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Abstract

Let (M, g0) be a closed Riemannian manifold of dimension n,
for 3 ≤ n ≤ 7, and non-negative Ricci curvature. Let g = φ2g0
be a metric in the conformal class of g0. We show that there
exists a smooth closed embedded minimal hypersurface in (M, g)

of volume bounded by C(n)V
n−1
n , where V is the total volume of

(M, g). When Ric(M, g0) ≥ −(n − 1) we obtain a similar bound
with constant C depending only on n and the volume of (M, g0).

Our second result concerns manifolds (M, g) of positive Ricci
curvature and dimension at most seven. We obtain an effective
version of a theorem of F. C. Marques and A. Neves on the ex-
istence of infinitely many minimal hypersurfaces on (M, g). We
show that for any such manifold there exists k minimal hyper-

surfaces of volume at most CnV
(
sysn−1(M)

)− 1
n−1 k

1
n−1 , where

V denotes the volume of (M, g0) and sysn−1(M) is the smallest
volume of a non-trivial minimal hypersurface.

1. Introduction

1.1. Results. In [32] Pitts proved existence of a smooth closed em-
bedded minimal hypersurface in any closed Riemannian manifold M of
dimension n, for 3 ≤ n ≤ 6. This result was extended to manifolds of
dimension n ≤ 7 by Schoen and Simon [34]. Our first main result is a
bound on the volume of this hypersurface for certain conformal classes
of Riemannian metrics.

Theorem 1.1. Suppose M0 is a closed Riemannian manifold of di-
mension n, for 3 ≤ n ≤ 7. If M is in the conformal class of M0 then
M contains a smooth closed embedded minimal hypersurface Σ with vol-

ume bounded above by C(M0)Vol(M)
n−1
n . When Ricci(M0) ≥ 0 the

constant C(M0) is an absolute constant that depends only on n. In
general, for M0 with Ricci(M0) ≥ −(n − 1)a2 we can take C(M0) =

C(n)max{1, aVol(M0)
1
n }.
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If n > 7 the same upper bound will hold for the (n − 1)-volume of
a closed minimal hypersurface with singularities of dimension at most
n− 8.

Theorem 1.1 follows from a bound on the width of M . One can
find background and many results about widths of manifolds in [16,
App.1F], [18], [3], [25]. Informally, the width W(M) of a manifold M is
the smallest number such that every sweep-out of M by hypersurfaces
contains a hypersurface of volume at least W(M). We give a precise
definition of width in Section 2.

To state our bound on the width of manifolds it will be convenient
to define a conformal invariant called the min–conformal volume. This
invariant was recently introduced in a work of Hassannezhad [20].

Definition 1.2. Let M be a compact Riemannian manifold. De-
fine the min-conformal volume of M to be: MCV(M) = inf{Vol(M ′)},
where the infimum is taken over all manifolds M ′ in the conformal class
of M with Ricci(M ′) ≥ −(n− 1).

Theorem 1.3. Let M be a closed Riemannian manifold of dimension
n then

W(M) ≤ C(n)max{1,MCV(M)
1
n }Vol(M)

n−1
n .

Corollary 1.4. Let M be a closed Riemannian manifold of dimen-
sion n, a ≥ 0 and suppose that Ricci(M) ≥ −(n− 1)a2. Then

W(M) ≤ C(n)max{1, aVol(M)
1
n }Vol(M)

n−1
n .

More generally, Theorem 1.3 holds if we replace the min-conformal
volume in the estimate by the infimum of {dVol(M ′)}, where d is any
positive integer, such that M admits a degree d conformal branched
covering onto a manifold M ′ with Ricci(M ′) ≥ −(n− 1).

The conformal invariant MCV is somewhat reminiscent of (but differ-
ent from) the conformal volume studied by Li and Yau in [22]. MCV(M)
can be computed explicitly when M is a Riemannian surface of genus g.
By the uniformization theorem M is conformally equivalent to a surface
M0 of constant curvature 1 (if g = 0), 0 (if g = 1) or −1 (if g ≥ 2). When
the genus is 0 or 1 it follows that MCV(M) = 0. When g ≥ 2 and the
Gaussian curvature of a surface M ′ satisfies K ≥ −1 then by Gauss–
Bonnet theorem Area(M ′) ≥ 4π(g − 1) with equality holding exactly
when K = −1 everywhere. We conclude that MCV(M) = 4π(g − 1)

Theorem 1.3 then implies that for any surface M of genus g we have

W(M) ≤ C
√

(g + 1)Area(M).

This result was previously obtained by Balacheff and Sabourau in [3]
with constant C = 108. Using a slightly modified version of our proof
and invoking the Riemann–Roch theorem we can get a somewhat better
constant for orientable surfaces.
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Theorem 1.5. Any closed orientable Riemannian manifold Sg of
dimension 2 and genus g satisfies

W(Sg) ≤ 220
√

(g + 1)Area(Sg).

Upper bounds on the higher parametric versions of width Wk(M)
for all Riemannian surfaces were recently obtained by the second au-
thor [23].

In [4] Brooks constructed hyperbolic surfaces of large genus and
Cheeger constant bounded away from zero. These surfaces have width
W(M) bounded below by c

√
gArea(M) for some constant c > 0. Hence,

the inequality in Theorem 1.3 is optimal up to the value of the constant
C(n).

It follows from the works of Almgren [2], Pitts [32], and Schoen and
Simon [34] that estimates on width yield upper bounds on the volume
of smooth embedded minimal hypersurfaces in manifolds of dimension
less than or equal to 7. In higher dimensions, we obtain bounds on the
volume of stationary integral varifolds, which are smooth hypersurfaces
everywhere except possibly for a closed set of Hausdorff dimension at
most n− 8.

It is possible to obtain more minimal hypersurfaces if one consid-
ers parametric families of sweep-outs. In Section 2 we define fami-
lies of hypersurfaces that correspond to cohomology classes of mod 2
(n − 1)-cycles on M . To each such p-dimensional family we assign
the corresponding min–max quantity Wp(M). Let Sn be the round
unit n-sphere. In [12, 4.2.B] Gromov showed that there are constants
0 < c(n) < C(n) so that Wp(Sn) satisfies:

c(n)p
1
n Vol(Sn)

n−1
n ≤Wp(Sn) ≤ C(n)p

1
n Vol(Sn)

n−1
n .

Guth [19] derived similar bounds for min–max quantities correspond-
ing to the Steenrod algebra generated by the fundamental class λ. Mar-
ques and Neves [25], building on the work of Gromov and Guth, proved
existence of infinitely many minimal hypersurfaces on a manifold M of
dimension n, for 3 ≤ n ≤ 7, under the assumption that M has positive
Ricci curvature.

In Section 7 we show that if M has non-negative Ricci curvature then

Wp(M) ≤ C(n)p
1
n Vol(M)

n−1
n . We use this bound to derive an effective

version of the theorem of Marques and Neves. Let sysn−1(M) be the
infimum of volumes of smooth closed embedded minimal hypersurfaces
in M .

Theorem 1.6. Suppose M is a closed Riemannian manifold of di-
mension n, 3 ≤ n ≤ 7, and positive Ricci curvature. For every k
there exists k smooth closed embedded minimal hypersurfaces of volume
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bounded above by C(n)k
1

n−1 Vol(M)
(
sysn−1(M)

)− 1
n−1 , where C(n) de-

pends only on n.

1.2. Previous work. The main estimates in our paper were motivated
by similar estimates on the spectrum of the Laplace operator on Rie-
mannian manifolds.

Let M be a closed Riemannian manifold in the conformal class of M0.
In [21] Korevaar constructed a decomposition of M into annuli (and
other regions) which measures the ‘volume concentration’ of the metric
M with respect to the base metric of M0. This annular decomposition is
then used to estimate Rayleigh quotients, thus bounding the spectrum
of the Laplacian of M . Korevaar’s method was further developed by
Grigor’yan–Yau in [11] and Grigor’yan–Netrusov–Yau in [10] to obtain
upper bounds on the eigenvalues of elliptic operators on various metric
spaces. In [13] Gromov used a different approach (based on Kato’s
inequality) to obtain upper bounds for the spectrum of the Laplacian
on Kähler manifolds [13].

In [20] Hassannezhad, combining methods of [6] and [10], obtained
upper bounds for eigenvalues of the Laplacian in terms of the conformal
invariant MCV (see Definition 1.2) and the volume of the manifold.

As suggested by Gromov in [12] the problem of bounding width
W(M) and its parametric version Wk can be thought of as a non-linear
analogue of finding the spectrum of the Laplacian on M . In this paper
we were guided by this analogy.

In [18] Guth constructed sweep-outs of open subsets of Euclidean
space by k-cycles of controlled volume for all k, 1 ≤ k ≤ n − 1. In
particular, he proved the following

Theorem 1.7 (Guth [18]). For every open subset U ⊂ R
n, W (U) ≤

C(n)Vol(U)
n−1
n .

In dimension n ≥ 3 one can find a family of parallel hyperplanes in R
n

yielding the desired sweep-out. This follows from the work of Falconer
[7] on the (n, k)-Besicovitch conjecture. In dimension 2, however, it may
happen that any slicing of U by parallel lines contains an arbitrarily
large segment. To surpass problems of this kind Guth developed a
method of sweeping out regions by ‘bending planes’ around the skeleton
of the unit lattice in R

n. This method was developed further in [19] to
bound higher parametric versions of width.

It has been observed in [18, Appendix 5] that on any manifold of
dimension greater than two there exists a Riemannian metric of small
volume and arbitrarily large (n − 1)-width. Our results show that this
does not happen for certain conformal classes of manifolds. In partic-
ular, this does not happen in the presence of a Ricci curvature lower
bound.
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In [30] Nabutovsky and Rotman showed that any closed Riemannian
manifold possesses a stationary 1-cycle of mass bounded by

C(n)Vol(M)
1
n . One wonders if this result can be generalized to the

case of minimal surfaces on Riemannian manifolds.
Some results in this direction were obtained by A. Nabutovsky

and R. Rotman in [31] where they bounded volumes of minimal
surfaces on Riemannian manifolds in terms of homological filling
functions of M . The k-th homological filling function FHk : R+ →
R+ is defined as the smallest number FHk(x), such that every k-cycle
of mass at most x can be filled by a (k + 1)-chain of mass at most
FHk(x) + ε.

Theorem 1.8 (Nabutovsky–Rotman [30]). Let M be a closed Rie-
mannian manifold of dimension n, for 3 ≤ n ≤ 7, such that the first n−1
homology groups are trivial, H1(M) = ... = Hn−1(M) = 0. There exists
a smooth, closed, embedded minimal hypersurface of volume bounded by

C(n) FHn−1(C(n) FHn−2(. . .FH2(C(n)Vol(M)
1
n ) . . . )).

Their proof uses a combination of Almgren–Pitts min–max method
and other techniques. In particular, a bound on the width of M in terms
of homological filling functions does not follow from their argument.
It would be interesting to know whether such a bound exists. It is
also interesting to know whether homological filling functions can be
controlled in terms of Ricci curvature of M .

Other important results are contained in a paper of Marques and
Neves [26] where, among other things, they prove a sharp upper bound
on W (M), when M is a Riemannian 3-sphere with Ricci > 0 and scalar
curvature R ≥ 6.

1.3. Plan of the Paper. The structure of the proof of Theorem 1.3
is as follows: To construct a sweep-out of M , we subdivide M repeat-
edly, using an isoperimetric inequality adapted to our context. Once
we have subdivided M into a collection of small volume open subsets,
we construct a sweep-out of each small volume piece using the fact that
at small scales M is locally Euclidean. We then assemble these local
sweep-outs into a global sweep-out of M .

In Section 2 we define what it means for a family of (n − 1)-cycles
to sweep-out M . We define the width W(M) and its higher parametric
version Wk(M). We also prove Proposition 2.3, which gives us control
of the width of M in terms of widths of its open subsets.

In Section 3 we use an idea of Colbois and Maerten from [6] together
with the length-area method to prove an isoperimetric inequality (The-
orem 3.4) which allows us to partition any open set in M in two parts
with both parts satisfying a lower volume bound. The subdividing sur-
face satisfies an upper bound on area which depends on the volume of
the open set.
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In Section 4 we estimate the width of small volume submanifoldM ′ ⊂
M in terms of (n − 1)-volume of its boundary. The proof proceeds by
covering M ′ with small balls, which are (1+ε0)-bilipschitz diffeomorphic
to balls in Euclidean space. We construct a sequence of nested open
subsets Ui of M ′ with volumes tending to 0, such that the difference
Ui \Ui+1 is contained in a small ball. Since the ball is almost Euclidean,
we can sweep out Ui \Ui+1 by cycles of controlled volume. We then use
Proposition 2.3 to assemble a sweep-out of M ′.

In Section 5 we prove Theorem 1.3 by inductively constructing sweep-
outs of larger and larger subsets of M . The result of Section 4 serves as
the base of the induction.

In Section 6 we prove Theorem 1.5. We also describe how to obtain a
version of Theorem 1.3 for manifolds, which admit a conformal mapping
into some nice space M0.

In Section 7 we show that a manifold with non-negative Ricci curva-
ture can be covered by balls of small n-volume, small (n − 1)-volume
of the boundary, and such that the cover has controlled multiplicity.
We use this decomposition to bound the volume of k-parametric sweep-
outs of M and, consequently, volumes of stationary integral varifolds or
minimal hypersurfaces in M .

Remark 1.9. In [33] Stephane Sabourau independently obtained
upper bounds on the width and volume of the smallest minimal hyper-
surface on Riemannian manifolds with Ricci ≥ 0.

Acknowledgements. We would like to thank Misha Gromov for sug-
gesting the idea of using the methods of Korevaar’s paper [21] in a
similar context. We would like to thank Alexander Nabutovsky, Regina
Rotman, and Robert Young for valuable discussions and encouragement.

2. Width of Riemannian manifolds

Let G be an abelian group. We denote the space of flat G-chains in
M by Fk(M ;G) and the space of flat G-cycles by Zk(M ;G). The space
of integral flat chains was defined in [9]. For flat chains with coefficients
in an abelian group G see [8, (4.2.26)]. The deformation theorem of
Federer and Fleming states that a flat chain of finite mass and boundary
mass can be approximated by a piecewise linear polyhedral chain (see [8,
(4.2.20),(4.2.20)ν ]). The deformation theorem will be used throughout
this paper. Often we will abuse notation and use the same letter for a
flat G-chain and a polyhedral chain approximating it. We will denote
the mass of a k-chain c by Volk(c).

In [1] F. Almgren constructed an isomorphism

FA : πk(Zn−1(M ;G); 0)→ Hn+k(M ;G).

For k = 1 the map F can be described as follows. Let ct ∈ Zn−1(M ;G),
t ∈ S1, be a continuous family of cycles. Pick a fine subdivision t0, ..., tm
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of S1 and let Ci be a (nearly) volume minimizing n-chain filling ci−ci−1

(for i ∈ Zm). Then C =
∑

i∈Zm
Ci is an n-cycle. It turns out that

homology class of C is independent of the choice of the subdivision and
filling chains Ci as long as the subdivision is fine enough and the mass
of chains Ci is close to the mass of a minimal filling.

If M is a manifold with boundary we may also consider the space
of flat cycles relative to the boundary of M . Let q be a quotient map
q : Fk(M ;G)→ Fk(M,∂M ;G) = Fk(M ;G)/Fk(∂M ;G). The boundary
map on Fk(M ;G) descends to a boundary map ∂ on the quotient. This
allows us to define the space of relative cycles Zk(M,∂M ;G). Cycles
in this space can be represented by (n−1)-chains with boundary in ∂M .
Almgren’s map then defines an isomorphism π1(Zn−1(M,∂M ;G), {0}) ∼=
Hn−1(M,∂M ;G).

For simplicity from now on we assume everywhere that group G = Z2.
Henceforth we drop the reference to the group G from our notation. Z2

coefficients will suffice for all applications to volumes of minimal surfaces
that we obtain in this paper. When manifold M is orientable the bound
in Theorem 1.3 holds for sweep-outs with integer coefficients. The proof
is essentially the same with some minor modifications to account for
orientation of cycles.

Definition 2.1. We define the following two notions:

1) For a closed manifold M a map f : S1 → Zn−1(M) is called a
sweep-out ofM if it is not contractible, i.e., FA([f ]) �= 0. Similarly,
if M has a boundary we call f : S1 → Zn−1(M,∂M) a sweep-out
if the image of [f ] under Almgren’s isomorphism is non-zero.

2) The width of M is

W(M) = inf
{f}

sup
t

Voln−1(f(t)),

where the infimum is taken over the set of all sweep-outs of M .

For manifolds with boundary it will be convenient to consider a par-
ticular type of sweep-outs that start on a trivial cycle and end on ∂M .
We will call them ∂-sweep-outs.

Definition 2.2. 1) Let M be a manifold with boundary. A ∂-
sweep-out of M is a map f : [0, 1]→ Zk(M), such that:
a) f(0) is a trivial k-cycle and f(1) = ∂M ,
b) Let q ◦ f : [0, 1]→ Zn−1(M,∂M) be the composition of f with

the quotient map q. When we identify q ◦ f(0) and q ◦ f(1) we
obtain a sweep-out of M .

2) The ∂-width of M is:

W∂(M) = inf
{f}

sup
t

Voln−1(f(t)),

where the infimum is taken over the set of all ∂-sweep-outs of M .
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From the definition we have inequalities W(M) ≤ W∂(M) and
W∂(M) ≥ Voln−1(∂M).

Definition 2.2 is motivated by the following proposition.

Proposition 2.3. Let U0 ⊂ ... ⊂ Um−1 = M be a sequence of
nested open subsets of M , and let Ai denote the closure of Ui \ Ui−1

for 1 ≤ i ≤ m − 1 and A0 denote the closure of U0. Then W∂(M) ≤
sup{W ∂(A0),W

∂(A1)+Voln−1(∂U0), ...,W
∂(Am−1)+Voln−1(∂Um−2)}.

Proof. By the definition of ∂-width for each i there exists a map
ci : [0, 1] → Zn−1(M) that starts on a trivial cycle, ends on ∂Ai and is
bounded in volume by W∂(Ai) + ε. By definition of Ai, ∂Ai ⊂ ∂Ui ∪
∂Ui−1 and ∂Ui + ci+1(1) = ∂Ui+1.

We define a sweep-out c : [0, 1]→ Zn−1(M) as follows. For 0 ≤ t ≤ 1
m

we set c(t) = c0(t/m) and for i
m ≤ t ≤ i+1

m , i = 1, ...,m − 1 we set

c(t) = ci(m(t− i
m)) + ∂Ui−1.

Let FA be the Almgren’s isomorphism. We can represent the homol-
ogy class FA(c) by a sum of n-chains

∑m−1
i=0 Ci, such that ∂Ci = c( i

m)−
c( i−1

m ). Moreover, since each ci is a ∂-sweep-out of Ai we may assume

that Ci represents a non-trivial homology class in Hn(M,M \Ai) ∼=
Hn(Ai, ∂Ai).

We claim that the sum
∑k

i=0Ci represents a non-trivial homology

class in Hn(M,M \ Uk). Indeed, assume this to hold for
∑k−1

i=0 Ci. Let
V1 denote a small tubular neighbourhood of the set Uk−1 inside Uk.
Let V2 be a small tubular neighbourhood of Uk \ Uk−1 inside Uk. Let
V3 = V1 ∩ V2 ⊂ Uk. The pair (V3, V3 ∩ ∂Uk) is homotopy equivalent to
(∂Uk−1, ∂Uk−1 ∩ ∂Uk). From the Mayer–Vietoris sequence we have an
isomorphism Hn(Uk, ∂Uk) →∂ Hn−1(∂Uk−1, ∂Uk−1 ∩ ∂Uk). This map

sends [
∑k−1

i=0 Ci + Ck] to the fundamental class [∂Uk−1 \ ∂Uk].
We conclude that c(t) is a ∂-sweep-out of M . q.e.d.

In the last section of this paper we will obtain upper bounds on the k-
parametric sweep-outs Wk(M) of M . By Almgren’s isomorphism theo-
rem we have πm(Zn−1(M ;Z); 0) = 0 form > 1 and π1(Zn−1(M ;Z2); 0) ∼=
Z2. Hence, the connected component Z0

n−1 of Zn−1(M ;Z2) that contains
the 0-cycle is weakly homotopy equivalent to the Eilenberg–MacLane
space K(Z2, 1) � RP

∞.
Let K be a k-dimensional polyhedral complex and σ : K → Z0

n−1(M)
be continuous and assume that σ(x) has finite mass for all x. Following
[25] we define k-parametric width Wk as follows.

Definition 2.4. We introduce the following parametric version of
Definition 2.1:

1) For a closed manifold M we say that σ is a k-parametric sweep-out
of M if σ(K) represents the non-zero class in Hk(Z

0
n−1,Z2) ∼= Z2.
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2) Define the k-parametric width to be Wk(M) =
infσ supt∈K Voln−1(f(t)), where the infimum is taken over the set
of all k-parametric sweep-outs σ.

It follows from the definition that W1(M) = W(M) and Wk(M) ≤
Wk+1(M).

Using Almgren–Pitts min–max theory it is possible to obtain minimal
hypersurfaces from sweep-outs of M . In [25] Marques and Neves proved
the following results.

Theorem 2.5 (Marques–Neves). Let M be a closed Riemannian
manifold of dimension n, 3 ≤ n ≤ 7.

1) There exists a smooth, closed, embedded minimal hypersurface in
M of volume ≤W(M).

2) If Wk(M) = Wk+1(M) then there exists infinitely many smooth,
closed, embedded minimal hypersurfaces in M of volume ≤Wk(M).

3) Suppose M is a manifold of positive Ricci curvature and there ex-
ists only finitely many minimal hypersurfaces of volume ≤Wk(M).
Then there exists a smooth, closed, embedded minimal hypersur-
face Σk and ak ∈ N, such that ak Voln−1(Σk) = Wk(M).

Remark 2.6. In the proof of these results Marques and Neves impose
an additional technical condition on Wk. Namely, they require that the
infimum in the definition of Wk is taken over only those maps f : K →
Zn−1(M) that have no concentration of mass. This is defined as follows.
Using the notation of [8] let ‖c‖ denote the Radon measure associated
with the flat chain c. Then a map f is said to have no concentration of
mass if

lim
r→0

sup{‖f(x)‖(Br(a)) : x ∈ K, a ∈M} = 0.

All estimates on Wk in our paper come from explicit constructions
of families of flat cycles (in fact, polyhedral cycles), which have no con-
centration of mass. Therefore we can safely combine our estimates with
the conclusions of Theorem 2.5.

3. Isoperimetric inequality

Let (M, g0) be a closed Riemannian n-manifold with Ricci ≥ −(n−1).
Let g = φ2g0 be a Riemannian metric on (M, g0) in the conformal class
of g0. Here φ : M0 → R+ is a smooth function on (M, g0).

Notation 3.1. We write M0 for (M, g0) and M for (M, g).

Below we use the convention that geometric structures measured with
respect to g0 have a superscript zero in their notation. Geometric struc-
tures measured with respect to g have no superscript.
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Notation 3.2. Let Volk(U), d(x, y), dV , B(x, r) and ∇ denote the
k-volume function, distance function, volume element, closed metric
ball of radius r about x, and gradient with respect to g. Let Vol0k(U),
d0(x, y), dV 0, B0(x, r), ∇0 denote the corresponding quantities with
respect to g0.

Let W be a subset of U and let N0
l (W ) denote the set {x ∈ U |

d0(W,x) ≤ l}.
Lemma 3.3. There exists a set W ⊂ U and l ∈ (0, 12 ], such that

1) Voln(U)/25n ≤ Voln(W ) ≤ 2Voln(U)/25n,
2) Voln(N

0
l (W )) ≤ (1− 1

25n )Voln(U),

3) Vol0n(N
0
l (W ) \W ) ≤ lnmax{2Vol0n(U), c(n)}.

Proof. The argument is essentially the same as the proof of Lemma
2.2 in the work of Colbois and Maerten [6]. Let r be the smallest radius

with the property that Vol(B0(a, r) ∩ U) = Vol(U)
25n for some a ∈M .

We consider two cases. If r ≤ 1 we define W = B0(a, r) ∩ U and
l = r

2 .
We observe, using curvature comparison for the space M0, that the

l-neighbourhood of B0(a, r) can be covered by at most 24.4n balls of
radius r. Indeed, let {B0(xi, r/2)}Ni=1 be a maximal collection of dis-
joint balls with centres in B0(a, 3r2 ). Since the collection is maximal,

the union
⋃

B(xi, r) covers B
0(a, 3r2 ). Using the Bishop–Gromov com-

parison theorem we can estimate the number N . Let Vol0n(B(xj ,
r
2)) =

mini{Vol0n(B(xi,
r
2))}.

N ≤ Vol0n(B
0(a, 3r2 ))

Vol0n(B(xj ,
r
2))

≤ Vol0n(B(xj ,
5r
2 ))

Vol0n(B(xj ,
r
2))

≤ V (5r2 )

V ( r2)
,

where V (r) denotes the volume of a ball of radius r in n-dimensional
hyperbolic space. When r ∈ (0, 1] this quantity is maximized for r = 1.
We conclude that B0(a, 3r2 ) can be covered by

N ≤
∫ 5

2
0 sinhn−1(s)ds∫ 1
2
0 sinhn−1(s)ds

≤ (2e
5
2 )n ≤ 24.4n

balls, such that each of them has Voln(B
0(xi, r) ∩ U) at most Voln(U)

25n .
This proves inequalities (1) and (2) for the case r ≤ 1.

Volume of a unit ball in hyperbolic n-space satisfies V (1) ≤ ωne
n−1,

where ωn denotes the volume of a unit n-ball in Euclidean space. Hence,
Vol0n(B

0(a, 3r2 ) \ B0(a, r)) ≤ 25nen−1ωnr
n = c(n). This proves (3) for

the case r ≤ 1.
Suppose r > 1. Let k be the smallest number, such that there exists

a collection of k balls of radius 1 {B0(xi, 1)}ki=1 with Vol(
⋃

B0(xi, 1) ∩
U) ≥ Voln(U)

25n . Let {B0(xi, 1)}ki=1 be a collection of k balls with the
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property that if {B0(yi, 1)}ki=1 is any other collection of k balls then
Vol(

⋃
B0(xi, 1)∩U) ≥ Vol(

⋃
B0(yi, 1)∩U). We set W =

⋃
B0(xi, 1)∩

U . Note that by our definition of k we have Voln(W ) < 2Voln(U)
25n .

Consider 1/2-neighbourhood of W and note that it can be covered
by at most (24.4)n setsBj , where eachBj is a union of k ballsB0(yi, 1) of
radius 1. By definition of W we have Vol(Bj) ≤ Vol(W ), so

Voln(N
0
l (W )) ≤ 24.4n+1

25n Vol(U). Finally, we observe that
Vol0(N0

l (W ))

1/2 ≤
2Vol0(U). q.e.d.

Theorem 3.4. There exists a constant c(n) such that the following
holds: Let U ⊆M be an open subset. There exists an (n−1)-submanifold
Σ ⊂ U subdividing U into two open sets U1 and U2 such that Voln(Ui) ≥
( 1
25n )Voln(U) and Voln−1(Σ) ≤ c(n)max{1,Vol0n(U)

1
n }Voln(U)

n−1
n .

Proof. We use the length-area method (see [16, p. 4]) to find a small
volume hypersurface in N0

l (W ) \W , where W and l are as in Lemma
3.3.

Let f(x) = d0(W,x)|U : U → R
+ be the d0 distance form x to W

restricted to the set U . By Rademacher’s theorem, f is differentiable
almost everywhere. By applying the co-area formula we have:

∫ l

0
Voln−1(f

−1(t))dt =

∫
f−1(0,l)

||∇f ||dV

(Hölder’s inequality) ≤
(∫

f−1(0,l)
||∇f ||ndV

) 1
n (

Voln(f
−1(0, l))

)n−1
n

=
(
Vol0n(f

−1(0, l))
) 1

n
(
Voln(f

−1(0, l))
)n−1

n .

The last equality holds since ||∇f ||ndV = ||∇0f ||ndV 0 is a

conformal invariant. By Lemma 3.3 we have Vol0n(f
−1(0, l))

1
n ≤

c(n)lmax{Vol0n(U)
1
n , 1}. For the second factor we apply the bound

Voln(f
−1(0, l)) ≤ Voln(U). It follows that

min
r<t<2r

Voln−1(f
−1(t)) ≤ c(n)max{Vol(U)

1
n , 1}Voln(U)

n−1
n .

Thus for some regular value of t the level set f−1(t) with area no larger
than average, is the desired submanifold Σ. We take U1 = f−1([0, t))
and U2 = f−1((t,∞)).

SinceW ⊆ U1 by Lemma 3.3 we have Vol(U1) ≥ Voln(U)
25n . On the other

hand, U1 ⊆ N0
l (W ) of volume at most 1− Voln(U)

25n so Vol(U2) ≥ Voln(U)
25n .
q.e.d.
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4. The width of small submanifolds

In this section we will show that if a submanifold M ′ of a Riemannian
manifold M has small enough volume then its ∂-width can be bounded
from above in terms of Voln−1(∂M

′). First we show this for a subman-
ifold that is contained in a very small ball.

Definition 4.1. For a closed Riemannian manifold M and ε0 ∈ (0, 1)
define ε(M, ε0) to be the largest radius r such that: for every x ∈M we
have that B(x, r) is (1 + ε0)-bilipschitz diffeomorphic to the Euclidean
ball of radius r.

Lemma 4.2. If M ′ ⊂ M is contained in a ball of radius ε(M, ε0)
then W∂(M ′) ≤ (1 + ε0)Voln−1(∂M

′).

Proof. A 2-dimensional version of the lemma appeared in [24]. Let
U ⊂ R

n be the image of M ′ under (1 + ε0)-bilipschitz diffeomorphism
F . An argument similar to that in [27, §6] shows that for a generic line
l ∈ R

n the projection of ∂U onto l is a Morse function. Let p denote
such a projection map and assume that p(U) = [0, c].

Define f : [0, c]→ Zn−1(U,Z) by setting

f(t) = ∂(p−1([0, t]) ∩ U).

Open subsets of hyperplanes in R
n are volume minimizing regions.

Therefore we have Voln−1(f(t)) ≤ Vol(U) for all t. Composing f with
F−1 we obtain the desired sweep-out. q.e.d.

We extend the result of the lemma to submanifolds of small volume.

Proposition 4.3. There exist a constant C1(n) > 0, such that for
every closed Riemannian n-manifold M , ε0 > 0 and every embedded sub-
manifold M ′ ⊂M of dimension n and volume Voln(M

′) ≤ ε(M, ε0)
n/C1

the following bound holds:

W∂(M ′) ≤ 3(1 + ε0)Voln−1(∂M
′).

The proof of Proposition 4.3 somewhat resembles a high dimensional
analog of the Birkhoff curve shortening process. We cover M ′ by a finite
collection of small balls Bi such that balls of 1/4 of the radius still cover
M ′. Since M ′ has very small volume it will not contain any of the balls
Bi. Hence, we can cut away the part of ∂M ′ that is contained in Bi and
replace it with a minimal surface that does not intersect (1/4)Bi. As a
result we obtain a new submanifold M ′′ ⊂ M ′ that does not intersect
(1/4)Bi. Moreover, we can do this in such a way that volume of the
boundary does not increase. The difference M ′ \M ′′ is contained in a
small ball, so we can sweep it out by Lemma 4.2. After finitely many
iterations we obtain a submanifold that is entirely contained in one of
the small balls. We then apply Proposition 2.3 to assemble a sweep-out
of M ′ from sweep-outs in small balls.
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In the proof of Proposition 4.3 we will need the following isoperimetric
inequality:

Theorem 4.4 (Federer–Fleming). There exists a constant C2(n) >
1, such that every k-cycle A in a closed unit ball in B ⊂ R

n can be filled

by a (k + 1)-chain D in B, such that: (i) Vol(D) ≤ C2(n)Vol(A)
k+1
k ,

and (ii) D is contained in the C2(n)Vol(A)
1
k -neighbourhood of A.

To show Proposition 4.3 we first need to prove the following lemma.

Definition 4.5. A k-chain A will be called δ-minimizing if Vol(A)−
δ ≤ inf{A′ ∈ Ck(M,Z) : ∂A′ = ∂M}.

Lemma 4.6. There is a constant C3(n) such that the following holds:
Let B be a ball of radius r0 ≤ ε(ε0,M) and A ⊂ ∂B be an (n− 1)-chain
satisfying Vol(A) ≤ C3(n)Vol(∂B). For every δ > 0 there exists δ-
minimal filling D of ∂A in B(x, r0), such that D ∩B(x, r0/2) = ∅. We
may take C3(n) ≤ ω−1

n−1(10C2(n))
−n.

The proof of Lemma 4.6 is a variation of an argument in [16, §4.2-3].
See also [17, Lemma 6].

Proof. Fix δ′ < δr0/100C2(n). Let D1 be some δ′-minimal filling of
∂A in B. We claim that D1 is contained in an r0/4-neighbourhood of
∂A except for a subset of volume at most δ′.

Since B is 2-bilipschitz homeomorphic to a Euclidean ball, we may
apply the Federer–Fleming isoperimetric inequality (with a worse con-
stant) inside B. We obtain that every (n− 2)-cycle S can be filled in B

by an (n− 1)-chain of mass at most 2C2(n)Vol(S)
n−1
n−2 .

Let A(r) = Voln−2({x ∈ D1 : d(x, ∂A) = r}) and V (r) = Voln−1({x ∈
D1 : d(x, ∂A) > r}). The co-area inequality implies that |V ′(r)| ≥ A(r).

It follows by the δ′-minimality of D1 that every open subset U ⊂ D1

not meeting ∂A must have volume at most:

Voln−1(U) ≤ 2C2(n)Voln−2(∂U)
n−1
n−2 + δ′.

In particular, we have: V (r) ≤ 2C2(n)A(r)
n−1
n−2 + δ′. Applying the

co-area inequality again we obtain:

d

dr

(
[V (r)− δ′]

1
n−1

)
≤ −1

(n− 1)(2C2(n))
n−1
n−2

.

Hence, V (r) ≤ δ′ for some

r ≤ (n− 1)(2C2(n))
n−1
n−2 Vol(D1)

1
n−1

≤ (n− 1)(2C2(n))
n−1
n−2 Vol(A)

1
n−1

≤ 2(n− 1)(2C2(n))
n−1
n−2

(
C3(n)nωnr

n−1
0

) 1
n−1 ≤ r0/4.
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Figure 1. Proof of Proposition 4.3.

We will now cut off the piece of D1 that lies outside of (r0/4)-
neighbourhood of ∂D1. Again, by the co-area inequality we have that:
A(r′) ≤ 8

r0
δ′ for some (1/4)r0 ≤ r′ ≤ (3/8)r0. The Federer–Fleming

isoperimetric inequality gives a filling of {d(x, ∂D1) = r′} by an (n−1)-
chain D2 satisfying:

Vol(D2) ≤ 2C2(n)

(
8

r0
δ′
)n−1

n−2

≤ δ/2.

Moreover, the filling has the property that the distance from

{d(x, ∂D1) = r′} to every point of D2 is at most 2C2(n)
(

8
r0
δ′
) 1

n−1 ≤
r0/8. This gives the desired filling. q.e.d.

Now we prove Proposition 4.3. We will construct a decomposition of
M into open sets and then apply Proposition 2.3.

Proof. Set C1(n) = 4nωn−1(10C3(n))
n. Let ε = ε(M, ε0) and assume

that M ′ ⊂M has volume bounded by 1/C1(n)ε
n. Let Bi = B(xi, ε) for

i = 1, ..., N , be a collection of balls such that M ′ is contained in the
interior of

⋃
B(xi, ε/4). Fix δ > 0. We will construct a collection of

open subsets U1 ⊂ ... ⊂ UN , with the following properties:

1) UN = M ′.
2) Vol(∂Ui) ≤ Vol(∂Ui+1) + δ/2i.

3) Ui ∩
⋃N

j=i+1B(xj , ε/4) is empty.

Assume that Ui+1, ..., UN have been defined. If Ui+1 ∩ B(xi, ε/4) is
empty we set Ui = Ui+1. Otherwise, to construct Ui we proceed as
follows.

By the co-area inequality we can find S(xi, r
′) = ∂B(xi, r

′), with 3
4ε <

r′ < ε, such that S = Ui+1∩S(r′, xi) satisfies Voln−1(S) ≤ 4Voln(Ui+1∩
B(xi, ε))

1−1/n. By Lemma 4.6 there exists an (n−1)-chain A ⊂ B(xi, r
′)

with ∂A = ∂S which is (δ/2i)-minimizing and A does not intersect
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B(xi, ε/4). Let X denote the union of the connected components of
Ui+1 \A that intersect B(xi, ε/4). We define Ui = Ui+1 \X. Note that
the volume decreased and by δ/2i-minimality of A and the volume of
the boundary could not have increased by more than δ/2i.

By Lemma 4.2 we have W∂(X) ≤ 2(1 + ε0)Voln−1(∂M
′) + δ. By

Proposition 2.3 we have W∂(M) ≤ 3(1 + ε0)Voln−1(∂M
′) + 2δ. Since

δ can be chosen arbitrarily small this concludes the proof of Proposi-
tion 4.3. q.e.d.

5. Proof of the width inequality

In this section we prove Theorem 1.3.

Theorem 5.1. Let M0 be a manifold with Ricci ≥ −(n−1) and let M
be in the conformal class of M0. Let M ′ ⊆M be an n-dimensional sub-
manifold. There exists a constant C(n) that depends on the dimension,
such that:

W∂(M ′) ≤ C(n)max{1,Vol0n(M ′)
1
n }Voln(M ′)

n−1
n + 3Voln−1(∂M

′).

Theorem 1.3 follows as a special case.

Proof. Pick the constant C(n) = 4·25nc(n), where c(n) is the constant
in Theorem 3.4.

Let ε > 0 be small enough that every submanifold of volume at most
25nε satisfies conclusions of Theorem 4.3. Suppose that M ′ ⊆ M , and
pick k so that: kε < Vol(M ′) ≤ (k + 1)ε and k > 25n. We proceed by
induction on k.

Assume the desired sweep-out exists for every open subset of volume
at most kε. By Lemma 3.4 we can find an (n−1)-submanifold Σ subdi-

viding M ′ into M1 and M2 of volume at most c(n)max{1,Vol0n(M ′)
1
n }×

Voln(M
′)

n−1
n , such that Voln(Mi) ≤ (1 − 1/25n)Voln(M

′). Since k >
25n the inductive hypothesis is applicable to both halves Mi.

By inductive hypothesis we have

W ∂(Mi) ≤ 3(Vol(∂M ′ ∩Mi) + Vol(Σ))

+ C(n)max{1,Voln(M)
1
n }Voln(Ui)

n−1
n .

We apply Proposition 2.3 with U0 = M ′ \ M2 and U1 = M ′. We
obtain

W∂(M ′) ≤ 3Vol(∂M ′) + 4Vol(Σ)

+ C(n)max{1,Vol0n(M ′)
1
n }max

i=1,2
{Voln(Mi)

n−1
n }.

We use bounds Voln(Mi)
n−1
n ≤ 25n−1

25n Voln(M
′) and

Voln−1(Σ) ≤ c(n)max{1,Vol0n(M ′)
1
n }Voln(M ′)

n−1
n .
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We compute that the resulting expression satisfies the desired bound.
q.e.d.

Theorem 1.3 follows from Theorem 5.1 by taking the infimum of the
total volume ofM0 over all manifoldsM0 that are conformally equivalent
to M and have Ricci ≥ −(n− 1).

6. The width of surfaces

In this section we prove a theorem of Balacheff and Sabourau [3] with
an improved constant. Note that the result also follows as an immediate
corollary of Theorem 1.3 with a worse constant. However, we observed
that one can use a slightly modified version of our proof and invoke the
Riemann–Roch theorem to get a somewhat better constant.

Below we prove a version of Theorem 1.3 which allows us to bound
width of a manifold M if M admits a conformal map into some nice
space M0 with a small number of pre-images. We will then estimate the
width of surfaces by applying uniformization theorem and the Riemann–
Roch theorem. Our argument is parallel to the analogous arguments of
Yang and Yau [35] and [21, §4] for eigenvalues of the Laplacian on
Riemann surfaces.

Definition 6.1. Define τ = τ(M0) and ν = ν(M0) as follows: τ is
the least number such that any annulus B0(x, 2r) \ B0(x, r) in M0 can
be covered by τ balls of radius r. We let ν(M0) be the least constant
such that Vol0n(B

0(x, r)) ≤ νrn for all r > 0 and all x ∈M0.

Theorem 6.2. Let Φ : (M, g)→ (M0, g0) be a conformal map. Sup-
pose the following holds: (i) Any point x ∈ M0 has at most K pre-
images, (ii) The set {x ∈ M,dΦ(x) = 0} is of measure 0. It follows
that:

W(M) ≤ 8ν
1
nK

1
n

1− ( τ+1
τ+2)

n−1
n

Vol(M)
n−1
n .

Proof. First, we prove an analog of our isoperimetric inequality, The-
orem 3.4.

Let U be an open set in M . We show that there is an (n − 1)-
submanifold Σ ⊂ U such that U \ Σ = U1 � U2 with Voln(Ui) ≥
1

τ+2 Voln(U) and Voln−1(Σ) ≤ 2ν
1
nK

1
n Voln(U)

n−1
n .

Let p ∈ M and u and v be vectors in the tangent space TpM . Since
Φ is conformal we have

〈Φ∗u,Φ∗v〉g0 = φ(x)〈u, v〉g,
for some non-negative function φ. In a neighbourhood of a point p ∈
M \ {x ∈M,dΦ(x) = 0} map Φ is a local diffeomorphism and

||∇(f ◦ Φ)|| = φ1/2||∇f || dVg = φ−n/2dVg0 ,
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where f : M0 → R is a smooth function and dVg, dVg0 are volume
elements.

The fact that the measure of the set {x ∈ M,dΦ(x) = 0} is zero
guarantees that limr→0Voln(Φ

−1(B0(a, r))) = 0 for all a ∈ M0. Let
r be the smallest radius, such that there exists a ball B(r, a) with
Vol(Φ−1(B0(a, r)) ∩ U) = Voln(U)/(τ + 2).

Let d0 be the distance function onM0 and define f(x) = d0(a, x)|Φ(U) :

Φ(U)→ R
+ to be the distance from x ∈ Φ(U) ⊂M to a.∫ 2r

r
Voln−1((f ◦ Φ)−1(t))dt

=

∫
(f◦Φ)−1(r,2r)

||∇(f ◦ Φ)||dVg

≤
(∫

(f◦Φ)−1(r,2r)
||∇(f ◦ Φ)||ndVg

) 1
n (

Voln((f ◦ Φ)−1(r, 2r))
)n−1

n

≤ K
1
n

(∫
f−1(r,2r)

||∇0f ||ndVg0

) 1
n (

Voln((f ◦ Φ)−1(r, 2r))
)n−1

n

≤ 2rν
1
nK

1
n Vol(U)

n−1
n .

It follows that the average of Voln−1((f ◦ Φ)−1(t)) is smaller than

2ν
1
nK

1
n Vol(U)

n−1
n . We then take Σ = (f ◦ Φ)−1(t), with area at most

average. This finishes the proof of the analog of Theorem 3.4.
The rest of the proof of Theorem 6.2 proceeds exactly as in Section 5

with c(n)max{1,Vol0n(U)
1
n } replaced by 2rν

1
nK

1
n . q.e.d.

We now recover Theorem 1.5. Let Sg denote a genus g closed surface
with a complete Riemannian metric. We write h for the metric on Sg.

The uniformization theorem for Riemannian surfaces guarantees that
there is a metric φh of constant sectional curvature in the conformal class
of h. If g = 0 or g = 1 then the result follows from Theorem 6.2 by
taking M0 to be S2, RP2, T 2 or the Klein bottle K with the standard
metric. In all of these cases we have ν = π and τ = 6 (see Remark 6.3
below).

Suppose now that the surface is orientable and the genus g > 1. Take
φh to have constant sectional curvature κ = −1. We now apply the
Riemann–Roch theorem which gives a meromorphic function Φ : Sg →
S2 of degree at most g + 1. Since Φ is a ramified conformal covering
map, it has at most g+1 points in each fibre and there are finitely many
points where dΦ = 0. Applying Theorem 6.2 to Φ gives a width volume
inequality for surfaces of genus g > 1, we obtain:

W(Sg) ≤ 8
√

ν(S2)

1−
√

τ(S2)+1
τ(S2)+2

√
(g + 1)Area(Sg).
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Remark 6.3. Clearly ν(S2) = ν(R2) = π. It is well known that
the smallest number of discs of radius 1 required to cover an annulus
B(2) \ B(1) ⊂ R

2 is 6. A similar covering also works on S2 so τ(S2) =

τ(R2) = 6. With these values of τ and ν we compute
8
√

ν(S2)

1−
√

τ(S2)+1

τ(S2)+2

≤ 220

which improves the upper bound C ≤ 108 from [3].

7. Volumes of hypersurfaces

In this section we prove Theorem 1.6.

Theorem 7.1. If M is a manifold with non-negative Ricci curvature

then Wk(M) ≤ C(n)k
1
n Vol(M)

n−1
n .

Note that Theorem 7.1 is consistent with the conjecture that the
sequence of numbers Wk(M) obeys a Weyl type asymptotic formula
(see [12] and the discussion in [25, §9]).

To prove Theorem 7.1 we will need to decomposeM into open subsets
of small sizes. Similar arguments for bounding Wk have been used by
Gromov [12],[14] and Guth [19].

Lemma 7.2. Let M be a closed Riemannian manifold with
Ricci(M) ≥ 0. There exists a constant C4(n), such that for any p there

exists p′ ≤ p and a collection of open balls {Ui}p
′

i=1 with
⋃

Ui = M ,

Voln(Ui) ≤ C4(n)
Voln(M)

p and Voln−1(∂Ui) ≤ C4(n)
(
Voln(M)

p

)n−1
n

.

Proof. It is a standard fact in comparison geometry that for any ball
B(x, r) ⊂ M we have Voln(B(x, 3r)) ≤ 3nVol(B(x, r)) and

Voln−1(∂B(x, 3r)) ≤ 3n−1nω
1
n
n Voln(B(x, r))

n−1
n .

Both of these bounds can be deduced, for example, from the Bishop–
Gromov inequality

Voln(B(x, r − ε))

ωn(r − ε)n
≥ Voln(B(x, r))

ωnrn
,

where ωn denotes the volume of a unit ball in Euclidean n-space.
To prove the second bound observe that Voln(B(x, r) \ B(r − ε)) ≤

nε
r Voln(B(x, r)) + O(ε2). Since Voln(B(x, r)) ≤ ωnr

n we can bound

the volume of the annulus by nω
1
n
n ε(Voln(B(r)))

n−1
n + O(ε2). Since

Vol(3Bi) ≤ 3nVol(Bi) we obtain that for every ε > 0 the volume
of the annulus B(xi, 3ri) \ B(xi, 3ri − ε) is bounded by

3n−1nω
1
n
n εVol(B(xi, ri))

n−1
n + O(ε2). Hence, there must exist a sphere

S(x, r′) in the annulus, 3r − ε ≤ r′ ≤ 3r, with Voln−1(S(x, r
′)) ≤

3n−1nω
1
n
n Voln(B(x, r))

n−1
n +O(ε2). By curvature comparison again the
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volume of a sphere cannot suddenly jump up. Since ε was arbitrary we

conclude Voln−1(∂S(x, 3r)) ≤ 3n−1nω
1
n
n Voln(B(x, r))

n−1
n .

Now we construct a covering of M by disjoint balls of volume Voln(M)
p ,

such that balls of three times the radius cover M . This is also standard
(see [15]). For each x choose rx > 0 to be the radius of a ball B(x, rx),

such that Voln(B(x, rx)) =
Voln(M)

p . By compactness there exists a finite

subcollection of balls B(x, rx) that cover M . By the Vitali covering
lemma we can further choose a subcollection of disjoint balls B1, . . . , Bk

with radii r1, . . . , rp′ , such that balls of three times the radius cover
M . Note that we must have p′ ≤ p. Theorem now follows by taking
Ui = 3Bi. q.e.d.

By Theorem 5.1 we have the following: for each open subset U
of M there exists a family of cycles Xt, for 0 ≤ t ≤ 1, sweeping-
out U . Moreover, we have that X0 is a trivial cycle, X1 = ∂U and

Vol(Xt) ≤ Vol(∂U) + C(n)Vol(U)
n−1
n . For each i we let Xi

t be the
family of cycles with the above properties for the submanifold with
boundary Ui \ (

⋃i−1
j=1 Uj). Let Vi =

⋃i
j=1 Uj for 1 ≤ i ≤ p′ and Vi = ∅

otherwise. Define a family of mod 2 cycles Zt for 0 ≤ t ≤ p′ by setting
Zt = ∂Vi−1 +Xi

t−[t] for i − 1 ≤ t ≤ i, here [t] denotes the integer part

of t. We identify the endpoints (which are trivial cycles) and rescale so
that Zt is parametrized by a unit circle.

Observe that for each t cycle Zt can be decomposed into two (n− 1)-

cycles Zt = Z1
t +Z2

t with Z1
t ⊂

⋃
∂Ui and Vol(Z2

t ) ≤ C4(n)
(
Vol(M)

p

)n−1
n

.

Following Gromov [12] and Guth [19] we will now define a p-cycle
F : RP

p → Zn−1(M,Z2) which detects the cohomology element λp.
Consider a truncated symmetric product TP p(S1). Recall that the sym-
metric product is defined as a quotient of (S1)p by the symmetric group
Sp. The truncated symmetric product is then defined as a quotient
of the symmetric product by an equivalence relation 1sj + 1sk = 0
if sj = sk and j �= k. In [29] Mostovoy proved that TP p(S1) is
homeomorphic to RP

p (we learnt about this from [19]). We define
F (

∑p
i=1 aiti) =

∑p
i=1 aiZti . Alternatively, we could define a map from

RP
p to Zn−1(M,Z2) with the desired property using zeros of real poly-

nomials of one variable with degree at most p as in [12, 4.2B] and [19,
Section 5].

We claim that Vol(F (x)) ≤ C(n)p
1
n Vol(M)

n−1
n . Indeed, we may

decompose each of the p summands Zti = Z1
ti + Z2

ti with Z1
ti con-

tained in the union of the boundaries of Ui’s and the volume of Z2
ti

bounded from above by a constant times (Vol(M)
p )

n−1
n . Since we are

dealing with mod 2 cycles the sum of all Z1
ti cannot be greater than
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Vol(
⋃

∂Ui) ≤ C(n)p
1
n Vol(M)

n−1
n . We also have that the sum

∑
Z2
ti ≤

C(n)p
1
n Vol(M)

n−1
n .

Finally, we show that F ∗(λp) = F ∗(λ)p �= 0. Observe that S =
{1 · t : t ∈ S1} ⊂ TP p(S1) represents a non-trivial homology class in
H1(TP

p(S1),Z2) and F (S) = {Zt}t∈S1 is a sweep-out of M by Propo-
sition 2.3. It follows that F ∗(λ) = 1. This finishes the proof of Theo-
rem 7.1.

We use this result to bound volumes of minimal hypersurfaces in a
space with positive Ricci curvature. These minimal hypersurfaces arise
from Almgren–Pitts min–max theory as supports of stationary almost
minimizing integral varifolds. Pitts [32] and Schoen and Simon [34]
proved that these hypersurfaces are smooth embedded submanifolds
when n ≤ 7. In higher dimensions they may have singular sets of
dimension at most n− 8.

Marques and Neves [25] showed that every manifold M of dimension
n, for 3 ≤ n ≤ 7, with positive Ricci curvature possesses infinitely many
embedded minimal hypersurfaces. Theorem 1.6 is an effective version
of their result. Note that for 2-dimensional surfaces an analogous result
for periodic geodesics is false. Morse showed that for an ellipsoid of area
1 with distinct but very close semiaxes the length of the fourth shortest
geodesic becomes uncontrollably large ([28]).

Proof of Theorem 1.6. Let Vk be the infimum of numbers such that
there exists k distinct minimal hypersurfaces of volume less or equal
to Vk. By [25, Prop. 4.8] and results in Section 2 of the same paper
we may assume that each parametric width Wk can be written as a
finite linear combination Wk =

∑
aj Vj , where aj are integer coeffi-

cients. Moreover, when M has positive Ricci curvature (or, more gen-
erally whenever M has the property that any two embedded minimal
hypersurfaces in M intersect) we have Wk = ajk Vjk for some positive
integer ajk .

Let C = C(n) be the constant from Theorem 7.1 and define C ′ =
2

1
n−1C

n
n−1 . We proceed by contradiction. Suppose

Vk > C ′Vol(M)
(
sysn−1(M)

)− 1
n−1 k

1
n−1 ,

for some k. Let A(N) = {Wi ≤ N}. It follows from the proof of
Theorem 6.1 in [25] that if Wi = Wi+1 for some i then there exists
infinitely many hypersurfaces of volume at most Wi. Hence, we may
assume that Wi < Wi+1 for all i < k. By Theorem 7.1 we have that the
number of elements in the set A(N) satisfies #A(N) ≥ Nn

Cn Vol(M)n−1 −1.

In particular, we compute #A(Vk) ≥ 2kVk
V1
− 1. On the other hand, the

set {aiVi : ai ∈ N, aiVi ≤ Vk} has at most kVk
V1

elements, which is a
contradiction.
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