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ON THE VOLUME GROWTH

OF KÄHLER MANIFOLDS WITH

NONNEGATIVE BISECTIONAL CURVATURE

Gang Liu

Abstract

Let M be a complete Kähler manifold with nonnegative bi-
sectional curvature. Suppose the universal cover does not split
and M admits a nonconstant holomorphic function with polyno-
mial growth; we prove M must be of maximal volume growth.
This confirms a conjecture of Ni in [17]. There are two essential
ingredients in the proof: the Cheeger–Colding theory [2]–[5] on
Gromov–Hausdorff convergence of manifolds and the three circle
theorem for holomorphic functions in [14].

1. Introduction

In [22], Yau proposed the study of the uniformization of complete
Kähler manifolds with nonnegative bisectional curvature. In particular,
one wishes to determine whether or not a complete Kähler manifold with
positive bisectional curvature is biholomorphic to Cn. Motivated by this,
Yau further asked whether or not the ring of holomorphic functions
with polynomial growth is finitely generated, and whether or not the
dimension of the spaces of holomorphic functions of polynomial growth
is bounded from above by the dimension of the corresponding spaces of
polynomials on C

n.
In [17], Ni confirmed Yau’s conjecture on the sharp dimension esti-

mate of holomorphic functions with polynomial growth when the man-
ifold has maximal volume growth. Here maximal volume growth means

V ol(B(p, r))

r2n
> c > 0

for all r > 0, p ∈ M .

Definition. Let M be a complete noncompact Kähler manifold. Let
O(M) be the ring of holomorphic functions on M . For any d ≥ 0, define

Od(M) = {f ∈ O(M)| lim
r→∞

Mf (r)

rd
< ∞}.
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Here r is the distance from a fixed point p on M ; Mf (r) is the maximal
modulus of f on B(p, r). If f ∈ Od(M), we say f is of polynomial growth
with order d. Let

OP (M) = ∪d∈NOd(M).

If M is only Riemannian, let Hd(M) be the linear space of harmonic
functions on M of polynomial growth with order d.

Theorem 1 (Ni). Let Mn be a complete Kähler manifold with non-
negative holomorphic bisectional curvature. Assume that M is of maxi-
mal volume growth; then

dim(Od(M)) ≤ dim(Od(C
n))

for any positive integer d. If the equality holds for some d, M is isometric
and biholomorphic to C

n.

Later, Chen, Fu, Le, and Zhu [6] removed the maximal volume growth
condition by using the same technique in [17]. See also [14] for a different
proof. Based on some results in [19] and [17], Ni raised the following
conjecture (Conjecture 3.1 in [17]):

Conjecture. Let Mn be a complete noncompact Kähler manifold
with nonnegative bisectional curvature. Assume that M admits a non-
constant holomorphic function with polynomial growth and the bisec-
tional curvature is positive at least at one point; then M is of maximal
volume growth. Namely, OP (M) �= C, average quadratic curvature de-
cay, and M being of maximal volume growth are all equivalent if M has
quasi-positive bisectional curvature. Average quadratic curvature decay
means for all r > 0,

(1) −
∫
B(p,r)

S ≤ C

r2
,

where p is a point on M , C is a positive constant independent of r, S
is the scalar curvature. −

∫
means the average.

In the complex one-dimensional case, the conjecture is well known,
e.g., [15]. In general dimensions, under the assumption of the conjecture,
Ni proved that V ol(B(p, r)) ≥ crn+1 in [17]. Under an extra pointwise
curvature decay condition, Ni and Tam [19] were able to confirm the
conjecture. Proofs of the partial results in [17] and [19] are based on
the Poincare–Lelong equation, heat flow methods including the sharp
mononoticity formula discovered in [17]. Very recently, in a personal
conversation with Ni, the author was informed that the conjecture is
known to be true if one assumes an upper bound of curvature. The
proof involves the Kähler–Ricci flow. In this note, we confirm the first
part of Ni’s conjecture:
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Theorem 2. Let Mn be a complete noncompact Kähler manifold
with nonnegative bisectional curvature. Suppose the universal cover M̃

does not split as a product of two Kähler manifolds. If M admits a
nonconstant holomorphic function with polynomial growth, then M has
maximal volume growth.

Remark. Obviously, it is necessary to assume that M̃ does not split.
This theorem essentially reduces Yau’s conjecture on the finite genera-
tion of holomorphic functions with polynomial growth to the case when
the manifold has maximal volume growth.

Corollary 1. Let Mn be a complete Kähler manifold with nonnega-
tive bisectional curvature. Suppose there exists a positive constant c > 0
so that dim(Od(M)) ≥ cdn for some sufficiently large d; then M is of
maximal volume growth.

Remark. Corollary 1 holds under the weaker assumption that M

has nonnegative Ricci curvature and nonnegative holomorphic sectional
curvature. At this moment, it is unclear to the author whether we still
have Corollary 1 if we only assume the Ricci curvature to be nonnega-
tive.

It is interesting to compare the corollary with a theorem of Colding
and Minicozzi [8], (Corollary 6.51):

Theorem 3 (Colding and Minicozzi). Let Mm be a complete non-
compact Riemannian manifold with nonnegative Ricci curvature. Sup-
pose there exists a positive constant c > 0 so that dim(Hd(M)) ≥ cdm−1

for some sufficiently large d; then M is of maximal volume growth.

Corollary 2. Let Mn be a complete noncompact Kähler manifold
with nonnegative bisectional curvature. Let p ∈ M . Suppose the Ricci
curvature is positive at one point and the scalar curvature has average
quadratic decay, i.e., (1) holds. Then M is of maximal volume growth.

Remark. One cannot remove the condition thatM has Ricci positive
at one point. For instance, M could have a flat torus factor.

The proof of Theorem 2 is different from the arguments of Ni [17] and
Ni-Tam [19]. In our proof, the theory of the Gromov–Hausdorff conver-
gence [2]–[5] and the three circle theorem [14] are crucial. We argue
by contradiction. First, blow down the manifold; then, blow up at some
regular point to get a real Euclidean space whose dimension is strictly
smaller than the dimension of M . Then by the three circle theorem,
we can pass all holomorphic functions with polynomial growth to that
Euclidean space. Finally, the contradiction comes from the dimension
estimate: the dimension of the Euclidean space is too low, while the
dimension of functions is too high.
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Remark. The statement of Theorem 2 is purely on smooth mani-
folds. However, in our proof, we have to turn to some possibly singular
collapsed limit. The final contradiction comes from the tangent cone of
the singular collapsed space. Thus the proof of Theorem 2 might be of
some independent interest.

Acknowledgments. The author would like to express his deep grati-
tude to Professors John Lott, Lei Ni, and Jiaping Wang for many valu-
able discussions during the work. He also thanks Professor Luen-Fai
Tam for the interest in this work.

2. Preliminary results

In this section, we collect some results required in the proof of The-
orem 2.

First, recall some convergence results for manifolds with Ricci cur-
vature lower bound. Let (Mn

i , yi, ρi) be a sequence of pointed complete
Riemannian manifolds, where yi ∈ Mn

i and ρi is the metric on Mn
i .

By Gromov’s compactness theorem, if (Mn
i , yi, ρi) have a uniform lower

bound of the Ricci curvature, then a subsequence converges to some
(M∞, y∞, ρ∞) in the Gromov–Hausdorff topology. See [12] for the defi-
nition and basic properties of Gromov–Hausdorff convergence.

Definition. Let Ki ⊂ Mn
i → K∞ ⊂ M∞ in the Gromov–Hausdorff

topology. Assume, {fi}∞i=1 are functions on Mn
i , f∞ is a function on

M∞. Φi are εi-Gromov–Hausdorff approximations, lim
i→∞

εi = 0. If fi ◦Φi

converges to f∞ uniformly, we say fi → f∞ uniformly over Ki → K∞.

In many applications, fi are equicontinuous. The Arzela–Ascoli theo-
rem applies to the case when the spaces are different. When (Mn

i , yi, ρi) →
(M∞, y∞, ρ∞) in the Gromov–Hausdorff topology, any bounded, equicon-
tinuous sequence of functions fi has a subsequence converging uniformly
to some f∞ on M∞.

As in Section 9 of [7], we have the following definition.

Definition. If νi, ν∞ are Borel regular measures on Mn
i ,M∞, we

say that (Mn
i , yi, ρi, νi) converges to (M∞, y∞, ρ∞, ν∞) in the measured

Gromov–Hausdorff sense, if (Mn
i , yi, ρi, νi) → (M∞, y∞, ρ∞, ν∞) in the

Gromov–Hausdorff topology and for any xi → x∞ (xi ∈ Mi, x∞ ∈ M∞),
r > 0, νi(B(xi, r)) → ν∞(B(x∞, r)).

For any sequence of manifolds with Ricci curvature lower bound, after
suitable renormalization of the volume, there is a subsequence converg-
ing in the measured Gromov–Hausdorff sense. If the volume is noncol-
lapsed, ν∞ is just the n-dimensional Hausdorff measure of M∞. See [3].

Let the complete pointed metric space (Mm
∞, y) be the Gromov–

Hausdorff limit of a sequence of connected pointed Riemannian mani-
folds, {(Mn

i , pi)}, with Ric(Mi) ≥ 0. Here Mm
∞ has Haudorff dimension
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m with m ≤ n. A tangent cone at y ∈ Mm
∞ is a complete pointed

Gromov–Hausdorff limit ((M∞)y, d∞, y∞) of {(M∞, r−1
i d, y)}, where

d, d∞ are the metrics of M∞, (M∞)y, respectively, and {ri} is a pos-
itive sequence converging to 0.

Definition. A point y ∈ M∞ is called regular if there exists some
k so that every tangent cone at y is isometric to R

k. A point is called
singular if it is not regular.

Now we introduce a theorem of Cheeger and Colding [3, Theorem
2.1], which is crucial in the proof of Theorem 2.

Theorem 4 (Cheeger and Colding). For any renormalized limit mea-
sure, the singular set has measure 0. In particular, the regular points are
dense.

Remark. There is a typo on page 420 in [3]: Y m should be the
limit of Mn

i , not Mm
i . Since this is the arbitrary Gromov–Hausdorff

convergence, the dimension might decrease. See also paragraph 4 on
page 409 in [3].

For a Lipschitz function f on M∞, define a norm ||f ||21,2 = ||f ||2
L2 +∫

M∞

|Lipf |2, where

Lip(f, x) = lim sup
y→x

|f(y)− f(x)|
d(x, y)

.

In [7], a Sobolev space H1,2 is defined by taking the closure of the norm
|| · ||1,2 for Lipschitz functions.

Condition (1): M∞ satisfies the volume-doubling property if for any
r > 0, x ∈ M∞, ν∞(B(x, 2r)) ≤ 2nν∞(B(x, r)).

Condition (2): M∞ satisfies the weak Poincare inequality if∫
B(x,r)

|f − f |2 ≤ C(n)r2
∫
B(x,2r)

|Lipf |2

for all Lipschitz functions. Here f is the average of f on B(x, r).
In Theorem 6.7 of [5], it was proved that if M∞ satisfies the ν-

rectifiability condition, Condition (1), and Condition (2), then there is a
unique differential df for f ∈ H1,2. If f is Lipschitz,

∫ |Lipf |2 = ∫ |df |2.
Moreover, the H1,2 norm becomes an inner product. Therefore, H1,2 is
a Hilbert space. Then there exists a unique self-adjoint operator Δ on
M∞ such that ∫

M∞

< df, dg >=

∫
M∞

< Δf, g >

for all Lipschitz functions on M∞ with compact support (of course we
can extend the functions to Sobolev spaces). See Theorem 6.25 of [5].

If Mi → M∞ in the measured Gromov–Hausdorff sense and the Ricci
curvature is nonnegative for all Mi, then the ν-rectifiability of M∞ was
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proved in Theorem 5.5 in [5]. By the volume comparison, Condition (1)
obviously holds for M∞. Condition (2) also holds. See [21] for a proof.

In [10, 21], the following lemma was proved.

Lemma 1. Suppose Mi has nonnegative Ricci curvature and Mi →
M∞ in the measured Gromov–Hausdorff sense. Let fi be Lipschitz func-
tions on B(xi, 2r) ⊂ Mi satisfying Δfi = 0; |fi| ≤ L, |∇fi| ≤ L for
some constant L. Assume, xi → x∞, fi → f∞ on M∞. Then Δf∞ = 0
on B(x∞, r).

Next we introduce the following theorem, which is Corollary 1 in [14].
This will be another key ingredient in the proof of Theorem 2.

Theorem 5. Let M be a complete Kähler manifold with nonnegative
holomorphic sectional curvature, p ∈ M . For a holomorphic function f

on M , let M(r) = max |f(x)| for x ∈ B(p, r). Then f ∈ Od(M) if and

only if M(r)
rd

is nonincreasing.

3. Proof of Theorem 2

Proof of Theorem 2: Assume that Mn is not of maximal volume
growth. Fix a point p ∈ M , and consider the rescaled sequence of
manifolds (M ′

i , pi, g
′
i) = (M,p, r−2

i g), where ri is a sequence tending
to ∞. Then by Gromov’s compactness theorem, we may assume that
(M ′

i , pi, g
′
i) → (N, p∞, g∞) in the measured Gromov–Hausdorff sense

where N is a metric measured space. By our assumption and Theorem
3.1 in [3], N has Hausdorff dimension less than or equal to 2n − 1.
Now Theorem 2.1 in [3] implies that the regular points for N are dense.
Therefore, we can find a point q ∈ N where the tangent cone is iso-
metric to R

k. Here k ≤ 2n − 1. This means that for any ε > 0, R > 0,
we can find a fixed r > 0 so that the metric ball (Bg∞(q, rR), 1

r2
g∞)

is ε-Gromov–Hausdorff close to B(0, R) in R
k. Let R1 = distg∞(q, p∞).

As (M ′
i , pi, g

′
i) → (N, p∞, g∞), for all large i, we can find points q′i ∈

Bg′i
(pi, R1 + 1) so that (Bg′i

(q′i, rR), 1
r2
g′i) is ε-Gromov–Hausdorff close

to (Bg∞(q, rR), 1
r2
g∞). Therefore, we can find qi ∈ M,di > 0 such that

(Mi, qi, gi) = (M, qi, d
−2
i g) pointed converges to (Rk, 0, ν) in the mea-

sured Gromov–Haudorff sense. Moreover, ν is proportional to the stan-
dard measure on R

k. For the last statement, one can refer to Proposition
1.35 in [3] or Remark 1.35 in [4].

Lemma 2. Let (Nn
i , pi, νi) be a sequence of pointed complete non-

compact Kähler manifolds with nonnegative bisectional curvature. Here
νi is the standard volume form on Ni. After certain renormalization
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of νi, assume that (Ni, pi, νi) converges to (N∞, p∞, ν∞) in the mea-
sured Gromov–Hausdorff sense, where (N∞, p∞, ν∞) is a metric mea-
sured space that is not necessarily smooth. Let d be a fixed positive num-
ber. We further assume that for each i, there exist k linearly indepen-

dent holomorphic functions g
j
i ∈ Od(Ni), where j is the index from 1

to k. Set Ai = span{gji }. Then Ai converges to a k-dimensional space
of complex harmonic functions A∞ on N∞ with respect to the measure
ν∞. Moreover, for any f ∈ A∞, f is of polynomial growth of order d on
N∞.

Proof. For each i, we choose a unitary frame gji for Ai with repect to
the average of the L2 norm of B(pi, 1) ⊂ Ni. That is,

−
∫
B(pi,1)

g
j
i g

s
i = δjs.

Let x ∈ B(pi,
1
2 ). As |gji | is subharmonic, by the mean value inequality

of Li and Schoen [16] and the volume comparison,

|gji (x)|2 ≤ C(n)−
∫
B(x, 1

2
)
|gji |2 ≤ (C1(n))

2−
∫
B(pi,1)

|gji |2 = (C1(n))
2.

Here C(n), C1(n) are positive constants depending only on n. Therefore,
Theorem 5 implies that for x ∈ B(pi, r),

|gji (x)| ≤ C1(n)(2r)
d.

Here r ≥ 1
2 . Cheng and Yau’s gradient estimate [9] implies that

|∇g
j
i | ≤ C2(n)r

d−1

in B(pi, r) for any i and r > 0. By the Arzela–Ascoli theorem and

Lemma 1, we may assume that gji converges to complex harmonic func-
tions fj(j = 1, . . . , k) on N∞ with respect to ν∞. Let Mj(r) be the
maximum of |fj(y)| for y ∈ B(p∞, r). Uniform convergence and Theo-

rem 5 imply that
Mj(r)

rd
is monotonic nonincreasing. Therefore, fj is of

polynomial growth of order d. Moreover, since gji is a unitary frame and
the convergence is uniform on B(pi, 1), fj(j = 1, . . . , k) satisfies

−
∫
B(p∞,1)

fjfs = δjs.

Thus they are linearly independent. Define A∞ = span{fj}. This com-
pletes the proof of the lemma. q.e.d.

Lemma 3 (Ni–Tam). Let Mn be a complete noncompact Kähler
manifold with nonnegative bisectional curvature. Suppose the universal
cover M̃ does not split as a product of two Kähler manifolds and there
exists a nonconstant holomorphic function with polynomial growth; then
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dim(Od(M)) ≥ cdn for all sufficiently large d. Here c is a positive con-
stant depending only on M .

Proof. The proof is an application of the standard L2 estimate [13]
and the Ni–Tam theory on plurisubharmonic functions [19]. For the
reader’s convenience, we include the details. Assume that f ∈ Od(M)
for some d > 0 and f is not constant. Let H(x, y, t) be the heat kernel
on M . Define

gt(x) =

∫
H(x, y, t) log(|f(y)|2 + 1)dy

where H(x, y, t) is the heat kernel on M . Then gt(x) satisfies the heat
equation

(
∂

∂t
−Δ)gt(x) = 0

with initial condition g0(x) = log(|f(x)|2+1). It is easy to see that g0(x)
is a plurisubharmonic function. Define g(x) = g1(x). Since the universal
cover of M does not split, by results of Ni and Tam [19] (Theorem 3.1,
theorem 2.1, Corollary 1.4 in [19]), gt(x) is strictly plurisubharmonic on
M for t > 0; (∂∂g(x))n > 0; g(x) is of logarithmic growth: 0 ≤ g(x) ≤
C1 log(r + 1) for some constant C1 > 0. Let {z1, . . . , zn} be the local
coordinate near a point p ∈ M . Let hi = ϕ(x)zi, where ϕ(x) is a cut-
off function that has support inside the local coordinate neighborhood.
Let θi = ∂hi. Now apply Theorem 3.2 in [18], with E being the anti-
canonical line bundle. We have functions ηi such that ∂ηi = θi and
ηi(p) = 0. Moreover, ηi satisfies

(2)

∫
M

|ηi|2 exp(−Cg(x)) < ∞.

It is easy to see that fi = θi − ηi are holomorphic and form a coordi-
nate system near p. Moreover, fi satisfies (2). Applying the mean value
inequality of [16], we conclude that fi are of polynomial growth. The
lower bound of dim(Od(M)) follows from simple dimension counting.

q.e.d.

We go back to the proof of Theorem 2. Let

hd = dim(Od(Mi, qi, gi)) = dim(Od(M)).

By Lemma 3, there exists a positive constant c independent of d so that

(3) hd ≥ cdn

for all large d. Recall that (Mi, qi, gi) pointed converges to (Rk, 0, ν)
where ν is proportional to the standard measure of Rk. Lemma 2 says
a sequence of unitary frames of Od(Mi, qi, gi) converges to linearly in-
dependent complex harmonic functions fs(s = 1, . . . , hd) on (Rk, 0, ν).
Note that fs are harmonic with respect to the standard volume form
of Rk.
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Remark. In this case, we cannot say fs are “holomorphic,” as R
k

does not necessarily inherit a complex structure from Mi. For example,
k might be odd.

There are only two cases:
Case 1: k ≤ n. In this case, just observe that

dim(Hd(R
k)) ≤ C(k)dk−1 ≤ C(k)dn−1.

We have a contradiction, as

dim(Hd(R
k)) ≥ dim(span{fs}) = hd ≥ cdn

for sufficiently large d.
Case 2: 2n − 1 ≥ k ≥ n + 1. The argument in Case 1 no longer

works. However, we shall prove that fs are “more” than harmonic on
R
k. In what follows, we will denote by Φ(u1, . . . , uk| . . .) any nonnegative

functions depending on u1, . . . , uk and some additional parameters such
that when these parameters are fixed,

lim
u1,...,uk→0

Φ(u1, . . . , uk| . . .) = 0.

We also let C(n) be positive constants depending only on n. The value
of C(n) might change from line to line.

Recall the Cheeger–Colding theory [2]. Since (Mi, qi, gi) converges to
(Rk, 0) in the Gromov–Hausdorff sense, given any R > 1, there exist
harmonic functions bj(j = 1, . . . , k) on B(qi, 3R) such that

(4) −
∫
B(qi,2R)

∑
j

|∇(∇bj)|2 +
∑
j,l

|〈∇bj ,∇bl〉 − δjl|2 ≤ Φ(
1

i
|R,n)

and

(5) |∇bj | ≤ C(n)

in B(qi, 2R). Moreover, when taking a diagonal sequence with R → ∞,
these bj converge to the standard coordinate functions on R

k.
Since Mi is Kähler, J∇bj satisfies (4) and (5). That is, we replace

∇bj by J∇bj . The key observation is that if k ≥ n + 1, in the average
sense, span{∇bj} will have nonzero intersection with span{J∇bj} due
to dimension reasons. This will give a linear complex structure for some
directions of Rk. Then we can reduce the upper bound of the dimension
of span{fs}.

Definition. We say a sequence of vector fields sil(l = 1, . . . , N) are
almost orthonormal in B(qi, 2R) if −

∫
B(qi,2R)

∑
l

|∇sil|2 +
∑
m,l

|〈sil, sim〉 −
δml|2 ≤ Φ(1

i
|n,R).

Claim 1. Let sil(l = 1, . . . , N) be a sequence of almost orthonormal
vector fields in B(qi, 2R). Then N ≤ 2n.
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Proof. There exists a point xi ∈ B(qi, 2R) such that
∑
m,l

|〈sil(xi),
sim(xi)〉 − δml|2 ≤ Φ(1

i
|R,n). Suppose N > 2n. If i is large, there is

a contradiction from linear algebra. q.e.d.

The following is just a Schmidt orthogonalization. The argument is
rather standard. However, for completeness, we include the details.

Note that ∇bj are almost orthogonal. Define

(6) λj,1 = −
∫
B(qi,2R)

〈∇bj , J∇b1〉.

Obviously, |λj,1| ≤ C(n). Let

(7) e1 = J∇b1 −
k∑

j=1

λj,1∇bj.

Claim 2. −
∫
B(qi,2R) |〈e1,∇bj〉|2 = Φ(1

i
|n,R) for j = 1, . . . , k.

Proof. Define a function

(8) sj(x) = 〈J∇b1,∇bj〉.

By Buser [1], on Mi, we have the Neumann–Poincare inequality

(9) −
∫
B(qi,2R)

|sj(x)− sj|2 ≤ C(n)R2−
∫
B(qi,2R)

|∇sj|2.

Note

(10) sj = −
∫
B(qi,2R)

sj(x) = λj,1.

Also

(11) |∇sj| ≤ |∇2b1||∇bj |+ |∇b1||∇2bj |.

From (4), (5), and (11),
(12)

C(n)R2−
∫
B(qi,2R)

|∇sj |2 ≤ C(n)R2−
∫
B(qi,2R)

(|∇2b1||∇bj |+ |∇b1||∇2bj|)2

≤ 2C(n)R2−
∫
B(qi,2R)

(|∇2b1|2|∇bj |2 + |∇b1|2|∇2bj|2)

≤ Φ(
1

i
|R, n).
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By (4)–(12),

(13)

(−
∫
B(qi,2R)

|〈e1,∇bj〉|2)
1

2 = (−
∫
B(qi,2R)

|sj − λj,1〈∇bj,∇bj〉

−
∑
s �=j

λs,1〈∇bs,∇bj〉|2)
1

2

≤ (−
∫
B(qi,2R)

|sj − sj|2)
1

2

+ |λj,1|(−
∫
B(qi,2R)

(|∇bj |2 − 1)2)
1

2

+
∑
l �=j

|λl,1|(−
∫
B(qi,2R)

|〈∇bj ,∇bl〉|2)
1

2

≤ Φ(
1

i
|R,n).

q.e.d.

If no subsequence of −
∫
B(qi,2R) |e1|2 is converging to 0, we can rescale

e1, which we still call e1 so that −
∫
B(qi,2R) |e1|2 = 1. Since the rescale

factor is bounded from above (independent of i), we still have Claim 2.
Thus {∇bj , e1} become almost orthonormal. Define

(14) e2 = J∇b2 −
k∑

j=1

λj,2∇bj − μ2e1.

Here

(15) λj,2 = −
∫
B(qi,2R)

〈∇bj , J∇b2〉;μ2 = −
∫
B(qi,2R)

〈e1, J∇b2〉.

It is easy to check that e2 satisfies claim 2. If no subsequence of
−
∫
B(qi,2R) |e2|2 is converging to 0, we can rescale it again. Then we con-

tinue to define e3, e4 and so on. Note that in general, es is a linear com-
bination of ∇b1, . . . ,∇bk, J∇b1, . . . , J∇bs. By the assumption of Case
2, 2k ≥ 2(n + 1) > dimR(M). According to claim 1, this process must
stop at some eλ for 1 ≤ λ ≤ 2n− k+1 < k for dimension reasons. That
is, −

∫
B(qi,2R) |eλ|2 is converging to zero for some subsequence. Passing to

that subsequence, we may assume that

−
∫
B(qi,2R)

|J∇bλ −
k∑

j=1

cj∇bj −
λ−1∑
j=1

sjJ∇bj|2 → 0
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for some constants cj and sj. Define b′1 =
bλ−

λ−1∑
j=1

sjbj√
1+

λ−1∑
j=1

s2j

, b′2 =

k∑
j=1

cjbj√
1+

λ−1∑
j=1

s2j

.

By a linear transformation of b1, . . . , bk, we can easily extend b′1, b
′
2 to

b′1, b
′
2, . . . , b

′
k, which satisfy (4) and (5). Observe that

(16) −
∫
B(qi,2R)

|J∇b′1 −∇b′2|2 ≤ Φ(
1

i
|n,R).

Then we define e′3, e
′
4, and so on, similar to as before (e′2 is skipped

for an obvious reason). Assume that the process stops at e′λ′ . Then
3 ≤ λ′ ≤ 2n− k+ 3 due to dimension reasons. Suppose 2n− k + 3 < k,
that is, k > n+ 1. Then, as before, we have

(17) −
∫
B(qi,2R)

|J∇b′λ′ −
k∑

j=1

c′j∇b′j −
λ′−1∑
j=1

s′jJ∇b′j|2 → 0

for some constants c′j and s′j . By (16) and the almost orthogonality

of (∇b′1, . . . ,∇b′k), ∇b′1,∇b′2 are almost orthonormal to ∇b′j, J∇b′j for
j ≥ 3. Then we have

(18) −
∫
B(qi,2R)

|J∇b′λ′ −
k∑

j=3

c′j∇b′j −
λ′−1∑
j=3

s′jJ∇b′j |2 → 0.

Define b′′1 = b′1, b
′′
2 = b′2, b

′′
3 =

b′
λ′
−

λ′−1∑
j=3

s′jb
′

j√√√√1+
λ′−1∑
j=3

(s′j)
2

, b′′4 =

k∑
j=3

c′jb
′

j√√√√1+
λ′−1∑
j=3

(s′j)
2

. Note

b′′1, b
′′
2 , b

′′
3 , b

′′
4 are almost orthogonal. By a linear transformation of b′1, . . . , b

′
k,

we can easily extend the functions to b′′1 , b
′′
2 , . . . , b

′′
k, which satisfy (4) and

(5). (18) and (16) imply
(19)

−
∫
B(qi,2R)

|J∇b′′1−∇b′′2|2 ≤ Φ(
1

i
|n,R);−

∫
B(qi,2R)

|J∇b′′3−∇b′′4|2 ≤ Φ(
1

i
|n,R).

Continuing the process as above, after certain linear transformations,
we may assume that ∇bj(j = 1, . . . , k) satisfy (4), (5), and

(20) −
∫
B(qi,R)

|J∇b2s−1 −∇b2s|2 ≤ Φ(
1

i
|n,R)

for 1 ≤ s ≤ k − n. By taking R → ∞ and a diagonal subsequence
argument, we can define a “partial” complex structure on the limit
space R

k:

(21) J∇b2s−1 = ∇b2s, J∇b2s = −∇b2s−1
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for 1 ≤ s ≤ k−n. Therefore, we can write Rk = C
k−n×R

2n−k. Note that
there is no ambiguity on the complex structure J in different spaces: just
check the space first.

Lemma 4. The functions fs are holomorphic on the C
k−n factor of

R
k.

Proof. Let fs = u+
√−1v, where u and v are real harmonic functions

on R
k. By (21), we just need to verify the Cauchy–Riemann equation

for fs along ∇b1 and ∇b2. Given any point x ∈ R
k, consider a smooth

function λ = λ(b1, . . . , bk) supported in B(x, 1). Take R = |x| + 3. We
may assume that gi ∈ Od(Mi, qi, gi) converges uniformly in any compact
set to fs. Let gi = ui +

√−1vi, where ui and vi are real pluriharmonic
functions on Mi. Moreover,

(22) |ui|, |vi|, |∇ui|, |∇vi| ≤ C(R, d, n)

inB(qi, R). By the Cauchy–Riemann equation, 〈∇ui,∇b1〉 = 〈∇vi, J∇b1〉.
Note that for sufficiently large i, λ(b1, . . . , bk) is supported in B(qi, R) ⊂
Mi (here, for x ∈ B(qi, R), λ(b1, . . . , bk) is defined by λ(b1(x), . . . , bk(x))
). (20) and (22) imply
(23)

|−
∫
B(qi,R)

λ(b1, . . . , bk)〈∇vi, J∇b1〉 − −
∫
B(qi,R)

λ(b1, . . . , bk)〈∇vi,∇b2〉| ≤ Φ(
1

i
|n)

Here R and λ are already fixed. As bi are harmonic, (4), (5), and (22)
imply
(24)

−
∫
B(qi,R)

λ(b1, . . . , bk)〈∇ui,∇b1〉 = −−
∫
B(qi,R)

ui〈∇(λ(b1, . . . , bk)),∇b1〉

= −−
∫
B(qi,R)

ui

k∑
j=1

∂λ

∂bj
〈∇bj ,∇b1〉

→ −−
∫
B(0,R)

u
∂λ

∂b1

= −
∫
B(0,R)

λ〈∇u,∇b1〉.

Similarly,

(25) −
∫
B(qi,R)

λ(b1, . . . , bk)〈∇vi,∇b2〉 → −
∫
B(0,R)

λ〈∇v,∇b2〉.

By (23)–(25) and the fact that λ is supported in B(x, 1), we find

−
∫
B(x,1)

λ〈∇u,∇b1〉 = −
∫
B(x,1)

λ〈∇v,∇b2〉.
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Similarly,

−
∫
B(x,1)

λ〈∇v,∇b1〉 = −
∫
B(x,1)

−λ〈∇u,∇b2〉.

Since λ is arbitrary,

〈∇u,∇b1〉 = 〈∇v,∇b2〉, 〈∇v,∇b1〉 = −〈∇u,∇b2〉
at x. This concludes the proof of the lemma. q.e.d.

Let H(d, k) be the space of complex harmonic functions in R
k with

polynomial growth rate d. We identify R
k = C

k−n×R
2n−k. Let E(d, n, k)

be the subspace of H(d, k) so that the restriction to the C
k−n factor is

holomorphic. Then
E(d, n, k) ⊂ span{fg},

where f ∈ Od(C
k−n) and g ∈ Hd(R

2n−k). Therefore,

(26)

dim(E(d, k, n)) ≤ dim(Od(C
k−n))dim(Hd(R

2n−k))

≤ C(n, k)dk−nd2n−k−1

= C(n, k)dn−1.

Recall that fs(s = 1, . . . , hd) are linearly independent. Moreover, fs ∈
E(d, n, k) by Lemma 4. Therefore,

hd ≤ C(n, k)dn−1.

This contradicts (3). The proof of Theorem 2 is complete.

4. Proof of the corollaries

Proof of Corollary 1: This directly follows from the proof of Theorem
2. Note that in Theorem 2, the condition M̃ does not split is used only to
show Lemma 3. Note that throughout the proof of Corollary 1, we only
assume that the Ricci curvature and the holomorphic sectional curvature
are nonnegative. This is slightly weaker than the nonnegativity of the
bisectional curvature.

Proof of Corollary 2: By the assumption of Corollary 2 and Theorem
1.2 in [20], we can solve the Poincare–Lelong equation

√−1∂∂u = Ric,
where Ric is the Ricci form of M . Theorem 1.2 in [20] also implies
u is of logarithmic growth. As the Ricci curvature is positive at one
point p ∈ M , u is plurisubharmonic and strictly plurisubharmonic at
one point. Now we can replace the function g(x) by u(x) in Lemma 3
to deduce that dim(Od(M)) ≥ cdn for all sufficiently large d.

5. Sharp dimension estimates revisited

In this section, we discuss Ni’s sharp dimension estimates (Theorem
1) from the point of view of Theorem 2. We will not include the rigidity
part here. Under the assumption of Theorem 1 (without the maximal
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volume growth), let (Mi, gi, pi) = (M, 1
ri
g, p), where ri is a positive

sequence converging to 0. Then it is easy to see that (Mi, gi, pi) converges
to C

n. If Theorem 1 is not true for some d, there is a contradiction with
Lemma 2.
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