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CURVE NEIGHBORHOODS OF SCHUBERT VARIETIES

ANDERS S. BucH & LEONARDO C. MIHALCEA

Abstract

A previous result of the authors with Chaput and Perrin states
that the closure of the union of all rational curves of fixed degree
passing through a Schubert variety in a homogeneous space G/ P
is again a Schubert variety. In this paper we identify this Schubert
variety explicitly in terms of the Hecke product of Weyl group
elements. We apply our result to give an explicit formula for any
two-point Gromov—Witten invariant as well as a new proof of the
quantum Chevalley formula and its equivariant generalization. We
also recover a formula for the minimal degree of a rational curve
between two given points in a cominuscule variety.

1. Introduction

Let X = G/P be a homogeneous space defined by a semisimple com-
plex Lie group G and a parabolic subgroup P. The quantum cohomology
ring of X is closely related to the geometry of rational curves in X and
has received much attention since the mid 1990s. Given a subvariety
Q C X and an effective degree d € Ho(X), define the curve neighbor-
hood T 4(2) to be the closure of the union of all rational curves of degree
d in X that meet €. Recent developments suggest that this variety is a
key object in the study of the quantum K-theory ring of X.

The study of I'y(2) was initiated in the recent paper [5] by Cha-
put, Perrin, and the authors. Using that the Kontsevich moduli space
of stable maps to X is irreducible, it was proved that, if € is an irre-
ducible subvariety of X, then I'y(Q2) is also irreducible. In particular,
if Q is a Schubert variety in X, then so is I'4(€2). The applications to
quantum K-theory require a precise description of this locus. This was
obtained in [5] when X is any cominuscule homogeneous space. For ex-
ample, when X is a Grassmann variety of type A and = Q) is a
Schubert variety corresponding to a Young diagram )\, the Young dia-
gram associated to I'z(€2y) is obtained by removing the first d rows and
columns from A. This operation on Young diagrams has appeared in
several references, possibly starting with [14]. The main result of this
paper is an explicit combinatorial formula for the Weyl group element
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corresponding to I'4(Q2) when Q C X is a Schubert variety in an arbi-
trary homogeneous space. A description of the curve neighborhood of
a Richardson variety has been obtained in [22] when d is the degree of
a line and the Fano variety of lines of degree d in X is a homogeneous
space.

Fix a maximal torus 7" and a Borel subgroup B such that T' C B C
P C G. Let W be the Weyl group of GG, and let Wp be the Weyl group
of P. Each element w € W defines a Schubert variety X (w) = Bw.P
in X and an opposite Schubert variety Y (w) = B°w.P, where B
is the opposite Borel subgroup. If w is the minimal representative for
its coset in W/Wp, then we have dim X (w) = codimY (w) = £¢(w).
Given a positive root a with s, ¢ Wp, let C, C X be the unique
T-stable curve that contains the T-fixed points 1.P and s,.P. The ho-
mology group Hy(X) = H2(X;Z) can be identified with the quotient
ZAY JZAY,, where ZAY is the coroot lattice of G and ZAY, is the co-
root lattice of P. The degree [C,] € H2(X) is equal to the image of the

coroot oV = (j%) under this identification.

Our description of I'y(X (w)) is formulated using the Hecke product
on W, which by definition is the unique associative monoid product such
that for any simple reflection sg and w € W we have

W 5. dWSB if {(wsg) > L(w)
A= w otherwise.

Theorem 1. Assume that 0 < d € Ha(X), and let o be any maximal
root with the property that o < d as elements in Hy(X). Then we have
Fy(X(w)) =Tg_av (X (w - sq))-

A root a will be called P-cosmall if s, ¢ Wp and « satisfies the
condition of Theorem 1 for any positive degree d € H2(X). This con-
dition makes simultaneous use of the partial orders of the root system
and the dual root system of G, which gives rise to some interesting
combinatorics.

Let zCJlD € W denote the minimal representative for the curve neigh-
borhood of a point, i.e., I'y(X (1)) = X(z1). Theorem 1 then implies
that ['y(X (w)) = X (w-2%). Much of our paper therefore focuses on the
curve neighborhood of a point.

Curve neighborhoods are related to Fulton and Woodward’s work
[14] on determining the smallest degree of the quantum parameter
that appears in a product of Schubert classes in the (small) quantum
ring QH(X). Let Mo, (X,d) denote the Kontsevich moduli space of
n-pointed stable maps to X of degree d, with evaluation map ev =
(evi,...,evy) : Mon(X,d) — X™ Then the curve neighborhood of
X (w) can be defined by T'q(X (w)) = evy(evy (X (w))). It is proved in
[14] that the quantum product [V (u)]*[Y (w)] contains a term ¢% [Y (v)]



CURVE NEIGHBORHOODS OF SCHUBERT VARIETIES 257

with d’ < d if and only if the Gromov-Witten variety ev; (Y (u)) N
evy H(X (wow)) is not empty in Mo o(X, d), where wy is the longest ele-
ment in W. The later condition is equivalent to Y (u) NI 4(X (wow)) # 0,
which holds if and only if uWp < wow - 25 Wp in the Bruhat order of
W/Wp.

Define the Gromov—Witten variety

CWy(w) = evy H(X (w)) € Moa(X,d)

and consider the surjective map evy : GWy(w) — T'g(X(w)). It was
proved in [5] that the general fibers of this map are unirational. This
implies that the pushforward (ev;).[GWg(w)] € H}(X) is equal to
[X (w - zL')] whenever dim GW4(w) = dim X (w - 21'), and otherwise we
have (evy).[GWy(w)] = 0. It follows that any (equivariant) two-point
Gromov—Witten invariant of X is given by

LY @)X = [ ety ) esiX )
M) 1 i dimGWg(w) = dim X (w - 28) and w - 25 Wp = uWp
" 10 otherwise.

It turns out that, if this invariant is nonzero, then d = a¥ € Hy(X)
for a unique P-cosmall root «, and we have ulWp = ws,Wp. A similar
formula holds for the more general 2-point K-theoretic Gromov—Witten
invariants; see Remark 7.5 below.

We apply our methods to give a new proof of the (equivariant) quan-
tum Chevalley formula for any product of a Schubert divisor with an
arbitrary Schubert class in the equivariant quantum ring QHp(X). In
fact, all Gromov—Witten invariants required in such a product can be
obtained from (1) combined with the divisor axiom in Gromov—Witten
theory [18]. The quantum Chevalley formula was first stated in a lec-
ture given by Dale Peterson at M.I.T., and a proof was later supplied
by Fulton and Woodward [14]. The equivariant generalization is due to
the second author [24] and states that all terms of a product involv-
ing a Schubert divisor in QHp(X) are also visible in the equivariant
cohomology H7.(X) or in QH(X).

We remark that if P is not a Borel subgroup of G, then the ring
QH7(X) is not generated by divisor classes. However, it was demon-
strated in [24] that all (three-point, genus 0) equivariant Gromov—
Witten invariants of X can be computed with an explicit algorithm
based on the equivariant quantum Chevalley formula. This has been
applied by Lam and Shimozono to prove that the equivariant Gromov—
Witten invariants of X coincide with certain structure constants of the
equivariant homology of the affine Grassmannian [20].

Our paper is organized as follows. In Section 2 we recall some basic
facts about Schubert classes on X. Section 3 defines the Hecke product
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and gives combinatorial proofs of its main properties. In Section 4 we use
the statement of Theorem 1 to give a combinatorial construction of the
element ZCI; € W. We then prove a key technical result stating that for all
effective degrees 0 < d' < d € Hy(X) we have zf,'zf_d, W, < zC]lDWp. We
remark that this inequality is easy to deduce from the geometric defini-
tion X (21) := T'qy(X (1)), but we need to work combinatorially to obtain
a complete proof of Theorem 1. The results in Section 4 include some
basic facts concerning cosmall roots and Hecke products of reflections
that are proved using the classification of root systems (Lemmas 4.4, 4.7,
and 4.10). All other results in our paper are deduced from these facts in
a type independent setup. Theorem 1 is established in Section 5, where
we also apply this result to recover a well known formula [27, 16, 9] for
the minimal degree of a rational curve between two given points in a
cominuscule variety. In Section 6 we prove some equivalent conditions
for P-cosmall roots, one of them stating that « is P-cosmall if and only
if dim X (so) = fCa c1(Tx)— 1. In combinatorial terms this implies that
« is B-cosmall if and only if ¢(s,) = 2height(a¥) — 1. Section 7 uses
these results and related inequalities to prove an explicit formula for
any two-point Gromov—Witten invariant of X, and Section 8 proves the
equivariant quantum Chevalley formula. While this proof logically de-
pends on many earlier results, including the combinatorial construction
of 25 , we finish our paper by noting that the concept of curve neighbor-
hoods can be used to give a very short geometric proof of the quantum
Chevalley formula.

We thank Pierre-Emmanuel Chaput and Nicolas Perrin for inspir-
ing collaboration on related projects, and Mark Shimozono for helpful
discussions. We also thank the referee for helpful comments.

Acknowledgments. The first author was supported in part by NSF
grants DMS-0906148 and DMS-1205351. The second author was sup-
ported in part by NSA Young Investigator Award H98230-13-1-0208.

2. Schubert varieties

In this section we fix our notation for Schubert varieties and state
some basic facts. Proofs can be found in, e.g., [15]. Let X = G/P be a
homogeneous space defined by a connected, simply connected, semisim-
ple complex Lie group G and a parabolic subgroup P. Fix also a max-
imal torus 7' and a Borel subgroup B such that T C B C P C G. Let
R be the associated root system, with positive roots R™ and simple
roots A C RT. Let W = Ng(T)/T be the Weyl group of G, and let
Wp = Np(T)/T be the Weyl group of P. The parabolic subgroup P
corresponds to the set of simple roots Ap = {8 € A | sg € Wp}. The
group Wp is generated by the simple reflections sg for 3 € Ap. Set
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Rp=RNZAp and R}, = RT NZAp, where ZAp = Spany(Ap) is the
group spanned by Ap.
For each element w € W we let

I(w) = R"Nnw ' (-R") = {a € RT | w(a) < 0}

denote the inversion set of w. The second expression uses the partial
order < on RA = Spang(A) defined by o >  if and only if « — 3 is
a linear combination with nonnegative coefficients of the simple roots
A. The length of w is defined by ¢(w) = |I(w)|. Equivalently, ¢(w)
is the minimal number of simple reflections that w can be a product
of. Define the length of the coset wWp € W/Wp to be {(wWp) =
|I(w) \ R}|. The element w can be written uniquely as w = uv such
that I(u) N RS = 0 and v € Wp. We then have uWp = wWp and
l(u) = L(wWp). The element u is called the minimal representative for
the coset wWp. Similarly, if wp denotes the longest element of Wp, then
wwp is the mazimal representative for wWp. Let WP C W be the set
of all minimal representatives for cosets in W/Wp.

Let wg be the longest element in W, and let B® = woBwy C G
be the Borel subgroup opposite to B. For w € W we define the B-
stable Schubert variety X (w) = Bw.P C X and the B°P-stable Schubert
variety Y (w) = B°Pw.P C X. These varieties depend only on the coset
wWp, and we have dim X (w) = codim Y (w) = £(wWp). We also have
X(w)NY (w) = {w.P}. The collection of points w.P for w € W is the
set of all T-fixed points in X.

The Bruhat order on W/Wp is defined by ulWWp < wWp if and only
if X(u) C X(w). This order is compatible with the Bruhat order on
W in the sense that uWp < wWp whenever v < w in W. This follows
because X (u) is the image of Bu.B under the projection G/B — X.

Let (—,—) denote the W-invariant inner product on RA. Each root

a € R has a coroot oV = (3%) The coroots form the dual root system

RY = {a" | a € R}, with basis of simple coroots AY = {8V | B € A}.
For B € A we let wg € RA denote the corresponding fundamental
weight, defined by (wg, ") = 4 p for a € A.

Lemma 2.1. Let « € R, and let S C R be any set of roots such that
s4(S) = S. Then we have

Z(a77v) = 2(770[\/) =0.
yeS yeS

Proof. Since s, is an involution of S defined by s4(7) = v — (7, a")a,

we obtain o)
VY Y= Sa\Y) _
YDERUED SELICUST)
yeS yeS
Since we have s,v(SY) = SV, the first sum of the lemma is also equal
to zero. q.e.d.
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We need the following observation, which can also be found in [14,
p. 648].

Lemma 2.2. Let « € RT RJ]S. Then « is uniquely determined by
the coset saWp € W/Wp.

Proof. Set A = ZBEA\AP wg. Then Wp acts trivially on A, while
A—54.2 = (A, @) a is a nonzero multiple of a. The lemma follows from
this because distinct positive roots are never parallel. q.e.d.

All homology and cohomology groups in this paper are taken with
integer coefficients. Any closed irreducible subvariety Z C X defines a
fundamental homology class [Z] € Hjgim(z)(X). We will also use the

notation [Z] for its Poincaré dual class in H2<4™(%)(X). The Schubert
classes [Y (w)] for w € W form a basis for the cohomology ring H*(X).
It is convenient to identify H?(X) with the span Z{ws | 8 € A~
Ap} and Hy(X) with the quotient ZAY /ZAY,. More precisely, for each
B € AN Ap we identify the class [X(sg)] € Ho(X) with ¥ + ZAY, €
ZAY JZAY, and we identify [Y(sg)] € H?*(X) with wg. The Poincaré
pairing H?(X) ® Ho(X) — Z is then induced by the W-invariant inner
product (—,—) on RA.

For each positive root o € RT R; there is a unique irreducible
T-stable curve C,, C X that contains 1.P and s,.P. We can restate [14,
Lemma 3.4] as the identity

(2) [Co] = ¥ +ZA} € Hy(X).

According to [14, Lemma 3.5] we have

(3) ax) = Y 7y e€H(X).
YERTN\R},

Indeed, if we let ¢; = > veRtRS T denote the right-hand side of (3),
then the cited lemma implies that (cp,8Y) = fX(Sﬁ)cl(TX) for g €
A N Ap, and Lemma 2.1 shows that (c;,3") = 0 for each 8 € Ap;
hence ¢; € Z{wg | B € AN Ap} = H*(X).

If X € Z{wg | B € AN Ap} is an integral weight, then the assumption
that G is simply connected implies that X is represented by a character
X\ : T — C*. It therefore defines the line bundle Ly := G xP C_, =
(GxC)/P over X, where P acts on G x C by p.(g,2) = (gp~ ', A(p)~'2).
By [4, p. 71] we then have

(4) ci(Ly) = ) € HA(X).
3. The Hecke product

Our description of curve neighborhoods is formulated in terms of the
Hecke product, which provides a monoid structure on the Weyl group



CURVE NEIGHBORHOODS OF SCHUBERT VARIETIES 261

W. This product describes the multiplication of basis elements in a
Hecke algebra that was first studied in the context of Tits buildings [2,
Ch. 4, §2.1]. Tt also describes the composition of Demazure operators
[11] and plays a key role in the combinatorial study of K-theory of
homogeneous spaces, see, e.g., [19, 12]. While the Hecke product and
its properties are well known, we do not know about a reference that
gives a short unified exposition, so we have taken the opportunity to
provide one here. Everything in this section works more generally if W
is a Coxeter group; see [1] for definitions.
For u € W and 8 € A, define

usg if usg > u
(5) u-sg = { Ao mob
U if usg < u.

Let u,v € W, and let v = sg, 53, - - - 53, be any reduced expression for v.
Define the Hecke product of uw and v by

U-V=U"S8) " SBy*---"58y,

where the simple reflections are multiplied to w in left-to-right order.
We claim that this product is independent of the chosen reduced
expression for v. In fact, any reduced expression for v can be obtained
from any other by using finitely many braid relations, i.e., by steps that
replace a subexpression of the form gty - - - t,,_1 with t1to - - - t,,, where
to; = sq and tg;41 = sg for given simple roots o, 3 € A and all 7 € N,
and where m equals the order of s,s5 in W. It is enough to show that,
for each such relation tgty - - - t;_1 = t1to - - - t,, in W, we have
(6) u'to'tl'...-tm_l:u'tl'tg'...-tm.
Let W, 3 C W denote the parabolic subgroup generated by s, and sg.
Then totq - - - ty—1 = tita - - - £y, is the longest element of W, g, and both
sides of (6) are equal to the unique maximal representative for the coset
uWa,B in W/Wa’ﬁ.
Given u,v € W, we will say that the product uv is reduced if £(uv) =
¢(u) + ¢(v). This implies that w - uv = (w - u) - v for all w € W. Notice
also that for 5 € A and v € W we have

7 oo sgv if sgv >
p v if sgv < w.

In fact, if we set v = sgv, then the identity is clear if £(v) > ¢(v), and
/

otherwise v = sgv’ is a reduced product, and hence sg-v = (sg-s5)-v" =
sg-v = w.
Proposition 3.1. Let u,v,v',w € W.
(a) The Hecke product is associative, i.e., (u-v)-w=1u- (v-w).
(b) We have (u-v)~t =v 1.yl
(c¢) Ifv <, thenu-v-w<wu-v-w.
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(d) We have u <u-v, v <u-v, wv <u-v, and {(u-v) < l(u) + £(v).
(e) The element v’ = (u-v)v~! satisfies v’ < u and v'v =" -v =u - v.
(f) I(v) C I(u-v).

Proof. To prove (a) it is enough to show that (u-sg)-w =u-(sg-w)
for each 8 € A. This is clear if sg-w = sgw, and it is also clear if
u-sg = u and sg-w = w. Assume that u - sg = usg and sg - w = w,
and set w' = sgw. Since w = spw’ is a reduced product, we obtain
(w-sg)-w=((u-sg)-sg)-w = (u-sg) - w =u-w=u-(sg-w),
as required. Part (b) follows from the associativity together with (5)
and (7). To prove (c) it is enough to show that v - sz < v’ - s for each
B € A. This is true because W3 = {1,sg} is a parabolic subgroup of
W, v - sg is the maximal representative for vWp in W/Wp, v' - sg is
the maximal representative for v'Wgs, and vWs < v'Wjs. For (d), the
inequality u < w-v follows from (5), and v < u-v follows from (7). If we
write v = v’sg as a reduced product with § € A, then it follows from
(c) and induction on ¢(v) that u-v = (u-v")-sg > uwv'-sg > wv'sg = uv.
The inequality ¢(u - v) < £(u) 4+ ¢(v) is clear from the definition. For
(e), let u = 54,5a, - - 5a, be a reduced expression for u, and set y; =
Saj *Saji1 "+ Sag v for each j. Let {i; <ip < --- <i,} be the set of
indices j for which y; # y;4+1. Then u-v = Sasy Sasy Sy, U is a reduced
product, so v’ = Say, Sasy ** Sau, satisfies the requirements. Finally, part
(f) follows from (7). q.e.d.

Proposition 3.2. Let u,v € W. The following are equivalent:
(a) The product uv is reduced.
(b) £(u- v) = £(u) + £(v).
(¢) u-v=muv.
(d) I(v) C I(uv).
(&) I(u) N I(v1) = 0.
Proof. All of the implications (a) = (b) = (¢) = (d) = (e) = (a)
follow easily from the definitions and Proposition 3.1. q.e.d.

The Hecke product also defines a product W x W/Wp — W/Wp

given by
u- (wWp) = (u-w)Wp.

To see that this is well defined, write w = w'w” with v’ € W’ and
w” € Wp, and set v = u-w' and p = v (v - w”). Then u-w =
(u-w) - w" =wv-w" = ovp, and since p < w” by Proposition 3.1(e) we
must have p € Wp. It follows that (u-w)Wp = (u-w")Wp, as required.

Notice also that for 8 € A we have

(®) s (wWp) = {

SBZUWP if SBZUWP > wWp
wWp if sgwWp < wWp.
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In fact, if sgwWp > wWp, then we must have sgw > w by compatibility
of the Bruhat orders, and otherwise the inequality wWp < (sg - w)Wp
implies that sgwWp = wWp. The identity follows from this.

Proposition 3.3. Foru,v € W we have {(u-vWp) < L(u)+L(vWp).
Moreover, if {(u-vWp) = l(u) + £(vWp), then we must have u-vWp =
uwvWp.

Proof. This follows from equation (). q.e.d.

4. Combinatorial construction of z;

4.1. Complete flag varieties G/B. Given a degree d € Hy(G/B) =
ZAY, the maximal elements of the set {a € Rt | ¥ < d} are called
maximal roots of d. The root o € RT is cosmall if o is a maximal root
of oV. For example, this holds if « is a simple root, a long root, or if
R is simply laced. Notice also that if @ € RT is a maximal root of any
degree, then « is automatically cosmall. The term cosmall was chosen
because it is related to what we call a large root in Definition 6.7, below;
see also Proposition 6.8.

Example 4.1. If R has one of the classical Lie types A,,_1, By, Cy,, or
D,,, then we can identify R with a subset of R” as follows. Let eq,..., e,
be the standard basis for R™ and set 5; = e;41 —¢; for 1 < i <mn — 1.
We also set 5y = eq, Bo = 2e1, and f_1 = es + e1. The following table
lists the simple, long, short, and cosmall (positive) roots in each type.

An71 Slmple 51, e 7571*1
Long ej—e€ =0+ Piy1+ -+ Bi1 [1<i<j<n
Cosmall | All positive roots.

B, | Simple | Bo,B1,-..,Bn-1

Long ej—e=Bi+Bit1+- -+ Bj-1 1<i<j<n
ej+e = 1<i<j<n
280+ 261+ +2Bic1+ Bi+ -+ Bi—1

Short ei=Po+pP1+ -+ Bi-1 1<i<n

Cosmall | e1,and ej —e; for 1 <i<j<n,andej+e; for1 <i<j<n.
Cn | Simple | Bo,Bi,. .., Bn

Long 2ei:§0+261+--~+2ﬁi,1 1<i1<n
Short ej—e€i =Pi+Bir1+ -+ Bj-1 1<i1<j3<n
e;j+e; = 1<i<ji<n

Bo+261+ - +2Bic1+ B+ + Bj-1
Cosmall | 2e; for 1 <i<n,and e; —e; for 1 <i<j<n.

Dn Simple ﬂfh ﬂh . 7ﬂn71

Long ej —ei =i+ Pix1+ -+ Bi-1 1<i<j<n
ejter=p_1+Pa+ P+ -+ Fi-1 2<j<n
ejt+ei= 2<i<j<n

Ba+B14+2B2+-+28i 1+ B+ 4+ Bj-1
Cosmall | All positive roots.
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Example 4.2. Assume that R has type G, with A = {1, 52} where
B is the long root. Then the cosmall roots of R consist of 81, B2, 361+ 52,
and 3051 + 20s.

Example 4.3. Assume that R has type Fy, with A = {31, f2, 53, B4}
and Dynkin diagram 1 — 2 =>= 3 — 4. Then the cosmall roots of R
consist of B1, B2, B3, B, B1 + B2, B3 + B, B2 + 283, B1 + B2 + 20,
B1+2B2+28s, B2 +205+ 24, b1+ Bo+203+ 204, B1+2P2+ 203+ 2p4,
B1+ 2082 + 483+ 2B4, B1 + 3P2 + 483 + 204, and 251 + 302 + 483 + 204.

For a € R we set supp(a) = {8 € A | < a}. Two positive roots
a and f are separated if supp(«) U supp(f) is a disconnected subset
of the Dynkin diagram. Equivalently, every root in the support of « is
perpendicular to every root in the support of 5. Notice that if o and
(3 are separated roots, then sq - s3 = $5 - Sq = Sasp. Given d,d’" € RA,
we let d\/d’' denote the smallest element in RA that is greater than or
equal to both d and d'.

Lemma 4.4.
(a) For each o € R there exists exactly one mazimal root of .

(b) If a, 8 € R are nonseparated roots, then a\/ 8 € RT is also a root.

Proof. The lemma has been checked case by case when R has excep-
tional Lie type, so we will assume that R has classical type and use the
notation of Example 4.1. Let o € RT. If « is a long root, then « is the
unique maximal root of o, so assume that « is short. If R has type B,
then a = e; for some . If ¢ = 1, then « is the unique maximal root of
oV, and otherwise the unique maximal root of oV is e; + e;_1. If R has
type C),, then we have either a = e; — e;, in which case « is the unique
maximal root of a”, or & = e; + ¢;, in which case the unique maximal
root of a¥ is 2e;. This proves part (a). Part (b) follows by inspection of
the table in Example 4.1. q.e.d.

Corollary 4.5. If a, 3 € R™ are nonseparated roots and o is a maz-
imal root of oV \/ B, then 3 < a.

Proof. Tt follows from Lemma 4.4(b) that o \/ 8 = +" for some root
v € RT, after which Lemma 4.4(a) implies that « is the only maximal
root of a¥'\/ BV. It follows that 8 < a. q.e.d.

Definition 4.6. Given an effective degree d € ZAV, we recursively
define an element z4 € W as follows. If d = 0, then set zg = 1. Otherwise,
we set zg = Sq - 2d_av Where « is any maximal root of d.

We prove that this is well defined by induction on d. If o and 3 are
distinct maximal roots of d, then Corollary 4.5 implies that o and
are separated. It follows that « is a maximal root of d — ¥ and S is a
maximal root of d — a", so we obtain sg - z4_gv = S5 Sa * Sd—pvV_av =
Sa* 88 Sd—aV—BY = Sa * Zd—aV, a8 required.
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Lemma 4.7. Let a, 3 € R* be cosmall roots.
(a) We have a < B if and only if ¥ < BY.
(b) If a < B, then there exists a cosmall root vy such that o < v <
and vV — oV is a simple coroot.

Proof. The lemma has been checked case by case when R has excep-
tional Lie type, so we will assume that R has classical type. It follows
by inspection of Example 4.1 that, if @ < [ is a covering relation in
the partially ordered set of cosmall roots in R™, i.e., no cosmall root
is strictly in between a and [, then 3Y — oV is a simple coroot. This
proves part (b), which in turn shows that a < 8 implies «¥ < 8Y. On
the other hand, if ¥ < 8, then since Lemma 4.4(a) implies that 3 is
the unique maximal root of 3Y, we obtain a < §. g.e.d.

Proposition 4.8. Let o, 3 € R™.

a) Assume that B € A. Then we have so - Sg = Sz - Sq if and only if
B B
(o, B) > 0.
b) If o is a mazimal root of oV + B, then s4 - 53 = 53 - Sq.
B B

Proof. Assume that 3 is a simple root. Then we have s, -s3 = 5354
if and only sqs53 = 5854 Or £(sa58) < €(54). The inequality €(sqs5) <
{(s4) is equivalent to (o, ) > 0, and the identity s,s3 = sgsq holds if
and only if & = or (a, ) = 0. Part (a) follows from this.

Now let o, B € R™ be arbitrary positive roots such that « is a maximal
root of a¥ + Y. We must show that s, - 53 = 83+ 54. The assumptions
imply that « is a maximal root of oV ++" for all v € supp(3). Since
sg is a product of simple reflections s, for v € supp(3), we may assume
that 3 is a simple root.

Assume that (o, ) < 0, and set & = sg(c). Then d = a—(a, 8Y)8 > «
and 6V = o' — (8,a¥)B8Y > aV. Let v/ > § be a maximal root of §".
Since v < 7/, it follows from Lemma 4.7 that there exists a cosmall root
v such that a < v <4/ and vV — " is a simple coroot. Since we also
have 7Y < 4" < §Y, we must have vV — oV = Y, which contradicts
that « is a maximal root of oV + Y. We conclude that (o, 8) > 0, so
part (b) follows from part (a). q.e.d.

Let d € ZAY be an effective degree. A greedy decomposition of d
is a sequence (aq,qa,...,q) of positive roots satisfying the recursive
condition that «; is a maximal root of d, and («g,...,ax) is a greedy
decomposition of d—ay'. The empty sequence is the only greedy decom-
position of the degree 0 € ZAV. If (aq, . .., ay) is a greedy decomposition
of d, then it follows from the definition that z4 = 54, " Say « - - - - Sq,,. Fur-
thermore, it follows from Proposition 4.8(b) that sy, - Sa; = Sq; * Sa; for
all 1 <14, < k. We record the following consequence.

Corollary 4.9. For any effective d € ZAY we have (z3)™' = 24.
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Notice also that if (aq,...,ax) and (5y,..., ;) are greedy decompo-
sitions of the same degree d, then these decompositions are equal up to
reordering. To see this, notice that if ay # f1, then Corollary 4.5 shows
that that 1 is a maximal root of d — oy and «; is a maximal root
of d — BY. Let (v,...,7p) be a greedy decomposition of d — oy — .
Then (ag,...,ax) and (B1,71,...,7p) are both greedy decompositions
of d— oY, and (B2,...,0) and (a1,71,...,7,) are both greedy decom-
positions of d — ). It therefore follows by induction on d that all of the
sequences (aq,...,ax), (o1, B1,71,---,%), and (B1,..., ;) are reorder-
ings of each other.

Our proof of the following lemma relies heavily on the classification
of root systems. It would be very interesting to find a type-independent
proof.

Lemma 4.10.
(a) If « € R™ is not cosmall, then s, < zov.

(b) If a and 8 are cosmall roots, then sq - sg < zqvipv.

Proof. The lemma has been checked case by case when R has excep-
tional Lie type, so we will assume that R has classical type. We will use
the notation of Example 4.1 for the roots in R. The coroots are given
by (ej —e;)Y =ej—ei, (ej+e) =ej+ei, (i) = 2e;, and (2¢;)" = e;.

The Weyl group W is a subgroup of Aut(R"). For —1 < i <n-—1
we set s; = sg, € Aut(R"). Depending on the Lie type of R, these
reflections may or may not be elements of W. We also set o, = s, for
1 <k <n,and set v;; = Sejtes Tij = Sej—ess Wij = SiSit1 - Sj—1,
and d; ; = sj_18j—2---s; for 1 <7 < j < n. To reduce the number of
special cases, we furthermore set 7; ; = u; ; = d; ; = 1 for i > j. Notice
that the Hecke products of these elements depend on the Lie type of
R. For example, if R has type D,,, then s_; is a simple reflection and
$_1-8_1=8_1, whereas s_1-s_1 = 89815081 = s_151 if R has type B,.

Assume that o € RT is not cosmall. Then the root system R is
not simply laced. If R has type B,, then a = ¢; where 2 < i < n,
the greedy decomposition of o is (e; + €;_1,¢; —€;_1) and s = 0; =
8i—1°04-1"8i—1 < 0j—1"8;—1-04—1-8i—1 = V;j—1;-5i—1 = Zov. lf R has type
Chp, then a = ¢; +¢; where 1 < i < j < n, the greedy decomposition
of Oév is (2€j,26i) and Sa = I/Z',j = 0y TZ'J' 0y = 04 di+1,j . ui,j s 0 =
diy1j -0 -uij-0; < djj-0;-u;j-0; =0j0; = zgv. This proves part
(a).

Now let a, 3 € R™ be cosmall roots. We must prove the inequality
Sq - 88 < Zgv4pgv in the Bruhat order of W. Notice that this implies
that sg - sa = (80 - 85) 7" < (2avipv) "' = zavipv; hence we are free to
interchange o and . We may assume that « (and £) is not a maximal
root of oV + 3, since otherwise (a, 3) is a greedy decomposition and
there is nothing to prove. In what follows we will use the convention
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that zero vectors should be omitted in any specification of a greedy
decomposition. We consider five main cases. All commutations of factors
in the identities below follow from Proposition 4.8.

Case 1: Assume that o = ¢, — ¢; and 8 = ¢; — ¢; for some i < k and
j < l. Up to interchanging o and f, the assumption that o and 3 are
not maximal roots of oV + Y implies that i < j < k < [. In this case the
greedy decomposition of o+ Y is (e; —e;, e —e¢;), and sq-55 < Zqv 44V
holds because
il Tik = Tjn- ik - Tig - Wik = Tj1 - djy1k - Tij - Uik
=il Tig djpLk Uik = TiL Tigc Tik
= Tjpc Uig—1 - i Tik = Ui Tjn- dig - Tjk

S Wi Thn - dig Tk = Til " Tjk -

Case 2: Assume that a = 2¢; for some j. Then R has type C,, and
since o and 3 are not maximal roots of oV +3Y we must have 3 = e;, —e;
where ¢ < j < k. The greedy decomposition of a¥ + 3" is (2e, e; — €;);
as mentioned above, the vector e; —e; is omitted if ¢ = j. The inequality
Sq - 88 < zqvypv holds because

05 Tig = diyj - 05~ Uij - Tig = dij - O Uig1j - Tijk = dij - Uig1j - O3~ Tik
=T O Tik = Tij0i digt Uik = Tij-dig1 - 05 Ui g <
=Tij" d@k c 05 Ui = Tj5° Ok -

Case 3: Assume that @ = e;. Then R has type B, and since « and

B are not maximal roots of a¥ 4 B8Y we must have 8 = ¢; — e; for

some ¢ > 1. The greedy decomposition of a¥ + Y is (e; + e1), and
Sq - 88 < zZqvygv holds because

80 T1i <80 T14°S0 = Vi -

Case 4: Assume that o = e; +¢; and 3 = ¢; — ¢, for some ¢ < j and
k < Il. Then R has type B, or D,. The assumption that « is not a
maximal root of oV + 8 holds if and only if we have either k < j < [
ori <l <jand k <i < j—1.If Kk < j < I, then the inequality
Sq -5 < zqv4pv follows from the subcases 4a, 4b, and 4c, below, and if
i<l<jand k <1t < j—1, then it follows from the subcases 4d and 4e.

Case 4a: Assume that a = ej +¢; and 3 = e, — ¢; where 1 < j < k.
Then the greedy decomposition of a¥ + Y is (ex + ¢;). If R has type
B,,, then the inequality s, - sg < z4v4gv holds because
Vi Tijy = 00" Tijj* 03 Tik = 0 - Wij—1 - dijj - 0; - Ti
=04 Wij—1 - dij - 0q Ui Tk dij =05 Uij—1- 05 Tjk - dij
=04 0j " Tjk Uij—1-dij = 0i-0j - Tjk Tij

=0 Tjk 0i Tij < 0j Tjk 0j =Vjk (by Case 2).
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Otherwise, R has type D,, and the inequality holds because
Vij Tik = Vij Wik dif—1 = diz-doj-5_1-Ugj Ul Uk dj—1
=dy;-doj-s5_1-u;-urk - dig—1
=dy;-daj-5_1- Uk -ulj—1 - dik-1
=dy;-doj-5_1-81 U -urj—1-dig_1
=dy;-dyj-81-5-1 U Ul j—1"djj—1
=dy;-dyj-s5_1 Uk UL j—1 " dig—1
=dy;-dyj-s_1-Ugp-uj—1-djr—1-di;
=dy;-dij-s_1-ugp-djg_1-ur;-1-dij
=dy;-dyj-s_1-Ugp - djp—1-urj-dij1
=dy;-dij-s_1-ugp - djg—1-dig1j U1
=di;-dij-5-1- Uk - dig1 k-1 UL
=dy;-dij-s_1-diyap Uk -uL;j
=dyij-doit1-5-1digo) - Uk - UL
=dyj-diyok - dogy1 - S—1- Uk UL
<dyj-dog 851 Ugp UL =Vjg.
Case 4b: Assume that a = e, +ej and 8 = ¢; —e; where i < j < k <.
Then the greedy decomposition of o¥ + Y is (e + ex,e; — €;), and
Sq - 88 < Zqv4pv holds because
Vi Til =Vjk Uij Tl dij =i Vi T dij <  (by Case 4a)
Wi~ Vit~ dijg = Vil - Wij - dij = Vg~ Tij -
Case 4c: Assume that a = e;, +¢; and 8 = ¢ —e; where i < j < k <.
Then the greedy decomposition of o¥ + Y is (e + e, e — ¢;), and
Sq - 88 < zZqvypgv holds because
Vi " Tjl = Vi * Wik " Thl - Ak = Vil Wik - dig1,0 - Ukt - djk
=Uj gk Agp1 Vig Ukl djg < Ujk - dig - Vi Ul djg
= Wjk Vil i = Vil Wk djk = Vil Tjk-
Case 4d: Assume that o = ¢j, +e¢; and 3 = e —¢; where i < j < k—1.
Then the greedy decomposition of &'+ is (ep+ex—1, ex —€p—1,€;—€;),
and s, - 53 < zqv4gv holds because
Vik * Tik = Vi - Wij - Tik - dij = Vjk - Wij - djp1 - Uk dij
= Uiy djs1 - Vi Wik iy < Ui djg - Vik - Wik - dij
= Ui Sk—1"djk—1"Vjk Ujk—1" Sk—1" i
= Uijj* Sk—1 " Vk—1k * Sk—1"dijj = Ui j " Vk—1k * Sk—1 - Sk—1 " di
= Uij - V=1 Sk—1"dij = Vi—1k * Sk—1 " Uij - dij

= Vk—1k " Sk—1"Ti,j -
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Case 4e: Assume that o = ¢; +¢; and 8 = e, —e; where i < j < k <.
Then the greedy decomposition of o¥ + Y is (e + ex,e; — €;), and
Sq - 88 < zZqv4pgv holds because
Vil Tik = Vil Ui Tk~ dij = Vg Ui djpik - Uk dij
= Ui - djrke - Vig - Uik i < i djg Vg gk - dig

= Uij V- dig = Vg i dig = Vil Tij

Case 5: Assume that o = ¢; + ¢, and 8 = e; + ¢; for some ¢ < j and
k < I. Then R has type B,, or D,. The assumption that a and 3 are
not maximal roots of a¥ + 3Y implies that i < [ and k < j. If j # [,
then the inequality s - sg < zqvygv follows from the subcases 5a, 5b,
and 5c, below, and if j = [, then it follows from the subcases 5d and 5e.

Case 5a: Assume that o = ¢; +¢; and = e +¢; where i < j < k <.
Then the greedy decomposition of o + Y is (e; + eg, e; + €;). If R has
type B, then the inequality s, - sg < zov4gv holds because
Vil Vik = Vil 0i Tig 0i =0 Vi~ Tig0; < (by Case 4)
O Vil Tij 0y =V 04 Tijj 0=V Vij-
Otherwise, R has type D,, and the inequality holds because
Vil Vik =V di; Vg -ur; =V di;- 81 Tok 5-1" UL,
=di;S-1 Vi1 Tok S—1 UL,
<di; 51 Vg To - 5—1-ur; (by Case4)
= Vg di;-S5_1-"Toj S—1-Ul; =V d1;-V1j Ul =Vl Vij-
Case 5b: Assume that a = ¢;+¢; and 8 = e;, +¢; where i < j < k <.
Then the greedy decomposition of o + Y is (e; + ex, e + ¢;). If R has
type By, then the inequality s, - sg < z4v4gv holds because
Vil Vjk = 05Ty 0i Vi =0; T Vig-0; < (by Case 4)
O " Vil " Tij~0i = Vgl 03 Tij 0i="Vgi Vij.
Otherwise, R has type D,, and the inequality holds because
Vil - Vjk = dyi- Vg Uiy Vik = dii-s-1- T2,0 - S—1- Ul " Vjk
=di; 51 -To Vg 851 Uty < dij 51 Vg To -5 -ui,; (Case 4)

=Vpy-di;-S5-1"T2j S—1 " Ul; = Vg di;-Vij Ul; = Vgl Vij-

Case 5c: Assume that o = e +¢; and § = e¢; + ¢; where 1 < j < k.
If i = 1, then the assumption that o is not a maximal root of o + 3V
implies that R has type B,. In this case the greedy decomposition of
aY+BY is (ex+e€j, e1), and the inequality sq-s5 < z4v4 v holds because

ik "Vij=Vik S0 T1j5 S0 ="Vik T1j" S0 < Vik S0 (by Case 4).

Otherwise, we have 1 < i < j < k, the greedy decomposition of o + 3
is (ex +e€j,€; +€i—1,€; — e;—1), and the inequality follows from Case 5a
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because
Vik Vij =Vik Si—1"Vi—1j Si—1=Vik Vi-1j 8i-1=< Vik Vi—1,4 " Si—1-

Case 5d: Assume that o = ¢j, +e¢; and 3 = e, +¢; wherei < j < k—1.
Then the greedy decomposition of &+ is (ep+ex—1, ex —ep—1,€;+€;),
and the inequality s, - s3 < 2,v4gv holds because

Vjk*Vik = Vjk * Sk—1"Vik—1"Sk—1 = Vjk - Vijk—1 - Sk—1 < (by Case ba)
Uk—1k " Vij " Sk—1 = Vk—1k - Sk—1 " Vij -

Case 5e: Assume that a = ej +¢; and f = e; + ¢; where 1 < j — 1.
If i = 1, then the assumption that o is not a maximal root of o + 3V
implies that R has type B,. In this case the greedy decomposition of
aY + Y is (e +ej_1,ej —ej_1,e1), and the inequality so - 55 < zqv44v
holds because

V1 V1, = V1,480 T1,i°80 = V1,i*T1,i°80 < Vi—1,iSi—1°80 (by Case 4)-

Otherwise, we have 1 < i < j — 1, the greedy decomposition of oV + 3
is (ej +ej—1,e; —ej_1,€; + ej—1,e; — e;—1), and the inequality follows
from Case 5d because

VijVij = Vij 8i—1'Vi—1,j'Si—1 = Vi j"Vi-1j8i—1 < Vj—1"8j-1"Vi—1,i"5i—1 -

Since the above cases cover all possibilities for @ and 3, the proof is
complete. q.e.d.

Theorem 4.11. Let d € ZAY be an effective degree.
(a) If « € RT satisfies o < d, then Sq - zd—av < 24
(b) IfO < d < d, then 24 Zd—a < Z4-

Proof. We proceed by induction on d, the case d = 0 being clear.
Let d > 0, and assume that the theorem is true for all strictly smaller
degrees. We first show that part (b) follows from part (a). Given an
effective degree d’ with 0 < d’ < d, let & € R™ be a maximal root of d'.
Then part (a) and the induction hypothesis imply that

2dc Zd—d = St Rd'—aV  Zd—d' < Sa -t Zd—aV < Zd,

as required.

We prove part (a) by descending induction on a. The statement is
true by definition if « is a maximal root of d. Assume « is not a maximal
root of d. If « is not cosmall, then let 8 > « be a maximal root of .
We then obtain from Lemma 4.10(a) that

Sat Zd—aV < ZaV t Zd—aV = 8B ZaV_pY * Zd—aV S 85 Zd—pv < 24 -

We may therefore assume that « is cosmall. Since « is not a maximal
root of d, we can choose a cosmall root v such that a < v and 7" < d.
By Lemma 4.7 we may assume that v — a" is a simple coroot. We can
therefore choose a maximal root 3 of d — " such that vV —a¥ < BV.
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Now let 4/ > ~ be a maximal root of o + 3Y. We finally obtain from
Lemma 4.10(b) that

Sa* Zd—aV = Sa * SB * Zd—aV—-BY < ZaV+BY " Zd—aV —BY
= Syl ZqVi gV Zd—aV—BY S Syt Zg_v S Zd -

This completes the proof. q.e.d.

4.2. General homogeneous spaces. We finish this section by extend-
ing the construction of z; to an arbitrary homogeneous space X = G/P.
Given a degree d € Ho(X) = ZAY/ZA}Y, the maximal elements of the
set {o« € RT N RE | oV + A} < d} are called mazimal roots of d.
The root o € R ~ R; is called P-cosmall if o is a maximal root of
aY + A}, € Hy(X). Notice that any P-cosmall root is cosmall, and a
B-cosmall root is the same as a cosmall root. The highest root in R
is P-cosmall for every parabolic subgroup P. If « is P-cosmall, then
Proposition 4.8 implies that s, - s3 = sg - s, for each 3 € Ap. It follows
that s, - wp = wp - s4.

Define a greedy decomposition of d € Hs(X) to be a sequence of
positive roots (i, as,...,qx) such that oy € RT \ R} is a maximal
root of d and (g, ..., ax) is a greedy decomposition of d—ay € Ha(X).
The empty sequence is the only greedy decomposition of 0 € Ha(X).
If (aq,9,...,01) is a greedy decomposition of d € Hy(X), then for
any sufficiently large degree e € Hy(G/B) such that e +ZA}, = d there

exist positive roots vyi,...,Ym € R;S such that (o, ..., Q% Y1, .., Ym) iS
a greedy decomposition of e. It follows from this that any other greedy
decomposition of d is a reordering of (asq, ..., ak).

If d € Hy(X) is any effective degree and (aq,...,ax) is a greedy de-
composition of d, then we let zC]lD € W7 be the unique element satisfying

2Fwp = 54, “Sap -t Say WP .
Notice that wp - szp = szp.
Corollary 4.12. Let d € Ho(X) be an effective degree.
a) If o € R satisfies ¥ + ZAY, < d, then s - zf_ava < zPwp.
b) If 0 < d <d, then zf, . zf_d,wp < szp.
c) Ifae R\ R; is a maximal root of d, then s, - zf_ava = zf;wp.

d) For all sufficiently large degrees e € Ho(G/B) such that e+ ZAp =
d € Hy(X) we have szp = Z.

A~~~ T~ /N

Proof. Parts (a) and (b) follow from Theorem 4.11, and parts (c) and
(d) are clear from the definitions. q.e.d.

Remark 4.13. Let 0 < d € Hy(X). For any root @ € R* such that
aV < d € Hy(X) we have (1) zf;wp-sa < szp, (2) sa-zf,wp < szp,

(3) zi-saWp < zC]lDWp, and (4) Sa'25Wp < zC]lDWp, whered = d—aV €
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H,(X). Furthermore, if « € RT \ R}, is any maximal root of d, then
(1), (2), (3), and (4) hold with equality.

5. Curve Neighborhoods

5.1. The main theorem. Given an effective degree d € Hy(X) =
ZAY JZAY,, let Mo (X, d) be the Kontsevich space of n-pointed stable
maps of degree d to X, with total evaluation map ev = (evy,...,evy,) :
Mon(X,d) — X™. We have

dim Mo (X, d) = dim(X) + (c1(Tx),d) +n — 3,

where ¢;(T’x) is given by (3). Given any subvariety 2 C X, define the de-
gree d curve neighborhood of Q to be Tg(Q) = evy(evy (). A geometric
argument in [5, Cor. 3.3(a)] shows that, if Z is a B-stable Schubert va-
riety, then so is I'4(€2). The following result gives a more combinatorial
proof of this fact and also identifies the Weyl group element of the curve
neighborhood. This result is equivalent to Theorem 1.

Theorem 5.1. For any w € W we have T'g(X (w)) = X (w - 21).

Proof. We prove the result by induction on d, the case d = 0 being
clear. Assume that d > 0 and that Tg/(X(u)) = X(u - 2%) for all & < d
and all u € W. Let « € RT \ R; be a maximal root of d and set
v = (W-Sq)Sq. Since v.P € X (w) and v.C,, is a curve of degree a¥ +ZAY,
from v.P to (w - $qu).P, it follows that X(w - s4) C Tyv(X(w)). We
therefore obtain X (w - z}) = X(w - sq - 25 v) = Ta—av (X (w - 54)) C
Fyov(Tov (X (w))) C Tg(X (w)).

On the other hand, let u.P € T'y(X(w)) be any T-fixed point. Since
the locus of curves of degree d from X (w) to u.P is a closed T-stable
subvariety of Mg 2(X,d), it follows that this locus contains a T-stable
curve C' connecting u.P to a point v.P € X (w) where v € W¥. This
curve must be a connected union of irreducible T-stable components.
At least one component contains v.P, and any such component has
the form v.C, with o € Rt ~ RJIS. Choose a component v.C\, such
that ¢’ = C' \ v.C, connects vs,.P to u.P. Since vsy.P € X(w - 84)
and [C'] < d — a¥ € Hy(X), it follows from Corollary 4.12(a) that
u.P €Ty ov(X(w-sa)) = X(w-sq-z) v) C X(w-zL). Since I'y(X (w))
is B-stable and all its T-fixed points belong to X (w - z¥), we deduce
that ['q(X(w)) C X(w - 2Y). This completes the proof. q.e.d.

Remark 5.2. The curve neighborhood of the opposite Schubert va-
riety Y (w) is given by I'y(Y (w)) = Y (wo(wow - 2%)), where wo(wow - 22)
may be regarded as a “decreasing” Hecke product of w and 25 .

5.2. The moment graph. The element zf; € WP can also be con-
structed using the moment graph of X. The vertices of this graph are
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the T-fixed points X7 and the edges are the irreducible T-stable curves
in X. More precisely, there is an edge between u.P and w.P if and only
if wWp = us,Wp for some root o € RT RJIS; the corresponding T'-
stable curve is u.C, C X, which has degree [C,] = oV +ZAp € Hy(X).
Define the weight of a path in the moment graph to be the sum of the
degrees of its edges. Given d € Ho(X), let Z; € X7 be the subset of
points w.P for which there exists a path from 1.P to w.P of weight
at most d. Then Theorem 1 implies that 25 .P is the unique maximal
element of Z; in the Bruhat order on X7, defined by w.P < w.P if and
only if ulWp < wWhp.

Example 5.3. Let X = SO(5)/B = OF(5) be the variety of isotropic
flags in the vector space C® equipped with an orthogonal form. The
corresponding root system has type Bs. Let A = {81, f2} be the simple
roots, with 81 long and (2 short. The remaining positive roots are o =
B1+ B2 and v = B1 + 282, with coroots a¥ = 28y + 33 and 7" =
BY + 85 . Write s; = sg, for i = 1,2. The moment graph of X is displayed
below, with each edge labeled by its degree. Since the paths of weight "
starting at 1 are 1 — s1 — 5152, 1 — 53 — s251, and 1 — 5, = 525152,
we have z,v = s,. On the other hand, the paths of weight o starting
at 1 include 1 — s1 — wq, SO 24v = Wy F# Sq = S15251.

5.3. Line neighborhoods. Let v € A\ Ap, and consider the Dynkin
diagram of the simple roots in the set Ap U {y}. We will say that ~
is a Fano root of X if ~ is at least as long as all other roots in its
connected component in this diagram. It has been proved by Strickland
[26] and by Landsberg and Manivel [21] that 7 is a Fano root for X if
and only if the Fano variety of lines in X of degree vV € Hy(X) is a
homogeneous space. In this case we will compute the element Z,IYDV that

describes neighborhoods defined by lines of degree ~V.

Lemma 5.4. Let v € A~ Ap. Then wp(y) is the largest root in
RN (y+ZAp).
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Proof. Let p be any maximal root in the set R N (v + ZAp). Then
wp(p) — v is a nonnegative linear combination of Ap. Since we have
wp(Ap) C R™, we obtain p — wp(vy) = wp(wp(p) —v) < 0. Since
wp(y) € RN (v + ZAp), this implies that p = wp(y). q.e.d.

Proposition 5.5. Let v € A~ Ap be any Fano root for X. Then
wp(7y) is the unique maximal root of vV + ZAY, € Ho(X).

Proof. Let o € R* \ R}, be any maximal root of 4" + ZAY,. Then
we have oY =~Y +y for some y € ZA}, and o = %7—1— %y Since
is a Fano root of X and the support of « is contained in the connected
component of v in the Dynkin diagram of Ap U {~}, it follows that
la] < |y|. We deduce that « € RN (y + ZAp), so Lemma 5.4 implies
that a < p := wp(y). Finally, since p¥ + ZA}, = vV + ZAY, € Hy(X),

we must have o = p. q.e.d.

Corollary 5.6. If v € A~ Ap is a Fano root for X, then z,IYDVWp =
wps,Wp.

Proof. The root p = wp(vy) is the unique maximal root of 7" €
Hy(X), so we have zf;va =5, Wp = WpS,Wp - Wp = WpSy - wp. d.e.d.

5.4. Degree distances in cominuscule varieties. A simple root v €
A is cominuscule if, when the highest root in R is written as a linear
combination of simple roots, the coefficient of v is 1. The variety X =
G/P is cominuscule if P is a maximal parabolic subgroup and Ap =
A~ {7} for a cominuscule root . In this case Ho(X) = Z is generated
by vV + ZA}, so any degree can be identified with an integer. The
following result is known from combining Lemmas 4.2 and 4.4 in [5].

Theorem 5.7. Assume that X = G/P is cominuscule with Ap =
A~ {v}. For any effective degree d € Ha(X) we have zf'Wp = (wps.,) -
(wpsy) - ... (wpsy)Wp where the Hecke product has d factors.

Proof. Lemma 5.4 and the cominuscule condition imply that p =
wp(7y) is the highest root in RT. Since p¥ + ZAY, = ¥ + ZAY, is the
smallest positive degree in Hy(X), it follows that p is the only P-cosmall
root in R™ \ R}. The greedy decomposition of d € Hy(X) is therefore

(p,p,-..,p), with p repeated d times. Finally, since s, -wp = wps - wp,
we obtain

2iwp =8,-8y ... 8, wp = (Wpsy) - (Wpsy) - ...  (wpsy) wp,
as required. q.e.d.

Given two points z,y € X in a cominuscule variety, define the de-
gree distance d(x,y) to be the smallest possible degree of a rational
curve from z to y. The study of this integer was suggested by Zak [27]
and plays a fundamental role in Chaput, Manivel, and Perrin’s gener-
alization [9] of the “quantum equals classical” principle from [6]. The
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maximal value of d(x,y) was computed by Hwang and Kebekus [16].
Notice that we may choose g € G such that g.x = 1.P and g.y = u.P for
some u € WP in which case d(z,y) = d(1.P,u.P). The function d(z,vy)
is therefore determined by the following corollary, which was obtained
earlier in [9, Prop. 18].

Corollary 5.8. Assume that X = G/P is cominuscule with Ap =
A~A{7}, and let w € WT. Then d(1.P,u.P) is the number of occurrences
of s, in any reduced expression for u.

Proof. For any degree d € Hy(X) it follows from Theorem 5.7 that
u.P € Tg(X(1)) if and only if u has a reduced expression with at most
d occurrences of s,. Set d = d(1.P,u.P). Since we have u.P € I'q(X (1))
and u.P ¢ T'y_1(X(1)), we deduce that u has a reduced expression with
exactly d occurrences of s,. We finally appeal to Stembridge’s result
[25] that all elements of W are fully commutative, i.e., any reduced
expression for an element of W’ can be obtained from any other by
interchanging commuting simple transpositions (see also [8, §2] for an
alternative proof of this fact). This implies that all reduced expressions
for u have the same number of occurrences of s, . g.e.d.

6. Criteria for cosmall roots

In this section we prove several criteria for cosmall roots. These results
will be useful for proving the quantum Chevalley formula. We start with
the following two theorems, which are proved together.

Theorem 6.1. Given any root « € RT \ Rf, we have {(saWp) <
(c1(Tx),a") — 1. Moreover, the following are equivalent.
(a) The root av is P-cosmall.
(b) We have equality ¢(saWp) = (c1
(c) We have (R \ R}) N sa(R})
I(se) \ (BpU{a}).

Theorem 6.2. Let 0 < d € Ho(X). Then £(28) < (e1(Tx),d) — 1.
Furthermore, if £(z}) = (c1(Tx),d)—1, then d = o +ZAY, for a unique
P-cosmall root a.

(T: ) ) L.
= d (v,aY) =1 for all v €

Proof of Theorems 6.1 and 6.2. Given o € RT \ R;S, we consider the
sets A = I(sq) N (RS U{a}), B = (R \ RL) N so(RY), and C =
(RT N R})Nso(RT N\ R}). Since RT N\ R}, is the disjoint union of {a},
A, B, and C, we obtain from (3) that

(CI(TX _2+Z ’Ya +Z(,Y7QV)+Z(,Y,C¥V
yEA yEB yeC

Notice that |A| = £(saWp) — 1, (y,a¥) > 1 for all v € AU B, and
Lemma 2.1 implies that nyec(%av) = 0. The inequality ¢(soWp) <
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(c1(Tx),a")—1 and the equivalence of (b) and (c) in Theorem 6.1 follow
from this.

We next prove Theorem 6.2. Let 0 < d € Hs(X), and let v be a
maximal root of d. If d —vY # 0 € Hy(X), then we obtain by induction
that 6(25) = E(zf_w - s, Wp) < K(zf_yv) + (s, Wp) < (a1(Tx),d —
) =1+ (c1(Tx),vY) =1 = (e1(Tx),d) — 2. We deduce that, if £(z]) =
(¢1(Tx),d) — 1, then d = ¥ + ZA}, in Ho(X). The uniqueness of v
follows because the greedy decomposition () of d is unique.

Assume that o € RT\ R}, satisfies £(soWp) = (c1(Tx), ") —1. Since
saWp < 25, Wp, we deduce from Theorem 6.2 that o = vV € Ha(X)
for a P-cosmall root v € RT ~ RJ]S, and we have s,Wp = zgv Wp =
syWp. Lemma 2.2 therefore implies that o = . This proves the impli-
cation (b) = (a) in Theorem 6.1.

On the other hand, assume that condition (c) fails. If there exists a
root v € A with (y,a") > 2, then « is short, v is long, and (a,vY) =
1. Set 8 = —sq4(y) € RT. Then BY + Y = 4V — s4(7Y) = ¥ and
(a,8Y) = (,a¥ —~Y) = 1. Since |B] = |/, we obtain sg(a) + s(a) =
20— (B+7) =2a— %a < 0. Up to interchanging  and +, this implies
that s, (o) = a—y < 0,s0a < yandy¥ < " € Hy(X). This shows that
a is not P-cosmall. Otherwise B # () and we can choose 8 € R; such
that s (8) € RT\ R}. Since the support of s,(5) is not contained in the
support of 3, we must have (8,a") < 0. Set v = sg(a) = a—(a, 8Y)5 >
a. Then 7" = sg(a¥) =a" — (8,a")BY = a¥ € Hy(X), and hence « is
not P-cosmall. This establishes the implication (a) = (c) and completes
the proof. g.e.d.

Remark 6.3. Theorem 6.1 implies that
{(s4) = 2min(height(a), height(a")) — 1

for each @ € RT, where height(a) is the sum of the coefficients ob-
tained when « is expressed in the basis of simple roots. In fact, we have
(c1(Teyp), ") = 2height(a"), and either a or o is cosmall.

The following criterion has so far only been proved for B-cosmall
roots, but we believe that it holds for P-cosmall roots when the root
system R is simply laced.

Proposition 6.4. Let « € R™. Then « is cosmall if and only if

ZaV = Sq-

Proof. This follows from Lemma 4.10(a) and the definition of z,v.
q.e.d.

Conjecture 6.5. Assume that R is simply laced and let o € R+\RJ]S.
Then « is P-cosmall if and only if z(fv Wp = soWhp.
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Example 6.6. Let G be a group of type B, let A = {81, (2}, a =
B1+ P2, and let v = B1 + 2085 be as in Example 5.3, and let P C G be the
parabolic subgroup defined by Ap = {82}. Then s, Wp = s15951Wp =
woWp is the longest coset; hence s, Wp = zfv Wp. However, the greedy
decomposition of a¥ + ZA}, is (v,7), so « is not P-cosmall. In fact,
Example 5.3 shows that « is not even B-cosmall.

The following definition together with Proposition 6.8, below, is our
reason for choosing the name “cosmall” in section 4.

Definition 6.7. A positive root o € R™ is large if it is long and can
be written as the sum of two short positive roots. Otherwise, a is small.

Proposition 6.8. Let o € RT. Then « is cosmall if and only if the
coroot o is a small root of the dual root system R .

Proof. By Theorem 6.1 it is enough to show that oV is large if and
only if there exists a root v € I(s,) \ {a} for which (y,a") > 2. If
oV is large, then « is short and we can write oV = 3" + 7" where 3
and ~y are long positive roots. Since we have (o, 8Y) < 1, (a,7Y) < 1,
and (o, 8Y) + (,7Y) = (o, ") = 2, we deduce that (o,7") = 1 and
(v,a@¥) > 2. Finally, since so(7") = 7Y —a¥ = —38Y, it follows that
v € I(s4) ~ {a}. Conversely, if v € I(sq) \ {a} satisfies (v,aY) > 2,
then set 3 = —s4(y) € RT. Then « is short, v and 3 are long, and
BY = —s4(7Y) = @V —~". This shows that «" is large. q.e.d.

7. Gromov—Witten invariants

Given w € W and d € Hs(X), define the Gromov—Witten variety
CWy(w) = evy (X (w)) € Mo2(X,d).

We have dim GWy(w) = l(wWp) + (¢1(Tx),d) — 1, and Theorem 1
implies that evi(GWy(w)) = Iy(X(w)) = X(w - z}'). We need the
following consequence of [5, Prop. 3.3].

Proposition 7.1 ([5]). The variety GW4(w) is unirational, and the
evaluation map evy : GWy(w) — Ty(X(w)) is a locally trivial fibration
over the open B-orbit in T'y(X(w)). In particular, the general fibers of
evy are unirational.

Theorem 7.2. Let w € W¥ and 0 < d € Hy(X). Then the class
(ev1)«[GW4(w)] is nonzero in H*(X) if and only if d = o + ZAY, for
some root a € RT such that l(wsoWp) = l(w) + (a1(Tx),a¥) — 1. In
this case v is P-cosmall and (evy)«[GWg(w)] = [X (wsq)].

Proof. Assume that (evq)«GWgy(w)] # 0. Then the inequalities
dim X (w - 28) < l(w) + £(z]) < (w) + (a1(Tx),d) — 1 = dim GW 4(w)
must be equalities, and Theorem 6.2 implies that d = o¥ + ZA}, €
Hj(X) for some P-cosmall root av. Since £(w-zLWp) = £(w) +£(zF Wp)
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and 2V Wp = s,Wp, we obtain from Proposition 3.3 that I';(X (w)) =
X(w - sq) = X(ws,). Finally, Proposition 7.1 gives (evq)«[GWgy(w)] =
[[4(X (w))]. On the other hand, if « € R* satisfies d = oV € Hy(X) and
Uwso Wp) = l(w) + (c1(Tx),d) — 1, then the inequalities £(ws,Wp) <
lw) + L(saWp) < L(w) + (¢1(Tx),d) — 1 must be equalities, so The-
orem 6.1 implies that a is P-cosmall. Similarly, both of the inequali-
ties L(ws,Wp) < dim X (w - z}') < dim GW,4(w) are equalities; hence
(ev1)«[GW4(w)] # 0. q.e.d.

Let H7(X) denote the T-equivariant cohomology ring of X. Each
T-stable closed subvariety Z C X defines an equivariant class [Z] €
H7(X). Pullback along the structure morphism X — {point} gives
H7(X) the structure of an algebra over the ring A := HJ.(point), and
H%(X) is a free A-module with basis {[Y(w)] : w € W¥}. For any
class Q € H;.(X) we let [, Q € A denote the proper pushforward of
Q along the structure morphism X — {point}. The Kontsevich space
My (X,d) has a natural T-action given by (t.f)(y) = t.f(y) for any
stable map f : C — X and t € T, and the evaluation maps ev; :
Mon(X,d) — X are T-equivariant. Given classes Q1,...,Q, € H5(X)
and d € Hy(X), the associated equivariant Gromov-Witten invariant is
defined by

Ii(q,...,Q,) = / evi (1) -evy(Qa)---evy(Q,) €A.

M0,7L(X7d)

Notice that Theorem 7.2 holds for the equivariant class (evy).[GW 4(w)]
in H}.(X), with the same proof.

Corollary 7.3. Let w,u € W and 0 < d € Ho(X). The two-point
Gromov—Witten invariant I;([Y (u)], [X(w)]) is nonzero if and only if
there exists a root a« € RY \ R} such that d = oV + ZAY,, l(ws,Wp) =
lw)+(e1(Tx),a")=1, and uWp = ws,Wp. In this case o is P-cosmall
and I([Y (u)], X () = 1.

Proof. Since we have I4([Y (v)], [X (w)]) = [ [Y(u)]- (ev1)«[GWq(w)]
by the projection formula, the corollary follows from Theorem 7.2. q.e.d.

The divisor axiom [18] (see also [13, Eq. (40)]) is valid for equivariant
Gromov-Witten invariants. Let Z C X be any T-stable divisor and
0 < d € H2(X), and consider the variety ev,,*(Z) C M (X, d) and the
morphism ¢ : ev,;1(Z) — Mg n—1(X,d) that discards the nth marked
point in the domain of its argument. For a general stable map f : C' — X
in Mo ,—1(X,d), we can identify the fiber ¢~1(f) with f~1(Z) C C, so
it follows from Kleiman’s transversality theorem [17] that #¢~1(f) =
([2],d) = [,[Z] for all points f in a dense open subset of Mg ,—1(X,d).

We deduce that ¢.[ev;, 1 (Z)] = ([Z],d)-[Mon—1(X,d)], so the projection
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formula implies that
(9) Lg(Q, . Qo [Z]) = ([Z2),d) - 1a($h, .-, Q1) €A

for all classes Q1,...,9,-1 € H}(X). In particular, the equivariant
Gromov—Witten invariant I3(Qq,...,Q,-1,[Z]) depends only on the
class of Z in the ordinary cohomology ring H*(X) and not on its equi-
variant class in H}.(X).

Corollary 7.4. Let u,w € WP, B € A, and 0 < d € Hy(X). If the
Gromov—Witten invariant Iq([Y (u)], [Y (sg)], [ X (w)]) is nonzero, then
there ezists a unique root & € RT \ R}, such that (i) d = oV + ZAY,,
(ii) wWp = usaWp, and (iii) L(wWp) = L(uWp) + 1 — (c1(Tx),a").
If « € RT \ R} is any root satisfying (i), (ii), and (iii), then we have
(Y ()], [V (sp)], [X ()]} = (wp, a”) € Z.

Proof. If 1;([Y (u)], [X (w)], [Y (sg)]) # 0, then it follows from (9) and
Corollary 7.3 that there exists a root v € Rt \ R} such d = 7" +
ZAY,, uWp = ws,Wp, and £(wWp) = (uWp)+1— (c1(Tx),~"). Since
ulws, € Wp we deduce that o := u=tw(—v) € R \ R} satisfies (i),
(ii), and (iii). The uniqueness of « follows from Lemma 2.2. q.e.d.

Remark 7.5. The K-theoretic two-point invariants are easier to
compute, since Proposition 7.1 together with the K-theoretic Gysin
formula of [7, Thm. 3.1] imply that (evi)«[Ogw,w)l = [OX(wzjl’)] €
Kp(X) for any degree d > 0. It follows that any equivariant K-theoretic
two-point Gromov—Witten invariant of X is given by

Xty 00 (V1 Ov )] - ev2[Oxw)]) = Xx ([Ov(w)] - [Ox(w-2p)])

1 iqupgw-zCIlDWp

— @) =
Xx ( Y(U)OX(U}%};)) {0 otherwise.

We refer to [7, §4] for notation. Unfortunately, the K-theoretic invari-
ants do not satisfy a divisor axiom, so this formula does not reveal any
three-point invariants.

8. The equivariant quantum Chevalley formula

The T'-equivariant quantum cohomology ring QH,(X) is an algebra
over the polynomial ring Alg] := Afgg : B € A~ Ap], where A =
HZ (point), which as a Alg]-module is defined by QHy(X) = H*(X) ®z
Alg]. The multiplicative structure of QHy(X) is given by

Y ()] % [Y(0)] = Y L(lY (@)L [Y (0)], (X (w)]) ¢/ [Y (w)],
w,d

where the sum is over w € W¥ and 0 < d € Ha(X), and we write
¢ = Hﬁ qéwﬁ D Tt was proved in [23, 24] that if v = sg is a simple
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reflection, then the product [Y(u)] x [Y(s3)] contains no mized terms,
i.e., if d # 0, then the coefficient of ¢?[Y (w)] is always an integer. This
fact is also a consequence of Corollary 7.4.

To state the equivariant quantum Chevalley formula, we need some
notation. Since G is simply connected, each integral weight A € Z{wg |
B € A} can be identified with a character X : T — C*. Let C) be the cor-
responding one-dimensional representation of 7', defined by t.z = A(t)z.
This representation can be viewed as a T-equivariant vector bundle over
a point, so it defines the equivariant Chern class cr(\) := ¢! (Cy) € A.
This class should not be confused with the class that A might represent
in H2(X) = Z{wg | B € A~ Ap} by the notation of Section 2. The
ring A is the polynomial ring over Z generated by the classes cr(wp)
for 5 € A. The equivariant quantum Chevalley formula is the following
result [10, 14, 24].

Theorem 8.1. Let u € W and B € A~ Ap. Then we have
Y)Y (sp)] = > (wg,a")[V(usa)] + er(ws —uwg) [Y(u)]

+ > (wga¥) g™ [V (usa)] ;

the first sum is over a € RT~\ R}, such that {(usoaWp) = {(uWp)+1, and
the second sum is over a € RT \ R}, such that {(usaWp) = L(uWp) +
1-— (cl(TX),aV).

Proof. Tt follows from Corollary 7.4 that the second sum accounts
for all terms with nonzero ¢-degrees. The remaining terms come from
the equivariant product [Y (u)] - [Y (sg)] € H7(X), and the coefficient of
[Y (w)] in this product is

o= [ W@ W (s5)] (X)) = [ [V () X ()] [ (s)] €A

This coefficient is nonzero only if u < w and ¢(wWp) < L(uWp) + 1.
If {(wWp) = £(uWp) + 1, then the intersection Y (u) N X (w) is a one-
dimensional closed T-stable subvariety of X whose T-fixed points consist
of u.P and w.P. It follows that Y (u) N X (w) = u.Cq and w.P = us,.P
for some root @ € RT \ R}, and we have cuss = ([Y(sp)],[Ca]) =
(wg,a"), as claimed. This argument can also be found in, e.g., [14,
Lemma 8.1] or [3, Prop. 1.4.3].

The last remaining term is ¢, [Y'()]. The projection formula implies

that

ﬂwzjww»mmzwwmﬂ
X



CURVE NEIGHBORHOODS OF SCHUBERT VARIETIES 281

where [Y(sg)|u.p € A is the restriction of [Y'(sg)] to the T-fixed point
u.P € X. Set A = wg, and notice that Ly, = G xP C_y is a G-
equivariant line bundle with action defined by ¢'.[g, 2] = [¢'g, 2]. Ac-
cording to the Borel-Weil theorem [4, p. 99], there exists a B°P-stable
section o € H°(X, Ly), unique up to scalar, and we have Co =2 C_y as a
T-representation. This implies that o : X x C_y — L) is a morphism of
T-equivariant line bundles. Since the zero section Z (o) is B°P-stable, we
deduce from (4) that Z(o) = Y (sg). The T-equivariant class of Y (sp)
is therefore given by

[V (sp)] = [Z(0)] = ¢ (Ln) — ¢ (X x C_») € HF(X).
Since the fiber of Ly over u.P is Ly(u.P) = C_, 5, we obtain

Y (s)lup = ¢f (Cour) — ] (Con) = er(wp — uwp).
This finishes the proof. g.e.d.

Remark 8.2. The full strength of Theorem 1 is not necessary to
prove the quantum Chevalley formula. We here sketch a short alter-
native argument that bypasses the combinatorial construction of 25 .
It follows from Proposition 7.1 that I'y(X (w)) is a Schubert variety in
X for all w € WP and d € Hy(X). Using this, we can show that,
if d > 0, then there exists a positive root o € RT RIJS such that
Fy(X(w)) =Tg_ov(X(w-s4)). In fact, if we write T'g(X (w)) = X (u), let
C be a T-stable curve from v.P € X (w) to u.P, and let v.C,, C C' a com-
ponent such that C' \ v.C,, connects vs,.P to u.P, then we must have
X(u) C T (X(v8a)) C Ty_av(X(w + 84)) C Dg—aqv(Tpv (X (w))) C
I'y(X(w)). The arguments proving Theorems 6.2 and 7.2 now show
that dimI'y(X (w)) < l(w) + (c1(Tx),d) — 1, with equality if and only
if d = a¥ + ZA}, for some root & € R* such that l(ws,Wp) =
l(w) + (¢1(Tx),d) — 1. Theorem 7.2 and the quantum Chevalley for-
mula follow from this.
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