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BOUNDARY EFFECT OF RICCI CURVATURE

Pengzi Miao & Xiaodong Wang

Abstract

On a compact Riemannian manifold with boundary, we study
how Ricci curvature of the interior affects the geometry of the
boundary. First, we establish integral inequalities for functions
defined solely on the boundary and apply them to obtain geometric
inequalities involving the total mean curvature. Then, we discuss
related rigidity questions and prove Ricci curvature rigidity results
for manifolds with boundary.

1. Introduction and statement of results

In this paper, we consider the question how the Ricci curvature of
a compact manifold with boundary affects the boundary geometry of
the manifold. For the scalar curvature the same question is related to
the quasi-local mass problem in general relativity. Indeed, much of the
formulation of results in this paper is motivated by that in [17, 20, 10].

We begin with integral inequalities that hold for functions solely de-
fined on the boundary. For simplicity, all manifolds and functions in
this paper are assumed to be smooth.

Theorem 1.1. Let (Ω, g) be an n-dimensional, compact Riemannian
manifold with nonempty boundary Σ. Let K be a constant that is a lower
bound of the Ricci curvature of g, i.e., Ric ≥ Kg. Let H be the mean
curvature of Σ in (Ω, g) with respect to the outward normal. Suppose
H > 0. Given any function η on Σ, define

A(η) =

∫
Σ

η2

H
dσ, B(η) =

∫
Σ

ηΔ
Σ
η

H
dσ,

C(η) =

∫
Σ

[
(Δ

Σ
η)2

H
− II(∇

Σ
η,∇

Σ
η)

]
dσ,

where ∇
Σ
, Δ

Σ
are the gradient, and the Laplacian on Σ, respectively,

II is the second fundamental form of Σ, and dσ is the volume form on
Σ. Then, for each nontrivial η, either

(1.1)

(
B(η)

A(η)

)2

≤
C(η)

A(η)
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or

(1.2)
1

2
K ≤ −

B(η)

A(η)
−

√(
B(η)

A(η)

)2

−
C(η)

A(η)
.

Remark 1.1. If the term II(∇
Σ
η,∇

Σ
η) were absent in C(η), then

(1.1) would always hold by Hölder inequality.

Remark 1.2. When Ω is the closure of a bounded domain in R3,
the functional C(η), up to a constant multiple of 1

8π , is the 2nd varia-

tion of the Wang–Yau quasi-local energy ([21, 22]) at Σ = ∂Ω in R3,1,
where R3,1 is the 4-dimensional Minkowski spacetime. (See [10, 11] for
details.)

Remark 1.3. If Σ has a component Σ0 on which II > 0, then (1.1)
always fails for an η that is a nonconstant eigenfunction on Σ0 and
zero elsewhere. In this case, (1.2) yields estimates on the first nonzero
eigenvalue of Σ0. (See Corollary 2.1 for details.)

The conclusion of Theorem 1.1 is easily seen to be equivalent to a
statement

(1.3)

∫
Σ
II(∇

Σ
η,∇

Σ
η)dσ ≤

∫
Σ

1

H
(Δ

Σ
η + tη)2 dσ

for all constants t ≤ 1
2K. In Theorem 2.1 of Section 2, we prove a more

general version of (1.3) that allows H ≥ 0. Interpreted this way, Theo-
rem 1.1 and its generalization (Theorem 2.1) have natural applications
to the total mean curvature of the boundary.

We first state the case of nonnegative Ricci curvature.

Theorem 1.2. Let (Ω, g) be an n-dimensional, compact Riemannian
manifold with nonnegative Ricci curvature, with connected boundary Σ
that has nonnegative mean curvature H. Let X : Σ→ Rm be an isomet-
ric immersion of Σ into some Euclidean space Rm of dimension m ≥ n.
Then

(1.4)

∫
Σ
H dσ ≤

∫
Σ′

| �H0|
2

H
dσ,

where �H0 is the mean curvature vector of the immersion X, | �H0| is the

length of �H0, and Σ′ = {x ∈ Σ | �H0(x) 
= 0}. Moreover, if equality in
(1.4) holds, then

a) H = | �H0| identically on Σ,
b) (Ω, g) is flat and X(Σ) lies in an n-dimensional plane in Rm,
c) (Ω, g) is isometric to a domain in Rn if X is an embedding.

Remark 1.4. In light of the Nash imbedding theorem [12], the bound-
ary Σ always admits an isometric immersion into some Euclidean space.
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Therefore, Theorem 1.2 applies to any compact Riemannian manifold
with nonnegative Ricci curvature, with mean convex boundary (i.e.,
H ≥ 0). One may compare Theorem 1.2 with the result in [17], in
which a weaker curvature condition R ≥ 0 is assumed, where R is the
scalar curvature, while a more stringent boundary condition is imposed.

Remark 1.5. If (Ω, g) has nonnegative Ricci curvature and nonempty
mean convex boundary, it was shown in [7, 8] (cf. [5]) that ∂Ω has at
most two components, and that ∂Ω has two components only if (Ω, g)
is isometric to N × I for a connected closed manifold N and an interval
I. This is why we only consider connected boundary in Theorem 1.2.

Remark 1.6. Theorem 1.2 generalizes [5, Proposition 2], which proves

that b) and c) hold under a pointwise assumption H ≥ | �H0|. Indeed,
Theorem 1.2 follows from an easy adaptation of the argument in [5].

Remark 1.7. If H > 0 on Σ, Theorem 1.2 implies
∫
ΣHdσ ≤ C where

C > 0 is a constant depending only on the induced metric on Σ and a
positive lower bound of H.

Next, we give an analogous result for manifolds with positive Ricci
curvature.

Theorem 1.3. Let (Ω, g) be an n-dimensional, compact Riemannian
manifold with positive Ricci curvature, with connected boundary Σ that
has nonnegative mean curvature H. Let k > 0 be a constant such that

Ric ≥ (n− 1)kg.

Suppose there exists an isometric immersion X : Σ → Smk , where Smk
is the sphere of dimension m ≥ n with constant sectional curvature k.
Then

(1.5)

∫
Σ
H dσ <

∫
Σ

| �HS|
2 + 1

4(n − 1)2k

H
dσ,

where �HS is the mean curvature vector of the immersion X.

Like (1.4), (1.5) imposes constraints on the boundary mean curvature
when the Ricci curvature of the interior has a positive lower bound.
For instance, consider the standard hemisphere (Sn+, gS

) of dimension n.
Let Ω ⊂ Sn+ be a smooth domain with connected boundary. It follows
from Theorem 1.3 that there does not exist a metric g on Ω satisfying

Ric ≥ (n− 1), g|T∂Ω = g
S
|T∂Ω, and H ≥

√
(HS)2 +

1
4 (n− 1)2, where H

and HS are the mean curvature of ∂Ω in (Ω, g) and (Ω, g
S
), respectively.

This could be compared with the first step, i.e., [1, Theorem 4], in the
construction of the counterexample to Min-Oo’s conjecture, in which
a metric on Sn+ is produced so that it satisfies R ≥ n(n − 1), but the
mean curvature of ∂Sn+ is raised to be everywhere positive. One may
also compare this with the Ricci curvature rigidity theorems in [6].
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When a manifold has negative Ricci curvature somewhere, we have
the following.

Theorem 1.4. Let (Ω, g) be an n-dimensional, compact Riemannian
manifold with boundary Σ that has nonnegative mean curvature H. Let
k > 0 be a constant satisfying

Ric ≥ −(n− 1)kg.

Suppose Σ has a component Σ0 that admits an isometric immersion
X : Σ0 → Hm

−k, where Hm
−k is the hyperbolic space of dimension m ≥ n

with constant sectional curvature −k. Then∫
Σ0

Hdσ +

∫
Σ0

II(∇
Σ
t,∇

Σ
t)dσ

<

∫
Σ′

0

1

H

{
| �HH|

2 −
1

4
(n− 1)2k +

[
Δ

Σ
t−

1

2
(n− 1)kt

]2}
dσ.

(1.6)

Here II is the second fundamental form of Σ0, t = cosh r ◦X, where r is

the distance to a fixed point o in Hm
k , �HH is the mean curvature vector

of the immersion X into Hm
−k that satisfies

(1.7) | �HH|
2 −

1

4
(n− 1)2k +

[
Δ

Σ
t−

1

2
(n− 1)kt

]2
≥ 0 on Σ0,

and Σ′0 is the set consisting of x ∈ Σ0 such that

| �HH|
2(x)−

1

4
(n− 1)2k +

[
Δ

Σ
t−

1

2
(n− 1)kt

]2
(x) > 0.

Remark 1.8. The term
∫
Σ0

II(∇
Σ
t,∇

Σ
t)dσ in (1.6) can be dropped

if II ≥ 0 or X(Σ0) ⊂ So(r), where So(r) is a geodesic sphere in Hm
−k

centered at o.

The fact that (1.5) and (1.6) are strict inequalities is due to the
characterization of equality case in Theorem 2.1. This leads naturally
to rigidity questions in the context of Theorem 1.3 and 1.4. We have
the following two related results.

Theorem 1.5. Let (Ω, g) be an n-dimensional, compact Riemannian
manifold with boundary Σ. Suppose the following:

• Ric ≥ (n− 1) g.
• There exists an isometric immersion X : Σ → Sm, where Sm is a
standard sphere of dimension m ≥ n.

• II (v, v) ≥ |IIS (v, v)|, for any v ∈ TΣ. Here II is the second fun-
damental form of Σ in (Ω, g) and IIS is the vector-valued, second
fundamental form of the immersion X.

Then (Ω, g) is spherical, i.e., having constant sectional curvature 1.
Moreover, if Σ is simply connected, then (Ω, g) is isometric to a do-
main in Sn+.
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Theorem 1.6. Let (Ω, g) be an n-dimensional, compact Riemannian
manifold with boundary Σ. Suppose the following:

• Ric ≥ − (n− 1) g
• There exists an isometric immersion X : Σ → Hm, where Hm is
a hyperbolic space of dimension m ≥ n.

• II (v, v) ≥ |IIH (v, v)|, for any v ∈ TΣ. Here II is the second fun-
damental form of Σ in (Ω, g) and IIH is the vector-valued, second
fundamental form of the immersion X.

Then (Ω, g) is hyperbolic, i.e., having constant sectional curvature −1.
Moreover, if Σ is simply connected, then (Ω, g) isometric to a domin in
Hn.

The rest of this paper is organized as follows. In Section 2, we prove
Theorem 2.1 which implies Theorem 1.1. In Section 3, we consider
applications of Theorem 2.1 to the total boundary mean curvature and
prove Theorems 1.2 through 1.4. In Section 4, we discuss the related
rigidity question and prove Theorem 1.5 and 1.6.

Acknowledgments. The work of the authors are partially supported
by Simons Foundation Collaboration Grant for Mathematicians #281105
and #312820, respectively.

2. A geometric Poincaré type inequality

The main result of this section is the following geometric Poincaré
type inequality for functions defined on the boundary of a compact
Riemannian manifold.

Theorem 2.1. Let (Ω, g) be an n-dimensional, compact Riemannian
manifold with nonempty boundary Σ. Suppose

Ric ≥ (n− 1)kg and H ≥ 0,

where Ric is the Ricci curvature of g, k is some constant, and H is
the mean curvature of Σ in (Ω, g) with respect to the outward normal.
Suppose H is not identically zero. Then

(2.1)

∫
Σ
II(∇

Σ
η,∇

Σ
η)dσ ≤

∫
Σ\{Δ

Σ
η+tη=0}

1

H
(Δ

Σ
η + tη)2 dσ

for any nontrivial function η on Σ and any constant t ≤ 1
2(n − 1)k.

Here II(·, ·) is the second fundamental form of Σ, ∇
Σ
and Δ

Σ
denote

the gradient and the Laplacian on Σ, respectively. Moreover, equality in
(2.1) holds only if either k > 0, t = 0 and η is a constant; or k = t = 0
and η is the boundary value of some function u on Ω satisfying ∇2u = 0.
Here ∇2 denotes the Hessian on (Ω, g).
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Remark 2.1. The case k = 0, H > 0, and t = 0 in (2.1) was first
proved in [11] and is related to the second variation of Wang–Yau quasi-
local energy [21, 22] at a closed 2-surface in R3 ⊂ R3,1.

Proof. The basic tool we use is Reilly’s formula ([14])

∫
Ω

[
|∇2u|2 − (Δu)2 +Ric(∇u,∇u)

]
dV

=

∫
Σ

[
−II(∇

Σ
u,∇

Σ
u)− 2(Δ

Σ
u)

∂u

∂ν
−H

(
∂u

∂ν

)2
]
dσ,

(2.2)

which follows from integrating the Bochner formula. Here Δ, dV denote
the Laplacian, the volume form on (Ω, g), respectively; ν is the outward
unit normal to Σ, and u is any function defined on Ω.

Given any nontrivial η on Σ and any constant λ ≤ nk, let u be the
unique solution to

(2.3)

{
Δu+ λu = 0 on Ω

u = η at Σ.

(The fact that (2.3) has a unique solution follows from the maximum
principal when k ≤ 0. When k > 0, it follows from a theorem of Reilly
([14, Theorem 4]) that states that the first Dirichlet eigenvalue λ1 of
Δ satisfies λ1 ≥ nk and λ1 = nk if and only if (Ω, g) is isometric to a
hemisphere in which case II is identically zero.) Plug this u in (2.2),
using the fact

|∇2u|2 =
1

n
(Δu)2 + |∇2u−

1

n
(Δu)g|2,

λ

∫
Ω
u2dV =

∫
Ω
|∇u|2dV −

∫
Σ
u
∂u

∂ν
dσ,

and the assumption Ric ≥ (n− 1)kg, and we have

(
1−

1

n

)
(nk − λ)

∫
Ω
|∇u|2dV +

∫
Ω
|∇2u+

1

n
λug|2dV

≤

∫
Σ

[
−II(∇

Σ
η,∇

Σ
η)− 2

(
Δ

Σ
η +

n− 1

2n
λη

)
∂u

∂ν
−H

(
∂u

∂ν

)2
]
dσ.

(2.4)
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Given any constant ε > 0, (2.4) implies

∫
Σ

[
−II(∇

Σ
η,∇

Σ
η) +

1

H + ε

(
Δ

Σ
η +

n− 1

2n
λη

)2

+ ε

(
∂u

∂ν

)2
]
dσ

≥

∫
Σ

[
1

√
H + ε

(
Δ

Σ
η +

n− 1

2n
λη

)
+
√
H + ε

∂u

∂ν

]2
dσ

+

(
1−

1

n

)
(nk − λ)

∫
Ω
|∇u|2dV +

∫
Ω
|∇2u+

1

n
λug|2dV

≥ 0.

(2.5)

Define Ση,λ =
{
x ∈ Σ | Δ

Σ
η + n−1

2n λη = 0
}
. By Lebesgue’s monotone

convergence theorem, we have

lim
ε→0

∫
Σ\Ση,λ

1

H + ε

(
Δ

Σ
η +

n− 1

2n
λη

)2

dσ

=

∫
Σ\Ση,λ

1

H

(
Δ

Σ
η +

n− 1

2n
λη

)2

dσ.

(2.6)

Therefore, it follows from (2.5) and (2.6) that

(2.7)

∫
Σ
II(∇

Σ
η,∇

Σ
η)dσ ≤

∫
Σ\Ση,λ

1

H

(
Δ

Σ
η +

n− 1

2n
λη

)2

dσ,

which proves (2.1) by setting t = n−1
2n λ.

Next, suppose∫
Σ
II(∇

Σ
η,∇Ση)dσ =

∫
Σ\Ση,λ

1

H

(
Δ

Σ
η +

n− 1

2n
λη

)2

dσ.(2.8)

In particular, this shows

(2.9)
1
√
H

(
Δ

Σ
η +

n− 1

2n
λη

)
∈ L2(Σ \Ση,λ)

and the set {x ∈ Σ \ Ση,λ | H(x) = 0} has dσ-measure zero. Hence, by
(2.4) and (2.8), we have(

1−
1

n

)
(nk − λ)

∫
Ω
|∇u|2dV +

∫
Ω
|∇2u+

1

n
λug|2dV

≤ −

∫
Σ\Ση,λ

[
1
√
H

(
Δ

Σ
η +

n− 1

2n
λη

)
+
√
H

∂u

∂ν

]2
dσ

−

∫
Ση,λ

H

(
∂u

∂ν

)2

dσ,

(2.10)



66 P. MIAO & X. WANG

which implies

(2.11) (nk − λ)|∇u| = 0, ∇2u+
1

n
λug = 0 on Ω

and

(2.12) Δ
Σ
η +H

∂u

∂ν
+

n− 1

2n
λη = 0 at Σ.

If λ < nk, (2.11) shows u is identically a constant, then λ = 0, k > 0,
and η is a constant on Σ.

If λ = nk, (2.11) shows

(2.13) ∇2u+ kug = 0 on Ω,

which implies

(2.14) Δ
Σ
η +H

∂u

∂ν
+ (n− 1)kη = 0 at Σ.

Comparing (2.14) to (2.12) with λ = nk, we have k = λ = 0. This
completes the proof. q.e.d.

When H > 0, (2.1) is simplified to∫
Σ
II(∇

Σ
η,∇

Σ
η)dσ ≤

∫
Σ

1

H
(Δ

Σ
η + tη)2 dσ.

In this case, Theorem 2.1 is equivalent to a statement that, given any
nontrivial η on Σ, the quadratic form

Qη(t) := A(η)t2 + 2B(η)t + C(η)

satisfies

(2.15) Qη(t) ≥ 0, ∀ t ≤
1

2
(n− 1)k,

where

A(η) =

∫
Σ

η2

H
dσ, B(η) =

∫
Σ

ηΔ
Σ
η

H
dσ,(2.16)

C(η) =

∫
Σ

[
(Δ

Σ
η)2

H
− II(∇

Σ
η,∇

Σ
η)

]
dσ.(2.17)

Clearly (2.15) is equivalent to asserting that, for each fixed η, either

(2.18) B(η)2 ≤ A(η)C(η)

or

(2.19)
1

2
(n− 1)k ≤ −

B(η)

A(η)
−

√(
B(η)

A(η)

)2

−
C(η)

A(η)
.

This explains how Theorem 1.1 follows from Theorem 2.1.

Next, we apply Theorem 2.1 to eigenvalue estimates on the boundary.
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Corollary 2.1. Let (Ω, g), Σ, k, H, II be given as in Theorem 2.1.
Suppose Σ has a component Σ0 that is convex, i.e., II > 0 on Σ0. Let
κ > 0 be a constant such that II ≥ κγ, where γ is the induced metric
on Σ0. Let λ be a positive eigenvalue of Δ

Σ
on (Σ0, γ). If κ2 + 2k > 0,

then

(2.20) λ /∈

(
1

4
(n− 1)

[
κ−

√
κ2 + 2k

]2
,
1

4
(n− 1)

[
κ+

√
κ2 + 2k

]2)
.

In particular, if k ≥ 0, the first nonzero eigenvalue λ1(Σ0) of (Σ0, γ)
satisfies

(2.21) λ1(Σ0) ≥
1

4
(n− 1)

[
κ+

√
κ2 + 2k

]2
.

Proof. By defining η = 0 everywhere on Σ \Σ0, Theorem 2.1 implies∫
Σ0

II(∇
Σ
η,∇

Σ
η)dσ ≤

∫
Σ0

1

H
(Δ

Σ
η + tη)2 dσ,

for any η defined on Σ0 and any t ≤ 1
2(n − 1)k. Let A(η), B(η), and

C(η) be given in (2.16) and (2.17) with Σ replaced by Σ0. Suppose η is
a nonzero eigenfunction, i.e., Δ

Σ
η + λη = 0. Then

B(η)2 −A(η)C(η) =

(∫
Σ0

η2

H
dσ

)(∫
Σ0

II(∇
Σ
η,∇

Σ
η)dσ

)
> 0.

Therefore, (2.19) holds, which shows

(2.22)
1

2
(n− 1)k ≤ λ−

(∫
Σ0

II(∇
Σ
η,∇

Σ
η)dσ∫

Σ0

η2

H
dσ

) 1

2

.

On the other hand,

(2.23)

∫
Σ0

II(∇
Σ
η,∇

Σ
η)dσ ≥ κ

∫
Σ0

|∇
Σ
η|2dσ = κλ

∫
Σ0

η2dσ

and

(2.24)

∫
Σ0

η2

H
dσ ≤

1

(n− 1)κ

∫
Σ0

η2dσ.

Hence, (2.22) through (2.24) imply

(2.25)
1

2
(n− 1)k ≤ λ− κ

√
(n− 1)λ.

When κ2 + 2k > 0, it follows from (2.25) that

√
λ /∈

(
1

2

√
n− 1

[
κ−

√
κ2 + 2k

]
,
1

2

√
n− 1

[
κ+

√
κ2 + 2k

])
,

which completes the proof. q.e.d.

Remark 2.2. Corollary 2.1 is motivated by results in [3, 23]. If
k = 0, (2.21) reduces to λ1(Σ0) ≥ (n − 1)κ2, which is the estimate in
[23].
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3. Application to total mean curvature

In this section, we recall the statement of Theorems 1.2 through 1.4
and give their proof. We begin with the case of nonnegative Ricci cur-
vature.

Theorem 3.1. Let (Ω, g) be an n-dimensional, compact Riemannian
manifold with nonnegative Ricci curvature, with connected boundary Σ
that has nonnegative mean curvature H. Let X : Σ→ Rm be an isomet-
ric immersion of Σ into some Euclidean space Rm of dimension m ≥ n.
Then

(3.1)

∫
Σ
H dσ ≤

∫
Σ′

| �H0|
2

H
dσ,

where �H0 is the mean curvature vector of the immersion X and Σ′ ⊂ Σ
is the set { �H0(x) 
= 0}. Moreover, if equality in (3.1) holds, then

a) H = | �H0| identically on Σ.
b) (Ω, g) is flat and X(Σ) lies in an n-dimensional plane in Rm.
c) (Ω, g) is isometric to a domain in Rn if X is an embedding.

Proof. Since X is an isometric immersion, one has

(3.2) Δ
Σ
X = �H0.

At any x ∈ Σ, let {vα | α = 1, . . . , n − 1} ⊂ TxΣ be an orthonormal
frame that diagonalizes II, i.e., II(vα, vβ) = δαβκα where {κ1, . . . , κn−1}
are the principal curvature of Σ in (Ω, g) at x. Let {e1, . . . , em} denote
the standard basis in Rm, and let xi be the ith component of X. Then

m∑
i=1

II(∇
Σ
xi,∇Σ

xi) =

m∑
i=1

n−1∑
α,β=1

II(vα, vβ)〈ei, vα〉〈ei, vβ〉

=

n−1∑
α=1

κα = H.

(3.3)

Setting k = 0 in Theorem 2.1 and choosing η = xi, t = 0 in (2.1), we
have

(3.4)

∫
Σ
II(∇

Σ
xi,∇Σ

xi)dσ ≤

∫
Σ

1

H
(Δ

Σ
xi)

2 1Σ′
i
dσ,

where 1Σ′
i
is the characteristic function of the set Σ′i = Σ \ {Δ

Σ
xi = 0}.

Summing (3.4) over i, using (3.2), (3.3), and the fact Σ′i ⊂ Σ′, we have

(3.5)

∫
Σ
Hdσ ≤

∫
Σ′

1

H
| �H0|

2dσ,

which proves (3.1).
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Next, suppose

(3.6)

∫
Σ
Hdσ =

∫
Σ′

1

H
| �H0|

2dσ.

Then it follows from (3.4) that

(3.7)

∫
Σ
II(∇

Σ
xi,∇Σ

xi)dσ =

∫
Σ

1

H
(Δ

Σ
xi)

2 1Σ′
i
dσ, ∀ i.

By the rigidity part of Theorem 2.1, there exist functions ui, 1 ≤ i ≤ m,
such that ui = xi at Σ and

(3.8) ∇2ui = 0 on Ω.

Moreover, by (2.12) or (2.14), we have

(3.9) �H0 +HdΦ(ν) = 0 at Σ,

where Φ : Ω → Rm is a (harmonic) map defined by Φ = (u1, . . . , um),
dΦ = (du1, . . . , dum) is the associated tangent map, and ν is the unit
outward normal to Σ in (Ω, g).

We claim

(3.10) dΦ(ν)(x) 
= 0, ∀ x ∈ Σ.

To see this, first consider a point y ∈ Σ′ (Σ′ 
= ∅ by (3.2)). At y, (3.9)
implies

(3.11) dΦ(ν)(y) 
= 0 and dΦ(ν)(y) ⊥ X(Σ).

Hence, the rank of dΦ at y is n by (3.11) and the fact Φ|Σ = X . On the
other hand, (3.8) shows dui is parallel on Ω, ∀ i. Therefore, the rank of
dΦ equals n everywhere on Ω. In particular, this proves (3.10).

By (3.9) and (3.10), we now have

(3.12) {x ∈ Σ | H(x) 
= 0} = Σ′.

Thus (3.6) becomes

(3.13)

∫
Σ′

Hdσ =

∫
Σ′

H|dΦ(ν)|2dσ

by (3.9). As Σ′ is a nonempty open set in Σ, (3.12) and (3.13) imply

(3.14) |dΦ(ν)|(z) = 1 and dΦ(ν)(z) ⊥ X(Σ), ∀ z ∈ Σ′.

It follows from (3.14), (3.9), and (3.12) that H = | �H0| identically on Σ.
The rest of the claim now follows from [5, Proposition 2]. For com-

pleteness, we include the proof. By (3.14) and the fact Φ|Σ = X, one
knows g =

∑m
i=1 dui ⊗ dui at Σ

′. As a result, g =
∑m

i=1 dui ⊗ dui on Ω
as both tensors are parallel. Clearly this shows (Ω, g) is flat and Φ is an
isometric immersion. Next, let v,w be any tangent vectors to Ω. (3.8)
implies

(3.15) 0 = vw(Φ)−∇vw(Φ) = ∇dΦ(v)(dΦ(w)) − dΦ(∇vw),
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where ∇ and ∇ denote the connection on (Ω, g) and Rm, respectively.
By definition, (3.15) shows Φ : Ω → Rm is totally geodesic. Therefore,
Φ(Ω) (hence X(Σ)) lies in an n-dimensional plane in Rm. Without loss
of generality, one can assume Φ(Ω) ⊂ Rn. If X : Σ → Rm is indeed
an embedding, then X(Σ) = ∂W , where W is the closure of a bounded
domain in Rn. Since Φ is an immersion and Φ|Σ = X, one can show
Φ(Ω) ⊂ W and Φ : Ω \ Σ → W \ ∂W (by checking that Φ(Ω) \ W
is both open and closed in Rn \ W ). On the other hand, Φ being a
local isometry implies Φ : Ω→ W is a covering map. Therefore, Φ is a
homeomorphism, and hence an isometry between Ω and W . q.e.d.

Theorem 3.2. Let (Ω, g) be an n-dimensional, compact Riemannian
manifold with positive Ricci curvature, with connected boundary Σ that
has nonnegative mean curvature H. Let k > 0 be a constant such that

Ric ≥ (n− 1)kg.

Suppose there exists an isometric immersion X : Σ → Smk , where Smk
is the sphere of dimension m ≥ n with constant sectional curvature k.
Then

(3.16)

∫
Σ
H dσ <

∫
Σ

| �HS|
2 + 1

4(n − 1)2k

H
dσ,

where �HS is the mean curvature vector of the immersion X into Smk .

Proof. We identify Smk with the sphere of radius 1√
k
centered at the

origin in Rm+1, i.e., Smk =
{
(y1, . . . , ym+1) ⊂ Rm+1 |

∑m+1
i=1 y2i = 1

k

}
,

and view
X = (x1, . . . , xm+1) : Σ −→ Smk ⊂ Rm+1

as an isometric immersion of Σ into Rm+1. Let �H0 denote the mean
curvature vector of X : Σ→ Rm+1; then

(3.17) �H0 = �HS + k〈 �H0,X〉X,

where 〈·, ·〉 is the inner product in Rm+1. Applying the fact

(3.18) ΔΣX = �H0 and 〈X,X〉 =
1

k
,

we have

0 =

m+1∑
i=1

(
xiΔΣxi + |∇Σxi|

2
)

= 〈 �H0,X〉 + (n− 1).

(3.19)

In Theorem 2.1, choose η = xi and t = 1
2 (n− 1)k > 0 in (2.1). Then

we have∫
Σ
II(∇

Σ
xi,∇Σ

xi)dσ <

∫
Σ′

1

H

[
Δ

Σ
xi +

1

2
(n − 1)kxi

]2
1Σ′

i
dσ,(3.20)
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where 1Σ′
i
is the characteristic function of the set

Σ′i = Σ \

{
Δ

Σ
xi +

1

2
(n− 1)kxi = 0

}
.

Summing (3.20) over i and using (3.17) through (3.19), we have∫
Σ
Hdσ <

∫
Σ

1

H

[
| �H0|

2 + (n− 1)k〈 �H0,X〉+
1

4
(n− 1)2k2|X|2

]
dσ

=

∫
Σ

1

H

[
| �HS|

2 +
1

4
(n− 1)2k

]
dσ,

where we have also used (3.3). This proves (3.16). q.e.d.

Theorem 3.3. Let (Ω, g) be an n-dimensional, compact Riemannian
manifold with boundary Σ that has nonnegative mean curvature H. Let
k > 0 be a constant satisfying

Ric ≥ −(n− 1)kg.

Suppose Σ has a component Σ0 that admits an isometric immersion
X : Σ0 → Hm

−k, where Hm
−k is the hyperbolic space of dimension m ≥ n

with constant sectional curvature −k. Then∫
Σ0

Hdσ +

∫
Σ0

II(∇
Σ
t,∇

Σ
t)dσ

<

∫
Σ′

0

1

H

{
| �HH|

2 −
1

4
(n− 1)2k +

[
Δ

Σ
t−

1

2
(n− 1)kt

]2}
dσ.

(3.21)

Here II is the second fundamental form of Σ0, t = cosh r ◦X, where r is

the distance to a fixed-point o in Hm
k , �HH is the mean curvature vector

of the immersion X into Hm
−k that satisfies

(3.22) | �HH|
2 −

1

4
(n− 1)2k +

[
Δ

Σ
t−

1

2
(n− 1)kt

]2
≥ 0 on Σ0,

and Σ′0 is the set consisting of x ∈ Σ0 such that

| �HH|
2(x)−

1

4
(n− 1)2k +

[
Δ

Σ
t−

1

2
(n− 1)kt

]2
(x) > 0.

Proof. We identify Hm
−k with the hyperbola{

(y0, y1, . . . , ym) ⊂ Rm,1 | − y20 +

m∑
i=1

y2i = −
1

k
, y0 > 0

}
in the Minkowski spacetime Rm,1 with o = (1, 0, . . . , 0), and view X as

an isometric immersion X = (t, x1, . . . , xn) from Σ0 into Hm
−k. Let �HM

be the mean curvature vector of X : Σ0 → Rm,1. Along Σ0, we have

(3.23) t = y0 ◦X,
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where y0 = cosh r on Hm
−k,

(3.24) �HM = �HH − k〈 �HM,X〉X,

and

(3.25) ΔΣX = �HM, 〈X,X〉 = −
1

k
,

where 〈·, ·〉 = −dy20+
∑m

i=1 dy
2
i denotes the Lorentzian product on Rm,1.

By (3.25),

0 = − (tΔΣt+ |∇Σ
t|2) +

m∑
i=1

(
xiΔΣxi + |∇Σxi|

2
)

= 〈 �HM,X〉+ (n− 1).

(3.26)

At any x ∈ Σ0, let {vα | α = 1, . . . , n − 1} be an orthonormal frame
in TxΣ0 such that II(vα, vβ) = δαβκα, where {κ1, . . . , κn−1} are the
principal curvature of Σ0 in (Ω, g) at x. We have

(3.27) II(∇
Σ
t,∇

Σ
t) =

n−1∑
α=1

κα〈∂y0 , vα〉
2

and

m∑
i=1

II(∇
Σ
xi,∇Σ

xi) =

n−1∑
α=1

κα

(
m∑
i=1

〈∂yi , vα〉
2

)

=

n−1∑
α=1

κα
(
1 + 〈∂y0 , vα〉

2
)
.

(3.28)

Therefore,

(3.29)

∫
Σ0

Hdσ +

∫
Σ0

II(∇
Σ
t,∇

Σ
t)dσ =

m∑
i=1

∫
Σ0

II(∇
Σ
xi,∇Σ

xi)dσ.

Now choosing η = xi on Σ0, η = 0 on Σ\Σ0, and t = −1
2(n−1)k < 0

in Theorem 2.1, we have

∫
Σ0

II(∇
Σ
xi,∇Σ

xi)dσ <

∫
Σ′

0i

1

H

[
Δ

Σ
xi −

1

2
(n− 1)kxi

]2
1Σ′

0i
dσ,

(3.30)

where 1Σ′
0i

is the characteristic function of the set

Σ′0i = Σ0 \

{
Δ

Σ
xi −

1

2
(n− 1)kxi = 0

}
.
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Direct calculation using (3.24) through (3.26) shows

m∑
i=1

[
Δ

Σ
xi −

1

2
(n− 1)kxi

]2
= | �HH|

2 −
1

4
(n − 1)2k +

[
Δ

Σ
t−

1

2
(n− 1)kt

]2
,

(3.31)

which also proves (3.22). Summing (3.30) over i = 1, . . . ,m and using
(3.29) through (3.31) together with the fact Σ′0i ⊂ Σ′0, we have∫

Σ0

Hdσ +

∫
Σ0

II(∇
Σ
t,∇

Σ
t)dσ

<

∫
Σ′

0

1

H

{
| �HH|

2 −
1

4
(n− 1)2k +

[
Δ

Σ
t−

1

2
(n− 1)kt

]2}
dσ.

This completes the proof. q.e.d.

4. Rigidity results

Inequalities (3.16) and (3.21) are not sharp in the context of The-
orem 3.2 and Theorem 3.3. In these cases, one wonders if there exist

sharp integral inequalities involving H and | �HS| (or | �HH|) that include
a rigidity statement in the case of equality.

In what follows, by scaling the metric, we assume Ric ≥ (n − 1)g or
Ric ≥ −(n− 1)g. In the latter case, the scalar curvature R of g satisfies
R ≥ −n(n − 1). By the results in [20, 18, 9], there exists a sharp

integral inequality relating H and | �HH| if the manifold Ω is spin and
the boundary Σ embeds isometrically in the hyperbolic space Hn as a
convex hypersurface. On the other hand, the counterexample to Min-
Oo’s conjecture in [1] shows that even the pointwise condition H = | �HS|
is not sufficient to guarantee rigidity if one only assumes R ≥ n(n− 1).
This gives rise to the following rigidity question:

Question 4.1. Let (Ω, g) be an n-dimensional, compact Riemann-
ian manifold with boundary Σ. Let D ⊂ Sn+ be a bounded domain with
smooth boundary ∂D, where Sn+ is the standard n-dimensional hemi-
sphere. Suppose the following

• Ric ≥ (n− 1) g.
• There exists an isometry X : Σ→ ∂D.
• H ≥ HS ◦X, where H, HS are the mean curvature of Σ, ∂D in
(Ω, g), Sn+, respectively.

Is (Ω, g) isometric to D in Sn+?

At this stage, we do not know the answer to Question 4.1. However,
it was shown in [6] that Question 4.1 has an affirmative answer if the
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assumption H ≥ HS ◦ X is replaced by a stronger assumption on the
second fundamental forms.

Theorem 4.1 ([6]). Let (Ω, g) be an n-dimensional, compact Rie-
mannian manifold with boundary Σ. Let D ⊂ Sn+ be a bounded do-
main with smooth boundary ∂D, where Sn+ is the standard n-dimensional
hemisphere. Suppose the following:

• Ric ≥ (n− 1) g.
• There exists an isometry X : Σ→ ∂D.
• II ≥ IIS ◦X, where II, IIS are the second fundamental form of Σ,
∂D in (Ω, g), Sn+, respectively.

Then (Ω, g) is isometric to D in Sn+.

In the rest of this section, we prove Theorem 1.5 and 1.6, which
are analogues of Theorem 4.1 when the boundary is only isometrically
immersed in a sphere or in a hyperbolic space of higher dimension.

Theorem 4.2. Let (Ω, g) be an n-dimensional, compact Riemannian
manifold with boundary Σ. Suppose the following:

• Ric ≥ (n− 1) g.
• There exists an isometric immersion X : Σ → Sm, where Sm is a
standard sphere of dimension m ≥ n.

• II (v, v) ≥ |IIS (v, v)|, for any v ∈ TΣ. Here II is the second fun-
damental form of Σ in (Ω, g) and IIS is the vector-valued, second
fundamental form of the immersion X.

Then (Ω, g) is spherical, i.e., having constant sectional curvature 1.

We divide the proof of Theorem 4.2 into a few steps. First, we fix
some notation. Let ∇ denote the covariant derivative on Sm, which is
identified with the unit sphere centered at the origin in Rm+1. Given
any α = (α1, . . . , αm+1) ∈ Sm, let F = Fα be the restriction of the linear
function 〈α, x〉 = α1x1 + · · · + αm+1xm+1 to Sm. The gradient of F on
Sm, denoted by ∇F , is

(4.1) ∇F (x) = α− 〈α, x〉 x, x ∈ Sm.

On Σ, define f = F ◦X. For simplicity, given any p ∈ Σ, we let ∇
⊥
F be

the component of ∇F (X(p)) normal to X∗ (TpΣ). Given v,w ∈ TpΣ, re-

call that IIS (v,w) =
(
∇X

∗
(v)X∗(w)

)⊥
is the component of ∇X

∗
(v)X∗(w)

normal to X∗ (TpΣ). We let �HS denote the mean curvature vector of X,
which is the trace of IIS.



BOUNDARY EFFECT OF RICCI CURVATURE 75

Lemma 4.1. Along Σ, one has

f2 + |∇
Σ
f |2 +

∣∣∣∇⊥F ∣∣∣2 = 1,(4.2)

Δ
Σ
f + (n− 1) f −

〈
�HS,∇

⊥
F
〉
= 0,(4.3) 〈

∇X
∗
(∇

Σ
f)∇

⊥
F,�n

〉
+ 〈IIS (∇Σ

f,∇
Σ
f) , �n〉 = 0.(4.4)

Here �n is any vector that is normal to X(Σ) in Sm.

Proof. (4.2) follows from the fact F 2+
∣∣∇F

∣∣2 = 1. To show (4.3) and
(4.4), we note that F on Sm satisfies

(4.5) ∇
2
F = −Fg

S
,

where g
S
is the standard metric on Sm. (4.5) readily implies

(4.6) ∇2
Σ
f(v,w)− 〈IIS(v,w),∇

⊥
F 〉 = −f〈v,w〉, ∀ v,w ∈ TΣ,

where ∇2
Σ
denotes the Hessian on Σ. Taking trace of (4.6) gives (4.3).

(4.5) also implies

0 = ∇
2
F (X∗(∇Σ

f), �n)

=
〈
∇X

∗
(∇

Σ
f)∇

⊥
F,�n

〉
+ 〈IIS (∇Σ

f,∇
Σ
f) , �n〉 ,

which proves (4.4). q.e.d.

The condition II(v, v) ≥ |IIS(v, v)|, ∀ v ∈ TΣ, implies H ≥ | �HS| ≥ 0.
By Reilly’s theorem ([14, Theorem 4]), to prove Theorem 4.2, it suffices
to assume λ1 > n, where λ1 is the first Dirichlet eigenvalue of (Ω, g).
Under this assumption, we let u be the unique solution to

(4.7)

{
Δu+ nu = 0 on Ω,

u = f at Σ.

On (Ω, g), define

φ = |∇u|2 + u2.

A basic fact about φ is that it is subharmonic, which follows from

(4.8)
1

2
Δφ =

∣∣∇2u+ ug
∣∣2 +Ric(∇u,∇u)− (n− 1) |∇u|2 ≥ 0.

On Σ, define χ =
∂u

∂ν
, where ν is the unit outward normal to Σ in (Ω, g).

Then

(4.9) φ|Σ = |∇Σf |
2 + χ2 + f2 = 1 + χ2 −

∣∣∣∇⊥F ∣∣∣2
by (4.2) in Lemma 4.1.

Lemma 4.2. Along Σ, the normal derivative of φ is given by

1

2

∂φ

∂ν
= 〈∇

Σ
f,∇

Σ
χ〉 − II (∇

Σ
f,∇

Σ
f)−Hχ2 −

〈
�HS,∇

⊥
F
〉
χ.
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Proof. Direct calculation gives

1

2

∂φ

∂ν
= ∇2u (∇u, ν) + fχ

= ∇2u (∇
Σ
f, ν) + χ

[
∇2u (ν, ν) + f

]
= 〈∇

Σ
f,∇

Σ
χ〉 − II (∇

Σ
f,∇

Σ
f) + χ

[
∇2u (ν, ν) + f

]
.

(4.10)

By (4.2) and (4.7), at Σ we have

−nf = Δu = ΔΣf +Hχ+∇2u (ν, ν)

= − (n− 1) f +
〈
�HS,∇

⊥
F
〉
+Hχ+∇2u (ν, ν) ,

which gives

(4.11) ∇2u (ν, ν) + f = −
〈
�HS,∇

⊥
F
〉
−Hχ.

The lemma follows from (4.10) and (4.11). q.e.d.

Proof of Theorem 4.2. Given any q ∈ Σ, we choose α = X(q) ∈ Sm.
Then ∇F (X(q)) = 0 by (4.1). Hence,

(4.12) ∇
Σ
f(q) = 0, ∇

⊥
F (q) = 0 and φ(q) = 1 + χ2(q).

Consider p ∈ Σ such that φ(p) = maxΩ φ. By (4.9) and (4.12),

(4.13) χ2(p) ≥
∣∣∣∇⊥F ∣∣∣2 (p).

Since 〈∇
Σ
f,∇

Σ
φ〉(p) = 0, taking �n = ∇

⊥
F in (4.4), at p we have

χ 〈∇
Σ
f,∇

Σ
χ〉 =

〈
∇X

∗
(∇

Σ
f)∇

⊥
F,∇

⊥
F
〉

= −
〈
IIS (∇Σ

f,∇
Σ
f) ,∇

⊥
F
〉
.

(4.14)

If χ (p) 
= 0, it follows from Lemma 4.2, (4.13), and (4.14) that

1

2

∂φ

∂ν
(p) =−

1

χ

〈
IIS (∇Σ

f,∇
Σ
f) ,∇

⊥
F
〉
− II (∇

Σ
f,∇

Σ
f)

−
〈
�HS,∇

⊥
F
〉
χ−Hχ2

≤ |IIS (∇Σ
f,∇

Σ
f)| − II (∇

Σ
f,∇

Σ
f) +

(∣∣∣ �HS

∣∣∣−H
)
χ2

≤ 0.

(4.15)

If χ (p) = 0, then Lemma 4.2 gives

(4.16)
1

2

∂φ

∂ν
(p) = 〈∇

Σ
f,∇

Σ
χ〉 − II(∇

Σ
f,∇

Σ
f).
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Moreover, ∇
⊥
F (p) = 0 by (4.13). Taking the second-order derivative

of φ along ∇
Σ
f at p, we have

0 ≥
1

2
∇

Σ
f(∇

Σ
f(φ))(p)

= ∇
Σ
f
(
χ〈∇

Σ
f,∇

Σ
χ〉 − 〈∇X

∗
(∇

Σ
f)∇

⊥
F,∇

⊥
F 〉

)
= 〈∇

Σ
f,∇

Σ
χ〉2 −

∣∣∣∇X
∗
(∇

Σ
f)∇

⊥
F
∣∣∣2 .

(4.17)

We claim, at p,

(4.18) (∇X
∗
(∇

Σ
f)∇

⊥
F ) = −IIS (∇Σ

f,∇
Σ
f) .

To see this, take any v ∈ TΣ; (4.5) and (4.9) imply〈
∇X

∗
(∇

Σ
f)∇

⊥
F,X∗(v)

〉
= ∇

2
F (X∗(∇Σ

f),X∗(v)) −
〈
∇X

∗
(∇

Σ
f)X∗(∇Σ

f),X∗(v)
〉

= − fv(f)−∇2
Σ
f(∇

Σ
f, v)

= −
1

2
v
(
f2 + |∇

Σ
f |2

)
= −

1

2
v
(
φ− χ2

)
.

(4.19)

Clearly, v
(
φ− χ2

)
varnishes at p. Hence, (∇X

∗
(∇

Σ
f)∇

⊥
F )(p) is normal

to X∗(TpΣ). This, together with (4.4), implies (4.18). Now it follows
from (4.16), (4.17), and (4.18) that

1

2

∂φ

∂ν
(p) ≤ |IIS (∇Σf,∇Σ

f)| − II (∇Σf,∇Σ
f) ≤ 0.

By the strong maximum principle (precisely the Hopf boundary point
lemma), we conclude that φ must be a constant. Hence, ∇2u = −ug by
(4.8). Moreover, by (4.9) and (4.12),

(4.20) χ2 −
∣∣∣∇⊥F ∣∣∣2 = c

for some constant c ≥ 0. We have the following two cases:

If c > 0, then χ2 > |∇
⊥
F |2 ≥ 0. This together with (4.15) and the

fact φ is a constant implies | �HS| = H = 0. Since II ≥ 0, we have II = 0
and IIS = 0. Thus, X : Σ → Sm is totally geodesic. Hence, X(Σ)
lies in an (n − 1)-dimensional standard sphere Sn−1 ⊂ Sm. Since X :
Σ→ Sn−1 is an isometric immersion, we have X(Σ) = Sn−1; moreover,
X : Σ → Sn−1 is one-to-one as Sn−1 is simply connected. Therefore, Σ
is isometric to Sn−1 and is totally geodesic in (Ω, g). By [6, Theorem
2], we conclude that (Ω, g) is isometric to a standard hemisphere Sn+.

If c = 0, then φ = 1 on Σ (and hence on Ω). In this case, along Σ,

|∇u|2 = |∇
Σ
f |2 + χ2 = |∇

Σ
f |2 +

∣∣∣∇⊥F ∣∣∣2 = ∣∣∇F
∣∣2 ◦X.
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In particular, ∇u (q) = 0 by (4.12). We also note that u (q) = f(q) = 1
by the definition of F .

Finally, we are in a position to show (Ω, g) has constant sectional
curvature 1. It suffices to assume (Ω, g) is not isometric to Sn+. Given
any x in the interior of Ω, let qx ∈ Σ such that dist(x,Σ) = dist(x, qx),
where dist(·, ·) denotes the distance functional on (Ω, g). Consider the
function f and u constructed in the above proof by taking q = qx. Since
(Ω, g) is not isometric to Sn+, the constant c in (4.20) must be 0, and
hence u satisfies

(4.21) ∇2u = −ug, ∇u(qx) = 0, u(qx) = 1.

Let γ : [0, L] → (Ω, g) be the geodesic satisfying γ(0) = qx, γ(L) = x,
and L = dist(x,Σ). Let ξ = γ′(0). Given any constant l ∈ (0, L), there
exists an open neighborhood W of ξ in Sn−1 such that the exponential
map expqx(·, ·) is a diffeomorphism from (0, l) ×W ⊂ R+ × Sn−1 onto
its image in (Ω, g). Now it is a standard fact that (4.21) implies

(4.22) (expqx)
∗(g) = dr2 + (sin r)2g

Sn−1

on (0, l) ×W , where g
Sn−1

is the standard metric on Sn−1 (cf. [6] for

details). Therefore, g has constant sectional curvature 1 at γ(t) for any
t < L. By continuity, g has constant sectional curvature 1 at x. This
completes the proof that Ω is spherical. q.e.d.

As an application, we have the following rigidity result that is a spher-
ical analogue of [5, Theorem 1].

Corollary 4.1. Let (Ω, g) be an n-dimensional, compact Riemannian
manifold with boundary Σ. Suppose the following:

• Ric ≥ (n− 1)g.
• g has constant sectional curvature 1 at every point on Σ.

If Σ is simply connected with nonnegative second fundamental form II,
then (Ω, g) is isometric to a domain in Sn+.

Proof. Let RΣ(·, ·, ·, ·), ∇Σ denote the curvature tensor, the connec-
tion on Σ, respectively. By the Gauss equation and the Codazzi equa-
tion,

RΣ (v1, v2, v3, v4) = 〈v1, v3〉〈v2, v4〉 − 〈v1, v4〉〈v2, v3〉

+ II (v1, v3) II (v2, v4)− II (v1, v4) II (v2, v3) ,

0 =
(
∇Σ

v1
II
)
(v2, v3)−

(
∇Σ

v2
II
)
(v1, v3) ,

where v1, . . . v4 ∈ TΣ. As Σ is simply connected, the fundamental the-
orem of hypersurfaces (cf. [19]) implies there exists an isometric im-
mersion Φ : Σ → Sn with II as its second fundamental form. Since
II ≥ 0, by a result of Do Carmo and Warner in [4], Φ is an embedding
and Φ(Σ) is a convex hypersurface in a hemisphere Sn+. Now applying
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Theorem 4.2, we conclude that (Ω, g) has constant sectional curvature
1 everywhere. Let D be the region bounded by Φ(Σ) in Sn+. We glue Ω
and Sn \ D along the boundary via the isometric embedding Φ to get

a closed manifold (M̃ , g̃). The fact that Σ has the same second funda-
mental form in (Ω, g) and Sn and that both (Ω, g) and Sn have constant
sectional curvature 1 imply that g̃ is C2 (indeed smooth) across Σ in

M̃ . Hence, (M̃ , g̃) is a spherical space form whose volume is greater

than half of Sn (because it contains a hemisphere). Therefore, (M̃, g̃) is
isometric to Sn and (Ω, g) is isometric to a domain in Sn+. q.e.d.

Remark 4.1. One can also apply Theorem 4.1 in the above proof.

Theorem 1.5 now follows from Theorem 4.2 and Corollary 4.1. When
Ric ≥ − (n− 1), similarly we have the following:

Theorem 4.3. Let (Ω, g) be an n-dimensional, compact Riemannian
manifold with boundary Σ. Suppose

• Ric ≥ − (n− 1) g.
• There is an isometric immersion X : Σ → Hm, where Hm is a
hyperbolic space of dimension m ≥ n.

• II (v, v) ≥ |IIH (v, v)|, for any v ∈ TΣ. Here II is the second fun-
damental form of Σ in (Ω, g) and IIH is the vector-valued, second
fundamental form of the immersion X.

Then (Ω, g) is hyperbolic, i.e., having constant sectional curvature −1.

The proof is parallel to that of Theorem 4.2. Let 〈·, ·〉 denote the dot
product on Rm,1, and let ∇ be the connection on Hm. Identify Hm with{
x ∈ Rm,1 | 〈x, x〉 = −1, x0 > 0

}
. For any α ∈ X(Σ) ⊂ Hm, consider

F (x) = Fα (x) = 〈α, x〉 on Hm. Its gradient is ∇F (x) = α + 〈α, x〉 x.

Thus
∣∣∇F (x)

∣∣2 = −1 + F 2. Given any p ∈ Σ, let ∇
⊥
F ◦ X (p) be

the component of ∇F ◦ X(p) orthogonal to X∗ (TpΣ). On Σ, define
f = F ◦X. Let u be the smooth solution to{

Δu = nu on Ω
u = f at Σ

and define χ = ∂u
∂ν

. Then φ := |∇u|2 − u2 is subharmonic as seen from

1

2
Δφ =

∣∣∇2u− ug
∣∣2 +Ric(∇u,∇u) + (n− 1) |∇u|2 .

Similar to (4.9), we have

φ|Σ = |∇
Σ
f |2 + χ2 − f2 = −1 + χ2 −

∣∣∣∇⊥F ∣∣∣2 .
By analyzing the normal derivative ∂φ

∂ν
in the same way as in the proof

of Theorem 4.2, we conclude by the strong maximum principle that φ

is constant. Therefore, ∇2u = ug and χ2 −
∣∣∣∇⊥F ∣∣∣2 is a nonnegative
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constant c along Σ. If c > 0, it implies IIH = 0, which contradicts
the fact Hm does not contain a closed totally geodesic submanifold.

Therefore, χ2 −
∣∣∣∇⊥F ∣∣∣2 = 0 at Σ, which shows φ = −1 on Ω. By the

same argument as that of Theorem 4.2, we conclude that (Ω, g) has
constant sectional curvature −1.

Corollary 4.2. Let (Ω, g) be an n-dimensional, compact Riemannian
manifold with boundary Σ. Suppose the following

• Ric ≥ −(n− 1)g.
• g has constant sectional curvature −1 at every point on Σ.

If Σ is simply connected with nonnegative second fundamental form II,
then (Ω, g) is isometric to a domain in Hn.

The proof is similar to that of Corollary 4.1. Since g has constant
sectional curvature −1 along Σ and Σ is simply connected, by the Gauss
and Codazzi equations and the fundamental theorem of hypersurfaces
(cf. [19]), there exists an isometric immersion Φ : Σ → Hn with II as
its second fundamental form. Since II ≥ 0, by the remark in Section 5
of Do Carmo and Warner [4], Φ is an embedding and Φ(Σ) is a convex
hypersurface in Hn. Applying Theorem 4.3 to (Ω, g) and the embedding
Φ, we conclude that g has constant sectional curvature −1 everywhere
on Ω. Now let D be the region bounded by Φ(Σ) in Hn. We glue Ω
and Hn \D along the boundary via the isometric embedding Φ to get a

complete manifold (M̃, g̃). The fact Σ has the same second fundamental
form in (Ω, g) and Hn and both (Ω, g) and Hn have constant sectional

curvature −1 imply that g̃ is smooth across Σ in M̃ . Hence, (M̃ , g̃) is a
complete, hyperbolic manifold that, outside a compact set, is isometric

to Hn minus a ball. We conclude that (M̃ , g̃) is isometric to Hn and
(Ω, g) is isometric to a domain in Hn. This final claim can be seen, for
instance, by the following.

Proposition 4.1. Let (M,g) be a complete, n-dimensional Riemann-
ian manifold with Ric ≥ − (n− 1) g. Suppose that there exists a compact
set K ⊂ M s.t. M \K is isometric to Hn \ B where B is a geometric
ball. Then M is isometric to Hn.

The Euclidean version of the result is well known (e.g. it appears as
an exercise in [13] several times) . The hyperbolic case can be proved by
similar methods. For lack of an exact reference, we outline a proof using
Busemann functions. The main idea comes from Cai and Galloway [2].
We use the upper space model Hn = {x ∈ Rn : xn > 0}. Without
loss of generality we take o = (0, . . . , 0, 1). For a sequence εk → 0, let
Sk ⊂M be the hypersurface corresponding to xn = εk and qk the point
corresponding to (0, . . . , 0, 1/εk). Let pk be the point on Sk closest to
qk and γk : [−ak, bk] → M be a minimizing geodesic from pk to qk s.t.
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γk(0) ∈ K (it is easy to see that any minimizing geodesics from pk to qk
must intersect K). Passing to a subsequence εk → 0 if necessary, we can
assume that γk(0)→ ō and γk converges to a geodesic line γ : R→M .
We consider the following generalized Busemann function:

β(x) = lim
k→∞

d(ō, Sk)− d(x, Sk).

Then we have the following.
Claim: Δβ ≥ n in the support sense.
The crucial fact is that Sk has constant mean curvature H = n − 1.

The argument is the same as in Cai-Galloway [2].
We also have the standard Busemann function b associated with the

ray γ|[0,∞) defined by b(x) = limk→∞ s − d(x, γ(s)). It is known that
Δb ≥ −n in the support sense. The rest of the proof is similar to
Cai and Galloway [2] or the proof of the Cheeger–Gromoll splitting
theorem. We have Δ(b + β) ≥ 0. By the triangle inequality one can
show b + β ≤ 0. On the other hand, b + β = 0 along γ. Therefore,
by the strong maximum principle b + β = 0. Then β = −b and it is a
smooth function with |∇β| = 1. By the Bochner formula one can show
that ∇2β = g − dβ ⊗ dβ. From this identity one can show that M is
isometric to the warped product (R × Sn−1, dt2 + e2th), where (S, h)
is a flat Riemannian manifold. It is then clear that (S, h) must be the
standard Rn−1. This finishes the proof of Proposition 4.1.
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