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MINIMAL HYPERSURFACES OF LEAST AREA

Laurent Mazet & Harold Rosenberg

Abstract

In this paper, we study closed embedded minimal hypersurfaces
in a Riemannian (n+1)-manifold (2 ≤ n ≤ 6) that minimize area
among such hypersurfaces. We show they exist and arise either
by minimization techniques or by min–max methods: they have
index at most 1. We apply this to obtain a lower area bound for
such minimal surfaces in some hyperbolic 3-manifolds.

1. Introduction

A classical result in minimal hypersurfaces theory is that, in S
n+1

with the round metric, the totally geodesic equatorial Sn has least area
among minimal hypersurfaces in S

n+1. Actually, it is a consequence of
the monotonicity formula for minimal hypersurfaces in R

n+2. Another
consequence of the monotonicity formula in a general closed Riemannian
manifold M is that any closed minimal hypersurface has area at least
some positive constant depending on M (in the following all minimal
hypersurfaces are assumed to be closed). So one can ask to precise this
constant or to find a minimal hypersurface of least area among minimal
hypersurfaces in M .

One way to understand this question is to look at how minimal hyper-
surfaces can be constructed as critical points of the area functional in a
closed Riemannian (n+1)-manifold M . If S is some closed hypersurface
in M non-vanishing in homology, geometric measure theory [9] tells us
that the area can be minimized in the homology class of S to produce
a closed embedded minimal hypersurface Σ in M which minimizes the
area. Actually, Σ is a smooth hypersurface outside some singular subset
of Hausdorff dimension less than or equal to n− 7. This approach pro-
duces minimal hypersurfaces that are stable, i.e., the Jacobi operator
on Σ has index 0.

If the homology group Hn(M) vanishes, for example M = S
n+1,

the above idea cannot be applied. Almgren and Pitts [1, 24] then
developed a min–max approach to construct minimal hypersurfaces in
such a manifold M . They prove that the fundamental class [M ] ∈
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Hn+1(M) is associated to a particular positive number WM called the
width of the manifold. Then this number is realized as the area of
some particular minimal hypersurface (maybe with multiplicities); this
minimal hypersurface is called a min–max hypersurface associated to
the fundamental class [M ]. Pitts proved the result when 2 ≤ n ≤ 5,
it was extended by Schoen and Simon [27] later to higher values of
n. Here also, the minimal hypersurface may have a singular subset of
Hausdorff dimension less than or equal to n−7. As a consequence, there
always exists a smooth minimal hypersurface in M if 2 ≤ n ≤ 6. This
min–max approach works with one parameter families of hypersurfaces
called sweep-outs, so the min–max hypersurface is expected to have
index at most 1. For example, all such min–max hypersurfaces in the
round S

n+1 are the equatorial Sn. Indeed, the monotonicity formula
tells that any minimal hypersurface has area at least the one of the
equatorial Sn but, looking at the sweep-out (see definitions in Section 3)
t �→ {x = (x1, . . . , xn+2) ∈ S

n+1|xn+2 = 2t − 1}, we see that WSn+1 is
at most the area of an equatorial Sn (see also pages 213–214 in [18]);
hence equal to the area of an equatorial Sn.

Coming back to the question of finding a minimal hypersurface of
least area among minimal hypersurfaces, the main result of our paper
mainly says that such a hypersurface exists and can be constructed by
one of the above approaches. To be more precise, we take into account
the possible non-orientability of hypersurfaces: let O be the collection of
all smooth orientable connected closed embedded minimal hypersurfaces
in M and U be the collection of the non-orientable ones. If 2 ≤ n ≤ 6,
we know that at least one of them is non-empty. We then define

A1(M) = inf({|Σ|, Σ ∈ O} ∪ {2|Σ|, Σ ∈ U}),
where | · | denotes the area. The non-orientable hypersurfaces are cho-
sen to be counted twice since, in several constructions, non-orientable
minimal hypersurfaces appear with multiplicity 2. So our main theorem
can be stated as follows:

Theorem A. Let M be an oriented closed Riemannian (n + 1)-
manifold (2 ≤ n ≤ 6). Then A1(M) is equal to one of the following
possibilities:

1) |Σ| where Σ ∈ O is a min–max hypersurface of M associated to
the fundamental class of Hn+1(M) and has index 1.

2) |Σ| where Σ ∈ O is stable.
3) 2|Σ| where Σ ∈ U is stable and its orientable 2-sheeted cover has

index 0 or 1; if the index is 1, 2|Σ| = WM .

Moreover, if Σ ∈ O satisfies |Σ| = A1(M), then Σ is of type 1 or 2
and if Σ ∈ U satisfies 2|Σ| = A1(M), then Σ is of type 3.

So the theorem says that A1(M) is realized, moreover, it character-
izes all minimal hypersurfaces that realize A1(M). Let us first notice
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that the restriction on the dimension is the classical restriction about
the regularity for minimal hypersurfaces in high dimensions. The main
property of the hypersurface Σ is expressed in terms of the index of its
Jacobi operator: it is 0 (stable case) or 1. One consequence of the above
theorem is the following corollary:

Corollary 1. Let M be an oriented closed Riemannian (n + 1)-
manifold (2 ≤ n ≤ 6). Then there exists a closed embedded minimal
hypersurface of index 0 or 1. If there are no stable hypersurfaces in
M then there is an index one embedded min–max minimal hypersurface
that realizes WM .

If M has positive Ricci curvature, it is known that there is no stable
orientable minimal hypersurface. So, in that case, the above theorem is
similar to the main result obtained in [32] where Zhou characterizes the
min–max hypersurface in the positive Ricci case. Actually, the estimate
on the index of the double cover in the non-orientable case does not
appear in the work of Zhou. For the rest, the proof of our result is
based on similar ideas to the work of Zhou.

Of course, it would be interesting to say more about the hypersur-
face that appears in Theorem A, for example about its topology. In
dimension 3 (n = 2), we are able to give some improvements to our
main results. In fact, we prove that in the index 1 case for type 1 and
3 surfaces, the genus of the surface Σ cannot be too small and is con-
trolled by the Heegaard genus of the ambient manifold M ; this will be
Theorem B. In [16], Marques and Neves look also for control on the
genus of index 1 minimal surfaces. In fact, finding upper bounds for the
genus of min–max surfaces was first present in the work of Smith [30]
about the existence of minimal 2-spheres in Riemannian 3-spheres and
has received major contributions by De Lellis and Pellandini [6] and
Ketover [13].

Actually, sometimes, index and genus can be combined to estimate
the area of a minimal surface (see [16] for an example). So one conse-
quence of our improvement is that we can give a lower bound for the
area of minimal surfaces in hyperbolic 3-manifolds.

Theorem C. Let M be a closed orientable hyperbolic 3-manifold.
If the Heegaard genus of M is at least 7 then A1(M) ≥ 2π. In other
words, any orientable minimal surface in M has area at least 2π and
any non-orientable minimal surface has area at least π.

Let us notice that, in the above result, if M does not have any non-
orientable surface, we need only assume that the Heegard genus is at
least 6. In fact, after this paper was made public, Ketover, Marques
and Neves obtained results concerning the index and the multiplicity
of some min–max hypersurface. The main point is that the arguments
in the proof of Theorems 3.5 and 4.1 in [14] imply that, in the last
possibility of Theorem A, the orientable 2-sheeted cover has index 0.
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As a consequence, Theorem C is true if we only assume the Heegaard
genus us at least 6.

To prove Theorem A, one idea would be to consider a minimizing
sequence and use some compactness result for minimal hypersurfaces
to get some limit hypersurface. The main default with this approach
is that a priori the eventual limit need not be a smooth hypersurface.
However, this minimization argument can be done among stable mini-
mal hypersurfaces to produce a stable minimal hypersurface with least
area. So we can construct a stable minimal hypersurface that realizes
AS(M) where AS(M) is defined as A1(M) but with an infimum com-
puted only among stable minimal hypersurfaces. If A1(M) = AS(M),
this almost gives the proof of the main theorem.

In fact, the proof of Theorem A mainly consists in proving that
A1(M) = min(WM ,AS(M)). So we need to understand minimal hy-
persurfaces Σ with area less than AS(M). Actually, we prove that Σ
can be seen as a leaf of maximal area of some sweep-out of the mani-
fold M . As a consequence, this implies that the area of the min–max
hypersurface constructed by Pitts is less than the area of Σ so this min–
max hypersurface has to realize A1(M). The proof of the existence of
the above sweep-out uses another point of view about min–max theory
for minimal hypersurfaces which is developed by Colding, De Lellis and
Tasnady [4, 7].

Actually, the questions we look at in this paper can be generalized.
Consider the space M = O ∪ U of closed embedded minimal hypersur-
faces on a manifold M . Let A :M→ R

+ be the area function. What
are the properties of A? Is the image of A infinite? More generally,
is A always unbounded? An affirmative reply to either question would
answer a question of Yau concerning the existence of an infinite number
of minimal hypersurfaces. In this paper we discussed A1(M), the min-
imum of A. In general the values of A are difficult to understand. For
example, when M is the standard 3-sphere, we know that A1(M) = 4π.
The next value of A is 2π2, the area of the Clifford torus. This is very
difficult to prove and is an important part of the solution of the Will-
more conjecture by Marques and Neves [17]. Let us also notice that
there is a gap in the values of A after 2π2. Indeed, if a sequence of min-
imal surfaces in S

3 has area converging to 2π2 then the same argument
as in Appendix A of [17] implies that, up to a subsequence, it converges
smoothly to a minimal surface of area 2π2, a Clifford torus by Theo-
rem B in [17]. This means the sequence is made of minimal tori after
a certain rank so they are Clifford tori and have area 2π2 by the proof
of the Lawson conjecture [2]. After the area 2π2, one has the Lawson
examples that are genus g surfaces inM whose areas converge to 8π as
g → ∞. One can see these surfaces (as g → ∞) as desingularizing two
orthogonal geodesic 2-spheres along their intersection.
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Actually, we do not believe 8π can be realized as the area of a minimal
surface. Do the areas of closed embedded minimal surfaces of S3 form
a discrete set of real numbers?

By desingularizing k geodesic 2-spheres meeting along a common ge-
odesic at equal angles, one obtains surfaces inM whose areas converge
to 4πk.

For anyM of dimension 3, one can consider the surfaces inM of genus
at most g (there may not be any) and try to calculate the minimum
Ag(M) of A on these surfaces. Ag(M) is realized (provided some genus
g surface exists in M). The behavior of Ag(M) would be interesting to
understand.

As an example, what are these quantities for the space M = S
2× S

1,
S
2 the unit 2-sphere and S

1 the circle of length � ?
We also notice that Theorem A does not solve the following question:

if (Σn)n is a sequence of minimal hypersurfaces whose areas converge to
A1(M), do we have convergence of (Σn)n to one of the smooth hyper-
surfaces of Theorem A?

This article is organized as follow. In Section 2, we recall some classi-
cal definitions about the index of minimal hypersurfaces. In Section 3,
we give a quick presentation of the min–max theories of Colding, De
Lellis and Tasnady (the continuous setting) and of Almgren and Pitts
(the discrete setting).

Section 4 is devoted to the minimization among stable hypersurfaces,
we defineAS(M) and prove that it is realized. In Section 5, we construct
the sweep-out associated to a minimal hypersurface with area less than
AS(M). Finally, the proof of the main theorem is given in Section 6.

From Section 7, we look at the dimension 3 case; in Section 7, we im-
prove Theorem A to obtain some control of the topology of the surface.
This result is then applied in Section 8 to give a lower bound for the
area of minimal surfaces in hyperbolic 3-manifolds.

Our work is strongly influenced by the paper of Marques and Neves
[16]. Indeed, at a recent meeting, when we told Fernando C. Marques
about our work, he returned the next day with the ideas we had used
to prove A1(M) is realized.

2. Minimal hypersurfaces

In this section, we give some definitions and recall some basic facts
about minimal hypersurfaces.

In this paper, we look at hypersurfaces Σ in a certain Riemannian
(n+ 1)-manifold M . All along the paper, M will be orientable. If it is
not precised, all hypersurfaces are assumed to be embedded.

2.1. Minimal hypersurfaces. Minimal hypersurfaces in M are those
with vanishing mean curvature vector, they appear as critical points of
the area functional for hypersurfaces.
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In the following, we will denote by O the collection of all orientable
minimal hypersurfaces and by U the collection of all non-orientable ones.

As in the introduction, we define

A1(M) = inf({|Σ|,Σ ∈ O} ∪ {2|Σ|,Σ ∈ U}).
2.2. The stability operator. Minimal hypersurfaces are critical points
of the area functional on hypersurfaces. The study of the second de-
rivative of the area functional on such a critical point is given by the
stability operator.

Let Σ be a minimal hypersurface in an orientable Riemannian (n+1)-
manifold M . The stability operator is a quadratic differential form
acting on sections of the normal bundle NΣ to Σ. If ξ ∈ Γ(NΣ) is such
a section, we have

QΣ(ξ, ξ) =

∫
Σ
‖∇⊥ξ‖2 − RicM (ξ, ξ)− ‖A‖2‖ξ‖2dvolΣ,

where ∇⊥ is the normal connection on NΣ coming from the Levi-Civita
connection on M , RicM is the Ricci curvature tensor on M and ‖A‖ is
the norm of the second fundamental form on Σ.

A minimal hypersurface is called stable if Q is non-negative. This
means that Σ is a minimum of order 2 for the area functional. The
index of Σ is the maximal dimension of linear subspaces E of Γ(NΣ)
such that Q is negative definite on E.

If Σ is 2-sided, i.e., NΣ is a trivial line bundle, there is a unit normal
vector field ν along Σ so any section ξ can be written as ξ = uν where
u is a function. Thus, the stability operator becomes an operator on
functions

QΣ(u, u) =

∫
Σ
‖∇u‖2−(RicM (ν, ν)+‖A‖2)u2dvolΣ = −

∫
Σ
uLΣu dvolΣ,

where LΣu = Δu + (RicM (ν, ν) + ‖A‖2)u is called the Jacobi operator
on Σ.

If Σ is a closed minimal hypersurface, −LΣ has a discrete spectrum
λ1 < λ2 ≤ · · · . The index of Σ is then the number of negative eigenval-
ues of −LΣ.

If Σ is orientable, Σ is 2-sided since M is orientable and the above
description applies. If Σ is non-orientable, Σ is not 2-sided but we can

consider π : Σ̃→ Σ the orientable double cover of Σ. The map π defines

a minimal immersion of Σ̃ in M which is 2-sided so the Jacobi operator
L

˜Σ
is defined. The covering map π comes with a unique non-trivial deck

transformation σ which is an involution. If ν is a unit normal vector
field along Σ̃ we have ν◦σ = −ν. So sections of NΣ correspond to σ-odd

functions on Σ̃ and σ-even functions on Σ̃ correspond to functions on

Σ. We also notice that, for a function u on Σ̃, L
˜Σ
(u ◦ σ) = (L

˜Σ
u) ◦ σ.

Thus the hypersurface Σ is stable if and only if Q
˜Σ
is non-negative on
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σ-odd functions. As another consequence, if Σ is stable and u is an
eigenfunction of −L

˜Σ
with a negative eigenvalue, u is σ-even.

3. Preliminaries about min–max theory

In this paper, we will use several times the min–max approach to
construct minimal hypersurfaces. There are two major settings for the
min–max theory: the discrete setting which is due to Almgren and Pitts
[24] and the continuous setting due to Colding, De Lellis [4] and De
Lellis, Tasnady [7]. Both settings have their own interest, the continuous
setting is easier to consider for some geometric considerations and the
discrete setting is more linked to the topology of the ambient space.

Good introductions to both settings can be found in several papers
(see [4, 7, 17, 32]). So here, we only summarize facts that we will really
use.

Let M be a compact Riemannian (n + 1)-manifold with or without
boundary. Hk will denote the k-dimensional Hausdorff measure and,
when Σ is an n-dimensional submanifold, we use the following notation
|Σ| = Hn(Σ) and we say that |Σ| is the area of Σ even if it has dimension
larger than 2. If Σ is an immersed hypersurface, we also use |Σ| to
compute its volume which could be different from the Hn-measure of
its image in M .

3.1. The continuous setting. Let us recall some definitions and re-
sults from the papers of De Lellis and Tasnady [7] and Zhou [32]. First
let us define what kind of family of hypersurfaces we will consider.

Definition 2. A family {Γt}t∈[a,b] of closed subsets of M with finite
Hn-measure is called a generalized smooth family if

(s1) For each t there is a finite set Pt ⊂ M such that Γt \ Pt is either
a smooth hypersurface in M \ Pt or the empty set;

(s2) Hn(Γt) depends continuously on t and t �→ Γt is continuous in the
Hausdorff sense;

(s3) on any U ⊂⊂M \ Pt0 , Γt
t→t0−−−→ Γt0 smoothly in U .

Now let us define the continuous sweep-outs for ambient manifolds
with or without boundary.

Definition 3. Let M be a closed manifold. A generalized smooth
family {Γt}t∈[a,b] is a continuous sweep-out of M if there exists a family
{Ωt}t∈[a,b] of open subsets of M such that

(sw1) (Γt \ ∂Ωt) ⊂ Pt for any t;
(sw2) Hn+1(ΩtΩs) → 0 as t → s (where  denotes the symmetric

difference of subsets);
(sw3) Ωa = ∅ and Ωb = M ;

Definition 4. Let M be a compact manifold with non-empty bound-
ary. A generalized smooth family {Γt}t∈[a,b] is a continuous sweep-out
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of M if there exists a family {Ωt}t∈[a,b] of open subsets of M satisfying
(sw2) and

(sw0’) ∂M ⊂ Ωt for t > a;
(sw1’) (Γt \ ∂∗Ωt) ⊂ Pt for any t > a where ∂∗Ωt = ∂Ωt \ ∂M ;
(sw3’) Ωa = ∅, Ωb = M and there are ε > 0 and a smooth function

w : [0, ε]×∂M → R with w(0, p) = 0 and ∂tw(0, p) > 0 such that

Γa+t = {expp(w(t, p)ν(p)), p ∈ ∂M},
for t ∈ [0, ε] and ν the inward unit normal to ∂M .

For a continuous sweep-out as above {Γt}t∈[a,b], we define the quantity
L(Γt) = maxt∈[a,b] |Γt|.

Two continuous sweep-outs {Γ1
t }t∈[a,b] and {Γ2

t }t∈[a,b] are said to be
homotopic if, informally, they can be continuously deformed one to the
other (the precise definitions are Definition 0.6 in [7] and Definition 2.5
in [32]). Then a family Λ of sweep-outs is called homotopically closed if
it contains the homotopy class of each of its elements. For such a family
Λ, we can define the width associated to Λ as

W (Λ) = inf
{Γt}∈Λ

L({Γt}).
We notice that when M has no boundary, W (Λ) > 0 for any Λ (see

Proposition 0.5 in [7]).
If Λ is a homotopically closed family of sweep-outs and the sequence

({Γk
t }t)k∈N of sweep-outs is such that L({Γk

t }t) −−−→
k→∞

W (Λ), a min–max

sequence is a sequence (Γk
tk
) (or a subsequence of this sequence) such

that |Γk
tk
| −−−→

k→∞
W (Λ). The main existence-result about the min–max

theory in this setting is (see Theorem 0.7 [7] and Theorem 2.7 [32])

Theorem 5 (De Lellis, Tasnady [7], Zhou [32]). Let M be a compact
Riemannian (n + 1)-manifold (2 ≤ n ≤ 6). Let Λ be a homotopically
closed family of continuous sweep-outs of M . If M has no boundary,
there is a min–max sequence that converges (in the varifold sense) to
an integral varifold whose support is a finite collection of embedded con-
nected disjoint minimal hypersurfaces of M . As a consequence

W (Λ) =

p∑
i=1

ni|Si|,

where ∪p
i=1Si is the support of the limit varifold.

If M has boundary, the same result is true if we assume that the
mean curvature vector of ∂M does not vanish and points into M and
W (Λ) > |∂M |.

We refer to [29] for the definition of the convergence in the varifold
sense.
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Remark 1. One consequence of this result that we will use is that if
we have some continuous sweep-out {Γt}t of M (∂M = ∅) then there is
some connected minimal hypersurface S in M with |S| ≤ L({Γt}).
3.2. The discrete setting. Here we recall some aspects of the Alm-
gren–Pitts min–max theory which deals with discrete families of ele-
ments of Zn(M), i.e., integral rectifiable n-currents inM with no bound-
ary. For definitions about currents, we refer to [9, 29].

If I = [0, 1], we first introduce some cell complex structure on I
and I2.

Definition 6. Let j be an integer, we define I(1, j) to be the cell
complex of I, whose 0-cells are the points [ i

3j
] for i = 0, . . . , 3j and the

1-cells are the intervals [ i
3j
, i+1

3j
] for i = 0, . . . , 3j − 1.

We also define a cell complex I(2, j) on I2 by I(2, j) = I(1, j)⊗I(1, j).
Similarly I(m, j) can be defined on Im.

Let us introduce some notations about these cell complexes

• I0(1, j) denotes the set of the boundary 0-cells {[0], [1]}.
• I(m, j)0 denotes the set of 0-cells of I(m, j).
• The distance between two elements of I(m, j)0 is

d : I(m, j)0 × I(m, j)0 → N ; (x, y) �→ 3j
m∑
i=1

|xi − yi|.

• The projection map n(i, j) : I(m, i)0 → I(m, j)0 is defined such
that n(i, j)(x) is the unique element in I(m, j)0 such that

d(x, n(i, j)(x)) = inf{d(x, y), y ∈ I(1, j)0}.
We are going to look at maps ϕ : I(m, j)0 → Zn(M). For such a map

ϕ, we define its fineness by

f(ϕ) = sup

{
M(ϕ(x)− ϕ(y))

d(x, y)
, x, y ∈ I(m, j)0 and x �= y

}
,

where M denotes the mass of a current.
When we write ϕ : I(1, j)0 → (Zn(M), {0}), we mean ϕ(I(1, j)0) ⊂

Zn(M) and ϕ(I0(1, j)) = {0}.
Definition 7. Let δ be a positive real number and ϕi : I(1, ki)0 →

(Zn(M), {0}), i = 1, 2. We say that ϕ1 and ϕ2 are 1-homotopic in
(Zn(M), {0}) with fineness δ if there are k3 ∈ N, k3 ≥ max(k1, k2), and
a map

ψ : I(2, k3)0 → Zn(M),

such that

• f(ψ) ≤ δ;
• ψ([i− 1], x) = ϕi(n(k3, ki)(x)) for all x ∈ I(1, k3)0;
• ψ(I(1, k3)0 × {[0], [1]}) = 0.
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Let us now define the equivalent of generalized smooth family in the
discrete setting.

Definition 8. A (1,M)-homotopy sequence of maps into (Zn(M),
{0}) is a sequence of maps {ϕi}i∈N,

ϕi : I(1, ki)0 → (Zn(M), {0}),
such that ϕi is 1-homotopic to ϕi+1 in (Zn(M), {0}) with fineness δi
and

• limi→∞ δi = 0;
• supi{M(ϕi(x)), x ∈ I(1, ki)0} < +∞.

As in the continuous setting, two (1,M)-homotopy sequences can be
said to be homotopic and this defines an equivalence relation (see Sec-
tion 4.1 in [24] or Definition 4.4 in [32]). The set of all equivalence

classes is denoted by π#
1 (Zn(M),M, {0}). One of the main results of

the Almgren–Pitts theory says that π#
1 (Zn(M),M, {0}) is naturally iso-

morphic to the homology group Hn+1(M,Z) (Theorem 4.6 in [24], see
also [1]).

If S = {ϕi}i is a (1,M)-homotopy sequence, we define the quantity

L(S) = lim sup
i→∞

max{M(ϕi(x)), x ∈ I(1, ki)0}.

Now, if Π ∈ π#
1 (Zn(M),M, {0}) is an equivalence class, we can define

the width associated to Π by

W (Π) = inf{L(S), S ∈ Π}.
The class that corresponds to the fundamental class in Hn+1(M) by the
Almgren–Pitts isomorphism is denoted ΠM . If S = {ϕi}i ∈ ΠM , we say
that S is a discrete sweep-out of M . The width W (ΠM ) is denoted by
WM and is called the width of the manifold M .

The theory tells us that there is S ∈ ΠM such that L(S) = W (ΠM ) =
WM . If S = {ϕi}i, we then say that ϕij (xj) is a min–max sequence
(xj ∈ I(1, kij ) ) if M(ϕij (xj)) → WM . The min–max theorem of the
Almgren–Pitts theory says the following (see [24] for n ≤ 5 and [27] for
n = 6):

Theorem 9 (Pitts [24], Schoen–Simon [27]). Let M be a closed
Riemannian (n+1)-manifold (2 ≤ n ≤ 6). There is an S = {ϕi}i ∈ ΠM

with L(S) = WM and a min–max sequence {ϕij (xj)}j that converges
(in the varifold sense) to an integral varifold whose support is a finite
collection of embedded connected disjoint minimal hypersurfaces of M .
As a consequence

WM =

p∑
i=1

ni|Si|,

where ∪p
i=1Si is the support of the limit varifold.
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A limit varifold as in the above theorem will be called a min–max var-
ifold associated to the fundamental class of Hn+1(M) and by extension
we say that its support is a min–max minimal hypersurface associated
to the fundamental class of Hn+1(M).

Remark 2. In [32], Zhou gives some precisions about the multi-
plicities that appear in the above theorem. He proved that if Si is a
non-orientable minimal hypersurface then its multiplicity ni has to be
even (Proposition 6.1 in [32]).

3.3. From continuous to discrete. It is easy to construct a continu-
ous sweep-out of a manifold: we can just look at the level sets of a Morse
function on the manifold M . The construction of a discrete sweep-out
is not as clear even if the Almgren–Pitts isomorphism tells us that they
exist.

In order to make a link between continuous and discrete sweep-outs,
we use the following result (see Theorem 13.1 in [17] and Theorems 5.5
and 5.8 in [32]):

Theorem 10. Let {Ωt}t∈[a,b] be a family of open subsets of M satis-
fying (sw2), (sw3) and

• Φ(t) = ∂[Ωt] ∈ Zn(M);
• sup {M(Φ(t)), t ∈ [a, b]} < +∞;
• m(Φ, r) = sup{‖Φ(t)‖B(p, r), p ∈ M and t ∈ [a, b]} → 0 as r → 0
where B(p, r) is the geodesic ball of M of center p and radius r
and ‖ · ‖ denote the Radon measure on M associated to a current.

Then there is a (1,M)-homotopy sequence S ∈ ΠM such that

L(S) ≤ sup {M(Φ(t)), t ∈ [a, b]}.
Remark 3. Actually, the estimate on L(S) comes from a much

stronger property of the construction. Let Φ̃(t) = Φ(a + t(b − a)).
The (1,M) homotopy sequence S = {ϕi}i∈N has the following property:
there are sequences δi → 0 and li →∞ such that
(1)

M(ϕi(x)) ≤ sup{M(Φ̃(y)), x, y ∈ α for some 1-cell α ∈ I(1, li)}+ δi.

Another property of S is that F(ϕi(x) − Φ̃(x)) ≤ δi for any x ∈
I(1, ki)0 where F is the flat norm on the space of currents and ϕi :
I(1, ki)0 → Zn(M).

Remark 4. The hypothesis aboutm(Φ, r) is a no concentration prop-
erty of the family {Φ(t)}t. Actually, the above theorem is used to pro-
duce discrete sweep-outs from continuous ones. This can be done since
the hypotheses on m(Φ, r) is satisfied if Φ(t) = [Γt] where {Γt}t is a
continuous sweep-out (see Proposition 5.1 in [32]).
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4. Stable minimal hypersurfaces

Among all minimal hypersurfaces, the stable ones play an important
role since they appear when certain minimization arguments are done
among some class of hypersurfaces. As a consequence, they are natural
candidates for a minimal hypersurface with least area.

In this section, we study these minimization arguments and look at
a stable minimal hypersurface with least area.

4.1. Non-separating hypersurfaces. We first look at hypersurfaces
that do not separate M in two connected components.

Proposition 11. Let M be a compact Riemannian (n+1)-manifold
(2 ≤ n ≤ 6) with mean-convex boundary (i.e., non-outward pointing
mean curvature vector). Let Σ be an oriented hypersurface in M that
is not homologous to 0. Then there is a connected orientable stable
minimal hypersurface Σ′ which is non-vanishing in homology and such
that |Σ′| ≤ |Σ|. Moreover, if Σ is not a stable minimal hypersurface
then |Σ′| < |Σ|.

Typically, this proposition will be applied to non-separating hyper-
surfaces.

Proof. Σ represents a non-vanishing homology class in Hn(M,Z). In
terms of geometric measure theory, Σ can be seen as an integral n-cycle
[Σ]. We can then minimize the mass among all integral cycles in the
homology class of [Σ] (see 5.1.6 in [9]). This produces an integral cycle
homologous to [Σ] whose support is made of several smooth connected
orientable stable minimal hypersurfaces (see 5.4.15 in [9] or [29]). Since
[Σ] �= 0, there is one connected component Σ′ of this support that does
not vanish in homology, this component satisfies the properties of the
above proposition.

If Σ is not a stable minimal hypersurface, it is clear that there are
hypersurfaces homologous to Σ with area strictly less that |Σ|; so |Σ′| <
|Σ|. q.e.d.

Let us fix a definition.

Definition 12. Let N and M be two n-manifolds with boundary
and ϕ : N → M a smooth map. ϕ is said to be locally invertible if, for
any point p in N , dϕ(p) is invertible and there is a neighborhood V of p
in N such that ϕ is bijective from V to ϕ(V ) with smooth inverse map.

This definition mainly deals with properties of the map at boundary
points of N : for example, boundary points of N are not necessarily
sent to boundary points of M . The inclusion [−1, 1] ↪→ [−2, 2] is lo-
cally invertible, the map [−π, π] → S

1; t �→ (cos t, sin t) is also locally
invertible.
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Proposition 13. Let Σ be a connected closed oriented non-separating
hypersurface in the interior of a manifold M with boundary. Then there

is a manifold M̃ with boundary with two particular boundary components

Σ1 and Σ2 and a locally invertible smooth map ϕ : M̃ → M such that

ϕ : M̃ \ (Σ1 ∪ Σ2) → M \ Σ is a diffeomorphism and for i = 1, 2
ϕ : Σi → Σ is a diffeomorphism.

Proof. Let us fix some complete Riemannian metric on M . Let ν be
some unit normal vector field along Σ. The map Φ : Σ × (−2ε, 2ε) →
M ; (p, t) �→ expp(tν(p)) is a diffeomorphism on its image for small ε.

Let ε be so. Let Mε be M \ Φ(Σ × [−ε, ε]). We then define M̃ as the
quotient of the disjoint union of Mε, Σ × [0, 2ε) and Σ × (−2ε, 0] by
the identifications (p, t) � Φ(p, t) ∈ Mε for (p, t) in Σ × (−2ε,−ε) or
Σ× (ε, 2ε).

The map ϕ is then defined as the identity on Mε and by Φ on Σ ×
(−2ε, 0] and Σ× [0, 2ε). Σ1 and Σ2 are the two copies of Σ× {0}. The
map ϕ clearly satisfies the expected properties. q.e.d.

In the following, we will say that M̃ is obtained by opening M along
Σ. In general, there will be a metric on M so we always lift this metric

to M̃ so that ϕ is a local isometry.

4.2. Non-orientable hypersurfaces. In this section, we look at the
area of non-orientable minimal hypersurfaces in M .

Proposition 14. Let M be a closed orientable Riemannian (n+ 1)-
manifold (2 ≤ n ≤ 6) with mean-convex boundary. Let Σ be a non-
orientable hypersurface in M . Then there is a connected stable minimal
hypersurface Σ′ such that |Σ′| ≤ |Σ|. Moreover, if Σ is not a stable
minimal hypersurface then |Σ′| < |Σ|.

Proof. Since M is orientable and Σ is non-orientable, Σ is not 2-
sided. Thus Σ represents a non-vanishing element in Hn(M,Z/2Z).
In the geometric measure theory setting, Σ can also be seen as a flat
chain modulo 2 denoted [Σ] (see 4.2.26 in [9]). We can then minimize
the mass among all flat chains modulo 2 that are homologous to [Σ].
We then get a flat chain T modulo 2 which is homologous to [Σ] and
minimizes the mass. The support of T is then made of a finite union of
disjoint smooth minimal hypersurfaces (the regularity theory for area-
minimizing flat chains modulo 2 can be found in [21] Corollary 2.5 and
Remark 1; it uses also Lemma 4.2 in [20]). Let Σ′ be one of these
minimal hypersurfaces; it could be orientable or not but in both cases
the area-minimizing property of T implies that Σ′ is stable.

If Σ is not a stable minimal hypersurface, it is clear that there is a hy-
persurface homologous to Σ with area strictly less that |Σ|; so |Σ′| < |Σ|.

q.e.d.
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As in the preceding section, we can open a manifold along a non-
orientable hypersurface.

Proposition 15. Let Σ be a connected closed non-orientable hyper-
surface in the interior of a manifold M with boundary. Then there is a

manifold M̃ with boundary with a particular boundary component Σ̃ and

a locally invertible smooth map ϕ : M̃ →M such that ϕ : M̃ \Σ̃→M \Σ
is a diffeomorphism and ϕ : Σ̃→ Σ is an orientable double cover of Σ.

The proof is similar to the orientable case (Proposition 13, see also
Proposition 3.7 in [32]).

Proof. As in the preceding subsection, we consider a complete metric

on M . Let π : Σ̃ → Σ be an orientable double cover of Σ and let σ
be the non-trivial deck transformation of π. π defines an immersion of
Σ̃ to M so we can consider ν a unit normal vector field along Σ̃ we

have ν(σ(p)) = −ν(p). Let us consider the map Φ : Σ̃ × [0, 2ε) → M :
(p, t) �→ expπ(p)(tν(p)). We can chose ε so that Φ is a diffeomorphism

from Σ̃×(0, 2ε) to a tubular 2ε-neighborhood of Σ with Σ removed. Let

Mε be M \Φ(Σ̃×[0, ε]). We then define M̃ as the quotient of the disjoint

union of Mε and Σ̃× [0, 2ε) by the identifications (p, t) � Φ(p, t) ∈ Mε

for (p, t) in Σ̃× (ε, 2ε).

The map ϕ is then defined as the identity on Mε and by Φ on Σ̃ ×
[0, 2ε). The map ϕ clearly satisfies the expected properties. q.e.d.

As an example, if M is RP 3 and Σ is an equatorial RP 2 then M̃ is a

hemisphere of S3 bounded by an equator Σ̃.

4.3. The number AS . Let M be a compact orientable Riemannian
(n + 1)-manifold with mean convex boundary (2 ≤ n ≤ 6). If M
contains a non-orientable or non-separating hypersurface then Proposi-
tions 11 and 14 give the existence of some stable minimal hypersurface
in M . So let us assume that M contains some stable minimal hypersur-
face, we define OS the collection of connected orientable stable minimal
hypersurfaces and US the collection of connected non-orientable stable
minimal hypersurfaces. We then define

AS(M) = inf({|Σ|,Σ ∈ OS} ∪ {2|Σ|,Σ ∈ US}).
This number is the “least area” of stable minimal hypersurfaces in M .
If OS ∪ US = ∅, AS(M) = +∞.

The main result of this section is that this number is realized.

Proposition 16. The number AS(M) is realized if it is finite: either
there exists Σ ∈ OS such that |Σ| = AS(M) or Σ ∈ US such that
2|Σ| = AS(M).
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Proof. We can assume that there exists a sequence (Σn)n∈N in OS
(or in US) such that |Σn| → AS(M) (or 2|Σn| → AS(M)).

If the sequence is in OS , this is a sequence of stable minimal hyper-
surfaces whose areas are uniformly bounded. By compactness results
as Theorem 1.3 in [7] (see also [27]), a subsequence (Σni) converges
as varifolds to a minimal hypersurface Σ and, locally, (Σni) converges
smoothly as a multi-graph in the tubular neighborhood of Σ. As Σn is
orientable and embedded, this implies that Σn is an entire graph over Σ
if Σ is orientable or an entire two-sheeted graph if Σ is non-orientable.
In the first case |Σ| = lim |Σn| = AS(M) and, moreover, Σ is stable. In
the second case, AS(M) ≤ 2|Σ| = lim |Σn| = AS(M), so AS(M) = 2|Σ|
and Proposition 14 implies that Σ is stable.

If the sequence is in US , we can still apply the compactness result.
Indeed, for any ball B of radius less than the injectivity radius of M ,
Σn ∩ B is orientable and stable in the 2-sided sense. In that case,
(Σn)n converges to a non-oriented stable minimal hypersurface with
multiplicity 1. We then have AS(M) ≤ 2|Σ| = lim2|Σn| = AS(M), so
AS(M) = 2|Σ|. q.e.d.

5. Minimal hypersurfaces with area less than AS(M)

In this section, we study minimal hypersurfaces whose areas are less
than AS(M). Actually, we are going to prove that such a minimal
hypersurface can be seen as the leaf of maximal area in some continuous
sweep-out of the ambient manifold M .

Let Σ be a minimal hypersurface in M . If Σ is oriented and |Σ| <
AS(M), Proposition 11 tells us that Σ separates M and it is unstable.
If Σ is non-orientable, Proposition 14 implies that 2|Σ| ≥ AS(M). So
we are going to look at orientable, unstable, separating minimal hyper-
surfaces.

Proposition 17. Let M be a closed orientable Riemannian (n+ 1)-
manifold (2 ≤ n ≤ 6). Let Σ be a connected oriented minimal hypersur-
face which is unstable and |Σ| ≤ AS(M). Then there is a continuous
sweep-out {Σt}t∈[−1,1] of M such that Σ0 = Σ, L({Σt}) = |Σ| and, for
any ε > 0, there is δ > 0 such that |Σt| ≤ |Σ| − δ if |t| ≥ ε.

Moreover, if u1 is the first eigenfunction of the Jacobi operator on Σ
and ν is a unit normal vector field along Σ, the hypersurface Σt is given
by Φ(Σ, t) for t close to zero where

Φ : Σ× R→M ; (p, t) �→ expp(tu1(p)ν(p)).

The proof of Proposition 17 consists in gluing together two continuous
sweep-outs given by the following proposition:

Proposition 18. Let M be a compact Riemannian (n+1)-manifold
(2 ≤ n ≤ 6) with ∂M = Σ connected, minimal and unstable. Moreover,
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we assume that |Σ| ≤ AS(M). Then there is a continuous sweep-out
{Σt}t∈[0,1] of M such that L({Σt}) = |Σ| and, for any ε > 0, there is
δ > 0 such that |Σt| ≤ |Σ| − δ if t ≥ ε.

Moreover, if u1 is the first eigenfunction of the Jacobi operator on Σ
and ν is the inward unit normal vector field along Σ, the hypersurface
Σt is given by Φ(Σ, t) for t close to zero where

Φ : Σ× [0, ε]→M ; (p, t) �→ expp(tu1(p)ν(p)).

Proof. Since Σ is unstable, the first eigenvalue λ1 associated to u1 is
negative. u1 is a positive function. For ε > 0 small enough, the map
Φ : Σ× [0, ε]→M ; (p, t) �→ expp(tu1(p)ν(p)) is well defined.

We then define Σt = Φ(Σ, t) and Mt = M \Φ(Σ× [0, t)). If ε is chosen
small enough, the family {Σt}t∈[0,ε] defines a foliation of a neighborhood
of Σ and satisfies the property (sw3’). All the leaves Σt (t > 0) have
non-vanishing mean curvature vector pointing towards Mt. Also |Σt|
decreases for t close to 0 and |Σε| ≤ |Σ|−δ for some δ > 0. So in order to
construct the sweep-out announced in the proposition, it is sufficient to
construct a sweep-out {Σt}t∈[ε,1] of Mε such that L({Σt}t∈[ε,1]) ≤ |Σ| −
δ/2: indeed, we can glue such a sweep-out with the foliation {Σt}t∈[0,ε]
to produce the continuous sweep-out of M .

So let us assume by contradiction that any continuous sweep-out
{Σt}t∈[ε,1] of Mε satisfies L({Σt}t∈[ε,1]) ≥ |Σ| − δ/2 ≥ |Σε|+ δ/2. Then
the min–max theorem for manifolds with boundary (Theorem 5 or The-
orem 2.7 in [32]) implies the existence of a connected minimal hyper-
surface S in Mε. Let us now look at properties of this hypersurface S.

Claim 1. The hypersurface S is orientable.

If S is not orientable, we can consider the manifold M̃ε constructed by

openingMε along S by Proposition 15 with a map ϕ : M̃ε →Mε and the

induced metric. The boundary of M̃ε has two connected components:

one is Σ̃ε which is isometric to Σε and its mean curvature vector points

into M̃ε and the other is S̃ which is a double cover of S and is minimal.
Since S is not orientable and S̃ is a double cover, Proposition 14 gives

(2) |S̃| = 2|S| ≥ AS(M) > |Σε| = |Σ̃ε|.
Since the boundary of M̃ε is mean convex and the homology class [Σ̃ε]

is non-zero in Hn(M̃ε), Proposition 11 applies. So there is a connected

orientable stable minimal hypersurface S′ in M̃ε with area less than

|Σ̃ε| = |Σε|. S′ could be equal to S̃, but this would imply that |Σ̃ε| > |S̃|
which is not the case by (2). Thus, S′ is in the interior of M̃ε. Then
ϕ(S′) is an embedded orientable stable minimal hypersurface in Mε

with |ϕ(S′)| ≤ |Σε|. We then have the following inequalities |AS(M)| ≤
|ϕ(S′)| ≤ |Σε| ≤ |Σ| − δ ≤ |AS(M)| − δ which gives us a contradiction.
Claim 1 is proved.
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Claim 2. The hypersurface S separates Mε.

If S does not separate, Proposition 11 produces a non-separating
stable minimal hypersurface S′ in Mε (S

′ does not separate since it does
not vanish in homology and Mε has only one connected component). By

Proposition 13, we have a manifold M̃ε with three boundary components

S′
1 and S′

2 isometric to S′ and Σ̃ε isometric to Σε.
The argument is then similar to the one of Claim 1. Since the bound-

ary of M̃ε is mean convex, Proposition 11 applies to the homology class

[Σ̃ε] which is non-zero and gives a connected orientable stable minimal

hypersurface S′′ in M̃ε whose area is less than |Σ̃ε| = |Σε|. S′′ could
be equal to S′

i (i = 1, 2), but this would imply that |Σ̃ε| > |S′
i| =

|S′| ≥ AS(M) which is not the case. Thus S′′ is in the interior of

M̃ε. Then ϕ(S′′) is an embedded orientable stable minimal hypersur-
face in Mε with |ϕ(S′′)| ≤ |Σε|. We then have the following inequalities
|AS(M)| ≤ |ϕ(S′′)| ≤ |Σε| ≤ |Σ| − δ ≤ AS(M) − δ which gives us a
contradiction. Claim 2 is proved.

Thus the hypersurface S is orientable and separates; let M ′ be the
piece of Mε whose boundary is made of S and Σε. If |S| ≥ |Σε|, we
can apply Proposition 11 to produce a stable minimal hypersurface S′
in the interior of M with area less than |Σε| (we notice that S′ cannot
be equal to S since |S′| < |Σε|). We get the contradiction AS(M) ≤
|S′| < |Σε| < AS(M).

If |S| < |Σε|, we have |S| < AS(M). Thus S is unstable and we can
apply Proposition 11 to produce a stable minimal hypersurface S′ in
the interior of M with area less that |S| < |Σε| which still leads to a
contradiction as above.

So we have proved that any minimal hypersurfaces S produced by
the min–max theorem in Mε leads to a contradiction; thus there is a
continuous sweep-out as in the statement of Proposition 18. q.e.d.

Let us now give the proof of Proposition 17.

Proof of Proposition 17. Since Σ is unstable and |Σ| ≤ AS(M), Σ sep-
arates. Let M1 and M2 be the two sides of Σ in M : M = M1 ∪M2 and
M1∩M2 = Σ. Proposition 18 gives a continuous sweep-out {Σ1

t }t∈[0,1] of
M1 and a continuous sweep-out {Σ2

t }t∈[0,1] of M2. We also have families

{Ω1
t } and {Ω2

t } of open subdomains of M1 and M2.
Let us define {Σt}t∈[−1,1] and {Ωt}t∈[−1,1] by Σt = Σ1−t and Ωt =

M1 \Ω1−t if t ≤ 0 and Σt = Σ2
t and Ωt = M1 ∪Ω2

t if t ≥ 0. {Σ}t∈[−1,1] is
then a sweep-out which satisfies the properties stated in Proposition 17.

q.e.d.

A consequence of Proposition 17 is the following estimate of the width
of a manifold M :
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Proposition 19. Let M be a closed Riemannian (n + 1)-manifold
(2 ≤ n ≤ 6). Let Σ be an orientable minimal hypersurface which is
unstable and |Σ| ≤ AS(M). Then the width of M satisfies WM ≤ |Σ|.

Proof. By Proposition 17, there is a continuous sweep-out {Σt}t∈[−1,1]

of M with L({Σt}) = |Σ|. By Theorem 10, there is a discrete sweep-out
S ∈ ΠM with L(S) ≤ L({Σt}) = |Σ|. Then WM ≤ |Σ|. q.e.d.

6. Proof of Theorem A

This section is entirely devoted to the proof of Theorem A. The first
step is to prove that A1(M) is realized by some particular minimal
hypersurfaces satisfying some properties. The second step consists in
estimating the index of these particular minimal hypersurfaces. Let us
just recall Theorem A.

Theorem A. Let M be an oriented closed Riemannian (n + 1)-
manifold (2 ≤ n ≤ 6). Then A1(M) is equal to one of the following
possibilities:

1) |Σ| where Σ ∈ O is a min–max hypersurface of M associated to
the fundamental class of Hn+1(M) and has index 1.

2) |Σ| where Σ ∈ O is stable.
3) 2|Σ| where Σ ∈ U is stable and its orientable 2-sheeted cover has

index 0 or 1; if the index is 1, 2|Σ| = WM .

Moreover, if Σ ∈ O satisfies |Σ| = A1(M), then Σ is of type 1 or 2
and if Σ ∈ U satisfies 2|Σ| = A1(M), then Σ is of type 3.

So we fix some closed orientable (n+1)-manifold (2 ≤ n ≤ 6) and we
look at the number A1(M).

6.1. A1(M) is realized. In this section, we prove that A1(M) is real-
ized either by a stable minimal hypersurface or by an orientable min–
max hypersurface. We begin by a remark about the min–max hyper-
surfaces.

The Almgren–Pitts theory tells that the width WM of the manifold is
equal to

∑p
i=1 ni|Si| where S1, · · · , Sp is a finite collection of connected

minimal hypersurfaces and n1, · · · , np are integers (Theorem 9). The fol-
lowing proposition makes this writing more precise whenWM ≤ AS(M).

Proposition 20. Let us consider a writing WM =
∑p

i=1 ni|Si| given
by Theorem 9. If WM ≤ AS(M) then

• either WM = |S1| with S1 ∈ O,
• or WM = 2|S1| with S1 ∈ U .

Moreover, if WM < AS(M), the second case is not possible.

Proof. We know WM =
∑p

i=1 ni|Si|. Let us first assume that S1 is an
orientable minimal hypersurface. If S1 is stable then AS(M) ≤ |S1| ≤
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∑p
i=1 ni|Si| = WM ≤ AS(M). So we have equality in all the inequalities

and n1 = 1 and p = 1. If S1 is unstable, we have |S1| ≤ WM ≤ AS(M)
and, by Proposition 19, WM ≤ |S1| ≤

∑p
i=1 ni|Si| = WM so n1 = 1 and

p = 1.
Let us now assume that S1 is non-orientable, we then know by Propo-

sition 6.1 in [32] that n1 is at least 2. This implies that AS(M) ≤
2|S1| ≤WM ≤ AS(M) and then n1 = 2 and p = 1. q.e.d.

The proof of Theorem A consists in proving that

(3) A1(M) = min(AS(M),WM ).

Because of Propositions 16 and 20, the above inequality implies that
A1(M) is realized. So let us prove (3). By Proposition 16, AS(M) is
realized (if it is finite); so assume that AS(M) > A1(M). By Proposi-
tions 11 and 14, it means that there is some orientable unstable mini-
mal hypersurface Σ with |Σ| < AS(M). By Proposition 19, AS(M) >
|Σ| ≥WM so Proposition 20 applies and WM is realized by a connected
minimal hypersurface S. We have then proved that any minimal hy-
persurface Σ with |Σ| < AS(M) is such that |S| = WM ≤ |Σ|; so (3) is
proved.

Now let us consider a minimal hypersurface Σ that realizes A1(M)
but not of type 2 or 3, i.e., not stable. We want to prove that Σ is an
orientable min–max hypersurface. By Proposition 14, Σ is orientable.
By Proposition 17, there is a continuous sweep-out {Σt}t∈[−1,1] of M
with Σ0 = Σ and L({Σt}) = |Σ|. By Theorem 10, there is a discrete
sweep-out S = {ϕi} associated to {Σt} with L(S) ≤ L({Σt}). As a
consequence, WM ≤ L(S) ≤ L({Σt}) = |Σ| = A1(M) ≤ WM ; thus,
S realizes the width of M . So there is a min–max sequence {ϕij (xj)}
that converges in the varifold sense to a minimal hypersurface that re-
alizes the width of M . We want to prove that Σ is this limit minimal
hypersurface.

In order to use Remark 3, let us denote Φ̃(t) = Σ−1+2t. We know that

limj M(ϕij (xj)) = WM = |Σ| = M(Φ̃(1/2)). So, because of (1) and the
properties of the continuous sweep-out {Σt}t, xj → 1/2. By Remark 3,

this implies that ϕij (xj) converges to Φ̃(1/2) = Σ in the flat topology.
Since |Σ| = limj M(ϕij (xj)), this implies that we also have convergence
in the varifold sense. So Σ is the limit of a min–max sequence and then
a min–max hypersurface.

In order to finish the proof of the Theorem, we still have to control
the index of these hypersurfaces.

6.2. Index in the orientable case. Let us now prove that a type 1
hypersurface has index 1 (see also [16]).

Let Σ be an orientable unstable minimal hypersurface with |Σ| =
WM = A1(M). We want to prove that its index is at most 1. So let
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us assume it has index at least 2. We then denote by u1 and u2 the
first two eigenfunctions of the Jacobi operator on Σ. By Proposition 17,
there is a sweep-out {Σt}t∈[−1,1] of M such that Σ0 = Σ, L({Σt}) = |Σ|
and |Σt| ≤ |Σ| − δ(ε) for any |t| ≥ ε. Moreover, we have Σt = Φ(Σ, t)
for t close to 0 where

Φ : Σ× R→M ; (p, t) �→ expp(tu1(p)ν(p)).

Let us change the definition of the map Φ by adding one variable and
consider the new definition

Φ : Σ× R× R→M ; (p, t, s) �→ expp((tu1(p) + su2(p))ν(p)).

For t and s small, we define Σt,s = Φ(Σ, t, s). These are embedded
hypersurfaces living in a tubular neighborhood of Σ. The volume func-
tional A(t, s) = |Σt,s| is smooth for t, s small and its differential at (0, 0)
vanishes since Σ is minimal. Its Hessian is negative definite since u1
and u2 are associated to negative eigenvalues of the Jacobi operator on
Σ. So for ε small enough, we have A(ε sin θ, ε cos θ) ≤ |Σ|− cε2 for some
c > 0 and all θ ∈ R.

Let us define a new continuous sweep-out {Σ′
t}t∈[−1,1] of M by the

following choices:

Σ′
t =

⎧⎪⎨
⎪⎩
Σt if t ≤ −ε,
Σε sin tπ

2ε
,ε cos tπ

2ε
if − ε ≤ t ≤ ε,

Σt if t ≥ ε.

The family of open subsets {Ω′
t}t associated to {Σ′

t}t can be adapted
from the original family {Ωt}t.

Because of the properties of the original sweep-out and the control
on the function A, we see that |Σ′

t| ≤ |Σ| − δ for some δ > 0 and any
t ∈ [−1, 1]. By Theorem 10, there exists a discrete sweep-out S ∈ ΠM

with L(S) ≤ |Σ| − δ. This implies that WM ≤ |Σ| − δ = WM − δ and
gives a contradiction. So the index of Σ is at most 1.

6.3. Index in the non-orientable case. In this section, we control
the index of the double cover of a type 3 non-orientable minimal hy-
persurface that realizes A1(M). We want to prove that it has index at
most 1.

Let Σ be a type 3 non-orientable minimal hypersurface. We thus have
2|Σ| = A1(M) ≤ WM . We open M along Σ by Proposition 15 and get

ϕ : M̃ → M where ϕ : Σ̃ = ∂M̃ → Σ is a double cover. We lift the

metric of M to M̃ . Let σ denote the non-trivial deck transformation of
ϕ : Σ̃→ Σ.

We assume that the Jacobi operator on Σ̃ has index at least 2. We
know that Σ is a stable minimal hypersurface means that the Jacobi

operator on Σ̃ is positive on the space of σ-odd functions. So the first
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two eigenfunctions u1 and u2 on Σ̃ must be σ-even since their eigenvalues
are negative. As a consequence, u1 and u2 can be seen as functions on Σ.

Since ϕ is a local isometry from the interior of M̃ to M \Σ, AS(M̃) ≥
AS(M) and thus |Σ̃| = A1(M) ≤ AS(M) ≤ AS(M̃). Thus Proposi-

tion 18 gives a continuous sweep-out {Σ̃t}t∈[0,1] of M̃ with Σ̃ of maxi-
mum area.

If Φ : Σ̃ × [0, ε] → M̃ ; (p, t) �→ expp(tu1(p)ν̃(p)) (ν̃ the inward unit

normal vector field to Σ̃), we know that Σ̃t = Φ(Σ̃, t) for t close to 0.

Moreover, for t > 0, we have Σ̃t = (∂Ω̃t \ Σ̃)∪ P̃t where {Ω̃t} is a family

of open subsets of M̃ with Σ̃ ⊂ Ω̃t and {P̃t} is a family of finite subsets.

Let us consider Ωt = ϕ(Ω̃t) and Pt = ϕ(P̃t) for t ∈ [0, 1]. We have
Ω0 = ∅ and, for t > 0, Ωt is a domain in M that contains Σ and whose

boundary is Σt \ Pt = ϕ(Σ̃t \ P̃t). For t close to 0, Ωt is contained in a
tubular neighborhood of Σ.

Let NΣ be the normal bundle to Σ, it is a twisted line bundle over Σ.

We notice that the map ϕ : Σ̃ extends to a double cover π : N Σ̃→ NΣ

where the normal bundle N Σ̃ to Σ̃ is trivial. For a non-negative function
u on Σ, we can consider

NuΣ = {(p, n) ∈ NΣ | ‖n‖ < u(p)}.
If ε > 0, we have NεΣ for the constant function u ≡ ε. The map
Ψ : NεΣ → M ; (p, n(p)) �→ expp(n(p)) is a diffeomorphism on the ε-
tubular neighborhood of Σ when ε is small enough. For a continuous
non-negative function u on Σ with u ≤ ε, Du = Ψ(NuΣ) is an open
subset of the ε-tubular neighborhood of Σ. With this notation, if 0 <
t < ε′ for ε′ small enough, we have Ωt = Dtu1 (here the σ-even function
u1 is seen as a function on Σ).

In order to construct a particular sweep-out, we are going to change
the domains Ωt for t small. Let ε′ be such that ε′(‖u1‖∞ + ‖u2‖∞) ≤ ε.
Then if t ≤ ε′ and θ ∈ R, the domain Ot,θ = Dt(cos θu1+sin θu2)+ (where

u+ = max(0, u) denotes the positive part of u) is well defined and is
included in the ε-tubular neighborhood Dε of Σ.

Let us remark that u2 does not have a fixed sign so cos θu1 + sin θu2
can be negative somewhere and then Σ can be not included in Ot,θ. The
boundary of Ot,θ is included in an immersed hypersurface St,θ which is

the image of {p, t(cos θu1(p) + sin θu2(p))ν̃(p), p ∈ Σ̃} ∈ N Σ̃ by Ψ ◦ π.
This implies that Ot,θ is a domain with rectifiable boundary. Moreover,
we can estimate Hn(∂Ot,θ) in two different ways.

The first estimation is just the fact that ∂Ot,θ ⊂ St,θ so

(4) Hn(∂Ot,θ) ≤ |St,θ|
(|St,θ| computes the volume of an immersed hypersurface so multiplici-
ties may appear.)
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The second estimation uses the fact that cos θu1 + sin θu2 can be
negative somewhere. So, in order to compute the Hn-measure of ∂Ot,θ,
we just have to take care of the part of St,θ that correspond to point
where cos θu1 + sin θu2 is positive. This implies that

(5) Hn(∂Ot,θ) ≤ 2Hn({p ∈ Σ | cos θu1(p) + sin θu2(p) > 0}) + ct,

for some constant c that does not depend on t and θ.
As in Section 6.2, the fact that u1 and u2 are eigenfunctions associated

to negative eigenvalues of the Jacobi operator on Σ̃ implies that there
is some positive constant c′ such that, for t small,

(6) |St,θ| ≤ |Σ̃| − c′t2 = 2|Σ| − c′t2.

Let us define our particular “sweep-out”. So choose some small η > 0
such that, for 0 < t < η, the subdomains Ot,θ are well defined and the
estimates (4), (5) and (6) are true. For t ∈ [η, 1], we define Ω′

t = Ωt and,
for t ∈ [−π/2 + η, η], we define Ω′

t = Oη,η−t (both definitions coincide
at t = η, see Figure 1). We then have Ω′

−π/2+η = Oη,π/2. Finally, for

t ∈ [−π/2,−π/2 + η], we define Ω′
t = Ot+π/2,π/2, we notice that both

definitions agree at t = −π/2 + η and Ω′
−π/2 = ∅. We notice that the

family of open subsets {Ω′
t}t∈[−π/2,1] satisfies (sw2) and (sw3).

Σ

t = η t = 0 t = −π/2 + ηt = −π/4 + η/2

Sη,0

Ω′
η

Figure 1. The evolution of Ω′
t for t ∈ [−π/2 + η, η].

Let us estimate the mass of ∂[Ω′
t] for t ∈ [−π/2, 1]. If t ≥ η, Ω′

t = Ωt

so we know by Proposition 18 that there is δ such that

(7) M(∂[Ω′
t]) = |∂Ωt| = |Σt| ≤ |Σ̃| − δ = 2|Σ| − δ.

For t ∈ [−π/2 + η, η], we use (4) and (6) to obtain

(8) M(∂[Ω′
t]) = Hn(∂Ω

′
t) ≤ |Sη,η−t| ≤ 2|Σ| − c′η2.
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For t ∈ [−π/2,−π/2 + η], we use (4), (5) and (6) to obtain

M(∂[Ω′
t]) = Hn(∂Ω

′
t)

≤ min{2|Σ| − c′(t+ π/2)2, 2Hn({u2 > 0}) + c(t+ π/2)}.

(9)

Since Hn({u2 > 0}) < |Σ|, the estimates (7), (8) and (9) imply that
there is some δ′ > 0 such that M(∂[Ω′

t]) ≤ 2|Σ|−δ′ for any t ∈ [−π/2, 1].
We can now apply Theorem 10 to obtain a discrete sweep-out S ∈
ΠM with L(S) ≤ 2|Σ| − δ′ (the hypothesis on m(Φ, r) is fulfilled since
the supports of ∂[Ω′

t] are contained in a continuous family of immersed
hypersurfaces so arguments in the proof of Proposition 5.1 in [32] apply,
see also Remark 4). As a consequence, this implies that WM ≤ 2|Σ|−δ′
which contradicts that 2|Σ| ≤ WM . We have then proved that the

Jacobi operator on Σ̃ has index at most 1.
If Σ has index 1, as above, Σt and Ωt can be constructed since they

only depend on the first eigenvalue. By construction sup{M(∂[Ωt]), t ∈
[0, 1]} = 2|Σ|. So by Theorem 10, WM ≤ 2|Σ| and then WM = 2|Σ|.

Remark 5. We just proved that WM = 2|Σ| not that Σ is a min–
max hypersurface, i.e., a varifold limit of a min–max sequence. With
respect to the orientable case, the difference comes from the fact that,
as currents, the limit is here 0. In fact, it seems possible, looking at the
proof of Theorem 10 to control the support of the discrete sweep-out
from the support of the continuous one and prove that actually Σ is a
min–max hypersurface associated to the fundamental class of Hn+1(M).

7. The 3-dimensional case

In this section, we give some improvements to Theorem A when the
ambient manifold has dimension 3.

7.1. Some topology of 3-manifolds. Let us recall some definitions
about the topology of 3-manifolds.

A compression body is a 3-manifoldB with boundary with a particular
boundary component ∂+B = Σ × {0} such that B is obtained from
Σ × [0, 1] by attaching 2-handles and 3-handles, where no attachments
are performed along ∂+B = Σ× {0} (see [3] for related definitions).

A compression body with only one boundary component, i.e., ∂B =
∂+B, is called a handlebody. A handlebody can also be seen as a closed
ball with 1-handles attached along the boundary.

Let M be a compact 3-manifold with maybe non-empty boundary.
A separating orientable surface Σ in the interior of M is a Heegaard
splitting if both sides of Σ are compression bodies B1 and B2 with
∂+B1 = Σ = ∂+B2. Let us notice that Heegaard splittings always exist.
If M has no boundary B1 and B2 are handlebodies.
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If M is a compact 3-manifold, the Heegaard genus of M (denoted by
gH(M)) is defined as the minimum of the genera of all surfaces that are
Heegaard splittings.

In the following, we will use the following characterization of han-
dlebodies which is due to Meeks, Simon and Yau (see Proposition 1 in
[19]):

Proposition 21. Let M be a compact Riemannian 3-manifold with
one boundary component. M is a handlebody if and only if the isotopy
class of a parallel surface to ∂M contains surfaces of arbitrary small
area.

Let M be a compact 3-manifold with boundary, a proper embedding
of S1 × [0, 1] is an incompressible annulus if the inclusion is π1 injective
(by proper we mean ∂(S1 × [0, 1]) is sent to ∂M).

7.2. An improvement in the 3-dimensional case. The improve-
ment that we obtain in the 3-dimensional case is that we can control
the genus of the min–max surfaces that appear in Theorem A. So we
have the following result:

Theorem B. Let M be an oriented closed Riemannian 3-manifold.
Then A1(M) is equal to one of the following possibilities:

1) |Σ| where Σ ∈ O is a min–max surface of M associated to the
fundamental class of H3(M), Σ has index 1 and gΣ ≥ gH(M).

2) |Σ| where Σ ∈ O is stable.
3) 2|Σ| where Σ ∈ U is stable and its orientable 2-sheeted cover has

index 0 or 1. Moreover, if the double cover Σ̃ has index 1, we have
g
˜Σ
≥ gH(M)− 1 and WM = 2|Σ|.

Moreover, if Σ ∈ O satisfies |Σ| = A1(M), then Σ is of type 1 or 2
and if Σ ∈ U satisfies 2|Σ| = A1(M), then Σ is of type 3.

The proof is based on the following lemma where we use ideas similar
to the proof of Proposition 18.

Lemma 22. Let M be a compact Riemannian 3-manifold with ∂M =
Σ connected, minimal and unstable. Moreover, we assume that |Σ| ≤
AS(M). Then M is a handlebody.

Proof. Since Σ is unstable, using the notations of the proof of Proposi-
tion 18, the manifold Mt = M \Φ(Σ× [0, t)]) has mean convex boundary
for t small. Let t, t0 be small with t < t0 and look at the quantity

A = inf{|S|, S isotopic to Σt0 in Mt}.
If A = 0, then Mt and thus M are handlebodies by Proposition 21.
If A �= 0, A is realized by a union of stable minimal surfaces with
multiplicities (see Theorem 1’ in [19]). Let S be one of these stable
minimal surfaces. If S ∈ O, then AS(M) ≤ |S| ≤ |Σt0 | < |Σ| ≤ AS(M)
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which is a contradiction. If S ∈ U , Theorem 1’ in [19] tells that its
multiplicity is at least 2, so the same contradiction as above occurs. So
we have A = 0 and M is a handlebody. q.e.d.

Proof of Theorem B. The only thing we need is the control on the genus
of the surface Σ.

Let Σ be a type 1 surface. So Σ is a non-stable minimal surface and
|Σ| = A1(M) ≤ AS(M). By Proposition 11, Σ separates M and, by
Lemma 22, both sides of Σ in M are handlebodies. Σ is then a Heegaard
splitting and then gΣ ≥ gH(M).

Let Σ be a type 3 surface whose double cover Σ̃ is not stable. Let us

open M along Σ (Proposition 15) to obtain a 3-manifold M̃ with bound-

ary Σ̃. Since Σ realizes A1(M) we have |Σ̃| ≤ AS(M̃). By Lemma 22,

M̃ is a handlebody. So M can be seen as a handlebody where points
on the boundary are identified through a fixed point free involution
that reverses the orientation. Actually, it is possible to control the Hee-

gaard genus of M in terms of the genus of Σ̃: there is an argument
attributed to Rubinstein by Shalen (see 4.5 in [28]) which implies that
gH(M) ≤ g

˜Σ
+1. The argument works as follows. Let Mε be the outside

of an ε-tubular neighborhood of Σ. Since M̃ is a handlebody, Mε is also
a handlebody. Choose a point p on Σ and consider γ the normal geo-
desic to Σ with length 2ε and p as middle point. The end points of γ are
in ∂Mε. Let H be the union of Mε with a small tubular neighborhood
of γ. H can be seen as Mε to which a 1-handle is attached so it is a
handlebody. In fact, the complement of H is also a handlebody since
the complement of a point in a closed surface continuously retracts to
a bouquet of circles. Now the genus of ∂H is just g

˜Σ
+ 1. q.e.d.

8. Minimal surfaces in hyperbolic 3-manifolds

In this section, we prove a lower bound for the area of minimal sur-
faces in hyperbolic 3-manifolds.

8.1. Area and genus. In a hyperbolic 3-manifold, the area of a mini-
mal surface Σ is always bounded above by its topology, we have |Σ| ≤
−2πχ(Σ) (it is a classical consequence of the Gauss and Gauss–Bonnet
formulas). If its index is at most 1, we can also obtain a lower bound
in terms of its genus.

Lemma 23. Let Σ be an immersed orientable closed minimal surface
in an oriented hyperbolic 3-manifold.

• If Σ is stable, then |Σ| ≥ π|χ(Σ)| = 2π(gΣ − 1).

• If Σ has index 1, then |Σ| ≥ 2π
(
gΣ − 2−

[
gΣ+1

2

] )
.

The first estimate tells that the area of an orientable stable minimal
surface is well controlled by its topology π|χ(Σ)| ≤ |Σ| ≤ 2π|χ(Σ)|.
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This estimate was observed by K. Uhlenbeck but not published (see
Hass [11]). The second estimate can be derived from Proposition 3.1 in
[8] by El Soufi and Ilias but we prefer to give a proof here for the sake
of completeness.

Proof. If Σ is stable, we can use the constant function 1 as a test
function in the stability operator and obtain∫

Σ
−(Ric(ν, ν) + ‖A‖2) ≥ 0.

The Gauss formula implies that ‖A‖2 = −2(KΣ + 1) with KΣ the sec-
tional curvature of Σ. So, using the Gauss–Bonnet formula, we obtain

|Σ| ≥ −1

2

∫
Σ
KΣ = −πχ(Σ) = 2π(gΣ − 1).

The study of the index 1 case is based on what is called the Hersch
trick. Let u1 be the first eigenfunction of the Jacobi operator on Σ. Let
ϕ be a conformal map from Σ to S

2 ⊂ R
3 and look at the following

integral: ∫
Σ
u1(p)× h ◦ ϕ(p)dp ∈ R

3,

where h is a Möbius transformation of S2. Since u1 is non-negative,
we can find h such that the above integral vanishes (see [15]). Let
(f1, f2, f3) be the three coordinates of h ◦ϕ. fi is then orthogonal to u1
and Σ has index 1, so∫

Σ
‖∇fi‖2 − (Ric(ν, ν) + ‖A‖2)f2

i ≥ 0.

Summing these three inequalities and using that h ◦ ϕ is conformal we
get

0 ≤
∫
Σ
‖∇h ◦ ϕ‖2 − (Ric(ν, ν) + ‖A‖2)

= 8π deg(h ◦ ϕ)−
∫
Σ
(Ric(ν, ν) + ‖A‖2)

= 8π deg(ϕ)−
∫
Σ
(Ric(ν, ν) + ‖A‖2).

As in [26], we can choose ϕ such that deg(ϕ) ≤ 1 +
[
gΣ+1

2

]
. So compu-

tations similar to the stable case give

|Σ| ≥ 2π
(
− 1−

[
gΣ + 1

2

])
− 1

2

∫
Σ
KΣ = 2π

(
gΣ − 2−

[
gΣ + 1

2

])
.

q.e.d.

We remark that in the above proof we only use the fact that the
sectional curvature of the ambient manifold is bounded below by −1.
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We can also remark that, in the stable case, the equality cannot occur.
Indeed, if |Σ| = 2π(gΣ − 1), the proof tells that the constant function
1 is in the kernel of the Jacobi operator so Ric(ν, ν) + ‖A‖2 = 0 and
then KΣ = −2. So the lift of Σ to H

3 gives a complete immersion with
constant sectional curvature −2 which is not possible by Theorem 12 in
[10].

8.2. The compact case. We can now state our lower bound for the
area of minimal surfaces in hyperbolic 3-manifolds.

Theorem C. Let M be a closed orientable hyperbolic 3-manifold. If
gH(M) ≥ 7 then A1(M) ≥ 2π. In other words, any orientable mini-
mal surface in M has area at least 2π and any non-orientable minimal
surface has area at least π.

Proof. SinceM has negative sectional curvature, any immersed closed
minimal surface in M has negative Euler characteristic. By Theorem B,
A1(M) is realized by some minimal surface Σ.

If Σ is of type 2, Lemma 23 gives |Σ| ≥ 2π(gΣ − 1) ≥ 2π since Σ has
negative Euler characteristic.

If Σ is of type 1, Lemma 23 gives

|Σ| ≥ 2π
(
gΣ−2−

[
gΣ + 1

2

])
≥ 2π

(
gH(M)−2−

[
gH(M) + 1

2

])
≥ 2π.

If Σ is of type 3, let Σ̃ be its orientable double cover. If Σ̃ is stable,

we get 2|Σ| = |Σ̃| ≥ 2π as above. If Σ̃ has index 1, Theorem B gives us
g
˜Σ
≥ gH(M)− 1 and we have

2|Σ| = |Σ̃| ≥ 2π
(
g
˜Σ
− 2−

[
g
˜Σ
+ 1

2

])

≥ 2π
(
gH(M)− 3−

[
gH(M)

2

])
≥ 2π.

So in all cases, we have A1(M) ≥ 2π. q.e.d.

Remark 6. If we know that there is no non-orientable surface in
M , then the conclusion of the above theorem is true if we only assume
gH(M) ≥ 6.

We can also remark that the same result is true if we only assume
that the sectional curvature of M satisfies −1 ≤ KM < 0.

We also notice that the existence of hyperbolic 3-manifolds with ar-
bitrarily large Heegaard genus is given by a result of Souto (see Theo-
rem 4.1 in [31] and [23]).

If the hypothesis on the Heegaard genus is dropped, the monotonicity
formula and the thin-thick decomposition ofM tells us that any minimal
surface in a closed hyperbolic 3-manifold has area at least some c > 0
that does not depend onM (see [5]) (this is also true for closed immersed
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H-surfaces with H < 1). So this leads us to ask: is there a closed
orientable hyperbolic 3-manifold M that minimizes A1(M) among such
3-manifolds? What is a minimal surface that realizes this A1(M) in M?
We ask the same question for properly embedded minimal surfaces in
complete hyperbolic 3-manifolds of finite volume M (see the following
section). We believe an answer is a Seifert surface (a once punctured
torus) of the figure eight knot, made minimal in the hyperbolic structure
of the complement of the figure eight knot.

8.3. The finite volume case. In this section, we extend Theorem C
to the case where M is a complete non-compact hyperbolic 3-manifold
with finite volume. Notice that such a manifold has closed minimal
surfaces (see [5]).

If M is such a manifold, M is diffeomorphic to the interior of a
compact manifold M with boundary whose boundary components are
tori. Moreover, each end E of M can be isometrically parametrized
by Nv1,v2 , the quotient of {(x, y, z) ∈ R

2 × R
∗
+, z ≥ 1/2} by the group

generated by the translations by the independent horizontal vectors v1
and v2, endowed with the Riemannian metric

gH =
1

z2
(dx2 + dy2 + dz2).

We notice that the z coordinate is well defined on Nv1,v2 .
In the following, we denote Λ(E) = Λ(Nv1,v2) = max(‖v1‖, ‖v2‖) (‖·‖

the Euclidean norm) and we notice that by parameterizing a smaller
part of E we can always choose a chart with Λ(E) as small as we want.

We will use other metrics on Nv1,v2 to change the metric on M . More
precisely, we will use the following metric:

gΨ =
1

Ψ2(z)
(dx2 + dy2 + dz2),

where Ψ is a function satisfying

• Ψ(z) = z on [1/2, 1],
• Ψ is non-decreasing.

The first condition means that this metric can be glued to the original
hyperbolic metric. The second one gives that the foliation by the tori
T (c) = {z = c} has a mean curvature vector pointing in the ∂z direction.

In [5], Collin, Hauswirth and the authors proved the following result:

Proposition 24. Let t0 ∈ (0, 1/2) and Ψ be as above. There is a
Λ0 = Λ(t0,Ψ) such that if Λ(Nv1,v2) ≤ Λ0 and Σ is a compact embedded
minimal surface in (Nv1,v2 , gΨ) with ∂Σ ∈ T (1− t0) then Σ ⊂ {z ≤ 1}.

As said above, in a finite volume hyperbolic 3-manifold M , we can
choose a chart Nv1,v2 of each end E with Λ(E) ≤ Λ(1/3, z �→ z). The
above proposition says that any compact minimal surface in M never
enters in {z > 1} inside the ends. Thus all compact minimal surfaces



MINIMAL HYPERSURFACES OF LEAST AREA 311

in M stay in a compact piece of M ; this compact piece will be denoted
C(M). In the following, all modifications on M will be made outside of
C(M).

We need a topological property of M .

Lemma 25. Let M be a complete non-compact hyperbolic 3-manifold
with finite volume; M is the interior of some manifold M . M has no
incompressible annulus.

Proof. Let E1, . . . , Ep be the ends ofM and N1, . . . , Np the associated
charts with function zi on each end. Let Ψ be a function as above with
Ψ′′ ≤ 0 and Ψ′(2) = 0 and Ψ′(t) > 0 for t < 2. This implies that
gΨ has negative sectional curvature on {1/2 < z < 2} and T (2) is
totally geodesic. We endow each Ei with this new metric and we cut
{zi > 2} for each end. We get a manifold diffeomorphic to M with a
Riemannian metric with negative sectional curvature on the inside and
totally geodesic boundary. This defines a metric on M .

Let A be an incompressible annulus in M endowed with the above
metric; we can deform it isotopically such that its boundary consists of
geodesic circles in ∂M . By Theorem 6.12 in [12], there is a minimal
surface S isotopic to A with the same boundary. Since the boundary of
M is totally geodesic, ∂S is geodesic inside S. By the Gauss formula
KS ≤ KM < 0. So the Gauss–Bonnet formula 0 = 2πχS =

∫
S KS < 0

gives a contradiction. q.e.d.

Let M be a compact 3-manifold whose boundary components are
tori. Let T be one of these tori. By fixing a basis of the homology of T ,
we define a chart on T � S

1 × S
1 such that the basis of the homology

is (S1 × {p}, {q} × S
1). Let S

1 ×D (D the unit disk) be a solid torus,
we then can glue M and the solid torus by identifying the boundary
using the chart on T . The topology of this Dehn filling depends on the
choice of the homology basis we made. By making Dehn filling on each
boundary component of M , we get a closed manifold D(M). One can
easily see that, concerning the Heegaard genus, we have the following
inequality gH(D(M)) ≤ gH(M).

If M comes from a complete non-compact hyperbolic 3-manifold M
with finite volume, Rieck and Sedgwick [25] proved that the Dehn fill-
ings can always be done (by choosing particular homology basis) such
that gH(D(M)) = gH(M) (the acylindrical hypothesis in their theorem
is satisfied because of Lemma 25) (see also Moriah and Rubinstein [22]).

We can now state our result concerning finite volume hyperbolic 3-
manifolds.

Theorem 26. Let M be a complete non-compact hyperbolic 3-mani-
fold with finite volume, we denote by M the associated compact 3-
manifold with boundary. If gH(M) ≥ 7, then any closed orientable
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minimal surface in M has area at least 2π and any closed non-orientable
minimal surface has area at least π.

The proof is based on ideas that appear in [5].

Proof. Let T1, . . . , Tp be the boundary tori ofM , because of the above
discussion, there are bases of the homology of T1, . . . , Tp such that the

associated Dehn filling D(M) has the same Heegaard genus as M .
We are going to construct some Riemannian metric on D(M) to es-

timate the areas of minimal surfaces in M . Let Ψ be a function on
[1/2,∞) such that

• Ψ(z) = z on [1/2, 1],
• Ψ′(z) > 0,
• lim∞Ψ = 2.

Let C(M) be the compact part of M that contains all compact mini-
mal surfaces in M . Now, for each end Ei, we can find a chart Nvi1,v

i
2
such

that Ei ∩ C(M) = ∅, Λ(Ei) < Λ0 where Λ0 is given by Proposition 24
for gΨ and t0 = 1/3. We also assume that the curves t �→ (tvi1, 1) and
t �→ (tvi2, 1) in Ti(1) give the homology basis of Ti that we have fixed
above.

Let us fix some large L > 0, we are going to change the metric on
{L ≤ zi ≤ L+ 1} in order to perform the Dehn filling. The tori Ti(c) is

parametrized by (u
vi1
2π + v

vi2
2π ) where (u, v) ∈ S

1 × S
1. Then the metric

gΨ on Nvi1,v
i
2
can be written

gΨ =
1

Ψ2(zi)
(a2du2 + 2bdudv + c2dv2 + dz2i ),

for some a, b, c ∈ R. Let η be a smooth non-increasing function on
[L,L + 1] such that η(z) = 1 near L and η(z) = ((L + 1) − z)/a near
L+ 1. We then change the metric on {L ≤ zi ≤ L+ 1} by

1

Ψ2(zi)
(dz2i + η2(zi)a

2du2 + 2η(zi)bdudv + c2dv2).

This new metric is singular at zi = L + 1 in the u direction but it is
not if we make the identification (u, v, L + 1) ∼ (u′, v, L + 1) for any
u, u′. To see this, Let (r, θ) ∈ [0, 1]× S

1 be the polar coordinates on the
unit disk and h be the map D × S

1 → S
1 × S

1 × [L,L + 1] defined by
(r, θ, v) �→ (θ, v, L + 1 − r). The induced metric by h on D × S

1 near
r = 0 is then

1

Ψ2(L+ 1− r)
(dr2 + r2dθ2 + 2

b

a
rdθdv + c2dv2),

which is well defined on D×S
1. Actually, it consists in cutting {zi ≥ L}

from the end Ei and gluing a solid torus along T (L). The map h tells us
that we have performed the Dehn filling we want. We also notice that
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the tori Ti(c) = {zi = c} have positive mean curvature with respect to
∂zi for L ≤ c < L+ 1.

Once all Dehn fillings are done, we have constructed a metric on
D(M) (it depends on the parameter L that we need to adjust). Let us
study the area of minimal surfaces in D(M) with that metric. Let Σ be
a minimal surface in D(M), first it can stay outside of all the {zi ≥ 1},
these correspond to minimal surfaces living in the original hyperbolic
part of D(M) so in M . These surfaces are the ones whose areas we
wish to bound from below. Since the foliation {Ti(c)}c∈[1,L+1) is mean
convex with respect to ∂zi , there is no minimal surface inside an end
{zi ≥ 1}. Proposition 24 tells us that a minimal surface that intersects
{zi ≥ 1/2} but does not reach Ti(L) never enters into {zi > 1}. So it
stays in the original hyperbolic part. So a minimal surface that meets
{zi = 1} meets necessarily {zi = L}. Thus it meets all tori Ti(c) for
1 ≤ c ≤ L. Since lim∞Ψ = 2, for large zi the metric gΨ is close to
the Euclidean metric and then there is some constant k that does not
depend on L such that

|Σ ∩ {1 ≤ zi ≤ L}| ≥ kL.

So if L is chosen large, the area of Σ is large. More precisely, we choose
L such that kL ≥ A1(M) + 1.

Since C(M) is isometrically contained in D(M), we have A1(M) ≥
A1(D(M)). The above discussion implies that any minimal surface Σ in
D(M) either is contained in C(M) or has area |Σ| ≥ kL ≥ A1(M) + 1.
So A1(M) = A1(D(M). Moreover, A1(D(M)) is realized by a minimal
surface contained in C(M) where the metric is hyperbolic and where we
can apply the same reasoning as in the proof of Theorem C and using
the fact that gH(D(M)) = gH(M) ≥ 7. q.e.d.

In a finite volume hyperbolic 3-manifold, it is also interesting to find
a good lower bound of the area of non-compact minimal surfaces. We
notice that in this case the estimates π|χ(Σ)| ≤ |Σ| ≤ 2π|χ(Σ)| are still
valid for properly embedded stable minimal surfaces (see [5]).
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