume that K3 ≤ 1
2 . Therefore,

when η is sufficiently small

sup
Bn

η

Vk ≤ 2 sup
∂Bn

η

Vk = 2 sup
∂Bn

η

(uLk − u1k).

For k sufficiently large let ML
k be the connected component of M ∩ C0

such that uLk (x) ∈ ML
k for some x ∈ ∂Bn

η . Similarly, let M1
k be the

connected component in M ∩ C0 corresponding to u1k.

We note by the maximum principle that vLk,t(B
n
η ) ∩ ML

k = ∅ when

t > 0 and v1k,t(B
n
η ) ∩M1

k = ∅ when t < 0. Therefore, letting Dk ⊂ Bn
η

denote the domain of definition of h̃k = uLk − u1k we can conclude that

sup
Dk

h̃k(x) ≤ sup
Bn

η

(vLk − v1k) ≤ 2 sup
∂Bn

η

(uLk (x)− u1k(x)) = 2 sup
∂Bn

η

h̃k(x).

Thus we have that h is bounded over yi and we have proved claim 6.
q.e.d.

Appendix A. The results of Schoen–Simon

In [15] they consider functionals F on balls in R
n+1 which correspond

to the volume functional of hypersurfaces in small normal coordinate
balls about points in N . In other words, when considering minimal
hypersurfaces M ∈ IVn(N), if we take a normal coordinate ball about

some point BN
ρ0(p) ⊂ N and let M̃ ⊂ Bn+1

ρ0 (0) be M ∩BN
ρ0(p) then they

consider the functional F such that

V ol(M ∩BN
ρ0(p)) =

ˆ
M̃

F (y, ν(y)) dHn(y),

where ν is the unit normal on M̃ in R
n. We will obviously not distin-

guish between M ∩ BN
ρ0(p) and M̃ below, moreover, we remark that if

M ∩BN
ρ0(p) is stable then M̃ is stable with respect to the functional F

where we test against variations that are compactly supported in BN
ρ0(p).

See [15] for further details, in particular for a precise definition of the
functionals F under consideration there. We briefly list the necessary
properties of F following [15, p. 743]; we assume it to be a C3 function
Bn+1

ρ0 (0)× (Rn+1\{0}) → R

F (y, λZ) = λF (y, Z)(7)

for all λ > 0 and (y, Z) ∈ Bn+1
ρ0
2

(0)× (Rn+1\{0}),

and there exist μ, μ1 such that

μ−1 ≤ F (y, ν) ≤ μ, |∇α
2F (y, ν)| ≤ μ(8)

for (y, ν) ∈ Bn+1
ρ0
2

(0) × Sn, |α| ≤ 3,
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|∇α
1∇β

2F (y, ν)| ≤ μ
|α|
1(9)

for (y, ν) ∈ Bn+1
ρ0
2

(0)× Sn, |α| + |β| ≤ 3, 0 < |α| ≤ 2,

where α, β are multi-indices and ∇1,∇2 denote differentiation with re-
spect to the first or second component of F . Furthermore, F is the area
integrand when y = 0, i.e.,

(10) F (0, Z) = |Z|.
Finally, for all w ∈ Bn+1

ρ0
2

(0) there is aC3 diffeomorphism ψw : Bn+1
ρ0 (0) →

Bn+1
ρ0 (0) with ψw(0) = w and

supBn+1
ρ0

(0) |∇ψw|+ |∇ψ−1
w | ≤ μ,

supy∈Bn+1
ρ0

(0) |∇αψw| ≤ μα
1 |α| = 2, 3,

ψ
�
wF (y, Z), satisfies (7)–(10) above with the same μ, μ1,(11)

where ψ
�
wF (y, Z) = F (ψw(y), ((dyψw)

−1)∗(Z)), dyψw is the derivative
at y and ∗ denotes the adjoint.

Theorem A.1. [15, Theorem 1] Suppose F is a functional on Bn+1
ρ0 (0)

satisfying (7)–(11), and M be an orientable C2 embedded hypersurface
in Bn+1

ρ0 (0) which is F -stable and satisfy

Hn(M) ≤ μρn0 and Hn−2(sing(M)) = 0.

There exists a number δ0 = δ0(n, μ, μ1, μ1ρ0) ∈ (0, 1) such that if x =
(x̃ ∈ R

n, xn+1) ∈ spt(M) ∩ Bn+1
ρ , ρ ∈ (0, ρ04 ), M ′ is the connected

component of M in C(x̃, ρ) = Bn
ρ (x̃)× R and

sup
y=(ỹ∈Rn,yn+1)∈M ′

|yn+1 − xn+1| ≤ δ0ρ, μ1ρ ≤ δ0,

then M ′ ∩ C(x̃, ρ2 ) consists of a disjoint union of graphs of functions
u1 < u2 < · · · < uL defined on Bn

ρ
2

(x̃) satisfying

max
i

sup
Bn

ρ
2

(x̃)
(|∇ui|+ ρ|∇2ui|) ≤ Cδ0,

where C = C(n, μ, μ1ρ) < ∞.

Remark A.2. This is clearly false if we remove the stability assump-
tion by considering a blown down catenoid in a Euclidean ball and F is
exactly the area integrand of Rn+1. The catenoid has index one and if
we scale it down it eventually has index one in any ball about the ori-
gin, moreover, it converges to a plane of multiplicity two – in particular
we can make it satisfy all the the conditions above, except the stability
condition – but it can never be a multi-valued graph at the origin.

We also remark that the condition H0(sing(M)) = 0 when n = 2
is sufficient for the above theorem to hold – we check this below and
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note that this is a trivial extension of the above result. As mentioned
previously a result of Neshan Wickramasekera [20] would in particular
allow one to assume only that Hn−1(sing(M)) = 0 for all dimensions.

The following regularity (and compactness) theorem then holds:

Theorem A.3. [15, Theorem 3] Suppose M is an orientable C2

embedded hypersurfaces in Bn+1
ρ0 (0) which is F -stationary and stable (F

as above). Moreover, Hn(M) ≤ μρn0 and Hn−2(sing(M)) = 0. Then

Hα(sing(M) ∩Bn+1
ρ0
2

) = 0 for all α > n− 7.

Moreover, when n ≤ 6 there is a constant c1 = c1(n, μ, μ1ρ0) such that

sup
M∩B ρ0

2

|A| ≤ c1ρ
−1
0 ,

where A is the second fundamental form of M in R
n+1.

Remark A.4. We can, therefore, conclude when 2 ≤ n ≤ 6 that if
Fq are a sequence of functionals all satisfying (7)–(11) uniformly, such
that they converge in C3 to some limit functional F ; then any sequence
Mq of Fq-stable hypersurfaces, with uniformly bounded mass, converge
locally in the C2 topology to some M which is itself an F -stable surface.
Moreover, if Fq converges to F in Ck then Mq converges to M in Ck−1,α.

Once again the assumption that H0(sing(M)) < ∞ is sufficient to
conclude the above.

The following Lemma is essentially proven in [15, Lemma 1] – we
note that this is the only place we need to check for the theorems of
Schoen–Simon to hold for surfaces with point singularities.

Lemma A.5. Let M ∈ IV2(B
3
ρ0(0)) be F -stable with H0(sing(M)) <

∞. There exist ε0 = ε0(μ, μ1ρ0) > 0 and C = C(μ, μ1ρ0) < ∞, such
that whenever μ1ρ ≤ ε0 and φ is a bounded locally Lipschitz function
vanishing in a neighbourhood of M ∩ ∂C(0, ρ), we have
ˆ
M

|A|2φ2 dH2 ≤ C

(ˆ
M
(1− [ν · ν0]2)|∇φ|2 dH2 + μ2

1

ˆ
M

φ2 dH2

)
,

for any ν0 ∈ S2.

Proof. This follows by using a log cut-off argument. Notice that for
any δ > 0 sufficiently small we can cover sing(M) by K = H0(sing(M))
disjoint ambient balls Bri(xi) such that maxi ri ≤ δ and also we will
require that B√

ri(xi) are disjoint.

Now, it is proved in [15] that this Lemma is true for bounded locally
Lipschitz φ supported on reg(M).
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Now take any such φ, not necessarily vanishing on sing(M) and let

ηi :=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0 if |x− xi| < ri,

log
( |x−xi|

ri

)

log( 1√
ri
)

if ri ≤ |x− xi| < √
ri,

1 if |x− xi| ≥ √
ri,

where |x − xi| is the distance function for N from xi – we can choose
normal coordinates centred at xi in order to do this, and for δ sufficiently
small.

Now define ψ = φ
∏K

i=1 ηi which is admissible in the above, thus

ˆ
M

|A|2φ2
K∏
i=1

η2i dH2 ≤ C

ˆ
M
(1− [ν · ν0]2)|∇ψ|2 dH2 +

+Cμ2
1

ˆ
M

φ2
K∏
i=1

η2i dH2

≤ C

ˆ
M
(1− [ν · ν0]2)(1 + μ)|∇φ|2

K∏
i=1

η2i dH2

+Cμ2
1

ˆ
M

φ2
K∏
i=1

η2i dH2 +

+C(μ)K sup |φ|2 sup
i

ˆ
M

|∇ηi|2 dH2.

We have used Young’s inequality with a “μ” and trivial estimates.
Using this we have

ˆ
M

|A|2φ2 dH2 ≤ lim
μ→0

lim
δ→0

C

ˆ
M
(1− [ν · ν0]2)(1 + μ)|∇φ|2

K∏
i=1

η2i dH2

+ lim
μ→0

lim
δ→0

Cμ2
1

ˆ
M

φ2
K∏
i=1

η2i dH2

+ lim
μ→0

lim
δ→0

C(μ)K sup |φ|2 sup
i

ˆ
M

|∇ηi|2 dH2

= C

(ˆ
M
(1− [ν · ν0]2)|∇φ|2 dH2 + μ2

1

ˆ
M

φ2 dH2

)
,

where the last line follows if and only if:ˆ
M

|∇ηi|2 dH2 → 0,

as δ → 0.



COMPACTNESS OF MINIMAL HYPERSURFACES 337

We check this now: recall that the monotonicity formula gives us the
existence of some C such that for all sufficiently small ρ,ˆ

M∩Bρ

dH2 ≤ C(M)ρ2.

Now set N � N ≥ log r
−1/2
i

log 2 so that
√
ri ≤ 2Nri (we also assume N ≤

2 log r
−1/2
i ) and we have

ˆ
M

|∇ηi|2 dH2 ≤
N∑
l=1

ˆ
M∩(B

2lri
\B

2l−1ri
)

1

r2 log
(

1√
ri

)2 dH2

≤
N∑
l=1

1

22l−2r2i log
(

1√
ri

)2

ˆ
M∩B

2lri

dH2

≤
N∑
l=1

C(M)

log
(

1√
ri

)2 =
C(M)N

log
(

1√
ri

)2 ≤ C(M)[− log δ]−1,

and the result follows. q.e.d.

Finally, we state a theorem analogous to Theorem 2.3 in the setting
of changing ambient metrics on N converging uniformly and smoothly
to some limit. It can be proved using the methods in this paper, but
using Theorem A.3 instead of Theorem 2.1. Below we will fix a smooth
background metric on N , call it h and we say that metrics gk → g

converge smoothly to some limit if they converge smoothly with respect
to h. Moreover, we measure volume with respect to h (since this is
equivalent to doing so via g and thus gk also), and we let indexk, index
denote the index with respect to gk, g, respectively.

Theorem A.6. Let 2 ≤ n ≤ 6 and Nn+1 be a smooth closed manifold
and {gk}k∈N a family of Riemannian metrics on N converging smoothly
to some limit g. If {Mn

k } ⊂ N is a sequence of closed, connected and
embedded minimal hypersurfaces in (N, gk) with

Hn(Mk) ≤ Λ < ∞ and indexk(Mk) ≤ I,

for some fixed constants Λ ∈ R, I ∈ N independent of k. Then up
to subsequence, there exists a closed connected and embedded minimal
hypersurface M ⊂ (N, g) where Mk → M in the varifold sense with

Hn(M) ≤ Λ < ∞ and index(M) ≤ I.

We have that the convergence is smooth and graphical for all x ∈ M\Y
where Y = {yi}Ki=1 ⊂ M is a finite set with K ≤ I and the following
dichotomy holds:
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• if the number of leaves in the convergence is one then Y = ∅, i.e.,
the convergence is smooth and graphical everywhere

• if the number of sheets is ≥ 2
– if N has RicN > 0 then M cannot be one-sided
– if M is two-sided then M is stable.

Clearly then we recover Corollary 2.6 in the case of changing back-
ground metrics:

Corollary A.7. Let Nn+1 be a closed Riemannian manifold with
RicN > 0 and 2 ≤ n ≤ 6. Denote by M

n
k (N) the class of closed,

smooth, and embedded minimal hypersurfaces M ⊂ (N, gk). Then given
any 0 < Λ < ∞, I ∈ N and any sequence Mk ∈ M

n
k with Hn(Mk) ≤

Λ and indexk(Mk) ≤ I then there exists some M ∈ M
n(N) such

that (up to subsequence) Mk → M in the Ck topology for all k ≥ 2
with single-sheeted graphical convergence. Moreover, Hn(M) ≤ Λ and
index(M) ≤ I.
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