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SMALL EIGENVALUES OF CLOSED SURFACES

Werner Ballmann, Henrik Matthiesen & Sugata Mondal

Abstract

Generalizing recent work of Otal and Rosas, we show that the
Laplacian of a Riemannian metric on a closed surface S with Euler
characteristic χ(S) < 0 has at most −χ(S) small eigenvalues.

1. Introduction

Relations between the spectrum of the Laplacian and the geometry
and topology of the underlying Riemannian manifold are a fascinating
topic at the crossroads of a number of mathematical fields. We are
concerned with the case of closed Riemannian surfaces S. Then the
spectrum (of the Laplacian Δ) of S is discrete and consists of eigenvalues
with finite multiplicity. We enumerate these in increasing order,

0 = λ0 < λ1 ≤ λ2 ≤ . . .

where an eigenvalue is counted as often as its multiplicity requires.
The most intriguing Riemannian metrics on the closed surface S = Sg

of genus g ≥ 2 are the hyperbolic ones, that is, Riemannian metrics of
constant curvature −1. For this reason, the spectrum of hyperbolic
metrics on Sg attracted special attention. In [5], Buser showed that,
for any n ∈ N and ε > 0, Sg admits hyperbolic metrics with λ2g−3 < ε
and λn < 1/4 + ε. He also showed that λ4g−2 > 1/4 for any hyperbolic
metric on Sg. Refining the arguments of [5], Schmutz improved the
latter result to λ4g−4 > 1/4 and showed that any hyperbolic metric on
S2 satisfies λ2 ≥ 1/4 [13, 14]. These results show that the optimal
result in this direction would be that λ2g−2 > 1/4 for any hyperbolic
metric on Sg, and this was in fact conjectured by Buser and Schmutz.

The distinguished role of the eigenvalue λ2g−2 is also emphasized by
an estimate of Schoen-Wolpert-Yau, who showed that there is a constant
c > 0, which depends only on g, such that

(1.1) λ2g−2 > c

for any Riemannian metric on Sg, whose curvature satisfies K ≤ −1
[15]. In [6, Theorem 8.1.4], Buser proved that, for hyperbolic metrics,
the constant c in (1.1) can in fact be chosen to be absolute, that is,
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independent of g. Finally, the more recent work [12] of Otal and Rosas
implies an extended version of the conjecture of Buser and Schmutz,
namely that

(1.2) λ2g−2 > 1/4

for any analytic Riemannian metric on Sg with curvature K ≤ −1. In
(1.4) below, we state their corresponding result in full generality.

In their work, Buser, Schmutz and Schoen-Wolpert-Yau rely on de-
compositions of the surface into appropriate pieces and monotonicity
properties of eigenvalues. In contrast, the method of Otal and Rosas in-
volves a careful examination of topological properties of the nodal lines
and domains of finite linear combinations of eigenfunctions.

For a domain Ω in a Riemannian surface, the bottom of the L2-
spectrum of the Laplacian on Ω is given by

(1.3) λ0(Ω) = inf R(φ),

where φ runs over all non-zero smooth functions on Ω with compact
support in the interior of Ω and R(φ) =

∫
‖∇φ‖2/

∫
φ2 denotes the

Rayleigh quotient of φ. For the hyperbolic plane H, we have λ0(H) =
1/4, and this is intimately related to the 1/4 in the above results. In
fact, Theorem 1 of [12] asserts that

(1.4) λ2g−2 > λ0(S̃)

for any analytic Riemannian metric on S = Sg with curvature K ≤

−1, where S̃ denotes the universal covering surface of S with the lifted
Riemannian metric. This is sharper than (1.2) since the isoperimetric

inequality in dimension two gives λ0(S̃) ≥ 1/4.
In his thesis [10] (see also [11]), the third named author showed that,

for any hyperbolic metric on Sg, there is a constant δ > 0, which only
depends on g and the systole of the metric, such that λ2g−2 > 1/4 + δ.
In his Bachelor thesis [9], the second named author showed that the
assumption of negative curvature in the estimate (1.4) of Otal and Rosas
can be omitted. Since smooth Riemannian metrics can be approximated
by real analytic metrics, the latter result implies that λ2g−2 ≥ λ0(S̃) for
any smooth Riemannian metric on Sg.

Suppose now that S is a closed surface with a Riemannian metric and
let

(1.5) ΛD(S) = inf λ0(Ω), ΛA(S) = inf λ0(Ω), ΛC(S) = inf λ0(Ω),

where Ω runs over all embedded discs respectively annuli respectively
cross caps in S with piecewise smooth boundary, and set

(1.6) Λ(S) = min{ΛD(S),ΛA(S),ΛC(S)}.
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Observe that any embedded disc, annulus or cross cap with piecewise
smooth boundary in S can be lifted isometrically to S̃ or a cyclic quo-
tient of S̃. Hence, by Theorem 1 in [4] and (1.3), we have Λ(S) ≥ λ0(S̃).
Our main result is the following

Theorem 1.7. A closed Riemannian surface S with Euler charac-
teristic χ(S) < 0 has at most −χ(S) eigenvalues which are ≤ Λ(S); in
other words,

λ−χ(S) > Λ(S).

Since Λ(S) ≥ λ0(S̃), Theorem 1.7 implies the strict inequality λ−χ(S)
> λ0(S̃) as opposed to the weak inequality, which would follow from
[9] (at least in the orientable case, as explained further up). We also
emphasize that the statement of Theorem 1.7 is curvature free.

The main lines of the proof of Theorem 1.7 stem from [12] and [16].
We show that the space spanned by eigenfunctions with eigenvalue
≤ Λ(S) has dimension ≤ −χ(S). However, in the general situation
we consider, nodal lines and domains of finite linear combinations of
eigenfunctions might be quite complicated. In particular, we cannot
rely on the regularity theory of analytic functions as in [12] and need to
pass to approximate nodal lines and domains. As a result, the analytical
and topological arguments become more involved.

If Ω is a compact domain with piecewise smooth boundary, then λ0(Ω)
is the first Dirichlet eigenvalue of Ω, that is, λ0(Ω) is the smallest λ ∈ R

such that the problem

(1.8) Δφ = λφ on Ω̊, φ = 0 on ∂Ω,

admits a non-zero solution φ which is smooth on Ω̊ and continuous on
Ω̄. From this characterization and (1.3) it follows easily that, for any
two compact domains Ω1 and Ω2 with piecewise smooth boundary,

(1.9) λ0(Ω1) > λ0(Ω2) whenever Ω1 � Ω2.

In view of this, we suspect that always Λ(S) > λ0(S̃). Indeed, for
orientable closed surfaces with hyperbolic metrics, we have

(1.10) Λ(S) ≥ 1/4 + δ(S)

by Theorem 1.1 in [10] (or, respectively, Theorem 2.1.4 in [11]), where

(1.11) δ(S) = min{π, s(S)2/|S|} ·
1

|S|
> 0.

Here s(S) and |S| denote the systole and the area of S, respectively.

With respect to estimating Λ(S) − λ0(S̃) in general, it would be de-
sirable to get the existence of minimizers, of one kind or another, of
λ0(Ω) in a given isotopy class of domains Ω ⊆ S. In our case, this may
be viewed as an optimal design problem for graphs in S. For example,
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ΛD(S) is the infimum over all λ0(S \ G), where G runs over all finite
graphs in S such that Ω = S \G is diffeomorphic to an open disc.

Acknowledgments. We would like to thank the referee for a comment
which helped us to improve the introduction. We are grateful to the Max
Planck Institute and the Hausdorff Center for Mathematics in Bonn
and the Erwin Schrödinger Institute in Vienna for their support and
hospitality.

2. Approximate nodal sets and domains

In what follows, S is a closed Riemannian surface with negative Euler
characteristic. We denote by Δ the positive Laplacian of S. For any
λ ≥ 0, we let Eλ = {φ ∈ L2(M) | Δφ = λφ} be the λ-eigenspace of Δ
in L2(M) (where we allow for Eλ = {0}). We let

(2.1) E = ⊕λ≤Λ(S)Eλ

and S be the unit sphere in E with respect to the L2-norm. The assertion
of Theorem 1.7 is that dimE ≤ −χ(S).

Recall that any eigenfunction of Δ is smooth (elliptic regularity).
Hence each function in S is smooth. For any φ ∈ S,

(2.2) Zφ := {x ∈ S | φ(x) = 0}

is called the nodal set of φ. The connected components of the comple-
ment S \ Zφ are called nodal domains of φ.

Lemma 2.3. With respect to the area element of S, we have ∇φ(x) =
0 for almost any x ∈ Zφ.

Proof. The set of points of density of Zφ has full measure in Zφ, and,
clearly, ∇φ(x) = 0 at any such point x. q.e.d.

We say that ε > 0 is regular or, more precisely, φ-regular, if ε and −ε
are regular values of φ. By Sard’s theorem, almost any ε > 0 is regular.

For any ε > 0, we call

(2.4) Zφ(ε) := {x ∈ S | |φ(x)| ≤ ε}

the ε-nodal set of φ. We are only interested in the case where ε is regular.
Then Zφ(ε) is a subsurface of S with smooth boundary, may be empty or
may consist of more than one component, and the boundary components
of Zφ(ε) are embedded smooth circles along which φ is constant ±ε.

Let ε > 0 be regular. Delete from Zφ(ε) all the components which
are contained in the interior of an embedded closed disc in S and obtain
the derived ε-nodal set Z ′φ(ε). By definition, no component of Z ′φ(ε) is

contained in the interior of an embedded closed disc in S. Since Z ′φ(ε) is
important in our discussion, we view its definition also from a different
angle: If D ⊆ S is an embedded closed disc, then the components of
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Zφ(ε) contained in the interior ofD are compact and bounded by smooth
circles. Each such circle is the boundary of an embedded closed disc D′

in D, by the Schoenfliess theorem. By definition, the boundary circle
∂D′ of any such disc D′ is also a boundary circle of a component C of
Zφ(ε). There are two possible types for ∂D′: Either C is in the outer
part or in the inner part of ∂D′ with respect to the interior of D. We
say that D′ is essential if C is in the inner part of ∂D′. In other words,
D′ is essential if a neighborhood of ∂D′ in D′ is contained in Zφ(ε).
Essential discs in S are either disjoint or one is contained in the other;
they are partially ordered by inclusion. Therefore each essential disc is
contained in a unique maximal essential disc.

For any regular ε > 0, Yφ(ε) := S \ Z̊ ′φ(ε) is a smooth subsurface of S.

Lemma 2.5. For any regular ε > 0, we have:
1) Yφ(ε) is a smooth and incompressible subsurface of S.
2) Each component C of Yφ(ε) is the union of some component C0 of
{φ ≥ ε} or of {φ ≤ −ε} with a finite number (≥ 0) of maximal essential
discs which are attached to C ′ along ∂C ′. In particular, φ|∂C = +ε or
φ|∂C = −ε.
3) The function φε on S, defined by

φε(x) =

⎧⎪⎨⎪⎩
φ(x)− ε if φ(x) ≥ ε,

φ(x) + ε if φ(x) ≤ −ε,

0 otherwise,

belongs to H1(S). Moreover, limε→0 φε = φ in H1(S).

Proof. 1) Since Z ′φ(ε) is a union of components of the smooth subsur-

face Zφ(ε) of S, it is a smooth subsurface of S. Hence the complement
Yφ(ε) of its interior is also a smooth subsurface of S.

It remains to show that there is no loop c in Yφ(ε) which is not
homotopic to zero in Yφ(ε), but is homotopic to zero in S. We suppose
the contrary and assume without loss of generality that c is simple and
contained in the interior of Yφ(ε). Since c is homotopic to zero in S, it
bounds an embedded closed disc D in S, by Lemma A.1. Now D is not
contained in Yφ(ε) since c is not homotopic to zero in Yφ(ε). Hence D
contains components of Z ′φ(ε). These are in the interior of D since c lies

in the interior of Yφ(ε). But this is in contradiction to the definition of
Z ′φ(ε).

2) For each component of Zφ(ε) which is contained in the interior of
an embedded closed disc, choose an essential disc as explained in our
discussion of the definition of Z ′φ(ε) further up. Since each essential disc

is contained in a unique maximal essential disc, it follows that Yφ(ε) is

equal to the (possibly non-disjoint) union of S \ Z̊φ(ε) = {|φ| ≥ ε} with
maximal essential discs. Hence each of the components of Yφ(ε) consists
of some component C0 of {φ ≥ ε} or of {φ ≤ −ε} together with a finite
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number (≥ 0) of maximal essential discs which are attached to C ′ along
∂C ′.

3) For all x ∈ S, we have |φε(x)| ≤ |φ(x)|. Hence φε is in L2(M).
Moreover, φε(x) → φ(x) for all x ∈ S, hence limε→0 φε = φ in L2(M).
Furthermore, φε has weak gradient

∇φε(x) =

{
∇φ(x) if |φ(x)| ≥ ε,

0 otherwise.

It follows that φε is inH1(S). Furthermore, limε→0∇φε = ∇φ in H1(S),
by Lemma 2.3. q.e.d.

We let Y ′φ(ε) be the union of the components C of Yφ(ε) with Euler

characteristic χ(C) < 0. That is, Y ′φ(ε) is the union of the components

of Yφ(ε) which are not diffeomorphic to a disc, an annulus, or a cross
cap.

Lemma 2.6. For all sufficiently small regular ε > 0, we have
χ(Y ′φ(ε)) < 0. In other words, Y ′φ(ε) is non-empty for all sufficiently
small ε > 0.

Proof. Case 1: Assume first that the Rayleigh quotient R(φ) < Λ(S)
and choose a δ > 0 such that

R(φ) ≤ Λ(S)− 2δ.

By Lemma 2.5.3, we have, for any sufficiently small regular ε > 0,∑
C

∫
C
|∇φε|

2∑
C

∫
C
φ2
ε

≤

∫
S
|∇φ|2dv∫
S
φ2dv

+ δ = R(φ) + δ ≤ Λ(S)− δ,

where the sums run over the components C of Yφ(ε). We conclude that
there is a component C such that

R(φε|C) =

∫
C
|∇φε|

2∫
C
φ2
ε

≤ Λ(S)− δ.

Since φε vanishes along ∂C, it follows from the definition of Λ(S) that
C is neither a disc, nor an annulus, nor a cross cap. Hence the Euler
characteristic of C is negative.

Case 2: Assume now that R(φ) = Λ(S). This is the only part of the
proof which requires the regularity theory of the nodal sets of eigenfunc-
tions, and it is needed to establish that the inequality in Theorem 1.7
is strict.

Since E is the sum of the eigenspaces of Δ with eigenvalues ≤ Λ(S),
the equality R(φ) = Λ(S) implies that φ is an eigenfunction of Δ with
eigenvalue Λ(S). Now it is a classical result that non-zero eigenfunctions
of the Laplacian cannot vanish of infinite order at any point; see e.g.
[1]. Therefore, by the main result of [2], at any critical point z ∈ Zφ of
φ, there are Riemannian normal coordinates (x, y) about z, a spherical
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harmonic p = p(x, y) 
= 0 of some order n ≥ 2, and a constant α ∈ (0, 1)
such that

φ(x, y) = p(x, y) +O(rn+α),

where we write (x, y) = (r cos θ, r sin θ). By Lemma 2.4 of [7], there is
a local C1-diffeomorphism Φ about 0 ∈ R2 fixing 0 such that

φ = p ◦ Φ.

Note that, up to a rotation of the (x, y)-plane, we have

p = p(x, y) = crn cosnθ

for some constant c 
= 0. It follows that the nodal set Zφ of φ is a finite
graph with critical points of φ as vertices ([7, Theorem 2.5]). It also
follows that, for any sufficiently small ε > 0, the only critical points of
φ in {|φ| ≤ ε} are already contained in Zφ. In particular, the gradient
flow of φ can be used to obtain a deformation retraction of S \Zφ onto
{|φ| ≥ ε}.

For any component C of S \ Zφ, the restriction of φ to C vanishes
nowhere on C, and hence φ is the eigenfunction for the first Dirichlet
eigenvalue of C. It follows that λ0(C) = Λ(S).

Since φ is perpendicular to the constant functions, the interior of
the complement of a component C as above is non-empty. Hence C
can be strictly enlarged within S, keeping the topological type of C,
while strictly decreasing λ0(C); see (1.9). It follows that no component
C of S \ Zφ is diffeomorphic to a disc or an annulus or a cross cap
(with piecewise smooth boundary). Thus each component of S \Zφ has
negative Euler characteristic.

It follows also that the graph Zφ does not contain non-trivial loops
which are homotopic to zero in S since otherwise S \Zφ would contain a
component which is a disc. Hence, for all sufficiently small regular ε > 0,
no component of Zε(φ) is contained in a disc and each component of
Yφ(ε) has negative Euler characteristic. Thus Y ′φ(ε) = Yφ(ε), for all
sufficiently small ε > 0. q.e.d.

Lemma 2.7. For all regular ε > 0, we have χ(S) ≤ χ(Y ′φ(ε)).

Proof. By definition, Y ′φ(ε) and S \ Y̊ ′φ(ε) are smooth subsurfaces of S
which intersect along their common boundary, a finite number of circles.
Hence

χ(S) = χ(Y ′φ(ε)) + χ(S \ Y̊ ′φ(ε)),

by the Mayer-Vietoris sequence. No component of S\Y̊ ′φ(ε) is a disc since

otherwise the boundary of the disc would be a loop in Y ′φ(ε) which is

not homotopic to zero in Y ′φ(ε), but homotopic to zero in S. This would

be in contradiction to Lemma 2.5.1. It follows that χ(S \ Y̊ ′φ(ε)) ≤ 0.
q.e.d.
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For later purposes, we want to attach signs to the components C
of Y ′φ(ε): We say that C is positive or negative if C is the union of

maximal essential discs with a component of {φ ≥ ε} or a component

of {φ ≤ −ε}, respectively. We denote by Y ′φ
+(ε) and Y ′φ

−(ε) the subsets

of positive and negative components of Y ′φ(ε), respectively.

Lemma 2.8. Let ε1 > ε2 > 0 be regular. Then

Y ′φ(ε1) ⊆ Y ′φ(ε2) and χ(Y ′φ(ε2)) ≤ χ(Y ′φ(ε1)).

Moreover, if χ(Y ′φ(ε2)) = χ(Y ′φ(ε1)), then Y ′φ(ε2) arises from Y ′φ(ε1) by

attaching annuli and cross caps along boundary curves of Y ′φ(ε1). The

analogous statements hold for Y ′φ
±(ε1) and Y ′φ

±(ε2) in place of Y ′φ(ε1)

and Y ′φ(ε1), respectively.

Proof. By definition, Zφ(ε2) ⊆ Zφ(ε1). If a component of Zφ(ε1) is
contained in the interior of an embedded closed disc, then also all the
components of Zφ(ε2) it contains. It follows that Z ′φ(ε2) ⊆ Z ′φ(ε1) and

hence that Yφ(ε1) ⊆ Yφ(ε2).
Let C1 be a component of Y ′φ(ε1) and C be the component of Yφ(ε2)

which contains it. Let B be the union of the components of Y ′φ(ε1)
which are contained in C. Since ε1 
= ε2, the boundaries of B and C
are disjoint, by Lemma 2.5.2. Since the Euler characteristics of the
components of B are negative, boundary curves of B are not homotopic
to zero in B.

Assume that χ(C) > χ(B). Then one of the components of C \ B̊ is a
(closed) disc. Then a boundary curve of B would be homotopic to zero
in S in contradiction to the incompressibilty of B; see Lemma 2.5.1.
We conclude that χ(C) ≤ χ(B). Since χ(B) < 0, we also conclude
that C ⊆ Y ′φ(ε2). Therefore Y ′φ(ε1) ⊆ Y ′φ(ε2) and χ(Y ′φ(ε2)) ≤ χ(Y ′φ(ε1)).

Equality implies that the differences C \ B̊ as above consists of annuli
and cross caps.

By what we just said, the last assertion follows if Y ′φ
±(ε1) ⊆ Y ′φ

±(ε2).

To show this, let C1 be a positive component of Y ′φ(ε1) and C be the

component of Y ′φ(ε2) containing it. Assume first that C1 
= S, that is,

that ∂C1 
= ∅. Now C is the union of a number of maximal essential discs
(with respect to ε2) with a component C0 of {φ ≥ ε2} or {φ ≤ −ε2}.
Since C1 is incompressible in S and the boundary curves of C1 are not
homotopic to zero in C1, ∂C1 is not contained in any of the maximal
discs. Therefore ∂C1 intersects C0 non-trivially. Since φ|∂C1

= ε1, we
conclude that C0 is a component of {φ ≥ ε2}. Hence C is positive and

therefore Y ′φ
+(ε1) ⊆ Y ′φ

+(ε2).
The case C1 = S follows from the Schoenfliess theorem. The proof of

the inclusion Y ′φ
−(ε1) ⊆ Y ′φ

−(ε2) is similar. q.e.d.



SMALL EIGENVALUES OF CLOSED SURFACES 9

We want fo modify the subsurfaces Y ′φ
±(ε) so that their isotopy type

in S becomes independent of ε as ε → 0: For any regular ε > 0, we let
X+

φ (ε) be the union of Y ′φ
+(ε) with the components of the complement

of the interior of Y ′φ
+(ε) in S which are annuli and cross caps. Note that

φ = ε on the boundary of such annuli and cross caps. We define X−
φ (ε)

accordingly and set Xφ(ε) = X+
φ (ε) ∪X−

φ (ε). Note that

(2.9) χ(X±
φ (ε)) = χ(Y ′φ

±
(ε)) and χ(Xφ(ε)) = χ(Y ′φ(ε)).

By construction and Lemma 2.5.2, φ|∂C = ±ε for any component C of

X±
φ (ε). Observe that X+

−φ(ε) = X−
φ (ε), and accordingly for Y ′φ

±(ε).

Lemma 2.10. Let ε1 > ε2 > 0 be regular and suppose that χ(Xφ(ε1))

= χ(Xφ(ε2)). Then (S,X+
φ (ε1),X

−
φ (ε1)) is isotopic to (S,X+

φ (ε2),

X−
φ (ε2)); that is, there is a diffeomorphism of S which is isotopic to

the identity and which restricts to a diffeomorphism between X+
φ (ε1)

and X+
φ (ε2) respectively between X−

φ (ε1) and X−
φ (ε2).

Proof. By (2.9), we have χ(Y ′φ(ε1)) = χ(Y ′φ(ε2)). Hence Y
′
φ
±(ε2) arises

from Y ′φ
±(ε1) by attaching annuli and cross caps, by Lemma 2.8. The

point of the argument below is that all boundary curves of Y ′φ
±(ε2) arise

by attaching an annulus A to a boundary curve of Y ′φ
±(ε1). Then φ is

equal to ε1 on one of the boundary curves of A and equal to ε2 on the
other.

Without loss of generality, we only consider the X+-spaces. It suffices
to show that X+

φ (ε2) arises from X+
φ (ε1) by attaching annuli A such that

φ is equal to ε1 on one of the boundary curves of A and equal to ε2 on
the other.

There are several cases in the passage from the Y ′-spaces to the X-
spaces. We exemplify the argument in one of the cases.

Suppose that, in the passage from Y ′φ
+(ε1) to X+

φ (ε1), an annulus A

is attached to Y ′φ
+(ε1) such that φ is equal to ε1 on the boundary curves

of A. Then φ = ε1 on ∂A and either φ > ε2 on A or else, by Lemma 2.8,
there are disjoint annuli A′, A′′ ⊆ A, each of them sharing a boundary
curve with A, such that φ is equal to ε2 on the other boundary curve
and such that A′ and A′′ belong to Y ′φ

+(ε2). By Lemma A.2, we get an

annulus A′′′ in A between A′ and A′′ and sharing one of its boundary
curves with A′ and the other with A′′. In particular, φ is equal to ε2
on both boundary curves of A′′′. We conclude that A = A′ ∪ A′′′ ∪ A′′

belongs to Xφ(ε2). q.e.d.
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3. Concluding Theorem 1.7

By the above Lemmas 2.6 – 2.10, we obtain a partition of the unit
sphere S in E into the subsets

(3.1) Ci := {φ ∈ S | χ(Xφ(ε)) = i for all sufficiently small ε > 0},

where χ(S) ≤ i < 0. By definition, φ ∈ Ci if and only if −φ ∈ Ci.
Hence Ci is the preimage of the subset Bi = π(Ci) in the projective
space P = S/± id under the canonical projection π : S→ P.

Lemma 3.2. Let ε > 0 and U ⊆ S be the subset of φ such that ε is
φ-regular. Then U is open and the isotopy types of (S,X+

φ (ε),X−
φ (ε))

are locally constant as functions of φ ∈ U .

Proof. Note that U is open since S is compact. Consider the map

F : U × S → R, F (φ, z) = φ(z).

Since E is finite dimensional, any two norms on E are equivalent. In
particular, F is continuously differentiable. If φ ∈ U and z ∈ S satisfy
φ(z) = ε, then dφz 
= 0, and hence dF(φ,z) 
= 0. Choose a vector v ∈ TzS
with dFz(v) 
= 0 and coordinates (x, y) of S about z such that z = (0, 0)
and v = ∂/∂y. Then, by the implicit function theorem, there are open
intervals I � 0 and J � ε, an open neighborhood W of φ in E, and a
smooth function y : W × I × J → R such that F (ψ, x, y(ψ, x, τ)) = τ
for all (ψ, x, τ) ∈ W × I × J . It follows that the families of curves
{φ = ε} depend smoothly on φ ∈ U ; and similarly for −ε. The claim of
Lemma 3.2 now follows easily from the construction of the X±-spaces.

q.e.d.

Now we are ready for the final steps of the proof of Theorem 1.7.

Proof of Theorem 1.7. For Bi = π(Ci) as above, we show that π : S→ P

is trivial over Bi. To that end, we note that, for φ ∈ Ci, we have −φ ∈ Ci
and that

(S,X+
−φ(ε),X

−
−φ(ε)) = (S,X−

φ (ε),X+
φ (ε)).

Now (S,X+φ(ε),X−
φ (ε)) is not isotopic to (S,X−

φ (ε),X+
φ (ε)), by Theo-

rem A.5. Hence the partition of Ci into the open subsets Ui,j with the
same isotopy type has the property that Ui,j∩−Ui,j = ∅. Note also that
Ui,j ∪ −Ui,j is the preimage of a subset Vi,j in P. It follows that π|Bi

is
trivial. We conclude that −χ(S) > dimP = dimE − 1, by Lemma 8 in
[16] (see also the final paragraph in the proof of Lemma 5 in [12]).

q.e.d.

Appendix A. On the topology of surfaces

For the convenience of the reader (and the authors), we collect some
facts from the topology of surfaces.
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In what follows, let S be a surface of finite type, that is, S is diffeo-
morphic to the interior of a compact surface with boundary, with Euler
number χ(S) ≤ 0. In other words, S is of finite type, but is not dif-
feomorphic to the sphere or the real projective plane. In the orientable
case, the first two assertions are Corollary A.7 and Proposition A.11 in
[6].

Lemma A.1. Any homotopically trivial simple closed curve in S
bounds an embedded disc.

Lemma A.2. Let c0 and c1 be smooth two-sided simple closed curves
in S which are freely homotopic (up to their orientation) and which do
not intersect. Then c0 ∪ c1 bounds an embedded annulus in S.

Lemma A.3. Let C ⊆ S be a connected subsurface with smooth
boundary which is closed as a subset of S. Assume that C contains a
closed curve which is homotopic to zero in S, but not in C. Then S \ C̊
contains a connected component which is diffeomorphic to a closed disc.

Proof. Without loss of generality we may assume that C̊ contains a
smoothly immersed simple closed curve c which is homotopic to zero in
S, but not in C. Now c bounds a smooth disc D in S, by Lemma A.1,
and B = C ∩D is a smooth and closed subsurface in D. Furthermore,
B is connected since c = ∂D ⊆ B and B 
= D since otherwise c would
be homotopic to zero in C. Hence the interior of D contains boundary
circles c′ of B, and the interior D′ of any such c′ in D is disjoint from
C. By the Schoenfliess theorem, any such D′ is diffeomorphic to a disc.

q.e.d.

A subsurface C ⊆ S is called incompressible in S if any closed curve
in C, which is homotopic to zero in S, is already homotopic to zero in
C.

Corollary A.4. Let C ⊆ S be a connected subsurface with boundary
which is closed as a subset of S. Assume that no component of S \ C̊ is
diffeomorphic to a closed disc. Then C is incompressible in S.

For a proof of the following result, we refer to Chapter 1 of [8].

Theorem A.5. Let S be a compact and connected surface with χ(S)<
0 and L ⊆ S be a closed one-dimensional submanifold. Let F : S → S
be a diffeomorphism which is isotopic to the identity and such that
F (L) = L. Then F leaves all components of L and S \ L invariant.
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