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Abstract

In this paper we consider the problem of prescribing the nodal
set of low-energy eigenfunctions of the Laplacian. Our main result
is that, given any separating closed hypersurface Σ in a compact
n-manifold M , there is a Riemannian metric on M such that the
nodal set of its first nontrivial eigenfunction is Σ. We present a
number of variations on this result, which enable us to show, in
particular, that the first nontrivial eigenfunction can have as many
non-degenerate critical points as one wishes.

1. Introduction

The eigenfunctions of the Laplacian on a closed n-dimensional Rie-
mannian manifold (M,g) satisfy the equation

Δuk = −λkuk ,

where 0 = λ0 < λ1 � λ2 � . . . are the eigenvalues of M . In this paper
we will be concerned with the geometry of the nodal sets u−1k (0) of the
eigenfunctions of the Laplacian, which is a classic topic in geometric
analysis with a number of important open problems [18, 19].

Since the first nontrivial eigenfunction is u1, we will be especially
interested in the shape of the nodal set u−11 (0). More generally, this
paper focuses on the study of the nodal set of low-energy eigenfunctions;
in particular, we will not consider the measure-theoretic properties of
the nodal set u−1k (0) as k → ∞, which is an important topic that has
been thoroughly studied e.g. in [6, 11, 12].

In fact, the central question that we will address in this paper is the
following: given a hypersurface (i.e., a codimension-1 submanifold) Σ of
M , is there a Riemannian metric g such that Σ is the nodal set u−11 (0)?
In the case of the unit two-dimensional sphere, a detailed study of the
possible configurations of the nodal sets of the eigenfunctions has been
carried out by Eremenko, Jakobson and Nadirashvili [9]. In any closed
surface, Komendarczyk [14] has shown that, given any homotopically
trivial closed curve γ, there is a metric such that u−11 (0) is diffeomorphic
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to γ. This result has been extended to arbitrary curves on surfaces by
Lisi [15] using techniques from contact topology.

Our main theorem asserts that, given an n-manifoldM and any closed
(i.e., compact boundaryless) hypersurface Σ ⊂ M , there is a metric g
on M such that Σ is a connected component of the nodal set of the
eigenfunction u1. Moreover, if Σ separates (that is, if the complement
M\Σ is the union of two disjoint open sets), then one can show that
the nodal set does not have any other connected components. More
precisely, we have the following statement. Throughout, we will assume
that the hypersurfaces are all connected, n � 3 and all objects are of
class C∞.

Theorem 1.1. Let Σ be a closed orientable hypersurface of M . Then

there exists a Riemannian metric g on M such that Σ is a connected

component of the nodal set u−11 (0). If Σ separates, then the nodal set is

exactly Σ.

An analogous result for the first l eigenfunctions will be proved in
Theorem 2.1 and Proposition 3.1; however, in this Introduction we have
chosen to restrict our attention to the first nontrivial eigenfunction to
keep the statements as simple as possible. Somewhat related results on
level sets with prescribed topologies were derived, using completely dif-
ferent methods, for Green’s functions in [7] and for harmonic functions
in R

n in [8]. It should also be noted that the results that we prove in this
paper are robust in the sense that if g is the metric with eigenfunctions
of prescribed nodal sets that we construct in this paper, then any other
metric close enough to g in the C2 norm possesses the same property.
In particular, the metric can be taken analytic whenever the manifold
is analytic.

The strategy of the proof of Theorem 1.1 is quite versatile and can
be used to derive a number of related results. For instance, an easy
application of the underlying philosophy enables us to prove that, given
any n-manifold M , there is a metric such that the eigenfunction u1 has
as many isolated critical points as one wishes:

Theorem 1.2. Given any positive integer N , there is a Riemannian

metric on M whose eigenfunction u1 has at least N non-degenerate

critical points.

An analog of this result for the first l nontrivial eigenfunctions is given
in Proposition 3.2. It is worth recalling that, on surfaces, Cheng [4]
gave a topological bound for the number of critical points of the kth

eigenfunction that lie on the nodal line.

The ideas of the proof of the main theorem remain valid in the case
of manifolds with boundary. Specifically, let now (M,g) be a compact
Riemannian n-manifold with boundary and consider the sequence of
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its Dirichlet eigenfunctions, which with some abuse of notation we still
denote by uk and satisfy the equation

Δuk = −λkuk in M , uk|∂M = 0 .

Now 0 < λ1 < λ2 � . . . are the Dirichlet eigenvalues of M . The prob-
lem under consideration is related to Payne’s classical conjecture, which
asserts that when M is a bounded simply connected planar domain the
nodal line of u2 is an arc connecting two distinct points of the bound-
ary. Payne’s conjecture is known to hold for convex domains [16, 2],
but the general case is still open. Yau [19, Problem 45] raised the ques-
tion of the validity of Payne’s conjecture in n-manifolds with boundary.
In this direction, Freitas [10] showed that there is a metric on the two-
dimensional ball for which Payne’s conjecture does not hold, as the nodal
set is a closed curve contained in the interior of the ball. The techniques
used in this paper readily yield a powerful higher-dimensional analog of
this result. For simplicity and in view of Payne’s conjecture, we state it
in the case of the n-ball, although a totally analogous statement holds
true in any compact n-manifold with boundary (see Proposition 3.3):

Theorem 1.3. Let Σ be a closed orientable hypersurface contained

in the n-dimensional ball Bn. Then there exists a Riemannian metric g
on Bn such that the nodal set of its second Dirichlet eigenfunction is Σ.

Acknowledgments. The authors are supported by the ERC Starting
Grants 633152 (A.E.) and 335079 (D.P.-S.). This work is supported in
part by the ICMAT–Severo Ochoa grant SEV-2011-0087.

2. Proof of the main theorem

In this section we will prove Theorem 2.1 below, a consequence of
which is Theorem 1.1. The gist of the proof, which uses ideas intro-
duced by Colin de Verdière [5] to prescribe the multiplicity of the first
nontrivial eigenvalue λ1, is to choose the metric so that the low-energy
eigenvalues are simple and the corresponding eigenfunctions are close,
in a suitable sense, to functions whose nodal set is known explicitly.

From now on and until Subsection 3.3, M will be a compact manifold
without boundary of dimension n � 3.

Step 1: Definition of the metrics. Consider a small neighborhood
Ω ⊂ M of the orientable hypersurface Σ, which we can identify with
(−1, 1) × Σ. Let us take a metric g0 on M whose restriction to Ω is

g0|Ω = dx2 + gΣ ,

where x is the natural coordinate in (−1, 1) and gΣ is a Riemannian
metric on Σ. We can assume that the first nontrivial eigenvalue of the
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Laplacian on Σ defined by gΣ is larger than l2π2/4, where l is a positive
integer.

It is then clear that the first l + 1 Neumann eigenfunctions of the
domain Ω can be written as

vk = |Σ|−
1

2 cos
kπ(x+ 1)

2
, 0 � k � l ,

where |Σ| stands for the area of Σ. Observe that, with this normaliza-
tion, ∫

Ω
vjvk = δjk .

Denoting by Δ0 the Laplacian corresponding to the metric g0, these
eigenfunctions satisfy the equation

Δ0vk = −μkvk in Ω , ∂νvk|∂Ω = 0

with μk := k2π2/4.

For each ε > 0, let us define a piecewise smooth metric gε on M by
setting

gε :=

{
g0 in Ω ,

εg0 in M\Ω .

To define the spectrum of this discontinuous metric one resorts to the
quadratic form

Qε(ϕ) :=

∫
M

|dϕ|2ε dVε

=

∫
Ω
|dϕ|2 + ε

n

2
−1

∫
Ωc

|dϕ|2

together with the natural L2 norm corresponding to the metric gε:

‖ϕ‖2ε :=

∫
M

ϕ2 dVε

=

∫
Ω
ϕ2 + ε

n

2

∫
Ωc

ϕ2

Here the possibly disconnected set Ωc := M\Ω stands for the interior
of the complement of Ω, the subscripts ε refer to quantities computed
with respect to the metric gε and we are omitting the subscripts (and
indeed the measure in the integrals) when the quantities correspond to
the reference metric g0. As is well known, the domain of the quadratic
form Qε can be taken to be the Sobolev space H1(M) (recall that, M
being compact, this Sobolev space is independent of the smooth metric
one uses to define it).
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By the min-max principle, the kth eigenvalue λk,ε of this quadratic
form is

(2.1) λk,ε = inf
W∈Wk

max
ϕ∈W\{0}

qε(ϕ) ,

where Wk stands for the set of (k + 1)-dimensional linear subspaces of
H1(M) and

(2.2) qε(ϕ) :=
Qε(ϕ)

‖ϕ‖2ε

is the Rayleigh quotient. The kth eigenfunction uk,ε is then a mini-
mizer of the above variational problem for λk,ε, in the sense that any
subspace that minimizes the variational problem can be written as
span{u0,ε, . . . , uk,ε}.

Step 2: λk,ε is almost upper bounded by the corresponding

Neumann eigenvalue. Let us now show that the kth eigenvalue of the
quadratic form Qε is upper bounded by the Neumann eigenvalues of Ω
as

(2.3) lim sup
ε↘0

λk,ε � μk .

To see this, consider the function ψk ∈ H1(M) given by

ψk :=

{
vk in Ω ,

v̂k in Ωc ,

where v̂k is the harmonic extension to Ωc of the Neumann eigenfunction
vk, defined as the solution to the boundary value problem

Δ0v̂k = 0 in Ωc , v̂k|∂Ω = vk .

Standard elliptic estimates show that the Sobolev norms of v̂k are con-
trolled in terms of those of vk|∂Ω; in particular

(2.4)

∫
Ωc

|dv̂k|
2 +

∫
Ωc

v̂2k � C‖vk‖
2

H
1

2 (∂Ω)
� C‖vk‖

2
H1(Ω) = C(μk + 1) ,

where C is a constant independent of ε and k, and we have used that
the Neumann eigenfunctions are normalized.

We are now ready to derive the upper bound for λk,ε. We will find
it convenient to denote by O(εm) a quantity that is bounded (possibly
not uniformly in k) by Cεm. From (2.4) it stems that for any linear
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combination ϕ,ϕ′ ∈ span{ψ1, . . . , ψk} we have∫
M

ϕϕ′ dVε =

∫
Ω
ϕϕ′ + ε

n

2

∫
Ωc

ϕϕ′

=

∫
Ω
ϕϕ′ +O(ε

n

2 ) ‖ϕ‖H1(Ω)‖ϕ
′‖H1(Ω)

=

∫
Ω
ϕϕ′ +O(ε

n

2 ) (1 + μk)‖ϕ‖L2(Ω)‖ϕ
′‖L2(Ω)

=

∫
Ω
ϕϕ′ +O(ε

n

2 ) ‖ϕ‖L2(Ω)‖ϕ
′‖L2(Ω) .(2.5)

To pass to the last line we have simply used that, for any finite k, we
can absorbe the constant 1 + μk in the O(ε

n

2 ) term. An immediate
consequence of this inequality is that, for all k � l and sufficiently small
ε (depending on l), the linear space

span{ψ1, . . . , ψk}

is a k-dimensional subspace of H1(M).

A similar argument using (2.4) allows us to estimate Qε(ϕ), with
ϕ ∈ span{ψ1, . . . , ψk}, as

Qε(ϕ) =

∫
Ω
|dϕ|2 + ε

n

2
−1

∫
Ωc

|dϕ|2

=

∫
Ω
|dϕ|2 +O(ε

n

2
−1) (1 + μk)‖ϕ‖

2
L2(Ω)

=

∫
Ω
|dϕ|2 +O(ε

n

2
−1) ‖ϕ‖2L2(Ω) .(2.6)

In view of the min-max formulation (2.1) and omitting the condition
that ϕ �= 0 for notational simplicity, we then obtain from (2.5) and (2.6)
that

λk,ε � max
ϕ∈span{ψ1,...,ψk}

qε(ϕ)

= max
ϕ∈span{ψ1,...,ψk}

∫
Ω |dϕ|

2 +O(ε
n

2
−1) ‖ϕ‖2

L2(Ω)

[1 +O(ε
n

2 )] ‖ϕ‖2
L2(Ω)

= [1 +O(ε
n

2 )] max
χ∈span{v1,...,vk}

qΩ(χ) +O(ε
n

2
−1)

= [1 +O(ε
n

2 )]μk +O(ε
n

2
−1) ,

which proves (2.3). Here

qΩ(χ) :=

∫
Ω |dχ|

2∫
Ω χ2

is the Rayleigh quotient in Ω and we recall that the bounds for the
O(εm) terms are not uniform in k.
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Step 3: Convergence to the Neumann eigenfunctions. Let us
consider the linear space

H2 :=
{
ϕ ∈ H1(M) : ϕ|Ωc ∈ H1

0 (Ω
c) , ϕ|Ω = 0

}
.

This is a closed subspace of H1(M), so it is standard that there is
another closed subspace H1 of H1(M) such that

(2.7) H1(M) = H1 ⊕H2

and

(2.8)

∫
M

g0(∇ϕ1,∇ϕ2) = 0

for all ϕj ∈ Hj. Here the gradient is computed using the reference
metric g0. A short computation shows that in fact one has

H1 :=
{
ϕ ∈ H1(M) : Δ0ϕ = 0 in Ωc

}
.

We will denote by Pj the projector associated with the subspace Hj .

Our goal now is to analyze the first l eigenfunctions of Qε for small
ε. Hence, let us fix some nonnegative integer k � l. By the upper
bound (2.3), if ε is small enough we have that

λk,ε < μk + 1 ,

which implies that

(2.9) λk,ε = inf
W∈W ′

k

max
ϕ∈W\{0}

qε(ϕ) .

The difference with (2.1) is that nowW ′
k is the set of (k+1)-dimensional

subspaces of H1(M) such that

qε(ϕ) < μk + 1

for all nonzero ϕ ∈ W ′
k.

A further simplification is the following. Let us use the direct sum
decomposition (2.7) to write ϕ as

ϕ = ϕ1 + ϕ2 ,

where we will henceforth use the notation ϕj := Pjϕ. The observation
now is that if

‖ϕ2‖
2
ε � c‖ϕ‖2ε
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for some c > 0, then

qε(ϕ) �
ε
n

2
−1

∫
Ωc |dϕ2|

2

‖ϕ‖2ε

�
cε

n

2
−1

∫
Ωc |dϕ2|

2

‖ϕ2‖2ε

�
c

ε

∫
Ωc |dϕ2|

2∫
Ωc ϕ2

2

�
c0c

ε
,

where the positive, ε-independent constant c0 is the first Dirichlet eigen-
value of Ωc with the reference metric g0. Hence we easily infer that, if
ϕ is in a subspace belonging to W ′

k with k � l, then necessarily

(2.10) ‖ϕ2‖
2
ε � O(ε) ‖ϕ‖2ε .

By mimicking the proof of the estimate (2.4), we readily find that if
qε(ϕ) � μk + 1, one has that

(2.11)

∫
Ωc

ϕ2
1 +

∫
Ωc

|dϕ1|
2
� C

∫
Ω
ϕ2
1 .

We can now use the orthogonality relation (2.8) to write, for any nonzero
ϕ ∈W with W ∈ W ′

k,

qε(ϕ) =

∫
M
|dϕ1|

2
ε dVε +

∫
M
|dϕ2|

2
ε dVε

‖ϕ‖2ε

= [1 +O(ε
1

2 )]

∫
M
|dϕ1|

2
ε dVε +

∫
M
|dϕ2|

2
ε dVε

‖ϕ1‖2ε

� [1 +O(ε
1

2 )]

∫
M
|dϕ1|

2
ε dVε

‖ϕ1‖2ε

= [1 +O(ε
1

2 )]

∫
Ω |dϕ1|

2 + ε
n

2
−1

∫
Ωc |dϕ1|

2∫
Ω ϕ2

1 + ε
n

2

∫
Ωc ϕ2

1

= [1 +O(ε
1

2 )]

∫
Ω |dϕ1|

2 +O(ε
n

2
−1)

∫
Ω ϕ2

1∫
Ω ϕ2

1

= [1 +O(ε
1

2 )] qΩ(ϕ1|Ω) +O(ε
n

2
−1) .

Here we have used the inequalities (2.10)-(2.11), which in particular
imply

‖ϕ‖ε = [1 +O(ε
1

2 )]‖ϕ1‖ε .
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Therefore, by the min-max principle (2.9),

λk,ε � [1 +O(ε
1

2 )] inf
W∈W ′

k

max
ϕ∈W\{0}

qΩ(ϕ1|Ω) +O(ε
n

2
−1)

� [1 +O(ε
1

2 )]μk +O(ε
n

2
−1) .

Together with the upper bound (2.3), this shows that

lim
ε↘0

λk,ε = μk .

Since the eigenvalues μk are simple for k � l, it is well-known that for
k � l this implies that there are nonzero constants βk such that the
restriction to Ω of the eigenfunctions uk,ε converges to the Neumann
eigenfunctions vk, up to a multiplicative constant, in the H1 norm as-
sociated with the quadratic form. Therefore there is some constant βk
such that

(2.12) lim
ε↘0

‖uk,ε − βkvk‖H1(Ω) = 0 for k � l .

For simplicity of notation, we will redefine the normalization constants
of the eigenfunctions uk,ε if necessary to take βk = 1. In view of (2.12),
standard elliptic estimates then ensure that uk,ε → vk as ε → 0 in
Cm(K), for any compact subset K of Ω and any integer m.

Step 4: Characterization of the nodal sets. Let us fix a small
enough ε > 0 and take a sequence of uniformly bounded smooth func-
tions χj,ε ∈ C∞(M) converging pointwise to:

lim
j→∞

χj,ε(x) =

{
1 if x ∈ Ω ,

ε if x ∈ Ωc .

It is then well-known (see e.g. [3]) that the kth eigenvalue of the Lapla-
cian corresponding to the metric gj,ε := χj,εg0 then converges to λk,ε as

j →∞, and that its kth eigenfunction

ujk,ε

converges in H1(M) (and in Cm(K) for any compact subset of M\∂Ω
and any m) to uk,ε, where we are assuming that k � l to ensure that
the eigenvalues are simple. The convergence result proved at the end of
Step 3 then yields that, for ε small enough, j large and any fix compact
set K ⊂ Ω, the difference

‖ujk,ε − vk‖Cm(K)

can be made as small as one wishes for 0 � k � l.

It is clear that the nodal set of the Neumann eigenfunction vk is empty
for k = 0 and diffeomorphic to k copies of Σ for 1 � k � l, namely,

(2.13) v−1k (0) =

{
(1 + 2i− k)

k
: i ∈ [0, k − 1] ∩ Z

}
×Σ .
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Here we are identifying Ω with (−1, 1) × Σ as before. Since dvk does

not vanish on the nodal set and we have shown that ujk,ε converges to vk
in the Cm norm on compact subsets of Ω, Thom’s isotopy theorem [1,
Section 20.2] implies that for small enough ε, large j and k � l, the

nodal set (ujk,ε)
−1(0) has at least k connected components, which are

diffeomorphic to Σ. More precisely, there is a diffeomorphism Φj
k,ε of

M , arbitrarily close to the identity in any fixed Cm(M) norm, such

that Φj
k,ε(v

−1
k (0)) is a collection of connected components of the nodal

set (ujk,ε)
−1(0).

Furthermore, if Σ separates, Courant’s nodal domain theorem then
guarantees that the nodal set cannot have any further components that
separate. In this case, a component of the nodal set that does not

separate must sit in a region where ujk,ε has a constant sign, which

means that this component is a local extremum of the eigenfunction.
A theorem of Uhlenbeck [17] ensures that critical nodal sets are non-
generic, so that if necessary one can find a small perturbation g̃j,ε of

the metric gj,ε so that the corresponding kth eigenfunction ũjk,ε does not

have any components of the nodal set that are critical and, a fortiori,

its critical set is exactly Φ̃j
k,ε(v

−1
k (0)) for some diffeomorphism Φ̃j

k,ε that

is close to the identity in Cm(M). To use the same notation no matter
whether Σ separates or not, we shall henceforth drop the tildes in our
notation.

For large enough j and small ε, let us consider the pulled-back metric

g := (Φj
1,ε)

∗gj,ε

and call uk its kth eigenfunction, which is given by

uk = ujk,ε ◦Φ
j
1,ε .

The nodal set of uk has then a connected component given by Σ if k = 1
and a collection of components given by Φk(v

−1
k (0)) if 2 � k � l, with

(2.14) Φk := (Φj
1,ε)

−1 ◦Φj
k,ε

a diffeomorphism that can be taken as close to the identity in any fixed
Cm norm as one wishes. We have therefore proved the following

Theorem 2.1. If ε is small enough and j is large enough, for k � l
the nodal sets of the eigenfunctions uk corresponding to the metric

g contain a collection of connected components diffeomorphic to the

set (2.13), which is given by k copies of Σ. The diffeomorphism, which

is given by (2.14), can be taken arbitrarily close to the identity in the

Cm(M) norm, and in fact is exactly the identity for k = 1. Further-

more, if Σ separates, the nodal set of uk does not have any additional

components.
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3. Applications

The strategy of the proof of Theorem 2.1 is quite versatile and can
be employed to construct eigenfunctions with prescribed behavior in
different situations. We shall now present three concrete applications of
this philosophy, where we will consider eigenfunctions with prescribed
nodal sets of different topologies, low-energy eigenfunctions with a large
number of non-degenerate critical points and nodal sets of Dirichlet
eigenfunctions in manifolds with boundary.

3.1. Eigenfunctions with nodal sets of different topologies. In
Theorem 2.1 we showed how to construct metrics whose kth eigenfunc-
tion has a nodal set diffeomorphic to k copies of a given hypersurface Σ
(and possibly other connected components, if Σ does not separate). To
complement this result, in the following proposition we shall show how
one can use the same argument to construct a metric where the nodal
set of the kth eigenfunction has a prescribed connected component Σk,
possibly not diffeomorphic for distinct values of k.

Proposition 3.1. Let Σ1, . . . ,Σl be pairwise disjoint closed orientable

hypersurfaces of M . Then for all 1 � k � l, there exists a Riemannian

metric g on M such that Σk is a connected component of the nodal set

u−1k+l−1(0).

Proof. The proof is an easy modification of that of the main theorem.
Indeed, let us consider (pairwise disjoint) small neighborhoods Ωk of
the orientable hypersurfaces Σk. As before, we will identify Ωk with
(−1, 1)×Σk. The starting point now is a smooth reference metric g0 on
M taking the form

g0|Ωk
= Γ2

k dx
2 + gΣk

,

in each domain Ωk. Here gΣk
is a metric on Σk whose first eigenvalue

is assumed larger than π2 and Γk are constants such that

1 = Γ1 > Γ2 > · · · > Γl >
1

2
.

Hence the first nonzero Neumann eigenvalue of Ωk is

μk :=
π2

4Γ2
k

,

and the corresponding normalized eigenfunction is

vk :=
1√

Γk|Σk|
cos

π(x+ 1)

2
.

Notice that here vk and μk do not have the same meaning as in Section 2,
even though they will play totally analogous roles in the proof.
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We now set Ω :=
⋃l

k=1Ωk and consider the piecewise smooth metric

gε :=

{
g0 in Ω ,

εg0 in M\Ω .

Arguing exactly as in Steps 2 and 3 of the proof of the main theorem
with the new definitions of μk and vk and noticing that 0 is a Neumann
eigenvalue of the domain Ω with multiplicity l, one concludes that the
(k + l − 1)th eigenvalue λk+l−1,ε of the quadratic form defined by the
metric gε tends to μk as ε ↘ 0 for all 1 � k � l, and that the corre-
sponding eigenfunction uk+l−1,ε converges to vk in Cm(K), for K any
compact subset of Ωk.

As in Step 4 of Section 2, we can smooth the metric gε by introducing
a sequence of smooth metrics gj,ε. Arguing as in Step 4, we infer that

for large j and small ε the nodal set of the eigenfunction ujk+l−1,ε then

has a connected component diffeomorphic to Σk for 1 � k � l, with the

corresponding diffeomorphism Φj
k,ε being arbitrarily close to the identity

in any fixed Cm norm. The point now is that, as the hypersurfaces Σk

are pairwise disjoint, the diffeomorphisms Φj
k,ε can be assumed to differ

from the identity only in a small neighborhood Sk of each hypersurface.

This allows us to define a diffeomorphism Φj
ε of M by setting Φj

ε := Φj
k,ε

in each Sk and letting Φj
ε be the identity outside these sets.

The statement then follows by taking g := (Φj
ε)∗gj,ε, with large j and

small ε, since in this case the eigenfunctions are uk+l−1 = ujk+l−1,ε ◦Φ
j
ε.

q.e.d.

3.2. Critical points of low-energy eigenfunctions. The study of
level sets of a function is deeply connected with that of its critical points.
Hence here we will use Morse theory and our construction of eigenfunc-
tions with prescribed nodal sets to show that there are metrics whose
low-energy eigenfunctions have an arbitrarily high number of critical
points. Notice that Theorem 1.2 is a corollary of Proposition 3.2 below.
Regarding the behavior of the critical points of high-energy eigenfunc-
tions, let us recall that Jakobson and Nadirashvili [13] proved that there
are metrics (even on the two-dimensional torus) for which the number
of critical points of the kth eigenfunction does not tend to infinity as
k →∞.

Proposition 3.2. Given any positive integers N and l, there is a

smooth metric on M such that the kth eigenfunction uk has at least N
non-degenerate critical points for all 1 � k � l.

Proof. Let us fix some ball B ⊂M and take a domainD whose closure
is contained in B. This ensures that Σ := ∂D separates. Theorem 2.1
shows that there is a smooth metric g such that the nodal set of its kth
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eigenfunction uk is diffeomorphic to k copies of Σ. Furthermore, the
corresponding eigenvalues λk are simple for 0 � k � l and in Step 4 of
Section 2 we showed that the differential of uk does not vanish on its
nodal set.

A theorem of Uhlenbeck [17] ensures that one can take a Cm+1-small
perturbation g̃ of the metric g so that the first l eigenfunctions are
Morse, that is, all their critical points are non-degenerate. Standard
results from perturbation theory show that the eigenfunctions ũk of the
perturbed metric are close in the Cm(M) norm to uk, so in particular

the nodal set of ũk has a connected component Σ̃k ⊂ B diffeomorphic
to Σ for all 1 � k � l. Here we are using the fact that the gradient of
uk does not vanish on its nodal set and Thom’s isotopy theorem.

Call Dk the domain contained in B that is bounded by Σ̃k and let
us denote by ∇̃ the covariant derivative associated with the metric g̃.
Since ∇̃ũk is a nonzero normal vector on ∂Dk, which can be assumed to
point outwards without loss of generality, we can resort to Morse theory
for manifolds with boundary to show that the number of critical points
of ũk of Morse index i is at least as large as the ith Betti number of
the domain Dk, for 0 � i � n − 1. Since Dk is diffeomorphic to D, the
proposition then follows by choosing the domain D so that the sum of
its Betti numbers is at least N (this can be done, e.g., by taking ∂D
diffeomorphic to a connected sum of N copies of any nontrivial product
of spheres, such as S

1 × S
n−2, since in this case the first Betti number

is N). q.e.d.

3.3. Nodal sets of Dirichlet eigenfunctions. Motivated by Payne’s
problem, in this subsection we will consider the nodal set of Dirichlet
eigenfunctions on manifolds with boundary. Hence here M will be a
compact manifold with boundary of dimension n � 3. Notice that
Theorem 1.3 is a corollary of Proposition 3.3 below.

Proposition 3.3. Let M be a compact n-manifold with boundary and

let Σ be a closed orientable hypersurface contained in the interior of M .

Then there exists a Riemannian metric g on M such that Σ is a con-

nected component of the nodal set of its second Dirichlet eigenfunction.

If Σ separates, then the nodal set is exactly Σ.

Proof. The proof goes along the lines of that of the main theorem.
Specifically, the construction of the metrics g0 and gε is exactly as in
Step 1 of Section 2. The variational formulation of the Dirichlet eigenval-
ues of the associated quadratic form Qε is analogous, the main difference
being that its domain is now H1

0 (M). A minor notational difference is
that, since the first eigenvalue is customarily denoted in this context by
λ1 instead of λ0, Wk (and W ′

k in Step 3) now consist of k-dimensional,
instead of (k + 1)-dimensional, subspaces.
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Step 2 also carries over verbatim to the case of manifolds with bound-
ary, with the proviso that the harmonic extension v̂k must also include
a Dirichlet boundary condition at ∂M , i.e.,

Δ0v̂k = 0 in M\Ω , v̂k|∂Ω = vk , v̂k|∂M = 0 .

Steps 3 and 4 also remain valid in the case of manifolds with boundary,
the only difference being that the space H1 must also include Dirichlet
boundary conditions:

H1 :=
{
ϕ ∈ H1

0 (M) : Δ0ϕ = 0 in Ωc
}
.

The proposition is then proved using the same reasoning as in Section 2,

noticing that the diffeomorphism Φj
1,ε can be assumed to differ from the

identity only in a small neighborhood of the hypersurface Σ. q.e.d.
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