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AN ALGEBRAIC PROOF OF THE HYPERPLANE

PROPERTY OF THE GENUS ONE GW-INVARIANTS

OF QUINTICS

Huai-Liang Chang & Jun Li

Abstract

Li-Zinger’s hyperplane property for reduced genus one GW-

invariants of quintics states that the genus one GW-invariants of
the quintic threefold is the sum of its reduced genus one GW-
invariants and 1/12 times its genus zero GW-invariants. We apply
the theory of GW-invariants of stable maps with fields to give an
algebro-geometric proof of this hyperplane property.

1. Introduction

GW-invariants of a smooth projective variety X are “virtual enumer-
ations” of stable maps to X subject to geometric constraints. More
precisely, for d ∈ H2(X,Z), the moduli space Mg(X, d) of genus g
stable morphisms to X of fundamental class (degree) d is a proper,
separated DM-stack, and carries a canonical virtual fundamental cycle
[Mg(X, d)]

vir. When X is a Calabi-Yau threefold, this class is a dimen-
sion zero cycle, and its degree is the degree d genus g GW-invariant of
X:

Ng(d)X = deg [Mg(X, d)]
vir.

Investigating GW-invariants of Calabi-Yau threefolds is one of the
main focuses in the subject of Mirror Symmetry. In case the Calabi-
Yau threefold X is a complete intersection in a projective space P, by
[Ko], its genus zero degree d GW-invariant is the integral of the top
Chern class

(1.1) deg [M0(X, d)]
vir =

∫
[M0(P,d)]

ctop(E0,d)

of a vector bundle E0,d onM0(P, d). The identity (1.1) is called the “hy-
perplane property of the GW-invariants”. The techniques developed in
[Gi, LLY], etc., allow one to completely solve the genus zero invariants
of such X.
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Generalizing this to high genus requires a new approach, in part be-
cause the hyperplane property stated fails for positive genus invariants.
In [Zi2, LZ] Zinger and the second named author introduced the re-
duced g = 1 GW-invariants N1(d)

red
Q of the quintic Q ⊂ P4 using an

analogous “hyperplane property” and showed that they relate to the
ordinary GW-invariants N1(d)Q by a simple linear relation.
In this paper, we give an algebraic proof of this relation.

Theorem 1.1 ([LZ]). The reduced and the ordinary genus one GW-
invariants of a quintic Calabi-Yau Q ⊂ P4 are related by

N1(d)Q = N1(d)
red

Q +
1

12
N0(d)Q.

In algebraic geometry, the reduced genus one GW-invariants of quin-
tics take the following form. For simplicity, in this paper we abbreviate
X =M1(P

4, d). Let

(fX , πX ) : C −→ P4 × X = P4 ×M1(P
4, d)

be the universal family of X ; let Xpri ⊂ X be the primary component
of X that is the closure of the open substack of all stable morphisms
with smooth domains. We pick a DM-stack X̃pri and a proper birational

morphism ϕ : X̃pri → Xpri so that with (fX̃pri
, πX̃pri

) : C̃pri → P4 × X̃pri

the pull back of (fX , πX ), the direct image sheaf

πX̃pri∗
f∗
X̃pri

OP4(5)

is locally free on X̃pri. In [VZ], (see also [HL],) such ϕ is constructed by
a modular blowing-up. We state the working definition of the reduced
invariants of Q.

Definition 1.2 ([LZ]). We define the reduced g = 1 GW-invariants
of Q to be

(1.2) N1(d)
red
Q =

∫
[X̃pri]

ctop(πX̃pri∗
f∗
X̃pri

OP4(5)).

To prove Theorem 1.1, we will separate [M1(Q, d)]
vir into its “pri-

mary” and “ghost” parts, and show that the “primary” part can be
evaluated using (1.2) while the “ghost” part contributes to 1

12N0(d)Q.
The original proof of this theorem was via analysis, which achieves

the desired separation by perturbing the complex structure of Q to a
generic almost complex structure, worked out in details in [Zi3].
The proof presented in this paper uses “the GW-invariants of stable

maps with p-field” worked out by the authors in [CL1], generalizing the
Guffin-Sharpe-Witten’s (GSW) g = 0 invariants of complete intersection
Calabi-Yau threefolds, which we briefly outline now.
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Given a positive integer d, we form the moduli M1(P
4, d)p of genus 1

degree d stable morphisms to P4 with p-fields:

M1(P
4, d)p={[f,C, p]

∣∣ [f,C] ∈M1(P
4, d), p ∈ Γ(f∗OP4(−5)⊗ωC)}/ ∼ .

It is a Deligne-Mumford stack with a perfect obstruction theory. The
polynomial w = x51+. . .+x

5
5 (or any general quintic polynomial) induces

a cosection (homomorphism) of its obstruction sheaf

(1.3) σ : ObM1(P4,d)p −→ OM1(P4,d)p ,

whose non-surjective locus (called the degeneracy locus) is

M1(Q, d) ⊂M1(P
4, d)p, Q = (x51 + . . .+ x55 = 0) ⊂ P4,

which is proper. The cosection-localized virtual fundamental class con-
struction of Kiem-Li defines a localized virtual cycle

[M 1(P
4, d)p]virσ ∈ A0M1(Q, d).

(For convention of cosection-localized virtual fundamental classes, see
discussion after (2.6).) The GW-invariant ofM1(P

4, d)p is defined to be

N1(d)
p
P4 = deg [M1(P

4, d)p]virσ ∈ Q.

Theorem 1.3 ([CL1]). For d > 0, the GW-invariant of M1(P
4, d)p

coincides with the GW-invariant N1(d)Q of the quintic Q up to a sign:

N1(d)
p
P4 = (−1)5d ·N1(d)Q.

By this theorem, to prove Theorem 1.1 it suffices to study the cycle
[M1(P

4, d)p]virσ . Following the recipe in [VZ, HL], we form the modular

blow-up Ỹ ofM1(P
4, d)p. It is a union of Ỹpri, which is birational to the

primary component of M 1(P
4, d), with other smooth components Ỹμ,

indexed by partitions μ of d:

Ỹ = Ỹpri ∪
( ⋃

μ�d

Ỹμ

)
.

Geometrically, a general element of Ỹpri is a stable morphism in

M1(P
4, d) having smooth domain; a general element of Ỹμ (with μ =

(d1, · · · , d�)) lies over a stable morphism [f,C] ∈ M1(P
4, d) whose do-

main C is a smooth elliptic curve together with � P1 attached to it, and
the morphism f is constant along the elliptic curve and has degree di
along the i-th P1 attached.
It is convenient to work with the obstruction theory relative to the

Artin stack D of pairs (C,L) of degree d line bundles L on connected
genus one nodal curves C. Using the universal family of M1(P

4, d)p,
we obtain a forgetful morphism M1(P

4, d)p → D. We then perform a

parallel modular blow-up of D to obtain D̃ → D, which reconstructs
Ỹ via the Cartesian product Ỹ = M1(P

4, d)p ×D D̃. By working out
the relative perfect obstruction theory of M1(P

4, d)p → D, we obtain
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the relative perfect obstruction theory of Ỹ → D̃ and its obstruction
complex EỸ/D̃. We form its intrinsic normal cone CỸ/D̃, which is a

subcone of h1/h0(EỸ/D̃). (cf. [BF, LT]).

By picking a homogeneous quintic polynomial, say x51 + · · ·+ x55, we
construct a cosection (homomorphism) σ̃ : h1/h0(EỸ/D̃) → OỸ . By a

cosection-localized version of [Cos, Thm 5.0.1], we prove

(1.4) deg [M1(P
4, d)p]virσ = deg 0!σ̃,loc[CỸ/D̃].

(cf. Proposition 2.5.) Using the explicit local defining equation of Ỹ
obtained in [Zi1, HL], we conclude that as cycles

[CỸ/D̃] = [Cpri] +
∑
μ�d

[Cμ],

where Cpri is an irreducible cycle lies over Ỹpri; and Cμ are cycles lying

over Ỹμ. Thus

(1.5) deg 0!σ̃,loc[CỸ/D̃] = 0!σ̃,loc[Cpri] +
∑
μ�d

0!σ̃,loc[Cμ].

After working out a structure result of three cones in Section four,
in Section five, we show that 0!σ̃,loc[Cpri] equals the reduced invariant

N1(d)
red
Q . In Section six and seven, we develop a method to attack the re-

mainder terms in (1.5); in Section eight, we show that 0!σ̃,loc[Cμ] = 0 for

all partitions μ �= (d), where (d) is the partition of d into a single block.

Finally in Section nine, we prove that 0!σ̃,loc[C(d)] =
(−1)5d

12 N0(d)Q. To-

gether with (1.4), (1.5) and Theorem 1.3, these prove Theorem 1.1.

Earlier, the authors developed an algebro-geometric approach to prove
Theorem 1.1 using an auxiliary closed substack Z ⊂ M1(P

4, d) to cap-
ture the contribution 1

12N1(d)Q. This approach was far from satisfac-
tory, and its writing up was never finalized. The current approach
was developed after the authors introduced the GW-invariants of stable
maps with p-field. We expect that this approach can be generalized
to prove a conjecture of Zinger and the second named author on high
genus reduced GW-invariants of quintics and other complete intersec-
tion Calabi-Yau threefolds in the product of projective spaces.

Acknowledgement. The authors thank B. Fantechi, A. Kresch, Y-B.
Ruan, R. Vakil and A. Zinger for helpful discussions and explanations
of their results. The first named author also thanks A. Tanzini and G.
Bonelli for introduction to mirror symmetry.

2. Moduli of stable morphisms with fields

We begin with a brief introduction GW-invariant of stable maps with
p-fields. Let Q = (w = 0) ⊂ P4 be the smooth Calabi-Yau manifold,
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where w = x51+ · · ·+x
5
5; let KP4 be the total space of the canonical line

bundle of P4. The polynomial w defines a map wP4 : KP4 → C whose
critical locus is the Calabi-Yau manifold Q ⊂ P4 (in the zero section of
KP4). In physics literature, the pair (KP4 ,wP4) is called a (non-linear)
Landau-Ginzburg Model. In [GS], Guffin-Sharpe constructed a path
integral for genus zero A-twisted theory of the Landau-Ginzburg space
(KP4 ,wP4) and showed that it gives the genus zero GW invariants of Q.
In short, Guffin-Sharpe’s theory is built on the space of smooth maps
f : C → P4 together with sections of the pullback bundles f∗KP4 twisted
by ωC . In [CL1], this theory has been worked in more general setting
mathematically, and proved to give all genus GW-invariants of Q. This
is the GW invariants of stable maps with p-fields ψ in Definition 2.1.
We start with the moduli of stable maps. LetM 1(P

4, d) be the moduli
of genus one degree d stable maps to P4. In this paper, we abbreviate it
to X :=M1(P

4, d), with g = 1 and d implicitly understood. We denote
its universal family by

(fX , πX ) : CX → P4 × X .

We recall the definition of the moduli of stable morphisms with fields.

Definition 2.1. Let M1(P
4, d)p be the groupoid that associates to

any scheme S the set M1(P
4, d)p(S) of all S-families (fS , CS , ψS) where

[fS , CS ] ∈ M1(P
4, d)(S), and ψS ∈ Γ(CS , f

∗
SO(−5) ⊗ ωCS/S). An arrow

between two S-families (fS , CS , ψS) and (f
′
S, C

′
S , ψ

′
S) consists of an arrow

η from (fS, CS) to (f
′
S , C

′
S) such that η

∗(ψ′S) = ψS .

Proposition 2.2. The groupoid M1(P
4, d)p is represented by a sep-

arated Deligne-Mumford stack of finite type.

The proof is given in [CL1, (3,1)] and [CL1, Prop 2.2]. Note that the
forgetful map M1(P

4, d)p → X is not proper: its fiber over [f,C] ∈ X
is H0(f∗O(−5)⊗ ωC), which is non-trivial for some [f,C].
To study its obstruction theory, we form the moduli stack of curves

with line bundles. We let D be the groupoid that associates any scheme
the set D(S) of all pairs τ = (Cτ ,Lτ ) of which πτ : Cτ → S are flat
families of genus one connected nodal curves and Lτ are fiberwise degree
d line bundles on Cτ ; an arrow from τ to τ ′ in D(S) consists of an S-
isomorphism φ1 : Cτ → Cτ ′ and an isomorphism φ2 : Lτ → φ∗1Lτ ′ (cf.
[CL1, Def 2.6]). In [CL1, (3,1)], this moduli space is constructed as
a direct image cone over D, which gives us the deformation theories of
X (=M 1(P

4, d)) and M1(P
4, d)p relative to D.

We let π : C → D with L on C be the universal curve and line bun-
dle of D. Then the invertible sheaf LX := f∗XO(1) on CX induces a
tautological morphism X → D so that the pull back of (C,L) is canoni-
cally isomorphic to (CX ,LX ). We introduce an auxiliary invertible sheaf
P = L⊗(−5) ⊗ ωC/D.
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We recall the definition of the direct image cone stack

(2.1) C(π∗(L
⊕5 ⊕ P))

defined in [CL1, Def 2.1]. For any scheme S, an object in C(π∗(L
⊕5 ⊕

P))(S) consists of data (Cτ ,Lτ , u, ψ), where τ ∈ D(S) with πτ : Cτ → S
and Lτ on Cτ its associated families, u = (u1, · · · , u5) ∈ Γ(πτ∗L

⊕5
τ ) and

ψ ∈ Γ(πτ∗Pτ ). An arrow from (Cτ ,Lτ , u, ψ) to (Cτ ′ ,Lτ ′ , u
′, ψ′) (over the

same S) consists of an arrow τ → τ ′ in D(S) so that (u, ψ) is equal to
the pullback of (u′, ψ′) under the given arrow τ → τ ′. By construction,
C(π∗(L

⊕5 ⊕ P)) is a stack over D. (Indeed, it is linear over D in the
following sense: it admits a scalar multiplication by c ∈ C that sends
(Cτ ,Lτ , u, ψ) to (Cτ ,Lτ , c · u, c · ψ); It admits an addition that sends
any pair

(
(Cτ ,Lτ , u, ψ), (Cτ ,Lτ , u

′, ψ′)
)
(over the same (Cτ ,Lτ ) in D) to

(Cτ ,Lτ , u+ u′, ψ + ψ′).)
For simplicity, in this paper we abbreviate Y = M1(P

4, d)p, with
g = 1 and d implicitly understood. Like before, we let

(fY , πY) : CY −→ P4×Y, ψY ∈ Γ(CY ,PY) where PY = f∗YO(−5)⊗ωCY/Y

be the universal family of Y. We denote LY = f∗YO(1). After fixing a

homogeneous coordinates [z1, · · · , z5] of P
4, the morphism fY is given

by uY := (uY ,i)1≤i≤5, uY ,i = f∗Yzi. The data (CY ,LY , uY , ψY) induces a

morphism M1(P
4, d)p → C(π∗(L

⊕5 ⊕ P)).

Lemma 2.3. The morphism M1(P
4, d)p → C(π∗(L

⊕5 ⊕ P)) is an
open embedding.

Proof. This follows from [CL2, Prop 2.7 and (3.1)]. q.e.d.

Let p to be the composite

p : Y =M1(P
4, d)p

⊂
−→C(π∗(L

⊕5 ⊕ P))
pr
−→D.

Using the obstruction theory of C(π∗(L
⊕5 ⊕ P)) relative to D ([CL1,

Prop 3.1]), we obtain a perfect relative obstruction theory of Y → D:

(2.2) φY/D : (EY/D)
∨ −→ L•Y/D, EY/D := R•πY∗(L

⊕5
Y ⊕ PY).

In the same spirit, we obtain perfect relative obstruction theory of X →
D ([CL1, Prop 2.5 and 2.7]):

(2.3) φX/D : (EX/D)
∨ −→ L•X/D, EX/D := R•πX∗L

⊕5
X ,

where LX = f∗XO(1). Following standard convention, we call the coho-
mology sheaf

ObY/D := H1(EY/D) = R1πY∗(L
⊕5
Y ⊕ PY)

the relative obstruction sheaf of φY/D.
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Since Y is non-proper, we use Kiem-Li’s cosection-localized virtual
class to construct its GW-invariants. In [CL1, (3,7)], the authors have
constructed a cosection of ObY/D (i.e. a homomorphism)

(2.4) σ : ObY/D −→ OY ,

based on a choice of a quintic polynomial, say w = x51 + · · · + x55. It
was verified in the same paper that this cosection lifted to a cosection
σ̄ : ObY → OY of the (absolute) obstruction sheaf ObY , where ObY is
defined by the exact sequence

p∗Ω∨D −→ ObY/D −→ ObY −→ 0.

It was also verified that the degeneracy locus D(σ) of σ, which is the
locus where σ is not surjective, is the closed substack

(2.5) D(σ) =M1(Q, d) ⊂M1(P
4, d)p = Y.

Here Q = (w = 0) ⊂ P4 is the quintic hypersurface (x51 + · · · + x55 = 0)
of P4 and w = x51 + · · · + x55 was used ([CL1, (3,7)]) to construct the
cosection σ; M1(Q, d) is the moduli of stable morphisms to Q, and
the embedding is via the tautological embeddingM1(Q, d) ⊂M1(P

4, d)
composed with the embedding M1(P

4, d) ⊂ Y =M1(P
4, d)p defined by

assigning ψ = 0.
The cosection σ induces a morphism of vector bundle stacks (see [BF,

Sec 2] for notation of h0/h1)

(2.6) σ : h1/h0(EY/D) −→ OY

that is surjective over U = Y −D(σ). (By abuse of notation, we use the
same σ; also, we use OY to denote the rank one trivial line bundle on
Y.) We let

h1/h0(EY/D)σ =(2.7) (
h1/h0(EY/D)×Y D(σ)

)
∪ ker{σ|U : h

1/h0(EY/D)|U → OU},

endowed with the reduced stack structure.
Applying [KL, Prop 4.3] on cosection-localized virtual fundamental

class, we know that the cycle of the intrinsic normal cone [CY/D] ∈

Z∗h
1/h0(EY/D) lies in

(2.8) [CY/D] ∈ Z∗h
1/h0(EY/D)σ;

applying the localized Gysin map

0!σ,loc : A∗h
1/h0(EY/D)σ −→ A∗−nD(σ),

where −n = rankEY/D, we obtain a localized virtual fundamental class

(2.9) [Y]virloc := 0!σ,loc[CY/D] ∈ A0D(σ) = A0M1(Q, d).
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We define its degree to be the GW-invariants of stable morphisms to P4

with fields:

N1(d)
p
P4 = deg [Y]virloc.

This is well-defined since M1(Q, d) is proper.

Theorem 2.4. [CL1, Thm 5.7] Let N1(d)Q be the GW-invariants of
genus one degree d stable morphisms to Q, then we have

N1(d)
p
P4 = (−1)5dN1(d)Q.

We remark that this theorem holds for all genus g. For our purpose,
we state it in the case g = 1. We will also use a modular blow-up of X =
M(P4, d) to study N1(d)

p
P4 . The version we use is that worked out by Hu

and the second named author [HL], following the original construction
of Vakil-Zinger’s modular blow-up of the primary component of X [VZ].

In this paper, a weighted nodal curve is a connected nodal curve with
its irreducible components assigned non-negative integer weights; the
total weight of a weighted nodal curve is the sum of the weights of all
of its irreducible components. Let Mw be the Artin stack of weighted
genus one nodal curves. By replacing L (of the universal family (C,L)
of D) by its degrees along irreducible components of fibers of C → D,
we obtain a family of genus one weighted nodal curves over D, which
induces a morphism D →Mw. Let

(2.10) X −→Mw, Y −→Mw

be the composites of X , Y → D with D →Mw (cf. [HL, Sec 2.1]).

Let M̃w → Mw be the modular blow-up of Mw described in [HL,
Sec 2.6]. We define the modular blow-ups of X , Y and D to be

(2.11) X̃ = X ×Mw M̃w, Ỹ = Y×Mw M̃w, and D̃ = D×Mw M̃w.

We denote CỸ = CY ×Y Ỹ and let fỸ : CỸ → P4 be the composition

of CỸ → CY with fY : CY → P4. We call (fỸ , πỸ) : CỸ → P4 × Ỹ the

tautological family of Ỹ . Note that if we let (fX̃ , πX̃ ) : CX̃ → P4 × X̃

be the similarly defined tautological family of X̃ , and let LX̃ := f∗
X̃
O(1)

and PX̃ = L
⊗(−5)

X̃
⊗ ωC

X̃
/X̃ , then we have a canonical isomorphism and

its induced projection

(2.12) p : Ỹ ∼= C(πX̃ ∗PX̃ ) −→ X̃ .

By adding ψ = 0 to elements in X̃ , we can realize X̃ as the zero section
of this tautological projection. In this paper, whenever we say X̃ ⊂ Ỹ
we mean this embedding by the zero section.
Let ζ : Ỹ → Y be the projection. Since Ỹ is derived from Y → D

by the base change D̃ → D, the relative perfect obstruction theory of
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Y → D pulls back to a relative perfect obstruction theory of Ỹ → D̃:

(2.13) φỸ/D̃ : (EỸ/D̃)
∨ −→ L•

Ỹ/D̃
, EỸ/D̃ = ζ∗EY/D.

The relative obstruction sheaf is ObỸ/D̃ = ζ∗ObY/D, and the cosection

σ pullbacks to a cosection

(2.14) σ̃ = ζ∗σ : ObỸ/D̃ → OỸ ,

whose degeneracy locus D(σ̃) is also proper, and fits into the Cartesian
product:

(2.15) D(σ̃) = D(σ)×Y Ỹ =M1(Q, d)×Mw M̃w.

We define h1/h0(EỸ/D̃)σ̃ parallel to that defined after (2.6). Then by

(2.8), we have

[CỸ/D̃] ∈ Z∗h
1/h0(EỸ/D̃)σ̃.

We define [Ỹ ]virloc = 0!σ̃,loc[CỸ/D̃] ∈ A0D(σ̃) to be the cosection-localized

virtual fundamental class.

Proposition 2.5. We have the identity

deg [Ỹ]virloc = deg [Y]virloc = (−1)5dN1(d)Q.

Proof. By [HL, Sec 2.6], the blow-up M̃w →Mw is the result after

successively blowing up along smooth loci; therefore M̃w → Mw, and
consequently ιD : D̃ = D×MwM̃w → D, are proper and l.c.i. morphisms
between smooth stacks of identical pure dimensions.
From (2.15), the degeneracy locusD(σ̃) isM1(Q, d)̃ :=M1(Q, d)×Mw

M̃w, which is contained in Ỹ and fits into the Cartesian diagram

(2.16)

M1(Q, d)̃ ⊂ Ỹ
ι′
D−−−−→ M1(Q, d) ⊂ Y⏐⏐�

⏐⏐�
D̃

ιD−−−−→ D.

We apply [CLL, Sec 4.1] to the fiber square to obtain

(2.17) ι!D[Y]
vir
loc = [Ỹ ]virloc,

where ι!D : A∗M1(Q, d) → A∗M1(Q, d)̃ is the Gysin map associated
to the square (2.16). We comment that although that the bases in
[CLL, Sec 4.1] are assumed to be DM stacks, the same proof works for
the case where the bases are Artin stacks of finite presentations. Thus
(2.17) holds.
By [CL1, Thm 5.7], we have [Y]virloc = (−1)5d[M 1(Q, d)]

vir, thus

(2.18) [Ỹ ]virloc = (−1)5dι!D[M1(Q, d)]
vir.

Using the Cartesian product (2.16), we obtain a perfect relative obstruc-

tion theory of M1(Q, d)̃ → D̃. Because the same proof in [BF, Prop
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7.2 (2)] applies to the case when the immersions of bases, like ιD, are
l.c.i. morphisms, we can apply [BF, Prop 7.2 (2)] to conclude

[M 1(Q, d)̃ ]
vir = ι!D[M1(Q, d)]

vir.

Thus [Ỹ ]virloc = (−1)5d[M 1(Q, d)̃ ]
vir.

On the other hand, applying [Cos, Thm 5.0.1] to (2.16) we obtain

ι′D∗([M 1(Q, d)̃ ]
vir) = [M1(Q, d)]

vir ∈ A0(D(σ)),

where ι′D is as in (2.16). Thus deg [M1(Q, d)̃ ]
vir = deg[M1(Q, d)]

vir,
and

deg [Ỹ]virloc = deg(−1)5d[M1(Q, d)̃ ]
vir

= (−1)5d deg [M 1(Q, d)]
vir = (−1)5dN1(d)Q.

This proves the Proposition. q.e.d.

3. A structure result of the modular blow-ups

Following [HL, Sec 2.8], we know that the modular blow-up X̃ is

a union of smooth irreducible proper DM stacks: one of them is X̃pri,

birational to Xpri ⊂ X under X̃ → X (cf. (2.11)); the others are X̃μ,
indexed by partitions μ of d, characterized by that its image in X is
the closure of the set of all stable morphisms [f,C] whose domains C
are � P1’s attached to smooth elliptic curves and the morphisms f are
constant along the elliptic curves and have degrees di along the i-th
attached P1’s.
We will show that the corresponding stack Ỹ has similar structure.

Let p : Ỹ −→ X̃ be the canonical projection, as in (2.12). We let

Ỹα = Ỹ ×X̃ X̃α, where α = pri or μ 
 d; we denote X̃gst = ∪μ�dX̃μ ⊂ X̃

and Ỹgst = ∪μ�dỸμ (= Ỹ ×X̃ X̃gst). Thus

(3.1) X̃ = X̃pri ∪ X̃gst and Ỹ = Ỹpri ∪ Ỹgst.

We collect the property of this decomposition as follows. We call
S → X a smooth chart if S is a scheme and S → X is smooth.

Proposition 3.1. For any closed x̃ ∈ X̃ , we can find a smooth chart
S̃ → X̃ containing x̃, an embedding (All embeddings in this section

are locally closed embeddings.) S̃ → Z into a smooth scheme, and an

embedding T̃ := S̃ ×X̃ Ỹ → Z ′ := Z × A1, such that

1) the projection T̃ → S̃ commutes with the projection pZ : Z ′ =

Z × A1 → Z, and there is a smooth morphism Z → M̃w so that
the composite T̃ → Z → M̃w is identical to the composite T̃ →
Ỹ → M̃w;

2) there are regular functions w1, . . . , w4 and zμ ∈ Γ(OZ), μ 
 d, such
that (w1 = · · · = w4 = 0) ⊂ Z is smooth, and all (zμ = 0) ⊂ Z
have at worst normal crossing singularities;
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3) denote T̃α = T̃ ×Ỹ Ỹα, where α = pri, gst or μ 
 d; let t ∈ Γ(OZ′)

be the pull back of the standard coordinate function of A1 via pA1 :
Z ′ → A1, and let z =

∏
μ�d zμ, then as subschemes of Z ′, we have

T̃ ⊂ (w1 · z = · · · = w4 · z = t · z = 0); T̃pri = T̃ ∩ (w1 = · · · = w4 =

z · t = 0); T̃μ = T̃ ∩ (zμ = 0), and T̃gst = T̃ ∩ (z = 0) are open
subschemes of (w1 = · · · = w4 = z · t = 0), (zμ = 0), and (z = 0)
respectively;

4) identify Z ∼= Z ′∩(t = 0), then as subschemes of Z, S̃ = T̃∩(t = 0),

and S̃α = T̃α ∩ (t = 0), where α = pri or μ 
 d; further for any

μ 
 d, (zμ = 0) ∩ S̃pri is a smooth divisor in S̃pri.

We begin our proof of Proposition 3.1 by outlining the derivation of
the embedding and the defining equations of S̃ → Z, following [HL].

We let x ∈ X be the image of x̃ under X̃ → X . We pick a homoge-
neous coordinates [z0, · · · , z4] of P

4 so that x ∈ Xz0 , where Xz0 is the
open substack of [f,C] ∈ X so that (f∗z0 = 0) ⊂ C are divisors dis-
joint from the singularities of C. Recall the composite Xz0 ⊂ X → D is
via sending [f,C] to (C, f∗O(1)). We show that it factors through the
Artin stack K of pairs (C,D) of connected genus one nodal curves C
with effective divisors D ⊂ C disjoint from the nodes of C
Indeed, let (fXz0

, CXz0
) be the restriction of the tautological family of

X to Xz0 . Then (f
∗
Xz0

z0)
−1(0) ⊂ CXz0

is a family of pairs of nodal curves

with effective divisors away from the singularities of the fibers, which
induces a morphism Xz0 → K. Next, let (CK,DK) be the universal family
over K; the line bundle OCK(DK) paired with CK defines a morphism
K → D. Clearly, the composite Xz0 → K → D coincides with Xz0 ⊂
X → D. Lastly, we let K →Mw be the composite K → D →Mw; it is
a smooth morphism.
We pick a smooth affine chart M →Mw. Let (CM ,w) be the tauto-

logical family over M . We let PicCM/M be the relative Picard scheme,
and let PicCM/M,w be its open substack of line bundles over fibers of
CM → M of degrees w along irreducible components of the fibers of
CM → M . Because PicCM/M,w is representable, it is represented by
a scheme, say U , which is smooth over M because CM → M is a flat
family of proper nodal curves. Using the tautological line bundle on
U ×M CM , we obtain a morphism U → D making the rightmost square
below commutative:

(3.2)

S = Xz0 ×D U −−−−→ K = K ×D U −−−−→ U −−−−→ M⏐⏐�
⏐⏐�

⏐⏐�
⏐⏐�

Xz0 −−−−→ K −−−−→ D −−−−→ Mw.

Because K → D,X → D are representable and U → D is smooth,
K ×D U and Xz0 ×D U are smooth charts of K and Xz0 , respectively.



262 H.-L. CHANG & J. LI

We denote K := K×D U and S := Xz0 ×KK. Using the smoothness of
U → D ×Mw M and K →Mw, we know K →M is also smooth.
We next pick charts of X̃z0 := Xz0×X X̃ , etc.. We pick an affine open

subscheme M̃ ⊂ M ×Mw M̃w; let Ũ = M̃ ×(M×MwM̃w) (U ×D D̃). We

next denote K̃ = K ×Mw M̃w; pick a connected affine open subscheme
K̃ ⊂ Ũ ×D̃ K̃, and and form S̃ = X̃z0 ×K̃ K̃. They are smooth charts

of M̃w, D̃, K̃ and X̃ , respectively, such that M̃, K̃ are affine, and (the

induced) K̃ → M̃ is smooth. For our goal, we require that S̃ → X̃ is a
chart of x̃.
Let (fS, CS) be the pullback of (fX , CX ) to S. We give a canonical

presentation of fS using [z0, · · · , z4]. We let DS = (f∗Sz0)
−1(0), a family

of divisors in CS , and fix f
∗
SO(1)

∼= OCS (DS) so that f
∗
Sz0 is the constant

section 1 via the tautological inclusion OCS ⊂ OCS (DS). Then uS,i =
f∗Szi are sections of f

∗
SO(1),

(3.3) fS = [uS,0, · · · , uS,4] : CS −→ P4. uS,i = f∗Szi;

and a closed s ∈ S associates to the data (Ds ⊂ Cs, (us,1, · · · , us,4)),
where us,i = uS,i|Cs .
We let DK ⊂ CK be the tautological family over K. By the univer-

sality of the tautological families over X and K, we have the induced
isomorphism and identity

CS ∼= CK ×K S and DS = DK ×CK CS,

where the second identity holds under the first isomorphism. Let pK̃ :

CK̃ → K̃ with DK̃ ⊂ CK̃ be the pull back of DK ⊂ CK → K.
For a partition μ, we let Mμ ⊂ M

w be the closed substack defined
to be the closure of the locally closed substack of all (C,w) ∈ Mw so
that C are � P1’s attached to smooth elliptic curves, and w take value
0 on the elliptic curves and take value μ1, · · · , μ� on the � P

1’s. We let
M̃μ be the proper transforms of Mμ under the blowing up morphism

M̃w →Mw. We let K̃μ = K̃ ×M̃w M̃μ.

Proposition 3.2. By shrinking K̃ if necessary, we can find a ξ ∈
Γ(OK̃) so that

(3.4) R•pK̃∗OK̃(DK̃)
∼=q.i. [OK̃

×ξ
−→OK̃ ]⊕ [O⊕d

K̃
−→ 0],

and (ξ = 0) is a normal crossing divisor in K̃ of the form (ξ = 0) =

∪μ�dK̃μ. Further, we can make ξ the pullback of a ξ′ ∈ Γ(OM̃ ).

Proof. The proposition is essentially proved in [HL], where an ex-
plicit perfect two-term complex quasi-isomorphic to R•pK̃∗OK̃(DK̃) is
derived. We follow the notation of the proof of [HL, Theorem 2.11].
On [HL, page 671], it is shown that R•pK̃∗OK̃(DK̃) is quasi-isomorphic

to OK̃ ⊕ [O⊕d
K̃
→ OK̃ ] with the arrow O

⊕d
K̃
→ OK̃ given by ⊕dβ∗ϕi (cf.

[HL, (5.23)]), and the structure of β∗ϕi is given by [HL, page 962 line
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18]. Using the divisibility property of β∗ϕi shown on [HL, page 962], we
obtain the quasi-isomorphism (3.4) and the property (1) and (2) stated.
We prove that ξ can be the pullback of a ξ′ ∈ Γ(OM̃ ). Indeed, by the

construction of M̃w → Mw, the union of M̃μ of all μ = (μ1, · · · , μ�)

with � ≥ 2 form the exceptional divisor of the blowing up M̃w →Mw;
also for μ = (d), M̃μ is a smooth divisor of M̃w. Further the union

∪μ�dM̃μ is a reduced divisor in M̃
w with at worst normal crossing sin-

gularities (cf. [HL, Section 2.6]). Therefore, letting M̃μ = M̃ ×M̃w M̃μ,

then ∪μ�dM̃μ is a reduced divisor in M̃ , and its preimage in K̃ is ξ = 0.

Since M̃ is affine, we can find a section ξ′ ∈ Γ(OM̃ ) so that ξ
′ = 0 is

∪μ�dM̃μ. Therefore, by a change of trivializations of OK̃ in (3.4), we
can make ξ the pullback of ξ′. This proves the Proposition. q.e.d.

We construct the desired embedding S̃ → Z. Let (uS̃,1, · · · , uS̃,4) be

the pull back of (uS,1, · · · , uS,4). We quote the result showing that the

defining equation of S̃ is dictated by the derived object

(3.5) R•pK̃∗OK̃(DK̃)
⊕4 ∼=q.i. [OK̃

×ξ
−→OK̃ ]

⊕4 ⊕ [O⊕4d
K̃

−→ 0].

We let Z = A4 × A4d × K̃ be the total space of O⊕4
K̃
⊕ O

⊕4d
K̃

, where

the copy O
⊕4
K̃

stands for the four OK̃ ’s in the 0-th place in the factor

[OK̃ → OK̃ ]
⊕4, etc.. We let w1, · · · , w4 be the standard coordinates of

A4, viewed also as regular functions on Z via pull back. Let p̄ : Z → K̃
be the projection.

Proposition 3.3 ([HL, Theorem 2.19]). The data (uS̃,1, · · · , uS̃,4)

defines a lifting S̃ → Z (of S̃ → K̃) that factors through an open em-
bedding

F : S̃ −→ (w1 · p̄
∗(ξ) = · · · = w4 · p̄

∗(ξ) = 0) ⊂ Z.

We remark that the p̄∗(ξ) is the product ξ1 · · · ξd in [HL, Theorem
2.19]. By Proposition 3.2, (p̄∗(ξ) = 0) ⊂ Z is a normal crossing sin-
gularity. Our construction implies each wi has smooth vanishing locus
and F (S̃) has (at worst) normal crossing singularities (also cf. [HL,
Theorem 2.19]).

We let T = Y×X S, and let T̃ = Ỹ×X̃ S̃. Thus T → Y and T̃ → Ỹ are

smooth charts. We now derive the embedding Ỹ → Z ′. Like Proposition
3.3, the structure of T̃ can be given by the structure of a perfect two
term complex quasi-isomorphic to

R•pK̃∗
(
OK̃(DK̃)

⊕4 ⊕ OK̃(−5DK̃)⊗ ωCK̃/K̃

)
.

Lemma 3.4. We have a quasi-isomorphism

(3.6) R•pK̃∗OK̃(−5DK̃)⊗ ωCK̃/K̃
∼=q.i. [OK̃

×ξ
−→OK̃ ]⊕ [0 −→ O

⊕5d
K̃

],

where the ξ is that in Proposition 3.2.
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Proof. Let (CK,DK) be the universal family over K. Since (CK, 5DK)
is also a family of pairs of divisors in genus one nodal curves, it induces
a morphism ρ : K → K so that ρ∗(CK,DK) ∼= (CK, 5DK). Clearly, ρ is a
closed embedding of stacks.
Let K̃ be the smooth chart of K̃ as in the statement of the lemma.

Without loss of generality, we can find a smooth chart K ′ → K so that
ρ : K → K lifts to φ : K → K ′. We then pick an affine smooth chart
K̃ ′ of K ′×Mw M̃w, possibly after shrinking the chart K̃ if necessary, so
that the φ : K → K ′ lifts to a morphism φ̃ : K̃ → K̃ ′ by the following
fiber diagram:

(3.7)

K̃
φ̃

−−−−→ K̃ ′⏐⏐�r

⏐⏐�
K

φ
−−−−→ K ′.

Without loss of generality, we can assume that φ is a locally closed
immersion, thus φ̃ is a locally closed immersion. Let (CK̃ ′ ,DK̃ ′) be the

pull back of the tautological family over K̃. We have the following
isomorphism and identity

(3.8) CK̃
∼= CK̃ ′ ×K̃ ′ K̃ and 5DK̃ = DK̃ ′ ×CK̃′

CK̃ .

(The last identity holds under the given isomorphism.) Let pK̃ ′ : CK̃ ′ →

K̃ ′ be the projection. Then by Proposition 3.2, we can find a section
ξ′ ∈ H0(OK̃ ′) such that

R•pK̃ ′∗OK̃ ′(DK̃ ′) ∼=q.i. [OK̃ ′

×ξ′
−→OK̃ ′ ]⊕ [O⊕5d

K̃ ′
−→ 0],

and (ξ′ = 0) satisfies the properties stated in Proposition 3.2.
Therefore, because of (3.8), we have

R•pK̃∗OK̃(5DK̃)
∼=q.i. φ

∗R•pK̃ ′∗OK̃ ′(DK̃ ′)

∼=q.i. [OK̃

×φ̃∗(ξ′)
−→ OK̃ ]⊕ [O⊕5d

K̃
−→ 0].

Finally, using the description of the vanishing locus (ξ = 0) in Theorem

3.2, we see that (ξ = 0) and (φ̃∗(ξ′) = 0) are identical as sets. Since

both are reduced divisors, we conclude that (ξ = 0) = (φ̃∗(ξ′) = 0).

Thus φ̃∗(ξ′)/ξ is nowhere vanishing. In particular, by an appropriate

isomorphism OK̃
∼= OK̃ , we can make φ̃

∗(ξ′) = ξ.
Finally, by Serre duality R•pK̃∗OK̃(−5DK̃) ⊗ ωCK̃/K̃ is dual to

R•pK̃∗OK̃(5DK̃)[−1]. This proves the Lemma. q.e.d.

We let Z ′ = A4 × A1 × A4d × K̃, where the factors A4, A4d and K̃
are as in Z, and the factor A1 corresponds to the (0-th place) factor
OK̃ in [OK̃ → OK̃ ] in the quasi-isomorphism (3.6). As before, we let

(w1, · · · , w4) be the standard coordinate variables of A
4; we let t be the

standard coordinate variable of A1 in Z ′ = A4×A1×A4d×K̃. (As before,
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we view wi and t as functions on Z
′.) Let q̄ : Z ′ → K̃ be the projection

and ι : Z → Z ′ be the embedding via setting t = 0.

Lemma 3.5. The morphism T̃ → K̃ lifts to an open embedding F ′

making the following square commutative:

(3.9)

T̃
F ′

−−−−→ (w1 · q̄
∗(ξ) = · · · = w4 · q̄

∗(ξ) = t · q̄∗(ξ) = 0) ⊂ Z ′
⏐⏐0−section


⏐⏐t=0

S̃
F

−−−−→ (w1 · p̄
∗(ξ) = · · · = w4 · p̄

∗(ξ) = 0) ⊂ Z.

Proof. The proof is a repetition of [HL, Theorem 2.17], and will be
omitted. q.e.d.

Proof of Proposition 3.1. Let z = q̄∗(ξ); then (3.9) gives us the defining

equation of T̃ ⊂ Z ′ and S̃ = T̃ ∩ (t = 0). Recall that S̃pri, which is

a chart of the primary part of M̃1(P
n, d) (cf. [HL, Theorem 2.9]), is

smooth and irreducible (cf. [HL, Section 2.8]). Since general elements

in S̃pri correspond to stable maps with smooth domains, z restricted

to S̃pri is non-trivial. Thus since S̃ under the embedding F is open

in (w1z = · · ·w4z = 0) ⊂ Z, we have F (S̃pri) is contained and dense
in (w1 = · · · = w4 = 0) ⊂ Z. Because (w1 = · · · = w4 = 0) is

smooth, we conclude that F (S̃pri) ⊂ (w1 = · · · = w4 = 0) is an open

subscheme. Consequently, using T̃pri = T̃ ×S̃ S̃pri, and that F ′(T̃ ) ⊂
(w1z = · · · = w4z = tz = 0) ⊂ Z ′ is an open subscheme, we conclude

that F ′(T̃pri) ⊂ (w1 = · · · = w4 = tz = 0) ⊂ Z ′ is an open subscheme.

From [HL], we know that X̃ is reduced; its primary component X̃pri

is smooth of dimension 5d, and the remainder components, indexed by
partitions μ 
 d, are of pure dimensions 5d+3 (cf. [HL, Theorem 2.9]).

Since F (S̃pri) is open in (w1 = · · · = w4 = 0) ⊂ Z, and since K̃ is

smooth and connected, we know that F (S̃gst) is open in (z = 0) ⊂ Z

and F ′(T̃gst) is open in (z = 0) ⊂ Z ′. Further, after writing ξ =
∏

μ�d ξμ

so that (ξμ = 0) = K̃μ in the notation of Proposition 3.2, and letting

zμ = q̄∗(ξμ) we have that F (S̃μ) is open in (zμ = 0) ⊂ Z and F ′(T̃μ) is
open in (zμ = 0) ⊂ Z ′.
Finally, (2) of the Proposition follows from that (ξ = 0) is a normal

crossing divisor (Proposition 3.2), and the identity describing T̃pri, T̃μ,

T̃gst of the Proposition follows from the description of F ′(T̃pri), F
′(T̃μ),

F ′(T̃gst) above and [HL, Thm. 2.9]. This proves the Proposition. q.e.d.

4. The decomposition of cones

We keep the notation introduced in the previous section, like the U ,K
and S defined in (3.2). We have a commutative diagram of tautological



266 H.-L. CHANG & J. LI

morphisms:

(4.1)

T̃
ϕ̃1

−−−−→ K̃
ϕ̃2

−−−−→ Ũ
ϕ̃3

−−−−→ M̃⏐⏐� ⏐⏐� ⏐⏐� ⏐⏐�
T

ϕ1
−−−−→ K

ϕ2
−−−−→ U

ϕ3
−−−−→ M,

constructed in paragraphs before and following (3.2), and such that the

induced T̃ → T ×K K̃ and K̃ → K ×U Ũ are open embeddings, and
Ũ ∼= U ×M M̃ .

Lemma 4.1. The sheaves RiπX̃gst∗
LX̃gst

and RiπX̃gst∗
PX̃gst

are locally

free over X̃gst. The sheaf πX̃gst∗
PX̃gst

is an invertible sheaf over X̃gst.

Proof. We pick a smooth chart S̃ of X̃ as in Proposition 3.1. By (3)

of the same Proposition, S̃gst is an open subscheme in (z = 0) ⊂ Z. By
definition, z = p̄∗(ξ); thus applying Lemma 3.4 we conclude that

(
R•πX̃ ∗LX̃

)
|S̃gst

∼=q.i. [O
⊕(5d+1)

S̃gst

×0
−→OS̃gst

]

and (
R•πX̃∗PX̃

)
|S̃gst

∼=q.i. [OS̃gst

×0
−→O

⊕(5d+1)

S̃gst
].

The Lemma follows. q.e.d.

Let p : Ỹ → X̃ be the base change of the forgetful morphism Y → X
(cf. (2.12)).

Proposition 4.2. We have the following structure results of Ỹpri and

Ỹgst:

(1). Ỹgst is canonically isomorphic to the (total space of the) line bundle

πX̃gst∗
PX̃gst

; p|Ỹgst
: Ỹgst → X̃gst is identical to the line bundle projection

πX̃gst∗
PX̃gst

→ X̃gst.

(2). Under the zero section embedding X̃ → Ỹ, Ỹpri = X̃pri ∪ (Ỹgst ×X̃
X̃pri).

Proof. For the first statement, by the definition of direct image cones
([CL1, Def 2.1]) we conclude

(4.2) Ỹgst = Ỹ ×X̃ X̃gst
∼= C((πX̃gst

)∗PX̃gst
).

Since RiπX̃gst∗
PX̃gst

are locally free for i = 0, 1, we see that (4.2) is the

total space of the line bundle of πX̃gst∗
PX̃gst

. Finally, that p|Ỹgst
: Ỹgst →

X̃gst coincides with the projection of πX̃gst∗
PX̃gst

to X̃gst follows from the

definition of p.
The second statement follows from Proposition 3.1. q.e.d.
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We remark that indeed all Xα are smooth, which was proved in [HL]
without being explicitly stated. For us, the property of having at worst
normal crossing singularities is sufficient.

Lemma 4.3. The intrinsic normal cone CỸ/D̃ ⊂ h1/h0(EỸ/D̃) em-

bedded via the obstruction theory φỸ/D̃ of Ỹ → D̃ has the following

properties:

1) over Ỹ − Ỹgst, it is the zero section of h1/h0(EỸ/D̃)|Ỹ−Ỹgst
;

2) over Ỹ−Ỹpri,it is a rank two subbundle stack of h1/h0(EỸ/D̃)|Ỹ−Ỹpri
.

Proof. We first prove that the tautological morphism p : Ỹ → D̃
is smooth along Ỹ − Ỹgst. We pick a smooth chart T̃ → Ỹ together

with its locally closed embedding T̃ → Z ′ = A4 × A1 × A4d × K̃ as
in (3.9) and Proposition 3.1. Using the defining equation of T̃ ⊂ Z ′

in (3.9) we know z is nowhere vanishing away from Ỹgst. Because wi

are coordinate variables of the factors of A4 in Z ′, we conclude that
ϕ̃1|T̃−T̃gst

: T̃ − T̃gst → K̃ is smooth (cf. (4.1)).

We next claim that ϕ2 is smooth along ϕ1(T − Tgst). Let ξ ∈ ϕ1(T −
Tgst) whose image in K is D ⊂ C, by the definition of Ygst we know
that D intersects the minimal (arithmetic) genus one subcurve of C.
Because g(C) = 1, we conclude that H1(OC(D)) = 0. Using the exact
sequence 0 → OC → OC(D) → OD(D) → 0 and its induced long
exact sequence of cohomology groups, we conclude that H0(OD(D))→
H1(OC) is surjective. This implies that any first order deformation of
the pair (C,OC (D)) can be lifted to a first order deformation of (C,D),
proving that ϕ2 is smooth near ξ.
Since ϕ̃2 is the base change of ϕ2, ϕ̃2 is smooth near ϕ̃1(T̃ − T̃gst).

Therefore, ϕ̃2 ◦ϕ̃1 is smooth along T̃ − T̃gst, and consequently p : Ỹ → D̃

is smooth along Ỹ − Ỹgst. This proves (1).
To prove (2), we first prove a sublemma.

Sublemma 4.4. The image p(Ỹgst) ⊂ D̃ is a locally closed, codimen-

sion two l.c.i. substack, and p|Ỹgst
: Ỹgst → p(Ỹgst) is smooth.

Proof. Let T̃ → Ỹ be the smooth chart as before, and let ϕ̃ := ϕ̃3 ◦
ϕ̃2 ◦ ϕ̃1 : T̃ → M̃ (cf. (4.1)). By our constructions and Proposition 3.1,

3.2, the morphism φ̃|T̃gst
: T̃gst → M̃ factors through the following fiber

diagrams

T̃gst −−−−→ (z = 0) −−−−→ (ξ = 0) −−−−→ (ξ′ = 0)⏐⏐� ⏐⏐� ⏐⏐�
Z ′

q̄
−−−−→ K̃

φ̃3◦φ̃2
−−−−→ M̃
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where z = q̄∗ξ, ξ = (φ̃3 ◦ φ̃2)
∗ξ′, ξ′ ∈ Γ(OM̃ ), and the two arrows in the

lower row are smooth. Since T̃gst → (z = 0) is an open embedding,

by Proposition 3.1 (2) we conclude that ϕ̃|T̃gst
: T̃gst → ϕ̃(T̃gst) ⊂ M̃ is

smooth and ϕ̃(T̃gst) ⊂ M̃ is a locally closed divisor with at worst normal

crossing singularities. For simplicity, we denote Λ = ϕ̃(T̃gst) ⊂ M̃ . We
claim that we can find a section

ζ̃ : Λ −→ ϕ̃−13 (Λ)

of ϕ̃′3 = ϕ̃3|ϕ̃−1
3 (Λ) : ϕ̃

−1
3 (Λ) → Λ so that ϕ̃|T̃gst

factors through ϕ̃3|ζ̃(Λ) :

ζ̃(Λ)→ Λ. Because ϕ̃′3 is smooth of relative dimension one, and Λ ⊂ M̃
is a locally closed divisor with at worst normal crossing singularities,
the claim implies that ϕ̃2 ◦ ϕ̃1(T̃gst) = ζ̃(Λ) ⊂ Ũ is a locally closed

codimension two l.c.i. substack(scheme), and that ϕ̃2 ◦ ϕ̃1|T̃gst
: T̃gst →

ζ̃(Λ) is smooth, thus proving the Sublemma.

We now prove the claim. Let MΛ ⊂M be the image stack of T̃gst →
M . Let UΛ = U ×M MΛ ⊂ U . We claim that we can find a section

ζM :MΛ −→ UΛ

of the tautological projection UΛ
∼= PicCMΛ

/MΛ
→ MΛ. Indeed, given

any point ξ ∈ MΛ represented by a weighted curve (C,w), by the de-
composition result Proposition 8.2, C is a union of a nodal elliptic curve
(arithmetic genus one) E with a collection of P1 so that w takes value
zero on every component of E and takes non-negative integer value on
every P1 ⊂ C not in E. We let L be a line bundle on C so that L|E ∼= OE ,
and for every P1 ∼= R ⊂ C we have degL|R equals the value of w on [R].
Such L is unique. We define ζM (ξ) ∈ UΛ to be the unique element lies
over (C,L) ∈ D and (C,w) ∈ MΛ. Using that U = PicCM/M → M is
representable, that MΛ is reduced, and the decomposition Proposition
8.2, we conclude that this point-wise definition of ζM defines a mor-
phism ζM as desired. Then because ϕ̃′3 : ϕ̃

−1
3 (Λ) → Λ is a base change

of UΛ →MΛ, ζM lifts to the desired section ζ̃.
Finally, using the defining equation of T̃gst, we see that ϕ̃1(T̃gst) ⊂

(ξ̃ = 0) ⊂ K̃. By Proposition 3.2 the image of general points of (ξ̃ = 0)
in K are represented by [D ⊂ C] ∈ K with D does not intersect elliptic
curve E ⊂ C. Since this property is preserved after taking closure, we
have ϕ̃2 ◦ ϕ̃1(T̃gst) ⊂ ζ̃(Λ). Thus ϕ̃|T̃gst factors through ϕ̃3|ζ̃(Λ). This

proves the Sublemma. q.e.d.

Now the proof of (2) of Lemma 4.3 follows from that Ỹ − Ỹpri is open

in Ỹ, p(Ỹ −Ỹpri) ⊂ D̃ is a locally closed, codimension two l.c.i. substack

of D̃, and p|Ỹ−Ỹpri
: Ỹ − Ỹpri → p(Ỹ − Ỹpri) is smooth. q.e.d.
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We will see that to each α = pri or μ 
 d, the cone CỸ/D̃ contains

a unique integral component that dominates Ỹα. For Ỹpri, it is the
closure of the zero section of h1/h0(EỸ/D̃)|Ỹ−Ỹgst

(in h1/h0(EỸ/D̃)|Ỹpri
);

we denote it by Cpri. For μ 
 d, it is the closure of the rank two
subbundle stack in h1/h0(EỸ/D̃)|Ỹμ

given in Lemma 4.3; we denote this

subcone by C′μ.
There are possibly other irreducible components of CỸ/D̃ lying over

Ỹpri ∩ Ỹgst; we group them (not necessarily unique) into
⋃

μ�d C
′′
μ such

that C′′μ lies over Ỹpri ×Ỹ Ỹμ. We write Cμ = C′μ ∪C′′μ. Therefore

(4.3) [CỸ/D̃] = [Cpri] +
∑
μ�d

[Cμ] ∈ Z∗h
1/h0(EỸ/D̃).

Consequently, (denoting [Cgst] =
∑

μ�d[Cμ],)

(4.4) [Ỹ ]virloc = 0!σ̃,loc[Cpri] + 0!σ̃,loc[Cgst] = 0!σ̃,loc[Cpri] +
∑
μ�d

0!σ̃,loc[Cμ].

Let N1(d)
red
Q be the reduced genus one GW-invariants of the quintic

Q introduced in [LZ] and stated in (1.2). We state the key Propositions
whose proofs will occupy the remainder of this paper.

Proposition 4.5. We have deg 0!σ̃,loc[Cpri] = (−1)5dN1(d)
red

Q .

Let (d) be the partition of d into a single part; i.e., the non-partition
of d.

Proposition 4.6. For μ 
 d and μ �= (d), we have deg 0!σ̃,loc[Cμ] = 0.

Proposition 4.7. We have deg 0!σ̃,loc[C(d)] =
(−1)5d

12 N0(d)Q.

These three Propositions, the identity (4.4) and Proposition 2.5 com-
bined give an algebraic proof of the hyperplane property of genus one
GW-invariants of quintics proved originally via analytic method in [LZ,
VZ, Zi1].

5. Contribution from the primary component

We begin with more notations. From now on, we view X̃pri as a

closed substack of Ỹpri via the zero section embedding X̃ → Ỹ and
(2) of Proposition 4.2. We denote σ̃pri := σ̃|X̃pri

: ObỸ/D̃|X̃pri
→ OX̃pri

.

Using ObỸ/D̃|X̃pri
= H1(EỸ/D̃|X̃pri

), and the definition (2.7), we define

the substack

h1/h0(EỸ/D̃|X̃pri
)σ̃pri

⊂ h1/h0(EỸ/D̃|X̃pri
).
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Note that D(σ̃pri) = X̃pri ∩ D(σ̃). Since [Cpri] is supported on X̃pri ⊂

Ỹpri,

[Cpri] ∈ Z∗(h
1/h0(EỸ/D̃)×Ỹpri

X̃pri) = Z∗(h
1/h0(EỸ/D̃|X̃pri

)σ̃pri
).

We then apply the localized Gysin map

(5.1) 0!σ̃pri,loc
: A∗(h

1/h0(EỸ/D̃|X̃pri
)σ̃pri

) −→ A∗D(σ̃pri)

to it to obtain 0!σ̃pri,loc
[Cpri] ∈ A0D(σ̃pri). By [KL, Lemma 2.5], its im-

age under A0D(σ̃pri) −→ A0(D(σ̃)) induced by the inclusion is

0!σ̃,loc([Cpri]). This implies

deg 0!σ̃pri,loc
[Cpri] = deg 0!σ̃,loc[Cpri].

Let (fỸ , πỸ) : CỸ → P4 × Ỹ with ψỸ ∈ Γ(CỸ ,PỸ) be the tautological

family of Ỹ, where LỸ = f∗
Ỹ
O(1) and PỸ = f∗

Ỹ
O(−5) ⊗ ωC

Ỹ
/Ỹ . Recall

from (2.13) that the deformation complex of the relative obstruction

theory of Ỹ → D̃ is EỸ/D̃ = R•πỸ∗(L
⊕5
Ỹ
⊕ PỸ). Let

H1 = h1/h0
(
(R•πỸ∗L

⊕5
Ỹ
)|X̃pri

)
and H2 = h1/h0

(
(R•πỸ∗PỸ)|X̃pri

)
.

By the base change property of the h1/h0-construction (The base change
property is as follows. Let ϕ : V → U be a morphism of DM stacks; let
G• ∈ Db(U) be quasi-isomorphic to [G0 → G1], whereGi are vector bun-
dles over U . The h1/h0 construction ([BF, p 57]) defines h1/h0(G•) =
[G1/G0] , a quotient stack is smooth over U . Since ϕ∗G• ∼=q.i [ϕ

∗G0 →
ϕ∗G1], we have canonical isomorphism h1/h0(ϕ∗G•) ∼= [ϕ∗G1/ϕ∗G0] ∼=
[G1/G0]×U V .), we have

(5.2) h1/h0(EỸ/D̃)|X̃pri

∼= H1 ×X̃pri
H2.

We need the notion of the closure of the zero section of a vector bundle
stack. For M an integral DM stack and G• = [α : G0 → G1] a two-term
complex of locally free sheaves placed at [0, 1], the zero section 0H of
H = [G0/G1] is the substack 0H : [G0/G0]→ [G1/G0], where G0 → G0

is the identity map; we define its closure to be

(5.3) 0̄H := [cl
(
α(G0)

)
/G0] ⊂ H,

where α(G0) is the image of α : G0 → G1 and cl
(
α(G0)

)
is the closure

of α(G0) in G1. For G• ∈ Db(M) locally represented by two-term
complexes of locally free sheaves placed at [0, 1], we can cover M by
open substacks Ui such that G

•|Ui
∼=q.i. [G

0
i → G1

i ] as stated and define
0H|Ui and 0̄H|Ui in H|Ui = h0/h1(G•|Ui) as before. A direct check shows
that {0H|Ui} and {0̄H|Ui} patch together to substacks 0H and 0̄H ⊂ H.
Since M is integral, 0̄H is integral.
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We apply this construction to (R•πỸ∗L
⊕5
Ỹ
)|X̃pri

and (R•πỸ∗PỸ)|X̃pri
∈

Db(X̃pri) to obtain 0̄H1 ⊂ H1 and 0̄H2 ⊂ H2. As X̃pri is integral, both
0̄H1 and 0̄H2 are integral.

Lemma 5.1. Under the tautological inclusion H1 ×X̃pri
H2 →

h1/h0(EỸ/D̃), we have

[Cpri] = [H1 ×X̃pri
0̄H2 ] ∈ Z∗h

1/h0(EỸ/D̃).

Proof. For convenience, we abbreviate X̃ ◦pri := X̃ − X̃gst and Ỹ
◦
pri =

Ỹ − Ỹgst; by (2) of Proposition 4.2, we know X̃
◦
pri = Ỹ

◦
pri, and combined

with (1) of Proposition 4.2, we know that the closure of Ỹ◦pri in Ỹ is

X̃pri.

Because R1πỸ∗L
⊕5
Ỹ
|Ỹ◦

pri
= R1πỸ∗PỸ |Ỹ◦

pri
= 0, we have

H1|Ỹ◦
pri
= 0H1 |Ỹ◦

pri
and H2|Ỹ◦

pri
= 0H2 |Ỹ◦

pri
= 0̄H2 |Ỹ◦

pri
.

Thus by (1) of Lemma 4.3,

Cpri|Ỹ◦
pri
= 0H1×X̃pri

H2 |Ỹ◦
pri
= (H1 ×X̃pri

0̄H2)|Ỹ◦
pri
⊂ h1/h0(EỸ/D̃)|Ỹ◦

pri
.

Since 0̄H2 is integral and H1 is a bundle-stack over X̃pri which is

smooth over X̃pri, the stack H1×X̃pri
0̄H2 is integral and thus is identical

to the closure of (H1 ×X̃pri
0̄H2)|Ỹ◦

pri
in h1/h0(EỸ/D̃). Because Cpri is

the closure of Cpri|Ỹ◦
pri

in h1/h0(EỸ/D̃), the Lemma follows. q.e.d.

Let 0!σ̃pri,loc
be the localized Gysin map in (5.1); let 0!

H2
: A∗H2 →

A∗X̃pri be the Gysin map by intersecting with the zero section of H2.

Corollary 5.2. Let ι : D(σ̃pri)→ X̃pri be the inclusion. Then

(5.4) deg 0!σ̃pri,loc
([Cpri]) = deg 0!H2

([0̄H2 ]).

Proof. Let

j : h1/h0(EỸ/D̃)σ̃ ×Ỹ X̃pri −→ h1/h0(EỸ/D̃)×Ỹ X̃pri = H1 ×X̃pri
H2

be induced by the inclusion h1/h0(EỸ/D̃)σ̃ ⊂ h1/h0(EỸ/D̃) and the iden-

tity (5.2). By [KL, Prop 1.3], we have ι∗ ◦ 0
!
σ̃pri,loc

= 0!
H1×X̃pri

H2
◦ j∗.

By Lemma 5.1, we have

ι∗0
!
σ̃pri,loc

([Cpri]) = 0!H1×X̃pri
H2
([H1 ×X̃pri

0̄H2 ]).

Because 0!
H1×X̃pri

H2
[H1 ×X̃pri

0̄H2 ] = 0!
H2
[0̄H2 ], we obtain

ι∗0
!
σ̃pri,loc

([Cpri]) = 0!H2
([0̄H2 ]).
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Finally, because X̃pri is proper, the homomorphism ι∗ preserves the de-
grees, which implies (5.4). This proves the Corollary. q.e.d.

We prove a useful result. In the following, for a locally free sheaf E
we will use the same symbol to denote its associated vector bundle.

Lemma 5.3. Let R = [R0 → R1] be a complex of locally free sheaves
of amplitude [0, 1] on an integral Deligne-Mumford stack M , and let
B = h1/h0(R∨[−1]) = [R∨0 /R

∨
1 ]. Suppose H1(R) is a torsion sheaf on

M and the image sheaf of R0 → R1 is locally free, then H0(R) is locally
free and

0!B[0̄B] = e(H0(R)∨) ∈ A∗M.

Proof. Let Ki = H i(R), which fit into the exact sequence

(5.5) 0 −→ K0
α
−→R0

β
−→R1

γ
−→K1 −→ 0,

which breaks up a short exact sequence of sheaves

0 −→ K0 −→ R0 −→ Im (β) −→ 0.

Because Im (β) is locally free by assumption, we see that K0 is locally
free and α∨ : R∨0 → K∨0 is surjective.
We next consider the dual β∨ : R∨1 → R∨0 , and let Z = cl(β∨(R∨1 )) (cf.

(5.3)). By (5.3), we have 0̄B = [Z/R∨1 ] ⊂ [R∨0 /R
∨
1 ] = B. Let U ⊂M be

the largest open substack so that K1|U = 0. Then β∨|U : R∨1 |U → R∨0 |U
is a sub-bundle homomorphism, and then Z×MU = β∨(R∨1 |U ). SinceM
is integral and H1(R) is torsion, Z is identical to the closure of Z×M U
in R∨0 .
We denote by b : R∨0 −→ [R∨0 /R

∨
1 ] the quotient morphism, then

b−1(0̄B) = Z, and

0!B([0̄B]) = 0!
R∨
0
([Z]) ∈ A∗M.

Thus to prove the lemma we only need to show that 0!
R∨
0
([Z]) = e(K∨0 ).

Because K1|U = 0, we have the exact sequence of locally free sheaves

0 −→ R
∨
1 |U

β∨

−→R
∨
0 |U

α∨

−→K
∨
0 |U −→ 0.

Hence Z = cl
(
β∨(R∨1 |U )

)
= cl

(
ker(α∨)|U

)
in R∨0 . Since α

∨ : R∨0 → K∨0 is
a surjection of vector bundles, kerα∨ is integral in R∨0 , thus Z = kerα∨

and 0!
R∨
0
([Z]) = e(K∨0 ). This proves the Lemma. q.e.d.

Let (fX̃pri
, πX̃pri

) = (fỸ , πỸ)|X̃pri
, and let R = R•πX̃pri∗

f∗
X̃pri

OP4(5). By

Serre duality, R∨ ∼= (R•πỸ∗PỸ)[1]|X̃pri
. Since f∗

X̃pri
OP4(5) is locally free

on CX̃pri
, it is known that R•πX̃pri∗

f∗
X̃pri

OP4(5) ∼=q.i. [R0 → R1] for Ri

locally free sheaves on X̃pri (cf. [Beh, Prop 5]). On the other hand, by
[HL, Thm 2.11] (or Prop. 3.1), πX̃pri∗

f∗
X̃pri

OP4(5) is locally free of rank

5d, and R1πX̃pri∗
f∗
X̃pri

O(5) is torsion. The image of R0 → R1 is locally
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free by taking dual of Lemma 3.4. Applying Corollary 5.2 and Lemma
5.3, we obtain

deg 0!σ̃,loc[Cpri] = c5d
(
(πX̃pri∗

f∗
X̃pri

OP4(5))∨
)
=

(−1)5dc5d
(
πX̃pri∗

f∗
X̃pri

OP4(5)
)
.

Proof of Proposition 4.5. Note that the right hand side of the previous
identities is the reduced genus one GW-invariants introduced in [LZ]
and stated in (1.2). This identity proves Proposition 4.5. q.e.d.

6. Reducing cosection-localized Gysin map

In the previous section, using that X̃pri is proper we have reduced the

contribution from the primary component 0!σ̃pri,loc
[Cpri] to an expression

using ordinary Gysin maps (cf. Corollary 5.2 and (5.4)). In this section,
we achieve the same goal for 0!σ̃,loc[Cgst] by working with a compacti-

fication of Ỹgst and the extension of Cgst to the compactification. The
structure of this extension is made simple by studying the homogeneity
of the cone Cgst along the fibers of Ỹgst → X̃gst.

We abbreviate

(6.1) V1 = R1πX̃gst∗
L
⊕5
X̃gst

, V2 = R1πX̃gst∗
PX̃gst

, and V = V1 ⊕ V2,

and abbreviate L = πX̃gst∗
PX̃gst

. By Lemma 4.1, they are vector bundles

(locally free sheaves) on X̃gst. By Proposition 4.2, Ỹgst is the total space

of the line bundle L. Let γ : Ỹgst = Tot(L) → X̃gst be the tautological

projection, which is identical to the restriction p|Ỹgst
: Ỹgst → X̃gst,

mentioned in (1) of Proposition 4.2.

We let fỸgst
, πỸgst

, CỸgst
,LỸgst

and PỸgst
be objects over Ỹgst defined

similarly as that over X̃gst, and define

(6.2) Ṽ1 = R1πỸgst∗
L
⊕5
Ỹgst

. Ṽ2 = R1πỸgst∗
PỸgst

, and Ṽ = Ṽ1 ⊕ Ṽ2.

Lemma 6.1. We have canonical isomorphisms γ∗Vi = Ṽi for i = 1, 2.

Proof. Since we have a canonical isomorphism CỸgst

∼= CX̃gst
×X̃gst

Ỹgst,

letting γ̃ : CỸgst
→ CX̃gst

be the induced projection, we have γ̃∗LX̃gst
=

LỸgst
, and the same for PỸgst

. Applying the base change formula (using

R2πX̃gst∗
(·) = 0) we obtain the canonical isomorphisms

Ṽ1 = R1πỸgst∗
L
⊕5
Ỹgst

= R1πỸgst∗
γ̃∗L⊕5

X̃gst

∼= γ∗R1πX̃gst∗
L
⊕5
X̃gst

= γ∗V1.

The same reason gives a canonical Ṽ2 ∼= γ∗V2. q.e.d.
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For the σ̃ given in (2.14), we form

(6.3) σ̃gst := σ̃|Ỹgst
: Ṽ −→ OỸgst

.

It has the following reconstruction result. We recall the construction
of σ in (1.3) given by [CL2, (3.8)]: let x ∈ X̃gst and fix a homoge-

neous coordinates [zi] of P
4; for any y ∈ γ−1(x) ⊂ Ỹgst associated with

([f,C], ψ), we let ui = f∗xi ∈ H
0(f∗O(1)) and ψ ∈ H0(f∗O(−5)⊗ ωC).

We have

Ṽ1|y = H1(f∗O(1)⊕5) and Ṽ2|y = H1(f∗O(−5)⊗ ωC),

and σ̃(y) : Ṽ1|y ⊕ Ṽ2|y → C is

(6.4) σ̃(ṽi, φ̃) = 5ψ

5∑
i=1

u4i ṽi + φ̃

5∑
i=1

u5i , (ṽi) ∈ Ṽ1|y, φ̃ ∈ Ṽ2|y.

We define

ξ1(x)((vi)⊗ φ) = 5φ
∑

u4i vi, and

ξ2(x)(φ) = φ
∑

u5i , (vi) ∈ V1|x, φ ∈ V2|x.

Since X̃gst is reduced, this pointwise definition of ξi(x) for x ∈ X̃gst

defines homomorphisms

(6.5) ξ1 : V1 ⊗ L→ OX̃gst
, and ξ2 : V2 → OX̃gst

.

Also ξ1 is surjective because ξ1(x) is the Serre pairing V1|x ⊗ L|x → C,
which is nondegenerate (cf. [CL1, Prop 3.4]).

Lemma 6.2. Let ξ1 and ξ2 be as defined; let ξ̃1 := γ∗(ξ1)(· ⊗ ε) :

Ṽ1 := γ∗V1 → OỸgst
be defined by the tautological (identity) section

ε ∈ Γ(Ỹgst, γ
∗L) paired with γ∗(ξ1), and let ξ̃2 = γ∗(ξ2) : Ṽ2 := γ∗V2 →

OỸgst
. Then

(6.6) σ̃gst = (ξ̃1, ξ̃2) : Ṽ := Ṽ1 ⊕ Ṽ2 −→ OỸgst
.

Proof. This follows from the construction of ξ1 and ξ2 and the defi-
nition of σ̃ in (6.4). q.e.d.

The cosection σ̃gst defines a cosection-localized Gysin map. Since ξ1 is

surjective, ξ̃1 is surjective away from the zero section 0Ỹgst
= X̃gst ⊂ Ỹgst;

thus the non-surjective locus D(σ̃gst) of σ̃gst is contained in the zero

section 0Ỹgst
⊂ Ỹgst. We let U = Ỹgst −D(σ̃gst), and form

(6.7) Ṽσ̃gst = Ṽ |D(σ̃gst) ∪ ker{σ̃gst |U : Ṽ |U → OU} ⊂ Ṽ .

(This is consistent with the convention (2.7).) The cosection σ̃gst defines
a localized Gysin map (cf. [KL, Coro 2.9])

(6.8) 0!σ̃gst ,loc : A∗Ṽσ̃gst −→ A∗D(σ̃gst),
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which is useful because of the following Proposition, to be proved in the
next section.

Proposition 6.3. There is a cycle [Cgst] ∈ Z∗Ṽ (σ̃gst) such that

0!σ̃,loc[Cgst] = 0!σ̃gst ,loc[Cgst] ∈ A∗D(ξ̃).

We remark that [Cgst] is a cycle in the bundle-stack h
1/h0(EỸ/D̃)|Ỹgst

over Ỹgst while [Cgst] is a cycle in the vector bundle Ṽ over Ỹgst. Working

with cycles in Ṽ will free us from those technicalities due to working
with h1/h0(·).

As indicated in the beginning of this section, we will form a com-
pactification of Ỹgst and reduce 0!σ̃gst,loc

to a classical Gysin map. We

let

(6.9) γ̄ : Ỹcpt
gst = P(L⊕ OX̃gst

) −→ X̃gst

be the obvious compactification of Ỹgst. (Here the superscript “cpt”
stands for “compactification”.) We let D∞ = P(L ⊕ 0), called the

infinite-divisor of Ỹcpt
gst ; thus Ỹgst = Ỹcpt

gst − D∞. We still view X̃gst as

a substack of Ỹcpt
gst via X̃gst = P(0 ⊕ OX̃gst

) ⊂ Ỹcpt
gst , consistent with the

0-section embedding X̃gst ⊂ Ỹgst.

We extend Ṽ1 and Ṽ2 to Ỹ
cpt
gst via

(6.10) Ṽ cpt
1 = γ̄∗V1(−D∞) and Ṽ cpt

2 = γ̄∗V2.

We let ξ̄2 = γ̄∗ξ2, which is the extension of ξ̃2. Because of the expression
(6.5), ξ̃1 extends to a homomorphism ξ̄1 : Ṽ

cpt
1 = γ̄∗V1(−D∞)→ OỸcpt

gst
.

Let

(6.11) ξ̄ = (ξ̄1, ξ̄2) : Ṽ
cpt := Ṽ cpt

1 ⊕ Ṽ cpt
2 −→ OỸcpt

gst
.

Because ξ̃1 has the form stated in Lemma 6.2, and ξ1 is surjective, ξ̄1
is surjective along D∞. Consequently, the non-surjective locus of ξ̄ and
σ̃gst are identical; namely D(ξ̄) = D(σ̃gst) ⊂ X̃gst.

Lemma 6.4. Let ι! : Z∗Ṽσ̃gst → Z∗Ṽ
cpt be the linear map that sends

any closed integral (cycle) [C] ∈ Z∗Ṽσ̃gst to the cycle of its closure in

Ṽ cpt: ι![C] = [C] ∈ Z∗Ṽ
cpt. Let τ : D(σ̃gst) → X̃gst be the inclusion.

Then we have

γ̄∗ ◦ 0
!
Ṽ cpt ◦ ι! = τ∗ ◦ 0

!
σ̃gst ,loc : Z∗Ṽσ̃gst −→ A∗X̃gst.

Proof. We let Ṽ cpt
ξ̄

be defined similar to (2.7). Let

0!ξ̄,loc : Z∗Ṽ
cpt
ξ̄

−→ A∗D(ξ̄) = A∗D(σ̃gst)
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be the localized Gysin map associated to ξ̄. Let τ ′ : Ṽ cpt
ξ̄

→ V̄ and

τ ′′ : D(ξ̄) → Ỹcpt
gst be the inclusions. By [KL, Prop 1.3], we have the

commutative square

Z∗Ṽ
cpt
ξ̄

0!
ξ̄,loc

−−−−→ A∗D(ξ̄)⏐⏐�τ ′∗

⏐⏐�τ ′′∗

Z∗Ṽ
cpt

0!
Ṽ cpt

−−−−→ A∗Ỹ
cpt
gst .

On the other hand, since ξ̄ is an extension of σ̃gst, the homomorphism ι! :

Z∗Ṽσ̃gst → Z∗Ṽ
cpt factors through ι′! : Z∗Ṽσ̃gst → Z∗Ṽ

cpt(ξ̄). Composing,
we obtain

τ ′′∗ ◦ 0
!
ξ̄,loc ◦ ι

′
! = 0!

Ṽ cpt ◦ τ
′
∗ ◦ ι

′
! = 0!

Ṽ cpt ◦ ι!.

Since ξ̄ is an extension of σ̃gst and D(ξ̄) = D(σ̃Ỹgst
), tracing through the

construction of the localized Gysin maps in [KL, Sec 2], we conclude

0!
ξ̄,loc

◦ ι′! = 0!σ̃gst ,loc
. Composed with γ̄∗ : A∗Ỹ

cpt
gst → A∗X̃gst, we obtain

γ̄∗ ◦ 0
!
Ṽ cpt ◦ ι! = γ̄∗ ◦ τ

′′
∗ ◦ 0

!
ξ̄,loc ◦ ι

′
! = τ∗ ◦ 0

!
σ̃gst ,loc : Z∗Ṽσ̃gst −→ A∗X̃gst.

This proves the Lemma. q.e.d.

Corollary 6.5. Let C ⊂ Ṽξ̃ be any closed integral substack; let C ⊂

Ṽ cpt be its closure, and let Cb = C ∩ (0 ⊕ Ṽ cpt
2 ). We let NCb

C be the

normal cone to Cb in C, which is a closed substack in Ṽ cpt. Then we
have

(6.12) 0!σ̃gst,loc[C] = 0!
Ṽ cpt [C] = 0!

Ṽ cpt [NCb
C].

To make use of this Corollary, we need to know more about the
intersection Cb. It turns out that Cb has a simple answer in case C is
homogeneous which we define now. Since Ỹgst is the total space of the

line bundle L and Ṽi = γ∗Vi, we define the dilation morphism mt and
the homomorphism Φi,0(t) to be

(6.13)

Ṽi
Φi,0(t)
−−−−→ Ṽi⏐⏐�pr

⏐⏐�pr

Ỹgst
mt−−−−→ Ỹgst,

wheremt sends x ∈ L|x′ (over x′ ∈ X̃gst) to tx ∈ L|x′ ⊂W ; Φi,0(t) keeps
the above square commutative and leaves γ∗e invariant for any e ∈ Vi.
The collection {mt}t∈C∗ defines a C∗ action on Ỹgst, making the pro-

jection γ : Ỹgst → X̃gst a C∗-equivariant morphism with C∗ acting triv-

ially on X̃gst. The fixed locus (Ỹgst)
C∗

is the 0-section X̃gst ⊂ Ỹgst. For
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k ∈ Z, we define

(6.14) Φi,k(t) = tk · Φi,0(t) : Ṽi −→ Ṽi.

Definition 6.6. A closed integral substack C ⊂ Ṽ is homogeneous of
weight (k1, k2) if it is invariant under (Φ1,k1(t),Φ2,k2(t)) for all t ∈ C∗.

We say a cycle α ∈ Z∗Ṽ is homogeneous of weight (k1, k2) if each of its
integral components is homogeneous of weight (k1, k2).

First we state the following Proposition, which we will prove in the
next section.

Proposition 6.7. The cycle [Cgst] ∈ Z∗Ṽ mentioned in Proposition
6.3 can be made to be homogeneous of weight (0, 1).

We let C ⊂ Ṽ be an integral component of Cgst, and let C ⊂ Ṽ cpt be

its closure. We intend to find the structure of C ∩ (0 ⊕ Ṽ cpt
2 ). We let

φ2 : Ṽ
cpt
2 → V2 be the projection induced by the isomorphism Ṽ cpt

2 =
γ̄∗V2 (cf. (6.10)).

Lemma 6.8. Let C ⊂ Ṽ be an integral component of Cgst and let

C ⊂ Ṽ cpt be its closure. Then there is a closed substack B ⊂ V2 such
that

C ∩ (0 ⊕ Ṽ cpt
2 )|Ỹcpt

gst −X̃gst
= φ−12 (B)|Ỹcpt

gst −X̃gst
.

Proof. To prove the Lemma, we only need to show that X̃gst can be

covered by étale charts M → X̃gst so that for each such chart we can
find a closed BM ⊂ V2|M such that

φ−12 (BM )|Ỹcpt
gst −X̃gst

=
(
(C ∩ (0⊕ Ṽ cpt

2 ))×X̃gst
M

)
|Ỹcpt

gst −X̃gst
.

Let M = SpecA → X̃gst be an affine étale chart; we abbreviate

Ui = Ṽ cpt
i ×X̃gst

M and U = Ṽ cpt ×X̃gst
M ; they are vector bundles over

W := Ỹcpt
gst ×X̃gst

M . We denoteW = Ỹgst×X̃gst
M and L|M = L×X̃gst

M ,
etc..
Possibly after shrinking M if necessary, we can find trivializations

L|M ∼= OM and Vi|M ∼= O
⊕ni
M . Using such trivializations, we have in-

duced isomorphisms
(6.15)
W =M×P1, Ui

∼= (M×P1)×Ani, and U ∼= (M×P1)×An1×An2 .

We denote 0W =M×0 ⊂W , and continue to denote D∞ =M×{∞} =
W −W .
We let t (resp. x = (xi); resp. y = (yj)) be the standard coordinate

variable(s) of A1 = P1 − {∞} (resp. of An1 ; resp. of An2). Let CM =
C ×X̃gst

M ; because it is homogeneous of weight (0, 1), the ideal of

CM |W−0W ⊂ U |W−0W is generated by elements

{f(x1, · · · , xn1 , t
−1y1, · · · , t

−1yn2) | f ∈ J ⊂ A[x, y]},
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where J is an ideal in the polynomial ring A[x, y] = A[x1, · · · , xn1 ,
y1, · · · , yn2 ].
We now pick a new trivialization of U1 overW−0W . We let ε1, · · · , εn1

be the basis of U1 that is the pullback of the standard basis of V1|M ∼=
O
⊕n1
M . As t−1 extends to a regular function near D∞ and with order one

vanishing along D∞, the collection {ei = t−1 · εi}1≤i≤n1 forms a basis of
U1|W−0W .
We let

(6.16) U |W−0W
∼=M × (P1 − 0)× An1 × An2

be the isomorphism induced by the given trivializations of L|M and
V2|M , and the new trivialization of U1 using the basis ei. We let x

′ = (x′i)
be the standard coordinate variables of An1 in (6.16) (under the basis
ei). Then xi and x

′
i are related by xi = t−1x′i. Thus in the coordinates

(x′i, yj), CM |W−0W is defined by the ideal generated by

(6.17) {f(t−1x′1, · · · , t
−1x′n1

, t−1y1, · · · , t
−1yn2) | f ∈ J ⊂ A[x, y]}.

Since C ⊂ Ṽ is a cone, J is a homogeneous ideal; thus the same ideal
is also generated by

(6.18) {f(x′1, · · · , x
′
n1
, y1, · · · , yn2) | f ∈ J ⊂ A[x, y]}.

Therefore, denoting CM = C ×X̃gst
M , CM ∩ U |W−0W ⊂ U |W−0W

is defined by the ideal generated by (6.18). Thus C ∩ U |W−0W
=

φ−1(B′)|W−0W
for a B′ ⊂M×An1×An2 and φ : U |W−0W

→M×An1×

An2 the tautological projection. Intersecting with U2|W−0W
proves the

Lemma. q.e.d.

7. The cycle Cgst

We first construct the desired cycle Cgst, which proves Propositions
6.3. As EỸ/D̃|Ỹgst

has locally free H0 and H1, we have a canonical

smooth quotient morphism

(7.1) h1/h0(EỸ/D̃)|Ỹgst
−→ H1(EỸ/D̃)|Ỹgst

= Ṽ

which fiberwise is the morphism [H1(EỸ/D̃|y)/H
0(EỸ/D̃|y)] →

H1(EỸ/D̃|y) obtained by taking coarse moduli. The desired cycle [Cgst] ∈

Z∗(Ṽ ) will be constructed as “the coarse moduli” of [Cgst] ∈ Z∗(h
1/

h0(EỸ/D̃)|Ỹgst
).

As mentioned before, we can find a complex of locally free sheaves
[F 0 → F 1] of OỸgst

-modules so that [F 0 → F 1] ∼=q.i. R
•πỸ∗(L

⊕5
Ỹ
⊕

PỸ)|Ỹgst
. We introduce

Ṽ1 = h1/h0((R•πỸ∗L
⊕5
Ỹ
)|Ỹgst

), Ṽ2 = h1/h0((R•πỸ∗PỸ)|Ỹgst
),
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Ṽ = Ṽ1 ×Ỹgst
Ṽ2.

By the base change property of the h1/h0-construction, canonically

[F 1/F 0] ∼= Ṽ = h1/h0(EỸ/D̃)|Ỹgst
. And by the construction of Cgst,

we have [Cgst] ∈ Z∗Ṽ.

We now construct [Cgst] ∈ Z∗Ṽ . Let

(7.2) β : F 1 −→ Ṽ and β′ : F 1 −→ Ṽ = R1πỸ∗(L
⊕5
Ỹ
⊕ PỸ)|Ỹgst

be the tautological projections. By their definitions, both are flat. Be-
cause R1πỸ∗(L

⊕5
Ỹ
⊕ PỸ)|Ỹgst

is locally free, for α : F 0 → F 1 the arrow

in [F 0 → F 1], α(F 0) ⊂ F 1 is a vector subbundle. Let [CF ] = β∗[Cgst]
be the flat pullback. Then [CF ] is invariant under the α(F

0)-action on
F 1 (via the subbundle structure α(F 0) ⊂ F 1). Since α(F 0) acts freely

on F 1 and such that Ṽ = F 1/α(F 0), we define

(7.3) [Cgst] := [CF ]/α(F
0) ∈ Z∗

(
F 1/α(F 0)

)
= Z∗Ṽ .

Proof of Proposition 6.3. We will show that [Cgst] ∈ Z∗Ṽξ̃ and

0!σ̃,loc[Cgst]= 0!
ξ̃,loc

[Cgst]. First, because the cosection σ̃ :h
1/h0(EỸ/D̃)→

OỸgst
is induced by the cosection ξ̃ : Ṽ = h1(EỸ/D̃) → OỸgst

, for β and

β′ in (7.2), we have σ̃ ◦ β = ξ̃ ◦ β′. Therefore,

D(σ̃ ◦ β) = D(ξ̃ ◦ β′) = D(ξ̃).

Here the second equality holds because β′ is surjective.
Since [Cgst] ∈ Z∗h

1/h0(EỸ/D̃)σ̃ and [CF ] = β∗[Cgst], we have [CF ] ∈

Z∗F
1
σ̃◦β and

0!σ̃,loc[Cgst] = 0!σ̃◦β,loc[CF ] ∈ A∗D(σ̃ ◦ β),

which is equal to 0!
ξ̃◦β′,loc

[CF ] because σ̃ ◦ β = ξ̃ ◦ β′. Finally, since

[CF ] = β′∗[Cgst] by (7.3), we have [Cgst] ∈ Z∗Ṽξ̃, and

0!
ξ̃◦β′,loc

[CF ] = 0!
ξ̃,loc

[Cgst] ∈ A∗D(ξ̃).

This proves the Proposition. q.e.d.

We next show that the cycle Cgst constructed is homogeneous of
weight (0, 1).

Proof of Proposition 6.7. As the obstruction theory of Ỹ → D̃ is the
pullback of that of Y → D, and the later is via the open D-embedding
(cf. (2.1))

(7.4) j : Y =M 1(P
4, d)p

⊂
−→S := C(π∗(L

⊕5 ⊕ P)),

we will prove a corresponding result for S.
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Let πS : CS → S, LS and PS be the pullback of (π : C → D,L,P).
The construction of S provides us a universal section

(7.5) (uS,1, · · · , uS,5, ψS) ∈ Γ(CS,L
⊕5
S ⊕ PS) = Γ(S, πS∗(L

⊕5
S ⊕PS)).

Namely, over each closed z = (Cz, uz,i, ψz) ∈ S, we have uS,i|z ≡ uz,i
and ψS|z ≡ ψz.
We define

at : L
⊕5 ⊕ P −→ L

⊕5 ⊕ P, t ∈ C∗,

so that it is idL⊕5 when restricted to the summand L⊕5, and is t · idP
when restricted to the summand P; they define a C∗-action on L⊕5⊕P,
where C∗ acts trivially on D.
Following the construction of S, the automorphism at induces a

D-automorphism ãt : S → S; it sends (Cz,Lz, uz,i, ψz) ∈ S(C) to
(Cz,Lz, uz,i, ψz)

t = (Cz,Lz, uz,i, t · ψz). The collection {ãt | t ∈ C∗}
defines a C∗-action on S; making S→ D a C∗-equivariant projection.
Because CS = C ×D S, and because S → D is C∗-equivariant, the

trivial C∗-action on C and the C∗-action ãt on S lifts to a C∗-action on
CS → S. We denote this action by ϕ0(t) : CS → CS. Then since LS

and PS are pullbacks of L and P on C, LS and PS admit the obvious
C∗-linearizations

(7.6) ϕ1(t) : LS −→ LS, ϕ2(t) : PS −→ PS

lifting the C∗-action ϕ0 on CS so that their C∗-invariant sections are
pullback sections of L and P, respectively.
We define another pair of C∗-linearizations:

(7.7) ϕ̄1(t) = ϕ1(t) : LS → LS, ϕ̄2(t) = t · ϕ2(t) : PS → PS

lifting the C∗-action ϕ0 on CS. By this construction, the universal
section (7.5) is C∗-invariant under the linearization (ϕ̄1, ϕ̄2):

(7.8) (ϕ̄1(t)(uS,i), ϕ̄2(t)(ψS)) = (uS,i ◦ ϕ0(t), ψS ◦ ϕ0(t)).

Let φS/D : L•
S/D → (ES/D)

∨ be the perfect relative obstruction the-

ory constructed in [CL1, Prop 2.5] using (uS,i, ψS). Tracing through
the construction of the obstruction theory φS/D in [CL1, Prop 2.5],
using that the universal section (uS,i, ψS) is invariant under the C∗-
linearization (ϕ̄1, ϕ̄2), we conclude that the obstruction theory φS/D is
C∗-equivariant under (ϕ̄1, ϕ̄2).
We now show that this invariance of φS/D implies the C∗-invariance

of φỸ/D̃. We consider the composite

j̃ : Ỹ −→ Y
j
−→S

of the tautological Ỹ → Y with the open embedding j in (7.4). Since

the obstruction theory of Ỹ → D̃ is the pullback of that of S→ D, we
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have canonical isomorphism

(7.9) j̃∗ES/D

∼=
−→EỸ/D̃.

Since j̃ is a D-morphism and Ỹ is constructed from Y → D via a base
change D̃ → D. the C∗-action on S lifts to a C∗-action on Ỹ making
j̃ C∗-equivariant. Using (7.9), we endow EỸ/D̃ the C∗-linearlization in-

duced by (ϕ̄1, ϕ̄2). This way, since φS/D is C
∗-equivariant (via (ϕ̄1, ϕ̄2)),

the obstruction theory φỸ/D̃ : (EỸ/D̃)
∨ → L•

Ỹ/D̃
is C∗-equivariant.

Finally, a direct check shows that the introduced C∗-action on Ỹ
restricting to Ỹgst is the C∗-action mt constructed in (6.13); also, by

[CL1, Prop 2.5], ES/D = R•πS∗(L
⊕5
S ⊕ PS), and the introduced C∗-

linearization on EỸ/D̃
∼= j̃∗ES/D restricting to Ỹgst is the linearization

(Φ1,0,Φ2,1) of Ṽ1 ⊕ Ṽ2, in the notation of (6.14).
Since φỸ/D̃ is C∗-equivariant, the intrinsic normal cone CỸ/D̃ ⊂

h1/h1(EỸ/D̃) is C∗-equivariant; therefore Cgst is C∗-equivariant under

the C∗-action (Φ1,0,Φ2,1), which is equivalent to say that Cgst is homo-
geneous of weight (0, 1). q.e.d.

To prove that only one component of Ygst has non-trivial contribution
to the GW-invariant N1(d), we need a finer result on the intersection

Cgst ∩ (0 ⊕ Ṽ2). Its statement and proof will occupy the remainder of
this section.
We introduce more notation. Let ΔX̃ = X̃pri ∩ X̃gst, and recall

ΔỸ := Ỹ ×X̃ ΔX̃ = Ỹgst ×X̃gst
ΔX̃

is a line bundle over ΔX̃ . We continue to denote by γ : Ỹgst → X̃gst the

projection, and denote 0Ṽ2
= Ỹgst the zero section of Ṽ2.

Proposition 7.1. There is a sub-line bundle F ⊂ V2|Δ
X̃

so that for

F̃ = γ∗F ⊂ Ṽ2|Δ
Ỹ
,

Cgst ∩ (0⊕ Ṽ2) ⊂ 0Ṽ2
∪ F̃ = Ỹgst ∪ F̃ .

Here by abuse of notation we use γ∗F to denote the pullback of F
via γ|Δ

Ỹ
: ΔỸ → ΔX̃ . Thus γ

∗F is a line bundle over ΔỸ .

The proposition will be proved via a sequence of Lemmas. First, fol-
lowing the argument in [CL1, Sec 5.2], the relative obstruction theories

of the triple (Ỹ, X̃ , D̃) fit into a compatible diagram of distinguished
triangles:

(7.10)

p∗(EX̃ /D̃)
∨ −−−−→ (EỸ/D̃)

∨ −−−−→ (EỸ/X̃ )
∨ +1
−−−−→⏐⏐�p∗φ

X̃/D̃

⏐⏐�φ
Ỹ/D̃

⏐⏐�φ
Ỹ/X̃

p∗L•
X̃/D̃

−−−−→ L•
Ỹ/D̃

−−−−→ L•
Ỹ/X̃

+1
−−−−→ .
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Here EỸ/D̃ is given by (2.13); EX̃/D̃ = R•πX̃ ∗L
⊕5
X̃

and EỸ/X̃ = R•πỸ∗PỸ .

(As usual, LỸ = f∗
Ỹ
O(1), PỸ = L

⊗(−5)

Ỹ
⊗ ωC

Ỹ
/Ỹ , and p : Ỹ → X̃ is the

projection.) Taking the cohomologies of the duals of the top row re-

stricting to Ỹgst, we obtain the exact sequences of sheaves on Ỹgst:

(7.11)

H1(EỸ/X̃ |Ỹgst
) −−−−→ H1(EỸ/D̃|Ỹgst

) −−−−→ H1(p∗EX̃/D̃|Ỹgst
)∥∥∥ ∥∥∥ ∥∥∥

Ṽ2
β̃1

−−−−→ Ṽ = Ṽ1 ⊕ Ṽ2
β̃2

−−−−→ Ṽ1.

Here the vertical identities are given by the explicit form of the com-
plexes EỸ/D̃, etc.; β̃1 (resp. β̃2) is the tautological inclusion (resp. pro-

jection), and that the diagram commutes follows from the proof of [CL1,
Prop 2.5 and 3.1].
Let N = h1/h0((L•

Ỹ/X̃
)∨); because φỸ/X̃ is a relative perfect ob-

struction theory of Ỹ/X̃ , N is a closed subcone-stack of h1/h0(EỸ/X̃ ).

Similar to the perfect resolution of deformation complexes given in
[LT, Beh], we can find a complex of locally free sheaves of OỸ -modules

[α : F 0 → F 1] so that [F 0 → F 1] ∼=q.i. EỸ/X̃ . Thus using the flat

β : F 1 → h1/h0(EỸ/X̃ ), we obtain the pullback β
∗(N) ⊂ F 1. Restrict-

ing to Ỹgst, and using that h
1([F 0 → F 1]|Ỹgst

) is locally free, we obtain

a closed subcone

(7.12) N :=
(
β∗(N)×Ỹ Ỹgst

)
/α(F 0|Ỹgst

) ⊂ Ṽ2.

Here we used that β∗(N) is invariant under the (free) group action α(F 0)
on F 1.
We quote a useful result. For any closed y ∈ Ỹgst, letting T

i
Ỹ/X̃ ,y

=

H i((L•
Ỹ/X̃

)∨)|y), then the paragraph before [BF, Lemma 4.6] gives

(7.13)
Ny := N|y = h1/h0((L•

Ỹ/X̃
)∨)|y = [T 1

Ỹ/X̃ ,y
/T 0
Ỹ/X̃ ,y

] = h1/h0((L•
Ỹ/X̃

)∨|y),

where T 0
Ỹ/X̃ ,y

acts on T 1
Ỹ/X̃ ,y

trivially. Consequently, N|y = T 1
Ỹ/X̃ ,y

⊂

Ṽ2|y, where the inclusion is induced by H
1(φ∨

Ỹ/X̃
).

Lemma 7.2. Viewing N as a substack of Ṽ = Ṽ1 ⊕ Ṽ2 via β̃1 in
(7.11), then

(7.14) Supp(Cgst) ∩ (0⊕ Ṽ2) ⊂ N .

Proof. It suffices to show that for any closed y ∈ Ỹgst, we have(
Supp(Cgst) ∩ (0⊕ Ṽ2)

)
|y ⊂ Ny.
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Dualizing (7.10), restricting it to y and taking its cohomology groups,
we obtain the following commutative diagram
(7.15)

H1((L•
Ỹ/X̃

)∨|y) −−−−→ H1((L•
Ỹ/D̃

)∨|y) −−−−→ H1(p∗(L•
X̃/D̃

)∨|y)⏐⏐�
⏐⏐��y

⏐⏐�
Ṽ2|y

β̃1|y
−−−−→ (Ṽ1 ⊕ Ṽ2)|y

β̃2|y
−−−−→ Ṽ1|y ,

where the vertical arrows are H1 of φ∨
Ỹ/X̃

|y, φ
∨
Ỹ/D̃

|y and p∗φ∨
X̃/D̃

|y, re-

spectively, and the bottom line follows from (7.11). Since φỸ/D̃, etc., are

perfect obstruction theories, the vertical arrows in (7.15) are injective.
We now prove (7.14). First, the inclusion Cgst ⊂ h1/h0((L•

Ỹ/D̃
)∨)

induces an inclusion of their respective fibers over y

Cgst|y ⊂ h1/h0((L•
Ỹ/D̃

)∨)|y = h1/h0((L•
Ỹ/D̃

)∨|y),

where the equality follows from (7.13). Tracing through the construction
of Cgst (from Cgst), we have Cgst|y ⊂ H1((L•

Ỹ/D̃
)∨|y). Hence

(
Supp(Cgst)∩(0⊕Ṽ2))|y = Supp(Cgst)|y∩(0⊕Ṽ2|y) ⊂ Im (�y)∩ker(β̃2|y).

Because in (7.15) all vertical arrows are injective and the squares are

commutative, Im (�y) ∩ ker(β̃2|y) ⊂ 0 ⊕ Ny ⊂ 0 ⊕ Ṽ2|y. This proves
(7.14). q.e.d.

Proof of Proposition 7.1. We only need to show that there is a sub-line
bundle F ⊂ V2|Δ

X̃
so that N ⊂ Ṽ2 is the union of the zero section

0Ṽ2
⊂ Ṽ2 with the total space Tot(γ

∗F ) ⊂ γ∗(V2|Δ
X̃
) = Ṽ2|Δ

Ỹ
.

Let ι : T̃ → Ỹ be a smooth chart of Ỹ over a smooth chart S̃ → X̃
with T̃ = Ỹ ×X̃ S̃ and the embedding data Ỹ → Z ′, etc., given in
Proposition 3.1. Then by base change,

(7.16) ι∗h1/h0((L•
Ỹ/X̃

)∨)|T̃gst
∼= h1/h0((L•

T̃ /S̃
)∨)|T̃gst .

Following the notation of Proposition 3.1, Z ′
S̃
:= S̃ ×Z Z

′ = S̃ ×A1, and

T̃ → Z ′ factor through a closed S̃-embedding T̃ → Z ′
S̃
, defined by the

vanishing of tz. Let I = (tz) be the ideal of T̃ in Z ′
S̃
. By definition,

(7.17) L•≥−1
T̃ /S̃

∼= [I/I2
δ
−→ΩZ′

S̃
/S̃ |T̃ ],

where δ(·) = dS̃(·) is the relative differential that annihilates elements
in OS̃ . We denote S

•(·) the symmetric product, and denote

N := Spec S•O
T̃gst

((I/I2)⊗O
T̃
OT̃gst

).
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Following [BF, p 67], since h1/h0((L•
T̃ /S̃

)∨) = h1/h0((L•≥−1
T̃ /S̃

)∨), we

have

h1/h0((L•
T̃ /S̃

)∨)|T̃gst = [(Spec S•O
T̃
(I/I2))/(TZ′

S̃
/S̃ |T̃ )]|T̃gst(7.18)

= [N/(TZ′

S̃
/S̃ |T̃gst)].

Here the TZ′

S̃
/S̃ |T̃gst-action on N is induced by the arrow δ in (7.17).

We claim that the TZ′

S̃
/S̃ |T̃gst-action on N is trivial. Indeed, since

I = (zt) ⊂ OZ′

S̃

= OS̃ [t], using T̃gst = (z = 0) ∩ Z ′
S̃
and z ∈ Γ(OS̃), we

obtain δ|T̃gst(zt) = dS̃(zt)|T̃gst = z · dt|T̃gst = 0. This proves the claim.

We show that

(7.19) N ∼= N ×Ỹgst
T̃gst.

First, because T̃ is affine and (in the notation of (7.12)) H1([F 0 →
F 1]|Ỹgst

) is locally free, we have

[F 0 α
−→F 1]|T̃gst = [F 0|T̃gst

α|
T̃gst
−→ F 1|T̃gst ]

∼= [ker(α|T̃gst)
0
−→F 1|T̃gst/(α(F

0|T̃gst))].

Thus the inclusion N|T̃gst ⊂ h1/h0(EỸ/X̃ |T̃gst) is given by

[N|T̃gst/H
0(EỸ/X̃ |T̃gst)] ⊂ [H1(EỸ/X̃ |T̃gst)/H

0(EỸ/X̃ |T̃gst)],

where the quotients are via trivial actions. Combined with (7.16) and
(7.18), we conclude

[N/(TZ′

S̃
/S̃ |T̃gst)]

∼= [N|Ỹgst
/H0(EỸ/X̃ |T̃gst)].

As both sides are quotients by trivial action of bundles over T̃gst, we
conclude (7.19).

We now determine N . Define f : OZ′ → I/I2 ⊗O
T̃
OT̃gst

to be the

homomorphism via f(1) = zt ⊗ 1; because I = (zt), f is surjective;
because z = 0 ∈ OT̃gst

, f(z) = z2t⊗1 = zt⊗z = 0, and because wiz = 0

in OS̃ , f(wi) = wizt ⊗ 1 = 0. Further, using that S̃pri = (w1 = w2 =

w3 = w4 = 0) ⊂ Z is smooth and (z = 0) ∩ S̃pri is a divisor in S̃pri ((2)
of Proposition 3.1), A direct check shows that ker f = (z, w1, · · · , w4).

Hence I/I2 ⊗O
T̃
OT̃gst

∼= OT̃Δ
, where T̃Δ = T̃ ×Ỹ ΔỸ . Therefore,

N = Spec S•O
T̃gst

(
I/I2 ⊗O

T̃
OT̃gst

)
∼= Spec S•O

T̃gst
(OT̃Δ)

(as T̃gst scheme) is the union of T̃gst with a line bundle F̃T̃ over T̃Δ so

that T̃gst ∩ F̃T̃ is the zero section 0F̃
T̃

⊂ F̃T̃ .
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Since T̃ → Ỹ is an arbitrary smooth chart, the above argument proves
that there is a line bundle F̃ on ΔỸ so that as stacks over Ỹgst, N is

the union of Ỹgst and (the total space of) F̃ so that Ỹgst ∩ F̃ = 0F̃ ⊂ F̃ .

Finally, we show that we can make F̃ a subline bundle of Ṽ2|Δ
Ỹ

so that N ⊂ Ṽ2 is 0Ṽ2
∪ Tot(F̃ ), and further that there is a subline

bundle F ⊂ V2|Δ
X̃
so that F̃ = γ∗F ⊂ Ṽ2|Δ

Ỹ
. First, since N ⊂ Ṽ2 is a

subcone, F̃ = N×Ỹgst
ΔỸ ⊂ Ṽ2|Δ

Ỹ
is also a subcone. Therefore, because

N ×Ỹgst
ΔỸ is the total space of a line bundle over ΔỸ , N ×Ỹgst

ΔỸ ⊂

Ṽ2|Δ
Ỹ
is the total space of a subline bundle of Ṽ2|Δ

Ỹ
. Without loss of

generality, we can assume that F̃ is a subline bundle of Ṽ2|Δ
Ỹ
so that

N = 0Ṽ0
∪ Tot(F̃ ) ⊂ Ṽ2.

We now prove the further part. To this end, we use the C∗-action
on Ỹgst introduced in the proof of Lemma 6.7. By Lemma 6.7, Ỹgst −

X̃gst → X̃gst is a C
∗-quotient morphism. By its construction, the relative

obstruction theory of Ỹ → X̃ is C∗-equivariant. Thus F̃ |Ỹgst−X̃gst
⊂

Ṽ2|Ỹgst−X̃gst
is C∗-equivariant, where the C∗-action on Ṽ2|Ỹgst−X̃gst

is via

the linearization Φ2,1.

As Φ2,1 differs from Φ2,0 by a scalar multiplication, and because F̃ ⊂

Ṽ2|Δ
Ỹ
is a subline bundle, F̃ |Δ

Ỹ
⊂ Ṽ2|Δ

Ỹ
is also invariant under the

linearization Φ2,0. Since Φ2,0 is induced from the pullback Ṽ2 = γ∗V2,

by descent theory, F̃ |Δ
Ỹ
−Δ

X̃
⊂ Ṽ2|Δ

Ỹ
−Δ

X̃
descends to a subline bundle

F ⊂ V2|Δ
X̃
. (As usual, we view ΔX̃ ⊂ ΔỸ via the zero section of

W = Tot(L).) Thus F̃ |Δ
Ỹ
−Δ

X̃
= γ∗F |Δ

Ỹ
−Δ

X̃
⊂ Ṽ2|Δ

Ỹ
−Δ

X̃
. Since

ΔỸ −ΔX̃ is dense in ΔỸ , we conclude F̃ = γ∗F ⊂ Ṽ2|Δ
Ỹ
. This proves

the Proposition. q.e.d.

8. Contributions from the ghost components I

We now apply Corollary 6.5 to individual components Ỹμ ⊂ Ỹgst

and X̃μ ⊂ X̃gst. Accordingly, we will use the subscript μ to denote the

corresponding objects restricting to X̃μ, Ỹμ, or Ỹ
cpt
μ = Ỹcpt

gst ×X̃ X̃μ. For

instance, Vi,μ = Vi|X̃μ
, Ṽ cpt

i,μ = Ṽ cpt
i |Ỹcpt

μ
, ΔX̃μ

= ΔX̃ ∩ X̃μ and ΔỸμ
=

ΔỸgst
×Ỹgst

Ỹμ, etc. Thus Ỹcpt
μ is a P1 bundles over X̃μ. Restricting

γ̄ : Ỹcpt
gst → X̃gst defined in (6.9) to Ỹ

cpt
μ , we obtain the projection

(8.1) γ̄μ = γ̄|Ỹcpt
μ

: Ỹcpt
μ −→ X̃μ.

Following (4.4), the cycle [Cgst] ∈ Z∗Ṽ has a decomposition [Cgst] =∑
μ�d ιμ∗[Cμ], where ιμ : Ṽμ → Ṽ is the inclusion and [Cμ] =∑
k nμ,k[Cμ,k] ∈ Z∗Ṽμ such that Cμ,k are integral (cf. before (4.3)).
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Let Cμ,k be the closure of Cμ,k in Ṽ
cpt
μ , and let Cμ =

∑
k nμ,k[Cμ,k]. We

let Cμ,k,b = Cμ,k ∩ (0 ⊕ Ṽ cpt
2,μ ), and let NCμ,k,b

Cμ,k be the normal cone

to Cμ,k,b in Cμ,k. We form

Rμ =
∑
k

nμ,k[NCμ,k,b
Cμ,k].

By Corollary 6.5, we have

(8.2) deg 0!σ̃gst,loc[Cgst] = deg 0!
Ṽ cpt [Cgst] =

∑
μ�d

deg 0!
Ṽ cpt
μ
(Rμ).

We now investigate the individual terms 0!
Ṽ cpt
μ
(Rμ). Following the

notations in Proposition 7.1, we let Fμ = F |Δ
X̃μ
⊂ V2,μ|Δ

X̃μ
= V2|Δ

X̃μ
;

let

δμ = γ̄|Δ
Ỹ
cpt
μ

: ΔỸcpt
μ

:= Ỹcpt
μ ×X̃μ

ΔX̃μ
→ ΔX̃μ

be the tautological projection (a P1-bundle), then δ∗μFμ ⊂ Ṽ cpt
2,μ |Δ

Ỹ
cpt
μ

is

induced by Fμ ⊂ V2,μ|Δ
X̃μ
. We use F̄μ to denote the total space of δ

∗
μFμ;

thus F̄μ is a subline bundle of V2,μ|Δ
X̃μ
, and let

(8.3) Zμ = 0Ṽ cpt
2,μ
∪ F̄μ,

be a closed substack of Ṽ cpt
2,μ . By viewing Ṽ

cpt
1,μ ×Ỹcpt

μ
Ṽ cpt
2,μ as a bundle

over Ṽ cpt
2,μ and applying Proposition 7.1, Cμ,k,b all lie over Zμ. Thus

Rμ ∈ Z∗
(
Ṽ cpt
1,μ ×Ỹcpt

μ
Zμ

)
.

We claim that dim Ỹcpt
μ = 5d + 4, dimCμ,k = 5d + 6, rank Ṽ cpt

1,μ = 5

and rank Ṽ cpt
2,μ = 5d + 1. Indeed, by Proposition 3.1, we know that all

X̃μ have equal pure dimensions. Thus

dim X̃μ = dim X̃μ = dim X̃(d) = dimM0,1(P
4, d) + dimM 1,1 = 5d+ 3.

As Ỹμ is a line bundle over X̃μ, we obtain dim Ỹ
cpt
μ = dim Ỹμ = 5d+ 4.

For dimCμ,k, we only need to verify dimCμ,k = dim Ỹμ + 2, but this
follows from (2) of Lemma 4.3. The remainder two identities follow from
Riamenn-Roch theorem.
We denote by |Cμ,b| the support of Cμ,b, which is the union ∪kCμ,k,b.

Since Rμ is the union of normal cones, by their constructions, the sup-

port of Rμ is contained inside Ṽ
cpt
1,μ ×Ỹcpt

μ
|Cμ,b|. Therefore, we have

(8.4) 0!
Ṽ cpt
1,μ
(Rμ) ∈ A5d+1|Cμ,b|.

We write 0!
Ṽ cpt
1,μ

(Rμ) = Pμ,1+Pμ,2, where Pμ,1 ∈ A∗(0Ṽ cpt
μ
) and Pμ,2 ∈

A∗(F̄μ).
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Lemma 8.1.We have the following vanishings. (1). deg 0!
Ṽ cpt
2,μ

(Pμ,2) =

0 for any μ; (2). deg 0!
Ṽ cpt
2,μ

(Pμ,1) = 0 when μ �= (d).

Proof. We prove the first case. Let ημ : F̄μ → Fμ be the projection; it
is proper since ΔỸcpt

μ
→ ΔX̃μ

is proper. Then by the projection formula,

deg 0!
Ṽ cpt
2,μ
(Pμ,2) = deg 0!V2,μ

(ημ∗(Pμ,2)).

Since ημ∗(Pμ,2) ∈ A5d+1Fμ and dimFμ = dimΔX̃μ
+ 1 = (dim X̃pri −

1) + 1 = 5d, we have ημ∗(Pμ,2) = 0. This proves the first vanishing.
We now prove the second vanishing. To do this, we will construct a

proper DM stack B̃μ, a vector bundle K̃μ on B̃μ, a proper morphism ρμ :

X̃μ = X̃μ → B̃μ and an isomorphism ρ∗μK̃
∨
μ
∼= V2,μ such that dim B̃(d) =

5d + 1, and dim B̃μ ≤ 5d for μ �= (d). Once (B̃μ, K̃μ) is constructed,

we let λμ : Ṽ cpt
2,μ = γ̄∗μV2,μ → K̃∨μ be the projection induced by the

isomorphism in (8.7). Then, for μ �= (d), because Pμ,1 ∈ Z∗(0Ṽ cpt
2,μ
),

λμ(0Ṽ cpt
2,μ
) ⊂ B̃μ, and A5d+1B̃μ = 0 for dimension reason, applying the

projection formula, we obtain

deg 0!
Ṽ cpt
2,μ
(Pμ,1) = deg 0!K∨

μ
(λμ∗(Pμ,1)) = 0.

Constructing B̃μ and K̃μ with the required properties will occupy the
remainder of this section. q.e.d.

We first state a decomposition result, which follows from the construc-
tion in [HL]. Let μ = (d1, · · · , d�) be the partition of d as before and

let (fX̃μ
, πX̃μ

, CX̃μ
) be the tautological family of X̃μ. By the construction

of X̃gst, the map associated to a closed point in X̃μ is by attaching to

an �-pointed stable elliptic curve � one-pointed [ui, Ci, pi] ∈M0,1(P
4, di)

such that ui(pi) = uj(pj) for all i, j. We state this in the family version.

Proposition 8.2. The tautological family CX̃μ
→ X̃μ admits an �-

section Σμ ⊂ CX̃μ
(i.e. Σμ is a codimension one closed substack, and a

proper �-étale cover of X̃μ) that lies in the locus of nodal points of the

fibers of CX̃μ
/X̃μ, and splits CX̃μ

into two families of curves: CX̃μ,pr
and

CX̃μ,tl
(⊂ CX̃μ

), such that

1) the pair (CX̃μ,pr
,Σμ) is a family of (unordered) �-pointed stable

genus one curves; the morphism fX̃μ
is constant along fibers of

CX̃μ,pr
→ X̃μ;

2) the pair (CX̃μ,tl
,Σμ) is a family of (unordered) �-pointed nodal ra-

tional curves over X̃μ such that each closed fiber of CX̃μ,tl
→ X̃μ
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has � connected components and each such connected component
contains one marked point.

Here the subscript “pr” stands for the “principal part” and the sub-
script “tl” stands for the “tail”. We comment that the total space CX̃μ,tl

may have less than � connected components.

Proof. The proof follows from the modular construction of X̃μ in
[HL]. q.e.d.

We now assume � ≥ 2. Using this decomposition, we can relate X̃μ to

a stack that parameterizes the tails of [u,C] ∈ X̃μ. We take the moduli

of genus zero stable morphisms M0,1(P
4, di), considered as a stack over

P4 via the evaluation morphism evi :M0,1(P
4, di)→ P4 (of the marked

points); we form

Bμ =M0,1(P
4, d1)×P4 · · · ×P4 M0,1(P

4, d�).

We let Sμ be the subgroup of permutations α ∈ S� that leave the �-tuple
(d1, · · · , d�) invariant (i.e. di = dα(i) for all 1 ≤ i ≤ �). Each α ∈ Sμ
acts as an automorphism of Bμ by permuting the i-th and the α(i)-th
factors of Bμ. This gives an Sμ-action on Bμ. We define the stacky
quotient

B̃μ = [Bμ/Sμ].

Since M 0,1(P
4, di) are proper DM-stacks and have dimensions 5di + 2,

B̃ is a proper DM-stack and

(8.5) dim B̃μ = (5d+ 2l)− (4l − 4) = 5d− 2l + 4.

We denote the universal family of M 0,1(P
4, di) by (fi, πi) : Ci →

P4 × M0,1(P
4, di) with si : M 0,1(P

4, di) → Ci the section of marked
points. We introduce

(8.6) Ki = πi∗f
∗
i O(5).

Because R1πi∗f
∗
i O(5) = 0, by Riemann-Roch Ki is a rank 5di+1 locally

free sheaf on M0,1(P
4, di).

By its construction, Ki comes with an evaluation homomorphism
ei : Ki → ev∗iO(5). We let vi : Bμ →M0,1(P

4, di) be the i-th projection.
Since Bμ is constructed as the fiber-product using the evaluations evi,

the collection {evi}
�
i=1 descends to a single evaluation morphism ev :

Bμ → P4. We form a sheaf Kμ on Bμ fitting into the exact sequence

0 −→ Kμ −→ ⊕�
i=1v

∗
iKi

β
−→ ev∗

(
O(5)⊕�/O(5)

)
−→ 0,

where O(5) ⊂ O(5)⊕� is the image subsheaf of the diagonal homomor-
phism O(5)→ O(5)⊕�; β is the composite of

(v∗1e1, v
∗
2e2, · · · , v

∗
� e�) : ⊕

�
i=1v

∗
iKi −→ ⊕�

j=1v
∗
i ev

∗
iO(5) = ev∗O(5)⊕�

with the quotient ev∗O(5)⊕� → ev∗
(
O(5)⊕�/O(5)

)
.
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Since each ei : Ki → ev∗iO(5) is surjective, β is surjective and thus Kμ

is locally free. Further, because β is equivariant under Sμ, its kernel Kμ

is also Sμ equivariant. Therefore, Ki, descends to a locally free sheaf

K̃μ on B̃μ. As rankKi = 5di + 1, rank K̃μ = 5d+ 1.
We define the desired morphism

(8.7) ρμ : X̃μ −→ B̃μ

Given any closed x ∈ X̃μ, we let [fx, Cx] with Σx ⊂ Cx be the restriction
of fX̃μ

and Σμ to Cx = CX̃μ
×X̃μ

x. By Proposition 8.2, Σx divides Cx
into one genus one curve and � one-pointed genus zero curves, and the
restriction of fx to these � genus zero curves form � one-pointed genus
zero stable maps to P4, of degrees d1, · · · , d�, respectively. We label
these �-stable maps as [ui, Ci, pi] so that [ui] ∈ M0,1(P

4, di). We define

ρμ(x) to be the equivalence class in B̃μ of ([u1], · · · , [u�]) ∈ Bμ. It is
routine to check that this pointwise definition defines a morphism ρμ as
stated.
We verify that ρ∗μK̃

∨
μ
∼= V2,μ. First, by Serre duality,

V2,μ = R1πX̃μ∗
PX̃μ

∼= (πX̃μ∗
f∗
X̃μ

O(5))∨.

Let fX̃μ,tl
and πX̃μ,tl

be the restrictions of fX̃μ
and πX̃μ

to CX̃μ,tl
. We

obtain the restriction homomorphism

(8.8) πX̃μ∗
f∗
X̃μ

O(5) −→ (πX̃μ,tl
)∗f

∗
X̃μ,tl

O(5).

Since fibers of CX̃μ,pr
→ X̃μ are connected, and fX̃μ

restricting to them

are constants, (8.8) is injective and its cokernel is the difference of the
evaluations along Σμ ⊂ CX̃μ,tl

. On the other hand, denoting (⊕�
i=1v

∗
iKi)/

Sμ the quotient of ⊕
�
i=1v

∗
iKi over Bμ by Sμ, (which is its descent to B̃μ,)

then via ρμ, we have a canonical isomorphism

ρ∗μ((⊕
�
i=1v

∗
iKi)/Sμ) ∼= (πX̃μ,tl

)∗f
∗
X̃μ,tl

O(5).

A direct inspection shows that under this isomorphism, ρ∗μK̃μ
∼=

πX̃μ∗
f∗
X̃μ

O(5). This proves ρ∗μK̃
∨
μ
∼= V2,μ.

In case μ = (d), we let B̃(d) =M0(P
4, d), and all others are the same.

Completing the proof of Lemma 8.1. The pair (B̃μ,Kμ) satisfies the re-
quirements stated in the proof of Lemma 8.1, except the dimensions
part. By (8.5), for � ≥ 2, we have dim B̃μ ≤ 5d; for μ = (d), we

have dim B̃(d) = dimM 0(P
4, d) = 5d + 1, which are as required. This

completes the proof of Lemma 8.1. q.e.d.
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9. Contribution from the ghost components II

In this section, we evaluate the remainder term deg 0!
Ṽ cpt
2,(d)

(P(d),1).

First by (8.4), P(d),1 ∈ A5d+1(0Ṽ cpt
(d)
); using the morphism and the pro-

jection (of P1 bundle)

ρ(d) : X̃(d) −→ B̃(d) =M0(P
4, d) and γ̄(d) = γ̄|Ỹcpt

(d)
: Ỹcpt

(d)
−→ X̃(d)

constructed in (8.7) and (8.1) for μ = (d), we obtain

(9.1) (ρ(d) ◦ γ̄(d))∗(P(d),1) = c[B̃(d)]

for a c ∈ Q. Here we used that both ρ(d) and γ̄(d) are proper and

B̃(d) =M0(P
4, d) is irreducible of dimension 5d+ 1.

By (8.7) and (6.10), we have (ρ(d) ◦ γ̄(d))
∗K̃(d) = γ̄∗(d)V2,(d) = V cpt

2,(d).

Applying the projection formula, we obtain

deg 0!
Ṽ cpt
2,(d)

(P(d),1) = deg 0!
K̃(d)

[(ρ(d) ◦ γ̄(d))∗(P(d),1)](9.2)

= c · deg c5d+1(K̃(d))[B̃(d)],

where the second equality follows from (9.1). Using B̃(d) = M0(P
4, d),

(8.6) and the genus zero hyperplane property in [Ko], we obtain

deg 0!
Ṽ cpt
2,(d)

(P(d),1) = c · (−1)5d+1N0(d)Q.

Therefore, all we need is to determine c.

Our approach is to work with an open substack of Ỹ(d) over which

the cone C(d) ⊂ Ṽ |Ỹ(d)
, etc., can be described explicitly. We let M◦ ⊂

M1(P
4, d) be the open substack consisting of stable maps [f,C] such

that the domains C = E ∪ P1 are unions of smooth elliptic curves E
with P1, and the restrictions f |E = const. and f |P1 : P1 → P4 are regular
embeddings. By [HL, Sec 2.8], M◦ does not meet the blowing-up loci

of X̃ → X =M 1(P
4, d). Thus, both projections

X̃ ×X M◦ −→M◦ and W◦ := Ỹ ×X M◦ −→ Y ×X M◦ ⊂ Ỹ(d)

are isomorphisms. Further, because M◦ ⊂ X is open and dense, W◦ ⊂
Ỹ(d) is open and dense.

Since the relative obstruction theories of Ỹ and X̃ are pull backs from
that of Y and X , to work with W◦ and M◦, we might as well view them
as substacks of Y and X , which we will do from now on. Therefore, as
W◦ ⊂ Y is open, restricting the obstruction theory φY/D to W◦ gives a
perfect relative obstruction theory φY/D|W◦

: (EY/D)
∨|W◦

→ L•W◦/D
.

Lemma 9.1. Restricting to W◦, we have

C(d)|W◦
= H1((L•W◦/D

)∨) −→ H1(EY/D|W◦
) = Ṽ |W◦

.
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Further, H1((L•W◦/D
)∨) is a rank two locally free sheaf of OW◦

-modules,

and the arrow above is injective with locally free cokernel.

Proof. Let q◦ : W◦ → D be the projection induced by Y → D; let
D◦ = q◦(W◦) be its image stack. By the description of W◦ and Sub-
lemma 4.4, D◦⊂D is a smooth codimension two locally closed substack.
By [Il, Chap. III Prop. 3.2.4], H1(L∨D◦/D

) is isomorphic to the normal

sheaf to D◦ in D, which is a rank two locally free sheaf on D◦ since D
is smooth.
On the other hand, since W◦ → D◦ is smooth, [Il, Chap. III Prop.

3.1.2] implies that H i((L•W◦/D◦
)∨) = 0 for i ≥ 1. Taking H1 of the

distinguished triangle

(L•W◦/D◦
)∨ −→ (L•W◦/D

)∨ −→ q∗◦(L
•
D◦/D

)∨
+1
−→ ,

we obtain canonical an isomorphism of two rank two locally free sheaves
on W◦:

q∗◦H
1((L•D◦/D

)∨) ∼= H1((L•W◦/D
)∨).

Next, for any closed point y ∈ Y, since φY/D is a perfect obstruction
theory,

H1(φ∨Y/D|y) : H
1((L•W◦/D

)∨|y) −→ H1(EY/D|y)

is injective. Combined with that W◦ is smooth, it shows that the arrow
in the statement of Lemma 9.1 is injective with locally free cokernel.
Finally, we show that C(d)|W◦

= H1((L•W◦/D
)∨) ⊂ Ṽ |W◦

. Because

W◦ → D◦ is smooth and D◦ ⊂ D is smooth and of codimension two, we
conclude that L•W◦/D

is perfect of amplitude [0, 1], and H i((L•W◦/D
)∨)

are locally free. We pick an affine smooth chart U → W◦; using the
argument similar to those after (7.19), we conclude that

(L•W◦/D
)∨|U

∼=
−−−−→ [H0((L•W◦/D

)∨|U )
0
−→H1(L•W◦/D

)∨|U ]⏐⏐�φ∨
Y/D

|U

⏐⏐�H•(φ∨
Y/D

|U )

EY/D|U
∼=

−−−−→ [H0(EY/D|U )
0
−→H1(EY/D|U )]

is commutative and such that

(CY/D|W◦
)|U = h1/h0((L•W◦/D

)∨|U )

= [H1((L•W◦/D
)∨|U )/H

0((L•W◦/D
)∨|U )]

is a substack of [H1(EY/D|U )/H
0(EY/D|U )]. By an argument analo-

gous to the constructions (7.12) and (7.19), we conclude that C(d)|W◦
=

H1((L•W◦/D
)∨). This proves the Lemma. q.e.d.

Let γ◦ : W◦ → M◦ be the projection induced by Y → X . We denote
by M the Artin stack of genus one nodal curves; (which is consistent
with that Mw is the stack of weighted genus one nodal curves). Since
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Mw → M is étale, the obstruction theory of X → M is the same as
that of X →Mw.
We determine the subsheaf H1((L•W◦/D

)∨) ⊂ Ṽ |W◦
by studying the

following diagrams:
(9.3)

H1((L•W◦/D
)∨)

α1−−−−→ γ∗◦H
1((L•M◦/D

)∨)
α2−−−−→ γ∗◦H

1((L•M◦/M
)∨)⏐⏐�H1(φ∨

Y/D
)

⏐⏐�H1(φ∨
X/D

)

⏐⏐�H1(φ∨
X/M

)

H1(EY/D|W◦
)

β̃2|W◦−−−−→ γ∗◦H
1(EX/D|M◦

)
γ∗
◦β◦

−−−−→ γ∗◦H
1(EX/M|M◦

).

Here, β̃2 is defined in (7.11) and β◦ is the tautological projection induced
by the comparison of the obstruction theories of X → D and X →M:

(9.4) β◦ : H
1(EX/D|M◦

) −→ H1(EX/M|M◦
).

We comment that the left square is commutative because it is induced
by the obstruction theories (relative to D) of Y ⊂ C(π∗(L

⊕5 ⊕ P)) and
of X ⊂ C(π∗(L

⊕5)), which are compatible under C(π∗(L
⊕5 ⊕ P)) →

C(π∗(L
⊕5)) induced by the projection pr : L⊕5 ⊕ P → L⊕5. The com-

mutativity of the right square follows from [CL1, Lemm 2.8].

We let (fM◦
, πM◦

) : CM◦
→ P4 ×M◦ be the universal family of M◦ ⊂

X .

Lemma 9.2. All sheaves in the diagram (9.3) are locally free sheaves
of OW◦

-modules; all vertical arrows are injective with locally free cok-
ernels; the arrow α1 is an isomorphism; the arrow α2 is surjective
and has rank one kernel; the arrow β̃2|W◦

is the obvious projection

Ṽ |W◦
= (Ṽ1 ⊕ Ṽ2)|W◦

→ Ṽ1|W◦
; the arrow β◦ is the projection

β◦ : H
1(EX/D|M◦

) = R1πM◦∗f
∗
M◦

O(1)⊕5

−→ H1(EX/M|M◦
) = R1πM◦∗f

∗
M◦
TP4

induced by the tautological projection O(1)⊕5 → TP4 in the Euler se-
quence of P4. Finally, the cokernels of the middle and the third vertical
arrows are isomorphic.

Proof. We let M◦ ⊂ M be the image stack of M◦ → M. By the
description of M◦, M◦ is a locally closed smooth divisor in M. Thus
the normal sheaf NM◦/M is invertible and the canonical

(9.5) ND◦/D −→ NM◦/M ⊗OM◦
OD◦

is surjective.
Following the proof of Lemma 9.1, H1((L•M◦/D

)∨) andH1((L•M◦/M
)∨)

are canonically isomorphic to the pullbacks of the normal sheaves ND◦/D

and NM◦/M, respectively, and the arrow α1 and α2 are induced by
the identity map of ND◦/D and (9.5), respectively. This proves the
statements about the sheaves and arrows in the top horizontal line.
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Parallel to the proof Lemma 9.1, we obtain that the vertical arrows
are injective with locally free cokernels.
By definition of Ṽi, the first two sheaves in the lower horizontal line

are Ṽ |W◦
and γ∗◦V1|M◦

= Ṽ1|W◦
, and the arrow β̃2|W◦

is the obvious
projection as stated. The statement about γ∗◦β◦ and β◦ follows from
[CL1, Lemm 2.8].
A direct calculation shows thatR1πM◦∗f

∗
M◦

O(1)⊕5 andR1πM◦∗f
∗
M◦
TP4

have rank five and four, respectively, and γ∗◦β◦ is surjective, therefore
ker(γ∗◦β◦) is an invertible sheaf, and is isomorphic to ker(α2), using that
the middle and the third vertical arrows are injective with locally free
cokernel. Consequently, the cokernels of the middle and the third ver-
tical arrows are isomorphic. These complete the proof of the Lemma.

q.e.d.

We now determine the image sheaf of the third vertical arrow in
(9.3). Let ξ = [f,C] ∈ M◦ be a closed point. By the description of
M◦, C = E ∪ R such that E (resp. R) is a smooth genus one curve
(resp. R ∼= P1); p = E ∩ R is the node of C, and f |E = const. and
f |R : R → P4 is a regular embedding. Let ξ ∈ M be the image of ξ
under the tautological M◦ → M. From the definition of M◦, we know
that the image stack M◦ := Im (M◦ → M) is a locally closed smooth
Cartier divisor of M. Therefore, H1((L•M◦/M

)∨|ξ) = NM◦/M, ξ is one

dimensional and is spanned by the image of any v ∈ TM,ξ−TM◦,ξ under

the quotient map

TM, ξ = H0((L•M)∨|ξ) −→ H1((L•M◦/M
)∨|ξ).

Applying the deformation theory of X/M, the image of

H1(φ∨X/M)|ξ : H
0((L•X/M)∨)|ξ −→ H1(EX/M)|ξ

is the linear span of the image of any v ∈ TM,ξ − TM◦,ξ under the
composite

(9.6) obP4 : H0((L•M)∨|ξ) −→ H1((L•M◦/M
)∨|ξ) −→ H1(EX/M|ξ)

induced by the obstruction theory φX/M. (It is the obstruction assign-
ment map.) Note that because f |E is constant, we have

H1(EX/M|ξ) = H1(f∗TP4) = H1(OE)⊗C(f
∗TP4)|p = H1(OE)⊗CTP4,f(p).

Lemma 9.3. Let ξ = [f,C], where C = E ∪ R and p = E ∩ R be
as before; let v ∈ TM,ξ − TM◦,ξ. The linear span of the image of v in

H1(EX/M|ξ) is

H1(OE)⊗C u∗(TR,p) ⊂ H1(OE)⊗C TP4,f(p).

Proof. LetH = f(R) ⊂ P4. Since f |R is a regular embedding,H ⊂ P4

is a smooth rational curve. We let f ′ : C → H be the factorization of f :
C → P4. Thus ξ′ = [f ′, C] ∈ M1(H, d

′), where d′ = f ′∗[R] ∈ H2(H,Z)
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is a generator. We let M1(H, d
′) → M be the tautological projection;

thus ξ ∈ M is also the image of ξ′. By the description of M 1(H, d
′) in

[Zi1] or [HL], there is no first order deformation of [f ′, C] in M1(H, d
′)

whose image in TξM is v. Let H1(EM1(H,d′)/M|ξ′) = H1(C, u′∗TP4)

be the obstruction space of the standard relative obstruction theory of
M1(H, d

′)/M. Then the image of v under the obstruction assignment

obH : H0((L•M)∨)|ξ) −→ H1(EM1(H,d′)/M|ξ′) = H1(OE)⊗C TH,f ′(p)

is non-zero. Since dimH1(OE) = dimTH,f ′(p) = 1, obH(v) spans

H1(OE)⊗C TH,f ′(p).
Then, because the obstruction theories of moduli spaces of stable

morphisms to schemes are compatible via morphisms between schemes,
we conclude that the linear span of the image obP4(v) ⊂ H1(EX/M|ξ) is
identical to the image of the linear span of obH(f

′) under the canonical

H1(EM1(H,d′)/M|ξ′) −→ H1(EM1(P4,d)/M|ξ) = H1(EX/M|ξ).

Adding TH,f ′(p) = f∗(TR,p) as subspaces in TP4,f(p), we prove the Lemma.
q.e.d.

We consider the middle vertical arrowH1((L•M◦/D
)∨)→ H1(EX/D|M◦

)

= V1|M◦
in (9.3). By Lemma 9.2, H1((L•M◦/D

)∨) is a rank two locally

free sheaf on M◦, and the arrow is injective with locally free cokernel.
Let S◦ ⊂ V1|M◦

be this image sub-vector bundle.

We continue to denote by γ̄ : Ỹcpt
gst → X̃gst the projection (cf. (6.9)).

We let W ◦ = Ỹ
cpt
gst ×X̃gst

M◦ and γ̄◦ : W ◦ → M◦ the projection. Recall

that Ṽ cpt
1 = γ̄∗V1(−D∞). Thus S◦ ⊂ V1|M◦

provides a subbundle

(9.7) S◦ = γ̄∗◦S◦(−D∞) ⊂ Ṽ cpt
1 |W◦

.

We let

η◦ : Ṽ
cpt
1 |W ◦

−→ Ṽ cpt|W ◦
= (Ṽ cpt

1 ⊕ Ṽ cpt
2 )|W ◦

be the inclusion; let j◦ : W ◦ → Ỹcpt
gst be the open embedding, thus flat.

Recall R(d) = NC(d),b
C(d) (cf. before (8.2), see also (8.4)).

Lemma 9.4. As cycles, we have

(9.8) j∗◦ [R(d)] = η◦∗[S◦] ∈ Z∗(Ṽ
cpt|W ◦

).

Proof. Lemma 9.1 shows that C(d) ×W W◦ is a rank two subbundle

of Ṽ |W◦
. By Proposition 7.1 and Lemma 6.8, we have C(d),b ⊂ Ṽ cpt

2 ,

C(d),b ∩ Ṽ
cpt
2 |W ◦

= 0Ṽ cpt
2
×Ỹcpt

gst
W ◦, and C(d) ×Ỹcpt

gst
W ◦ is a rank two

subbundle of Ṽ cpt|W◦
. Further, they fit into the commutative diagram
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(the left one is a Cartesian product)

0Ṽ cpt ×Ỹcpt
gst
W ◦ −−−−→ C(d) ×Ỹcpt

gst
W ◦

∼=
−−−−→ S◦⏐⏐�⊆ ⏐⏐�⊆ ⏐⏐�⊆

Ṽ cpt
2 |W ◦

β̄1|W◦−−−−→ Ṽ cpt|W◦
= (Ṽ cpt

1 ⊕ Ṽ cpt
2 )|W ◦

β̄2|W◦−−−−→ Ṽ cpt
1 |W◦

,

where β̄1|W ◦
and β̄2|W◦

are the obvious inclusion and projection. This
implies that

R(d) ×Ỹcpt
gst
W ◦ = (NC(d),b

C(d))×Ỹcpt
gst
W ◦ = η◦(S◦) ⊂ Ṽ cpt|W◦

.

Since j◦ : W ◦ → Ỹcpt
gst is an open embedding,

j∗◦ [R(d)] = [R(d) ×Ỹcpt
gst
W ◦] = [η◦(S◦)] = η◦∗[S◦] ∈ Z∗(Ṽ

cpt|W ◦
).

This proves the Lemma. q.e.d.

We pick a degree d regular embedding h : P1 → P4, viewed as a closed
point in B̃(d) =M0(P

4, d). We form

Mh = {[f,C] ∈M◦ | f |R ∼= h} ⊂M◦.

Using the convention introduced in the proof of Lemma 8.1, we have
that Ỹcpt

(d) ∪ F̄(d) ⊂ Ṽ cpt
2,(d), where Ỹ

cpt
(d) is the zero section of Ṽ cpt

2,(d). We

form Wh =W ◦ ×M◦
Mh and the inclusions

jh :Wh −→ Ỹcpt
(d) ∪F̄(d) and Jh : Ṽ

cpt
1 |Wh

−→ Ṽ cpt
1 ×Ỹcpt

(d)
(Ỹcpt

(d) ∪F̄(d)),

where the last term is viewed as a vector bundle over Ỹcpt
(d) ∪ F̄(d). Since

jh(W h)∩ F̄(d) = ∅, both jh and Jh are proper, regular embeddings; thus

the Gysin map j!h and J
!
h are well-defined.

Lemma 9.5. The constant c in (9.1) is c = deg e(j∗hṼ
cpt
1 /j∗hS◦).

Proof. Let φh :W h → [h] be the projection to the point, and let φ(d)
be the projection that fits into the Cartesian product

W h
jh−−−−→ Z(d) = Ỹ

cpt
(d) ∪ F (d)⏐⏐�φh

⏐⏐�φ(d)

[h]
ιh−−−−→ B̃(d).

(Here φ(d) is the composite of Z(d) → Ỹcpt
(d) mentioned after (8.3), the

morphism γ̄(d) : Ỹ
cpt
(d) → X̃(d), and the ρ(d) : X̃(d) → B̃(d) constructed in

(8.7).)
Since jh(W h) ∩ F (d) = ∅, j

!
h(P(d),2) = 0. Thus

j!h(P(d),1) = j!h((P(d),1) + (P(d),2)) = j!h0
!
Ṽ cpt
1,(d)

[R(d)].
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Since Gysin maps commute, we obtain

j!h(P(d),1) = j!h0
!
Ṽ cpt
1,(d)

[R(d)] = 0!
j∗hṼ

cpt
1
[J !

hR(d)]

= 0!
j∗hṼ

cpt
1
[S◦|Wh

] = e(j∗hṼ
cpt
1 /j∗hS◦).

On the other hand, since the Gysin maps commute with proper push-
forwards,

φh∗
(
e(j∗hṼ

cpt
1 /j∗hS◦)

)
= φh∗

(
j!h(P(d),1)

)
= ι!h

(
φ(d)∗(P(d),1)

)
= ι!h

(
c[B̃(d)]

)
= c.

This proves the Lemma. q.e.d.

Finally, we evaluate c. Let E → M1,1 with s1 : M1,1 → E be the

universal family of (the moduli of pointed elliptic curves) M1,1. We

form B = M1,1 × P1 and construct a family of stable morphisms in

Mh, as follows. First, for any (a, b) ∈ B = M1,1 × P1, with (Ea, sa)

the pointed elliptic curve associated to a ∈ M1,1, we identify sa ∈ Ea

with b ∈ P1 to obtain a genus one (connected) curve E(a,b) that has two

irreducible components Ea and P1. We then define f(a,b) : E(a,b) → P4

so that f(a,b)|P1 = h : P1 → P4, and f(a,b) restricting to Ea is constant.
Clearly, this construction can be carried out in family version, thus
resulting a family of stable morphisms

(πB, fB) : CB −→ B × P4.

Thus it induces a morphism B → X that factors through Mh ⊂ X
and induces an isomorphism B ∼= Mh. In the following, we will not
distinguish B fromMh; in particular, (CB , fB) is the tautological family
on B ∼=Mh ⊂ X .
Let q1 and q2 be the first and the second projections from B to M1,1

and P1 respectively; let HB = πB∗ωCB/B
∼= (R1πB∗OCB )

∨ to be the
Hodge bundle over B. Using the family (CB , fB), and because of (9.3),
Lemma 9.2 and Lemma 9.3, we have

(V1/S◦)|Mh
= H

∨
B ⊗OB

q∗2(h
∗TP4/TP1) = H

∨
B ⊗OB

q∗2NR/P4 ,

whereR = h(P1) ⊂ P4, andNR/P4 is the normal bundle to R in P4. Also,
for the line bundle L on M defined before (6.1) that gives W = Tot(L),
we have

(9.9) LB := L|Mh
= πB∗(f

∗
BO(−5)⊗ ωCB/B) ∼= HB ⊗OB

q∗2h
∗
O(−5).

Thus, Wh = PB(LB ⊕ OB), and for jh : Wh → Z(d) ⊃ Ỹ
cpt
(d) , we have

DB := P(LB ⊕ 0) = j−1h (D∞). Denote γ̄h : Wh → Mh to be the P1-

bundle projection. Following the construction of Ṽ cpt
1 and S◦, we have

(9.10) j∗hṼ
cpt
1 /j∗hS◦

∼= γ̄∗h(q
∗
2NR/P4 ⊗H

∨
B)(−DB).
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Let ζ = 24 · c1(H) ∈ A1M 1,1 and ξ =
1
2 (c(TP1) − 1) ∈ A1P1, where

H is the Hodge bundle on M1,1. We calculate c(h
∗TP4) = 1 + 5dξ, and

c(NR/P4) = 1 + (5d − 2)ξ. Let ξ̄ = γ̄∗hq
∗
2ξ and ζ̄ = γ̄∗hq

∗
1ζ ∈ A

1W h to be

the pullbacks of ξ and ζ via W h to P1 and to M1,1, respectively. We
calculate

(9.11) c(γ̄∗hq
∗
2NR/P4) = 1 + (5d− 2)ξ̄ and c(γ̄∗hq

∗
1H

∨) = 1−
1

24
ζ̄.

Let F ∈ A2Wh be the Poincare dual of the fiber class of γ̄h : W h →
Mh. Using ξ̄ζ̄ = F and ξ̄2 = ζ̄2 = 0, (9.11) gives

c
(
γ̄∗h(q

∗
2NR/P4 ⊗ q∗1H

∨)
)
= 1 +

(
(5d− 2)ξ̄ −

1

8
ζ̄

)
−
5d− 2

12
· F.

Hence the euler class

e(j∗hṼ
cpt
1 /j∗hS◦)(9.12)

= [−DB ]
3 +

(
(5d − 2)ξ̄ −

1

8
ζ̄

)
· [DB ]

2 − (5d− 2)/12 · F · [−DB ].

(Here we view [DB ] ∈ A1Wh as the Poincare dual of the cycle DB in
Wh.)
Let τ : DB → B =Mh be the projection (isomorphism). We compute

each term in the above formula. First, direct calculations using (9.9)
give

c1(NDB/Wh
) = −

1

24
τ∗q∗1ζ + 5dτ∗q∗2ξ,

ξ̄ · [DB ]
2 =

−1

24
and ζ̄ · [DB ]

2 = 5d.

Thus the middle term in (9.12) is 1
12 −

5d
6 . The c1(NDB/Wh

) just cal-

culated implies [DB ] · τ∗q∗2ξ = −1
24 and [DB ] · τ∗q∗1ζ = 5d. Using

[DB ]
2 = c1(NDB/Wh

), we obtain−[DB ]
3 = −[DB ]

2·[DB ] =
5d
24+

5d
24 =

5d
12 .

Using [F ] · [DB ] = 1 we conclude that (9.12) is equal to − 1
12 . By Lemma

9.5, c = − 1
12 .

Proof of Proposition 4.7. By (8.2), Lemma 8.1 and (9.2) we conclude

deg 0!σ̃,loc[C(d)] = deg 0!
Ṽ cpt
2,(d)

(P(d),1)

= c · deg c5d+1(K̃(d))[B̃(d)] =
(−1)5d

12
N0(d)Q.

This completes the algebro-geometric proof of the hyperplane property
of the reduced genus one GW-invariants of the quintics. q.e.d.
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