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CONVEXITY ESTIMATES FOR SURFACES MOVING

BY CURVATURE FUNCTIONS

Ben Andrews, Mat Langford & James McCoy

Abstract

We consider the evolution of compact surfaces by fully non-
linear, parabolic curvature flows for which the normal speed is
given by a smooth, degree one homogeneous function of the prin-
cipal curvatures of the evolving surface. Under no further restric-
tions on the speed function, we prove that initial surfaces on which
the speed is positive become weakly convex at a singularity of the
flow. This generalises the corresponding result [26] of Huisken
and Sinestrari for the mean curvature flow to the largest possible
class of degree one homogeneous surface flows.

1. Introduction

Given a smooth, compact surface immersion X0 : M2 → R
3, we

consider smooth families X : M2 × [0, T ) → R
3 of smooth immersions

X(·, t) solving the curvature flow

∂X

∂t
(x, t) = − s(x, t)ν (x, t)

X(x, 0) = X0(x) ,
(1.1)

where ν(x, t) is a choice of unit normal at (x, t), and the speed s is given
by a smooth, symmetric function f of the principal curvatures κ1(x, t),
κ2(x, t) with respect to ν(x, t). That is,

s(x, t) = f (κ1 (x, t) , κ2 (x, t)) .(1.2)

We require that the speed function f satisfy the following conditions:

Conditions 1.1.

(i) that f ∈ C∞(Γ), where Γ ⊂ R
2 is an open, symmetric, connected

cone;
(ii) that f is strictly increasing in each argument: ∂f

∂xi
> 0 in Γ, for

i = 1, 2;
(iii) that f is homogeneous of degree 1: f (kx) = kf (x) for any k > 0

and any x ∈ Γ; and
(iv) that f is positive on Γ.
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Note that we lose no generality by assuming further that Γ contains
(1, 1) and f is normalised such that f(1, 1) = 1. Furthermore, since
f is symmetric, we may at each point (x, t) ∈ M × [0, T ) assume that
κ2(x, t) ≥ κ1(x, t).

We note that Condition (ii) ensures that (1.1) is, locally, a parabolic
system. Short-time existence and uniqueness of solutions can be inferred
using standard techniques (see [19, 13, 18]), so long as the principal
curvatures of the initial immersion lie in Γ.

The following examples illustrate the class of flows and initial surfaces
considered.

Examples. The following speed functions satisfy Conditions 1.1:

1) The mean curvature: f(x1, x2) = x1 + x2 on the half-space Γ =
{(x1, x2) ∈ R

2 : x1 + x2 > 0}.
2) The power means: f(x1, x2) =

(
|x1|β + |x2|β

) 1

β , β ∈ R, on the
positive cone Γ = Γ+.

3) Positive linear combinations of functions satisfying Conditions 1.1:
If f1, . . . , fk satisfy Conditions 1.1 on Γ, then, for all (s1, . . . , sk) ∈
Γk+, the positive cone in R

k, the function f = s1f1+ · · ·+skfk sat-
isfies Conditions 1.1 on Γ. For example, the function f(x1, x2) =

x1 + x2 +
√
x21 + x22 is admissible on the cone Γ+. (In fact, this

speed is admissible on the much larger cone Γ = {(x1, x2) ∈ R
2 :

max{x1, x2} > 0}.)
4) Homogeneous combinations of functions satisfying Conditions 1.1:

Let φ : Γk+ → R be smooth, homogeneous of degree one, monotone
increasing in each argument, and strictly increasing in at least
one argument. Then, if f1, . . . , fk satisfy Conditions 1.1 on Γ, the
function f(x1, x2) := φ(f1(x1, x2), . . . , fk(x1, x2)) satisfies Condi-
tions 1.1 on Γ.

5) A general construction: Write x1, x2 in polar coordinates (r, θ)
defined by

r =
√
x21 + x22 , cos θ =

x1 + x2√
2(x21 + x22)

, sin θ =
x2 − x1√
2(x21 + x22)

.

Then, writing f = rφ(θ), Conditions 1.1 become

φ > 0

and

A(θ) <
φ′

φ
< B(θ) ,

where

A(θ) =

{
cos θ+sin θ
sin θ−cos θ , −3π/4 < θ < π/4;

−∞, π/4 ≤ θ ≤ 3π/4;
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and

B(θ) =

{
+∞, −3π/4 ≤ θ ≤ −π/4;
cos θ−sin θ
cos θ+sin θ , −π/4 < θ ≤ 3π/4 .

Therefore, given any smooth, odd function ψ : (−c, c) → R, with
0 < c ≤ 3π/4, satisfying A(θ) < ψ(θ) < B(θ), we can construct
an admissible speed function f = rφ(θ) on the cone {−c < θ < c}
by taking φ = e

∫ θ
0
ψ(σ)dσ .

Curvature problems of the form (1.1), for which the speed f satis-
fies Conditions 1.1, have been studied extensively, both for surfaces in
R
3 and for higher dimensional Euclidean hypersurfaces. In particular,

when the initial (hyper)surface X0 :M → R
n+1 (n ≥ 2) is convex, much

is known about the behaviour of solutions. Huisken [24] showed that
convex hypersurfaces (n ≥ 2) flowing by mean curvature remain convex
and shrink to round points, ‘round’ meaning that a suitable rescal-
ing converges smoothly to the sphere. These results were extended by
Chow to flows by the n-th root of the Gauss curvature [15], and, in
the presence of a curvature pinching condition, the square root of the
scalar curvature [16]. Each of these speeds satisfies Conditions 1.1, with
Γ = Γn+ := {x ∈ R

n : xi > 0 for all i}, the positive cone. More gen-
eral degree one homogeneous speeds were treated by the first author in
[3, 5, 6], where it was shown that a very general class contract convex
hypersurfaces to round points. In fact, when the dimension of the hy-
persurface is 2, it was shown in [8] that no additional restrictions on the
speed are necessary; that is, all surface flows with speeds satisfying Con-
ditions 1.1 (i)–(iii) on Γ = Γ+ shrink convex surfaces to round points.
Note that one cannot hope to extend this result to higher dimensions,
since, in that case, there exist smooth, homogeneous degree one speeds
that do not preserve convexity of the initial hypersurface [12, Theorem
3].

It is true in general (Proposition 2.6) that flows (1.1) satisfying Con-
ditions 1.1 remain smooth until the curvature blows up (after a finite
time), just as for convex surfaces. On the other hand, if the initial
surface is not convex, the behaviour of solutions near a singularity is
potentially more complicated than that of the shrinking sphere. For
the mean curvature flow, a crucial part of the current understanding of
singularities is the asymptotic convexity estimate of Huisken and Sines-
trari [26] (see also White [38]), which states that any mean convex
initial surface becomes weakly convex at a singularity. This estimate is
an analogue for extrinsic flows of the famous Hamilton-Ivey estimate for
three-dimensional Ricci flow [23, 28]. In conjunction with the mono-
tonicity formula of Huisken [25] and the Harnack inequality of Hamilton
[22], the convexity estimate yields a rather complete description of sin-
gularities in the positive mean curvature case. In particular, asymptotic
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convexity is necessary in order to apply the Harnack inequality to show
that ‘fast-forming’ or ‘type-II’ singularities are asymptotic to convex
translation solutions of the flow. For other flows, the understanding
of singularities is far less developed, for several reasons: First, there is
no analogue available for the monotonicity formula, which shows that
‘slowly forming’ or ‘type-I’ singularities of the mean curvature flow are
asymptotically self-similar. Second, there is in general no Harnack in-
equality available sufficient to classify type-II singularities, although the
latter is known for quite a wide sub-class of flows [4]. And finally, until
recently, there was no analogue of the Huisken-Sinestrari asymptotic
convexity estimate for most other flows, with the notable exception of
the result of Alessandroni and Sinestrari [1], which applies to a spe-
cial class of flows by functions of the mean curvature having a certain
asymptotic behaviour. In a companion paper [11], the authors prove
that an asymptotic convexity estimate holds for fully non-linear flows
(1.1) satisfying Conditions 1.1 if, in addition, the speed f is a convex
function. The main purpose of this paper is to show that an asymptotic
convexity estimate holds in surprising generality for flows of surfaces;
namely, the assumption that f is convex is unnecessary:

Theorem 1.2. Let X : M2 × [0, T ) → R
3 be a solution of (1.1) for

which f : Γ → R satisfies Conditions 1.1. Then for any ε > 0 there is a
constant Cε such that for all (x, t) ∈M × [0, T ) we have

κ1(x, t) ≥ − εs(x, t)− Cε .

Applications of the convexity estimate are discussed in [11]. In par-
ticular, the Harnack inequality [4] yields a description of type-II sin-
gularities analogous to that of the mean curvature flow, as long as the
speed f satisfies a certain concavity condition on the positive cone (this
condition is satisfied, for example, if f is convex, or inverse-concave). If
the speed function is concave, then the results of [10] may be used to
rule out singular profiles such as G × R, where G is the Grim Reaper
curve.

It is worth noting that Theorem 1.2 cannot be expected to hold in
higher dimensions without additional conditions on the speed function
(such as convexity) since, in general, quite different behaviour is possi-
ble; there are, for example, concave speed functions that permit loss
of convexity, as mentioned earlier. The special feature of the two-
dimensional case is that the ‘difficult’ terms involving first derivatives
which arise in the evolution of the second fundamental form, which
must normally be controlled by assuming some concavity condition on
the speed function, turn out under careful inspection to be automati-
cally favourable to preserve bounds on the ratios of principal curvatures.
This observation was first made in [9], where it was used to show that
convex surfaces contract to round points for a similarly general class of
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speeds, and has also been used in [32] to show that compact self-similar
solutions of a wide variety of flows are spheres. Similar ideas are also
present in [34], where they are used to obtain convergence to round
points under the flow with speed given by |h|2, the squared norm of the
second fundamental form.

We remark that the proof of Theorem 1.2 utilises a Stampacchia
iteration procedure analogous to those of [24, 26, 27], whereas the result
of [1] is proved more directly, using the maximum principle.

Acknowledgments. This research was partly supported by ARC Dis-
covery Projects grants DP0556211, DP120100097.

2. Preliminaries

The curvature function f is a smooth, symmetric function defined
on a symmetric cone. Denote by SΓ the cone of symmetric 2 × 2
matrices whose eigenvalue pair, λ := (λ1, λ2), lies in Γ. A result of
Glaeser [20] implies that there is a smooth, GL(2) invariant function
F : SΓ → R such that f(λ(A)) = F (A), where λ(A) = (λ1(A), λ2(A))
are the eigenvalues of A. The GL(2) invariance of F implies that the
speed s(x, t) = f(κ1(x, t), κ2(x, t)) is a well-defined smooth function of
the Weingarten map, W; that is, s(x, t) = F (W(x, t)) := F (W ), where
W (x, t) is the component matrix of W(x, t) with respect to some basis of
endomorphisms of TxM . If we restrict attention to orthonormal bases,
thenWi

j = hij(x, t), where hij are the components of the second funda-
mental form h (which is the bilinear form related to the endomorphism
W by the metric). This point of view will be more convenient.

We shall use dots to indicate derivatives with respect to the principal
curvatures and the second fundamental form; for example,

ḟ i(λ)vi :=
d

ds

∣∣∣∣
s=0

f(λ+ sv)

f̈ ij(λ)vivj :=
d2

ds2

∣∣∣∣
s=0

f(λ+ sv)

Ḟ ij(A)Bij :=
d

ds

∣∣∣∣
s=0

F (A+ sB)

F̈ pq,rs(A)BpqBrs :=
d2

ds2

∣∣∣∣
s=0

F (A+ sB) .

Note that the summation convention is used here, and throughout. The
derivatives of f and F are related in the following way [17, 3, 8]: If A
is a diagonal, and B a symmetric matrix, then

Ḟ kl(A) = ḟk(λ(A))δkl ,
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and, if λ1(A) 6= λ2(A),

F̈ pq,rs(A)BpqBrs = f̈pq(λ(A))BppBqq

+ 2
∑

p>q

ḟp(λ(A)) − ḟ q(λ(A))

λp(A)− λq(A)

(
Bpq
)2

.

In fact, the latter identity makes sense as a limit if λ1 = λ2. Therefore,
in particular, in a local orthonormal frame of eigenvectors of W, we
have

Ḟ kl(W) = ḟk(κ)δkl(2.1)

and

F̈ pq,rs(W)BpqBrs = f̈pq(κ)BppBqq + 2
∑

p>q

ḟp(κ)− ḟ q(κ)

κp − κq

(
Bpq
)2

.(2.2)

In what follows, we will drop the arguments when F and f , and their
derivatives, are evaluated at W or κ. This convention makes the nota-
tion s for the speed obsolete, and we henceforth replace it by F . That
is, we identify F (x, t) ≡ F (W(x, t)). We remark that the preceding dis-
cussion depends only on the fact that f is a smooth, symmetric function
defined on an open, symmetric cone, and not on any properties of the
flow.

We now note the following evolution equations, which are well known
(see, for example, [24, 3, 12]).

Lemma 2.1. Under the flow (1.1),

(i) ∂tgij = −2F hij ;

(ii) (∂t − L)F = Ḟ klhk
mhmlF ; and

(iii) ∂t dµ = −HF dµ ,
where gij denote the components of the induced metric, µ denotes the

induced measure, and L denotes the (elliptic) operator Ḟ kl∇k∇l (where
∇ is the induced Levi-Civita connection).

Moreover, given any smooth, symmetric function g : Γ → R, the
corresponding curvature function G := g(κ) evolves according to

(iv) (∂t−L)G =
(
ĠklF̈ pq,rs − Ḟ klG̈pq,rs

)
∇khpq∇lhrs+ Ġ

ijhijḞ
klh2kl ,

where h2kl = hk
mhml.

Consider the evolution equation for F in statement (ii) of Lemma 2.1.
The identity (2.1) implies that, in an orthonormal frame of eigenvectors
for W,

Ḟ klhk
mhml = ḟ iκ2i ≥ 0 .(2.3)

Therefore, since F > 0, the maximum principle implies that the mini-
mum of F cannot decrease under the flow. In particular, since Euler’s
Theorem for Homogeneous Functions implies f(κ1, κ2) = ḟ1κ1 + ḟ2κ2,
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we find that the largest principal curvature of the solution remains posi-
tive. In fact, a time dependent lower bound for the speed is also possible
(see Lemma 2.5).

Now consider a smooth, symmetric, degree zero homogeneous func-
tion g : Γ → R. By Euler’s Theorem, we have that the corresponding
curvature function G = g(κ1, κ2) evolves under (1.1) according to

(∂t −L)G = (ĠklF̈ pq,rs − Ḟ klG̈pq,rs)∇khpq∇lhrs .(2.4)

The following lemma helps us to find preserved curvature cones. It
is proved in [9, Proposition 2], but we give the argument here as the
computations will be useful in what follows.

Lemma 2.2. Let g : Γ → R be a smooth, symmetric, homogeneous
degree zero function, and denote by G ≡ G(W) = g(κ) the corresponding
curvature function. Then, at any spatial stationary point of G for which
Ġ is non-degenerate, it holds that

(ĠklF̈ pq,rs − Ḟ klG̈pq,rs)∇khpq∇lhrs

=
2F ġ1

κ2(κ2 − κ1)

[(
∇1h12

)2
+
(
∇2h12

)2]
.

Proof. We first show that κ1 6= 0 and κ2 6= κ1 wherever Ġ is non-
degenerate. We compute in an orthonormal basis of eigenvectors ofW at
any point where Ġ is non-degenerate. Then, by (2.1), Ġkl = ġkδkl, and
it follows that ġk 6= 0 for each k. Since g is homogeneous of degree zero,
Euler’s Theorem implies ġ1κ1 + ġ2κ2 = 0. First suppose that κ1 = κ2;
then we must have ġ2 = −ġ1. But g is symmetric, which implies ġ1 = ġ2

whenever κ2 = κ1. It follows that Ġ = 0, a contradiction. Therefore
κ2 6= κ1 wherever Ġ is non-degenerate. Now suppose κ1 = 0. Then,
again from Euler’s Theorem, ġ2κ2 = 0. But κ2 > 0, so that ġ2 = 0,
another contradiction. Hence κ1 6= 0 wherever Ġ is non-degenerate.

Now, from (2.2), the non-zero components of F̈ (and similarly for G)
are given by

F̈ 11,11 = f̈11 ; F̈ 11,22 = F̈ 22,11 = f̈12 ;

F̈ 22,22 = f̈22 ; F̈ 12,12 = F̈ 21,21 =
ḟ2 − ḟ1

κ2 − κ1
.

(2.5)

Therefore, defining R1 := Ḟ klG̈pq,rs∇khpq∇lhrs, we have

R1 = ḟ1g̈11(∇1h11)
2 + ḟ2g̈22(∇1h22)

2 + ḟ1g̈22(∇1h22)
2

+ ḟ2g̈11(∇2h11)
2 + 2ḟ1g̈12∇1h11∇1h22 + 2ḟ2g̈12∇2h11∇2h22

+ 2ḟ1
ġ2 − ġ1

κ2 − κ1
(∇1h12)

2 + 2ḟ2
ġ2 − ġ1

κ2 − κ1
(∇2h12)

2 .
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This may be written in terms of ∇kG = Ġpq∇khpq = ġ1∇kh11+ġ
2∇kh22

as follows:

R1 =
ḟ1

ġ1
g̈11

ġ1
(∇1G)

2 +
ḟ2

ġ2
g̈22

ġ2
(∇2G)

2

+ 2
ḟ1

ġ1
∇1G∇1h22

(
g̈12 − ġ2

ġ1
g̈11
)

+ 2
ḟ2

ġ2
∇2G∇2h11

(
g̈12 − ġ1

ġ2
g̈22
)

+ ḟ1
ġ2

ġ1
(∇1h22)

2

(
ġ2

ġ1
g̈11 − 2g̈12 +

ġ1

ġ2
g̈22
)

+ ḟ2
ġ1

ġ2
(∇2h11)

2

(
ġ1

ġ2
g̈22 − 2g̈12 +

ġ2

ġ1
g̈11
)

+ 2ḟ1
ġ2 − ġ1

κ2 − κ1
(∇1h12)

2 + 2ḟ2
ġ2 − ġ1

κ2 − κ1
(∇2h12)

2 .

But note that, due to Euler’s Theorem, any smooth, homogeneous de-
gree γ function k of two variables, y1, y2, satisfies the following identities:

k̇1y1 + k̇2y2 = γk ;

k̈11y1 + k̈12y2 = (γ − 1)k̇1 ;

k̈22y2 + k̈12y1 = (γ − 1)k̇2 ;

and k̈11(y1)
2 + 2k̈12y1y2 + k̈22(y2)

2 = γ(γ − 1)k .

(2.6)

Since the first of these identities implies ġ2/ġ1 = −κ1/κ2, the following
three imply

R1 =
ḟ1

ġ1
g̈11

ġ1
(∇1G)

2 +
ḟ2

ġ2
g̈22

ġ2
(∇2G)

2 − 2
ḟ1

κ2
∇1G∇1h22

− 2
ḟ2

κ1
∇2G∇2h11 + 2ḟ1

ġ2 − ġ1

κ2 − κ1
(∇1h12)

2 + 2ḟ2
ġ2 − ġ1

κ2 − κ1
(∇2h12)

2 .

We can play a similar game with R2 := ĠklF̈ pq,rs∇khpq∇lhrs. We find

R2 =
f̈11

ġ1
(∇1G)

2 +
f̈22

ġ2
(∇2G)

2

+ 2ġ1
ḟ2 − ḟ1

κ2 − κ1
(∇1h12)

2 + 2ġ2
ḟ2 − ḟ1

κ2 − κ1
(∇2h12)

2 .
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Therefore,

R := R2 −R1

=

(
f̈11

ġ1
− ḟ1

ġ1
g̈11

ġ1

)
(∇1G)

2 +

(
f̈22

ġ2
− ḟ2

ġ2
g̈22

ġ2

)
(∇2G)

2(2.7)

+ 2
ḟ1

κ2
∇1G∇1h22 + 2

ḟ2

κ1
∇2G∇2h11

+ 2
ġ1ḟ2 − ġ2ḟ1

κ2 − κ1

[
(∇1h12)

2 + (∇2h12)
2
]
.

The first four terms vanish at a spatial critical point of G and the
coefficient of the final term is

2
ġ1ḟ2 − ġ2ḟ1

κ2 − κ1
= 2

ġ1ḟ2κ2 − ġ2κ2ḟ
1

κ2(κ2 − κ1)
= 2

ġ1F

κ2(κ2 − κ1)
.

This completes the proof. q.e.d.

Corollary 2.3. Define c0 := minM×{0}
H
|h| . Then

H(x, t) ≥ c0|h(x, t)|
for all (x, t) ∈M × [0, T ).

Proof. Define

g(κ1, κ2) :=
κ1 + κ2√
κ21 + κ22

=
H

|h| .

Then, assuming κ2 ≥ κ1, we have

g(κ1, κ2) = φ

(
κ1
κ2

)
, where φ(r) :=

1 + r√
1 + r2

.

Therefore,

ġ1(κ1, κ2) = φ′
(
κ1
κ2

)
1

κ2
and ġ2(κ1, κ2) = −φ′

(
κ1
κ2

)
κ1
κ22

.

Now, φ′(r) = 1−r
(1+r2)3/2

. It follows that Ġ is degenerate only if either

κ1 = 0 or κ1 = κ2. Since φ(r) < φ(0) whenever r < 0, we cannot have
κ1 = 0 or κ1 = κ2 at a minimum point of g unless the surface is weakly
convex. On the other hand, at a non-convex point, we have κ1

κ2
< 0,

so that ġ1 < 0. In view of Lemma 2.2, the result now follows from the
maximum principle. q.e.d.

Now define the cone Γc0 := {x ∈ R
2 : x1+x2 > c0

√
x21 + x22}. Then,

by the definition of c0, we have Γ̄c0 \ {0} ⊂ Γ. It follows that the slices
KC := Γ̄c0 ∩{x ∈ R

2 : |x| = C > 0} are compact. Since the speed (and
hence also κ2) remains positive under the flow, Corollary 2.3 implies
that the cone Γ̄c0 is preserved. This observation allows us to obtain
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useful estimates on homogeneous quantities. For example, we find that
the flow is uniformly parabolic:

Corollary 2.4. There is a constant c1 > 0 for which

1

c1
gkl ≤ Ḟ kl ≤ c1g

kl(2.8)

along the flow, where gkl are the components of the inverse cometric.

Proof. Since Γ̄c0 \ {0} ⊂ Γ is preserved by the flow (Corollary 2.3),

it suffices to estimate Ḟ kl on Γ̄c0 \ {0}. Since ḟ i > 0 on Γ for each i,

we have positive lower bounds for each ḟ i on the compact set K :=
Γ̄c0 ∩ {x ∈ Γ : |x| = 1} ⊂ Γ. The degree zero homogeneity of ḟ i in
κ implies that these bounds extend to the entire cone Γ̄c0 \ {0}. The

claim now follows, since, by (2.1), Ḟ ij = ḟ iδij in an orthonormal frame
of eigenvectors of the Weingarten map. q.e.d.

As promised, this leads to a time dependent lower bound for the
speed:

Lemma 2.5. There is a constant c > 0 such that

F ≥ Fmin (0)√
1− 2c F 2

min (0) t
,

where Fmin (0) = minM×{0} F > 0.

Proof. Applying the maximum principle to the evolution equation for
F , we have that

d

dt
Fmin (t) ≥ Ḟ klhkmh

m
lFmin (t) = ḟ iκiFmin(t)

at almost every t in the interval of existence of the solution. In order to
get the time dependent lower bound, we need to establish an estimate
of the form

(2.9) Q :=
ḟ iκ2i
f2

≥ c > 0 .

The result then follows from the maximum principle by comparing Fmin

with the solution of the ordinary differential equation

du

dt
= cu3 .

Since Γ̄c0 \ {0} ⊂ Γ is preserved by the flow (Corollary 2.3), it suffices

to estimate Q on Γ̄c0 \ {0}. Now, for each i, ḟ i > 0 on Γ, so we have a

positive lower bound for f−2ḟ iκ2i on the compact slice K := Γ̄c0 ∩ {x ∈
Γ : |x| = 1}. But this bound extends to the whole cone Γ̄c0 \ {0} since

f−2ḟ iκ2i is homogeneous of degree zero in the principal curvatures.
q.e.d.
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Remark. Lemma 2.5 motivates the distinction between type-I (or
slow) and type-II (or fast) singularities, just as for the mean curvature
flow: that is, those for which the curvature satisfies

max
M×{t}

|h| ≤ C√
2(T − t)

for some C > 0, and those for which it does not, respectively.

It follows from the preceding lemma that smooth solutions of the flow
can only exist for a finite time. We now show that a singularity cannot
occur whilst the curvature is bounded.

Proposition 2.6. If f satisfies Conditions 1.1 and the principal
curvatures of X0 : M → R

n+1 lie in Γ, then the solution of equa-
tion (1.1) exists on a maximal time interval [0, T ), with T < ∞, and
maxM×{t} |h| → ∞ as t→ T .

Proof. The proof is similar to that of the mean curvature flow [24].
We have already mentioned that T <∞. Contrary to the statement of
the proposition, suppose that maxM×{t} |h|2 ≤ C for t → T . We will
show that this implies that X(·, t) approaches a smooth limit immer-
sion XT whose principal curvatures, by Corollary 2.3 and Lemma 2.5,
must lie everywhere in Γ. This immersion could then be used as initial
data in the short time existence result, extending the solution smoothly,
contradicting the maximality of T .

From the evolution equation (1.1), we have for any x ∈M ,

|X (x, t2)−X (x, t1)| ≤
∫ t2

t1

F (x, τ) dτ ,

where 0 ≤ t1 ≤ t2 < T . Applying Conditions 1.1, we have

f (κ1, κ2) ≤ f (κmax, κmax) = κmax ≤ |h| ≤
√
C,

so X (·, t) tends to a unique, continuous limit X (·, T ) as t→ T .
We now show that the limit is an immersion. We recall the following

theorem:

Theorem 2.7 (Hamilton [21]). Let gij be a time dependent metric
on a compact manifold M for 0 ≤ t < T ≤ ∞. Suppose

(2.10)

∫ T

0
max
M

∣∣∣∣
∂

∂t
gij

∣∣∣∣ dt ≤ C <∞.

Then the metrics gij (t) for all different times are equivalent and they
converge as t→ T uniformly to a positive definite metric tensor gij (T )
which is continuous and also equivalent.

To apply Theorem 2.7, we use the evolution equation for the metric,
Lemma 2.1 (i). Since |h| is bounded and T <∞, (2.10) is satisfied.
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It remains to show that the resulting hypersurface MT is smooth.
To do this we can use a simplification of the argument for long time
regularity in [31]. Writing our evolving surface locally as a graph ϕ :
U ⊂ R

2 × [0, T ) → R
3 given by

ϕ (x, t) = (x, z (x, t))

and incorporating a tangential diffeomorphism into the flow (1.1) such
that this parametrisation is preserved, the graph height evolves accord-
ing to

(2.11)
∂z

∂t
= −

√
1 + |Dz|2F = Ḟ ijg−1

ik DkDjz,

where D is the ordinary derivative on R
2.

The matrix product g−1Ḟ can be rewritten as g̃Ḟ g̃ for the symmetric
square root of the matrix of the inverse metric g̃, as in [37]. So, in view
of (2.8), the equation (2.11) is uniformly parabolic.

The evolution equation for F in the local graph setting follows from
Lemma 2.1 (ii):

∂F

∂t
= Ḟ ijg−1

ik DkDjF − g−1
ik Ḟ

ijΓkj
lDlF + Ḟ klhk

mhmlF,

and is likewise uniformly parabolic. Here Γij
k, the connection coeffi-

cients of the evolving metric, do not depend on second derivatives of F .
Moreover, the assumed curvature bound implies that the first deriva-
tives of z are bounded locally. Indeed, writing zj = ∂z

∂xj
, in the local

graph parametrisation, the spatial derivatives of z and the Weingarten
map are related by

∂

∂xi


 zj√

1 + |Dz|2


 =

1√
1 + |Dz|

(
δik −

zizk

1 + |Dz|2
)
zkj(2.12)

= − hij .

Now |h|2 ≤ C implies that we have bounds for each trace element of the
Weingarten map

−
√
C ≤ hii ≤

√
C .

Integrating (2.12) with respect to xi from the origin of the local parametri-
sation then yields

−
√
Cxi ≤

zi√
1 + |Dz|2

≤
√
Cxi .

Squaring, and summing over i, it follows that

|Dz|2

1 + |Dz|2
≤ C |x|2 ,
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so |Dz| is locally bounded (by 1, for example, on
{
|x| ≤ 1

2
√
C

}
).

A well-known result of Krylov-Safonov [29] now implies that z and F
are C0,β in spacetime. Now C2,β regularity in spacetime follows using
results from [14] and [7], as in [31]. We note that the estimates of [7]
do not require any concavity condition on F . Higher regularity follows
by parabolic Schauder estimates (see, e.g., [30]), giving bounds in Cℓ,β

for all ℓ. These local estimates depend only on the curvature bound,
and are easily extended to the whole of MT := X(M,T ). This implies
MT is smooth, allowing us to apply the short-term existence theorem,
contradicting the maximality of T . q.e.d.

3. The pinching function

Now consider the symmetric, homogeneous degree zero function

g(x1, x2) := φ

(
xmin

xmax

)
,

where xmax := max{x1, x2}, xmin := min{x1, x2}, and φ : [−a,∞) → R

is defined by

φ(r) :=
−r
a+ r

, a >
1− c0
1 + c0

.

Then g is smooth on Γ̄c0 \ {x ∈ R
2 : x1 = x2}, with (assuming x2 > x1)

(
ġ1(x1, x2), ġ

2(x1, x2)
)
=

1

x2
φ′
(
x1
x2

)(
1, −x1

x2

)
.

Since φ′(r) = −a
(a+r)2 , we have ġi < 0 on Γ̄c0 \ Γ̄+ for each i. Moreover,

g is positive on Γ̄c0 \ Γ̄+, vanishes on ∂Γ+, and is negative on Γ+. Now
define G(x, t) := g(κ1(x, t), κ2(x, t)). Then, proceeding as in Corollary
2.3, we see that initial upper bounds on G are preserved:

Lemma 3.1. The maximum of G is non-increasing under the flow:

G ≤ c2 := max
M×{0}

G .(3.1)

Proof. The proof is similar to that of Corollary 2.3. q.e.d.

Now observe that, wherever x2 > x1,

g̈11(x1, x2) = φ′′
(
x1
x2

)
1

x2
.

Since φ′′(r) = 2a
(a+r)3 , we see that g̈11 is positive on Γ \ Γ̄+. It follows

from the homogeneity identities (2.6) that g̈ij is positive on Γ \ Γ̄+ for
each i, j = 1, 2.
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Following [24, 26] we consider, for some small positive constants ε
and σ,

Gε,σ := (G− ε)F σ .

Observe that the upper bound on G implies

Gε,σ ≤ c2F
σ .(3.2)

Our goal is to show that for every ε > 0, there is some σ > 0 and some
constant K > 0 for which Gε,σ < K.

Lemma 3.2. Wherever κ1 6= κ2, we have

(∂t − L)Gε,σ = − F σ(Ḟ klG̈pq,rs − ĠklF̈ pq,rs)∇khpq∇lhrs

− 2σ

F
〈∇Gε,σ,∇F 〉F +

σ(σ + 1)

F 2
|∇F |2F + σGε,σ|h|2F ,(3.3)

where we have defined 〈u, v〉F := Ḟ ijuiuj, |u|F :=
√

〈u, u〉F , and |h|2F :=

Ḟ klhk
mhml.

Proof. We first compute

∂tGε,σ = F σ∂tG+
σ

F
Gε,σ∂tF

and

∇Gε,σ = F σ∇G+
σ

F
Gε,σ∇F .

It follows that

LGε,σ = F σLG+
σ

F
Gε,σLF + 2

σ

F
〈∇Gε,σ,∇F 〉F(3.4)

− σ(σ + 1)

F 2
Gε,σ|∇F |2F .

Combining the first and third of these and applying the evolution equa-
tions (ii) and (iv) of Lemma 2.1 yields the result. q.e.d.

Unfortunately, the final two terms of the evolution equation (3.3) can
be positive, and we cannot obtain the required estimate directly from the
maximum principle, as in [1, 35]. However, the Stampacchia iteration
method of [24, 26] is still available to us. The first step is to show that
the spatial Lp norms of the positive part, (Gε,σ)+ := max{Gε,σ, 0}, of
Gε,σ are non-increasing in t for large p, so long as σ is sufficiently small.

4. The Lp estimates

The goal of this section is to prove the following proposition.

Proposition 4.1. For all ε > 0 there exist constants ℓ ∈ (0, 1) and
L > 1, independent of σ and p, such that for all p > L the Lp

(
M,µ(t)

)

norm of (Gε,σ(·, t))+ is non-increasing in t, so long as σ < ℓp−
1

2 .
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To simplify notation, we denote E := (Gε,σ)+ := max{Gε,σ, 0}. Then
Ep is C1 in the t variable for p > 1, with ∂tE

p = pEp−1∂tGε,σ. Recall
that µ(t) denotes the Riemannian measure induced onM by the immer-
sion X(·, t). Since µ is smooth in t, the integral

∫
Ep dµ is in C1(0, T ).

We will show that

d

dt

∫
Ep dµ ≤ 0

for large p and small σ (as in the statement of Proposition 4.1).
The evolution equation (3.3) for Gε,σ implies

∫
Ep dµ evolves under

the flow according to

d

dt

∫
Ep dµ = p

∫
Ep−1LGε,σ dµ + p

∫
Ep−1F σRdµ(4.1)

− 2σp

∫
Ep−1 〈∇Gε,σ,∇F 〉F

F
dµ

+ pσ(σ + 1)

∫
Ep

|∇F |2F
F 2

dµ

+ σp

∫
Ep|h|2F dµ−

∫
EpHF dµ ,

where R :=
(
ĠklF̈ pq,rs − Ḟ klG̈pq,rs

)
∇khpq∇lhrs, and the final term

comes from the evolution of dµ under the flow (Lemma 2.1, part (iii)).
We integrate the first term by parts:

∫
Ep−1LGε,σ dµ = − (p − 1)

∫
Ep−2|∇Gε,σ|2F dµ

−
∫
Ep−1F̈ kl,rs∇khrs∇lGε,σ dµ .

Using the expression for the gradient, ∇Gε,σ = F σ∇G+ σ
FGε,σ∇F , we

find

∫
Ep−1LGε,σ dµ = − (p− 1)

∫
Ep−2|∇Gε,σ|2F dµ

−
∫
Ep−1F σĠpqF̈ kl,rs∇khrs∇lhpq dµ

− σ

∫
EpF−1Ḟ pqF̈ kl,rs∇khrs∇lhpq dµ .
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Therefore,

d

dt

∫
Ep dµ = − p(p− 1)

∫
Ep−2|∇Gε,σ|2F dµ− p

∫
Ep−1F σQ, dµ

(4.2)

− σp

∫
EpF−1Ḟ pqF̈ kl,rs∇khrs∇lhpq dµ

− 2σp

∫
Ep−1 〈∇Gε,σ,∇F 〉F

F
dµ

+ pσ(σ + 1)

∫
Ep

|∇F |2F
F 2

dµ+ σp

∫
Ep|h|2F dµ

−
∫
EpHF dµ ,

where we have defined

Q := (ĠpqF̈ kl,rs + Ḟ klG̈pq,rs − ĠklF̈ pq,rs)∇khpq∇lhrs .

It will be useful to compare ∇F with ∇h as follows:

Lemma 4.2. There is a constant c3 > 0 for which

|∇F |2F ≤ c3|∇h|2

along the flow.

Proof. This is a simple application of Corollary 2.4. q.e.d.

The first term of (4.2) is manifestly non-positive, vanishing only if
Gε,σ is non-positive or spatially constant. We can squeeze another good
term out of Q as follows:

Lemma 4.3. We have the following decomposition:

Q = Q1 +Q2 ,

where

Q1 := ḟ1g̈11
(∇1G

ġ1

)2

+ ḟ2g̈22
(∇2G

ġ2

)2

+ 2
f

H3

[
(∇1h12)

2 + (∇2h12)
2
]
,

and

Q2 :=

(
ḟ2 − ḟ1

κ2 − κ1
− 2

ḟ1

κ2

)
∇1G∇1h22 +

(
ḟ2 − ḟ1

κ2 − κ1
− 2

ḟ2

κ1

)
∇2G∇2h11 ,

from which we deduce that

−F σQ ≤ −
(
C1 − C2p

− 1

2 − C3σ
)
E
|∇h|2F
F 2

+ C4p
1

2

|∇Gε,σ|2F
E

,

wherever Gε,σ > 0, where C1, C2, C3, and C4 are positive constants that
depend possibly on ε, but not on σ or p.
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Proof. Recall that

Q :=
(
ĠpqF̈ kl,rs + Ḟ klG̈pq,rs − ĠklF̈ pq,rs

)
∇khpq∇lhrs .

We expand in an orthonormal frame of eigenvectors of W. Using (2.5),
we have

ĠpqF̈ kl,rs∇khpq∇lhrs = F̈ kl,rs∇kG∇lhrs

= f̈11∇1h11∇1G+ f̈22∇2h22∇2G

+ f̈12∇2h11∇2G+ f̈12∇1h22∇1G

+
ḟ2 − ḟ1

κ2 − κ1
∇1G∇2h12 +

ḟ2 − ḟ1

κ2 − κ1
∇2G∇1h21 .

Using ∇kG = ġ1∇kh11+ ġ
2∇kh22, and the homogeneity identities (2.6),

this becomes

ĠpqF̈ kl,rs∇khpq∇lhrs =
f̈11

ġ1
(∇1G)

2 +
f̈22

ġ2
(∇2G)

2

+
ḟ2 − ḟ1

κ2 − κ1
∇1G∇2h12 +

ḟ2 − ḟ1

κ2 − κ1
∇2G∇1h21 .

The decomposition Q = Q1 + Q2 now follows from the definition of G
and equation (2.7) from the proof of Lemma 2.2.

We will now show that there are positive constants, C1, C2, C3, C4,
for which

−F σQ1 ≤ − C1E
|∇h|F
F 2

,(4.3)

and − F σQ2 ≤ C4p
1

2

|∇Gε,σ|2F
E

+ (C2p
− 1

2 + C3σ)E
|∇h|2F
F 2

.(4.4)

Consider first (4.3). Since E = (Gε,σ)+ vanishes unless G > ε, we need
only consider the points with κ ∈ Γε := {x ∈ Γ : ε ≤ g(x) ≤ c2}. Using
the estimate E ≤ c2F

σ, it suffices to show that Q̃1 := |∇h|−1F 2Q1 has

a positive lower bound when ∇h 6= 0. The quantity Q̃1 is homogeneous
of degree zero in the principal curvatures, so we only need to obtain a
lower bound on the compact slice K := {x ∈ Γ̄ε : |x| = 1}. Now, since

K is a compact subset of Γ, we have positive lower bounds for f, ḟ i and

g̈ij for each i, j = 1, 2. Therefore, by the definition of Q1, Q̃1 vanishes on
K only if ∇G = ∇1h12 = ∇2h12 = 0. Since ∇kG = ġ1∇kh11+ ġ

2∇kh22,
this implies ∇1h11 = κ1/κ2∇1h22 = κ1/κ2∇2h12 = 0, and similarly
∇2h22 = 0. Therefore we must in fact have ∇h = 0. The claim follows
since | · |F is equivalent to the usual norm.

We now show that (4.4) holds. Define

q1 =
ḟ2 − ḟ1

κ2 − κ1
− 2

ḟ1

κ2
and q2 =

ḟ2 − ḟ1

κ2 − κ1
− 2

ḟ2

κ1
.
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Recalling that ∇kGε,σ = F σ∇kG+ σ
FGε,σ∇kF , we have

F σQ2 = q1∇1Gε,σ∇1h22 + q2∇2Gε,σ∇2h11(4.5)

− q1
σ

F
E∇1F∇1h22 − q2

σ

F
E∇2F∇2h11 .

Since the derivatives ḟ i are bounded above for κ ∈ K, and the de-
nominators in the expressions for q1 and q2 are bounded away from
zero for κ ∈ K, we have Fqi ≤ C on K for each i = 1, 2, where
C := max{qi : κ ∈ K, i = 1, 2}. Since Fqi is homogeneous of degree
zero in the principal curvatures, these bounds extend to Γε.

We now apply Young’s inequality, |ab| ≤ 1
2(ra

2 + b2/r), twice to

equation (4.5) (with r = p
1

2
F
E for the first pair of terms, and r = 1 for

the second pair). We find

F σQ2 ≤
C

F

[
p

1

2F

E

|∇Gε,σ|2
2

+
p−

1

2E

F

|∇h|2
2

+
σ

F
E

( |∇F |2
2

+
|∇h|2
2

)]

≤ c1C

2
p

1

2

|∇Gε,σ|2F
E

+

(
Cc1
2
p−

1

2 +
σc1C

2
(c1c3 + 1)

)
E
|∇h|2F
F 2

.

This completes the proof. q.e.d.

Corollary 4.4. There are constants D1,D2,D3,D4,D5,D6 > 0 that
are independent of σ ∈ (0, 1) and p > 1, for which the following estimate
holds:

d

dt

∫
Ep dµ ≤ −

(
p2 −D1p

3

2 −D2p
)∫

Ep−2|∇Gε,σ|2F dµ(4.6)

−
(
D3p−D4p

1

2 −D5σp
)∫

Ep
|∇h|2F
F 2

dµ

+D6(σp+ 1)

∫
Ep|h|2F dµ .

Proof. Recall equation (4.2). Apply Lemma 4.3 to the second term.

The third term is estimated by noting that FḞ pqF̈ kl,rs is homogeneous
of degree zero in the principal curvatures, so that, estimating each of
these terms above by some constant, we obtain

−σp
∫
EpF−1Ḟ pqF̈ kl,rs∇khrs∇lhpq dµ ≤ Cσp

∫
Ep

|∇h|2F
F 2

dµ

for some C > 0. The next term is estimated as follows:

−2pσ
Ep−1

F
〈∇Gε,σ,∇F 〉F ≤ pσEp

( |∇F |2F
F 2

+
|∇Gε,σ|2F

E2

)

≤ pσEp
(
c1c3

|∇h|2F
F 2

+
|∇Gε,σ|2F

E2

)
.
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Finally, since −HF
|h|2F

is homogeneous of degree zero with respect to the

principal curvatures, it may be estimated above by some constant D6,
which is sufficient to estimate the final term. q.e.d.

Notice that there are constants, c and C say, for which the first
two terms of (4.6) become negative for p and C satisfying p > C and

σ ≤ cp−
1

2 . We now show that it is possible to estimate the final term
of (4.6) in a similar manner. To achieve this, we integrate LGε,σ in
conjunction with a Simons-type identity, inspired by the procedures
carried out in [24, Lemma 5.4] and [26, Lemma 3.5]. In what follows,
σ will always be restricted to the interval (0, 1).

Lemma 4.5 (Poincaré-type inequality). There exist constants Ai,
Bi > 0, independent of p > 1 and σ ∈ (0, 1), such that

∫
Ep|h|2F ≤

(
A1p

3

2 +A2p+A3p
1

2 +A4

)∫
Ep−2|∇Gε,σ|2F dµ

+
(
B1p

1

2 +B2 +B3p
− 1

2

)∫
Ep

|∇h|2F
F 2

dµ .(4.7)

Recall the commutation formula (see, for example, [2, Proposition 5])

∇k∇lhpq = ∇p∇qhkl + hklh
2
pq − hpqh

2
kl + hkqh

2
pl − hplh

2
kq.

Contracting with Ḟ yields the following Simons-type identity:

Lhpq = Ḟ kl∇p∇qhkl + Fh2pq − Ḟ klhpqh
2
kl + Ḟ klhkqh

2
pl − Ḟ klhplh

2
kq .

Contracting this with Ġ yields

ĠpqLhpq = ĠpqḞ kl∇p∇qhkl + FĠpqh2pq .

On the other hand, we have that

Ḟ kl∇p∇qhkl = ∇p∇qF − F̈ kl,rs∇phrs∇qhkl ,

so that

ĠpqLhpq = Ġpq∇p∇qF − ĠpqF̈ kl,rs∇phrs∇qhkl + FĠklh2kl .

We now recall (3.4):

LGε,σ = F σLG+
σ

F
Gε,σLF + 2

σ

F
〈∇Gε,σ,∇F 〉F

− σ(σ + 1)

F 2
Gε,σ|∇F |2F

= F σ(Ḟ klĠpq∇k∇lhpq + Ḟ klG̈pq,rs∇khpq∇lhrs) +
σ

F
Gε,σLF

+ 2
σ

F
〈∇Gε,σ,∇F 〉F − σ(σ + 1)

F 2
Gε,σ|∇F |2F .
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Putting this together, we obtain the following expression for LGε,σ:

LGε,σ = F σ
(
Ḟ klG̈pq,rs − ĠklF̈ pq,rs

)
∇khpq∇lhrs + F σĠkl∇k∇lF(4.8)

+ F σFĠklh2kl +
σ

F
Gε,σLF +

2σ

F
〈∇F,∇Gε,σ〉F

− σ(1 + σ)

F 2
Gε,σ|∇F |2F .

Note the appearance of Ġklh2kl. Since FĠ is homogeneous of degree
zero in the principal curvatures, and strictly negative definite wherever
Gε,σ > 0, we may estimate FĠkl ≤ −γḞ kl, for some γ > 0, whenever

κ ∈ Γε := {x ∈ Γ : ε ≤ g(x) ≤ c2}. In particular, FĠklh2kl ≤ −γ|h|2F .
Return now to equation (4.8). Applying Young’s inequality, we ob-

tain, wherever Gε,σ > 0,

2σ

F
〈∇F,∇Gε,σ〉F ≤ σE

( |∇F |2F
F 2

+
|∇Gε,σ|2F

E2

)
.

Note that the terms F 2
(
Ḟ klG̈pq,rs − ĠklF̈ pq,rs

)
are homogeneous of

degree zero. Then we may estimate each of them above by some con-
stant, C/100. Discarding the final term, recalling the estimates (2.8),
(3.1), and Lemma 4.2, and using σ < 1, we arrive at

LGε,σ ≤ (C + 2c3 + σc3c2)F
σ |∇h|2F

F 2
+ F σĠkl∇k∇lF − γF σ|h|2F

+
σ

F
Gε,σLF + σc2F

σ |∇Gε,σ|2F
E2

.

Now put the γF σ|h|2F term on the left, multiply the inequality by
EpF−σ, and integrate over M to obtain

γ

∫
Ep|h|2F dµ ≤ −

∫
EpF−σLGε,σ dµ +

∫
EpĠkl∇k∇lF dµ

+ (C + 2c3 + σc3c2)

∫
Ep

|∇h|2F
F 2

dµ

+ σ

∫
Ep+1F−1−σLF dµ+ c2σ

∫
Ep−2|∇Gε,σ|2F dµ .

We estimate the first term as follows:

Lemma 4.6. There are constants a1, a2, b1 > 0, independent of p > 1
and σ ∈ (0, 1), for which

−
∫
EpF−σLGε,σ dµ ≤

(
a1p+ a2

) ∫
Ep−2|∇Gε,σ|2F dµ

+ b1

∫
Ep

|∇h|2F
F 2

dµ .
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Proof. Integrating by parts, we find

−
∫
EpF−σLGε,σ dµ = p

∫
Ep−1F−σ|∇Gε,σ|2F dµ

− σ

∫
EpF−σ−1〈∇Gε,σ,∇F 〉F dµ

+

∫
EpF−σF̈ kl,rs∇khrs∇lGε,σ dµ .

Since the terms FF̈ kl,rs are homogeneous of degree zero in the principal
curvatures, they each have uniform upper bounds, so that

−
∫
EpF−σLGε,σ dµ ≤ c2p

∫
Ep−2|∇Gε,σ|2F dµ

+
c2σ

2

∫
Ep
( |∇Gε,σ|2F

E2
+

|∇F |2F
F 2

)
dµ

+
c2C

2

∫
Ep
( |∇h|2

F 2
+

|∇Gε,σ|2
E2

)
dµ

for some C > 0. Therefore,

−
∫
EpF−σLGε,σ dµ ≤

(
c2p+

c2σ

2
+
c2Cc1

2

)∫
Ep−2|∇Gε,σ|2F dµ

+

(
c2c3σ

2
+
c2Cc1

2

)∫
Ep

|∇h|2F
F 2

dµ .

q.e.d.

In a similar manner, we deduce the following:

Lemma 4.7. There are constants a3, b2, b3 > 0, independent of p > 1
and σ ∈ (0, 1), for which

∫
EpĠkl∇k∇lF dµ ≤ a3p

3

2

∫
Ep−2|∇Gε,σ|2F dµ

+
(
b2p

1

2 + b3
) ∫

Ep
|∇h|2F
F 2

dµ .

Proof. Integrating by parts, we find
∫
EpĠkl∇k∇lF dµ = − p

∫
Ep−1Ġkl∇kGε,σ∇lF dµ

−
∫
EpḞ pqG̈kl,rs∇khrs∇lhpq dµ .

Again, each F 2Ḟ pqG̈kl,rs is homogeneous of degree zero in the principal
curvatures, and, hence, uniformly bounded above. Thus

−
∫
EpḞ pqG̈kl,rs∇khrs∇lhpq dµ ≤ C

∫
Ep

|∇h|2F
F 2

dµ
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for some C > 0.
We estimate the remaining term using −FĠij ≤ γḞ ij and Young’s

inequality. We find

−p
∫
Ep−1Ġkl∇kGε,σ∇lF dµ ≤ γp

∫
Ep
( |∇Gε,σ|2F

rE2
+
r|∇F |2F
F 2

)
dµ

for any r > 0. Choosing r = p−1/2 and estimating |∇F |2F ≤ c3|∇h|2F
implies the claim. q.e.d.

The final term to estimate is
∫
Ep+1F−1−σLF dµ.

Lemma 4.8. There are constants a4, a5, b4, b5, b6, independent of p >
1 and σ ∈ (0, 1), for which

∫
Ep+1F−1−σLF dµ ≤

(
a4p

3

2 + a5p
1

2

) ∫
Ep−2|∇Gε,σ|2F dµ

+
(
b4p

1

2 + b5p
− 1

2 + b6

) ∫
Ep

|∇h|2F
F 2

dµ .

Proof. We again integrate by parts. We find
∫
Ep+1F−1−σLF dµ = − (p+ 1)

∫
EpF−1−σ〈∇Gε,σ,∇F 〉F dµ

+ (1 + σ)

∫
Ep+1F−σ |∇F |2F

F 2

−
∫
Ep+1F−1−σḞ pqF̈ kl,rs∇khrs∇lhpq dµ .

The first term is estimated using the Young’s inequality and the second
by Lemma 4.2. The third may be estimated by observing that the terms
FF pqF kl,rs are homogeneous of degree zero in the curvature, and hence
bounded above along the flow, and applying (3.2). We get, for some
C > 0,
∫
Ep+1F−1−σLF dµ ≤ c2

2
(p + 1)

∫
Ep
( |∇Gε,σ|2F

rE2
+
r|∇F |2F
F 2

)
dµ

+ 2c2c3

∫
Ep

|∇h|2F
F 2

dµ +C

∫
Ep

|∇h|2F
F 2

dµ .

Choosing r = p−1/2, we arrive at
∫
Ep+1F−1−σLF dµ ≤ c2

2
(p+ 1)p

1

2

∫
Ep−2|∇Gε,σ|2F dµ

+
(
c2c3(p+ 1)p−

1

2 + 2c2c3 + C
)∫

Ep
|∇h|2F
F 2

dµ

as required. q.e.d.

This completes the proof of Lemma 4.5. We now complete the proof
of Proposition 4.1.
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Proof of Proposition 4.1. Recall the inequality (4.6) of Corollary 4.4.
Combining this with Lemma 4.5 we find

d

dt

∫
Ep dµ ≤ α7

(
p2 − α1σp

5

2 − α2σp
2 − α3p

3

2 − α4p

− α5p
1

2 − α6

)∫
Ep−2|Gε,σ|2 dµ

+ β6

(
p− β1σp

3

2 − β2σp − β3p
1

2

− β4 − β5p
− 1

2

)∫
Ep

|∇h|2
F 2

dµ

for some constants αi, βi > 0 that are independent of σ and p. The
claim now follows easily. q.e.d.

5. Proof of Theorem 1.2

We are now able to proceed similarly as in [24, Section 5] and [26,
Section 3], using Proposition 4.1 and the following lemma to derive the
desired bound on Gε,σ.

Lemma 5.1 (Stampacchia [36]). Let ϕ : [k0,∞) → R be a non-
negative, non-increasing function satisfying

ϕ(h) ≤ C

(h− k)α
ϕ(k)β , h > k > k0 ,(5.1)

for some constants C > 0, α > 0, and β > 1. Then

ϕ(k0 + d) = 0 ,

where dα = Cϕ(k0)
β−12

αβ
β−1 .

Given any k ≥ k0, where k0 := supσ∈(0,1) supM Gε,σ(·, 0), set

vk :=
(
Gε,σ − k

) p
2

+
and Ak,t := {x ∈M : vk(x, t) > 0}.

We will show that |Ak,t| :=
∫ T
0

∫
Ak,t

dµ(t) dt satisfies the conditions of

Stampacchia’s Lemma for some k1 ≥ k0. This provides us with a con-
stant d for which the space-time measure |Ak1+d,t| vanishes. Theorem
1.2 then follows straightforwardly. Observe that |Ak,t| is non-negative
and non-increasing. Then we only need to demonstrate that an inequal-
ity of the form (5.1) holds.

We begin by noting that

Lemma 5.2. There is a constant L1 ≥ L such that, for all p > L1,
we have

d

dt

∫
v2kdµ+

∫
|∇vk|2dµ ≤ c4(σp + 1)

∫

Ak,t

F 2Gpε,σdµ(5.2)

for some c4 > 0.
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Proof. We have

d

dt

∫
v2kdµ ≤

∫
∂tv

2
k dµ =

∫

Ak,t

p(Gε,σ − k)p−1
+ ∂tGε,σ dµ .

Proceeding as in Corollary 4.4, we obtain

d

dt

∫
v2kdµ ≤ − (p2 − D̃1p

3

2 − D̃2p)

∫

Ak,t

(Gε,σ)
p−2
+ |∇Gε,σ|2F dµ

+ D̃6(σp+ 1)

∫

Ak,t

(Gε,σ)
p
+|h|2F dµ

≤ − 4c1(1− D̃1p
− 1

2 − D̃2p
−1)

∫
|∇vk|2F dµ

+ c4(σp+ 1)

∫

Ak,t

(Gε,σ)
p
+F

2 dµ

for some constants D̃1, D̃2, c4, where we used

|∇vk|2 =
p2

4
(Gε,σ − k)p−2

+ |∇Gε,σ|2 ,

and estimated the homogeneous degree zero quantity |h|2F /F 2 above by

c4/D̃6. The claim now follows. q.e.d.

Now set σ′ = σ + 2
p . Then

∫
F 2 (Gε,σ)

p
+ dµ =

∫ (
Gε,σ′

)p
+
dµ ,

so that
∫

Ak,t

F 2dµ ≤
∫

Ak,t

F 2
(Gε,σ)

p
+

kp
dµ = k−p

∫

Ak,t

(
Gε,σ′

)p
+
dµ(5.3)

≤ k−p
∫ (

Gε,σ′
)p
+
dµ .

If we ensure

p ≥ max

{
L1,

16

ℓ2

}
, σ ≤ ℓ

2
p−

1

2 ,

we have p ≥ L1 and σ′ ≤ ℓp−
1

2 , so that, by Proposition 4.1,
∫

Ak,t

F 2dµ ≤ k−p
∫ (

Gε,σ′
)p
+
dµ ≤ k−p

∫ (
Gε,σ′(·, 0)

)p
+
dµ0(5.4)

≤ µ0(M)

(
k0
k

)p
.

For large enough k, we can make the right hand side of this inequality
arbitrarily small. We will use this fact in conjunction with the following
Sobolev inequality (see [24]) to exploit the good gradient term in (5.2).
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Lemma 5.3. There is a constant c5 ∈ [1/2,∞), depending only on
n and the initial datum, such that

(∫
v2qk dµ

) 1

q

≤ c5

(∫
|∇vk|2dµ +

∫
F 2dµ

(∫
v2qk dµ

) 1

q

)
,(5.5)

for any q > 0.

Proof. Since we have the estimate H2 < CF 2, where C only depends
on the initial datum, this follows from the Michael-Simon Sobolev in-
equality [33] just as in [24]. q.e.d.

It follows from (5.5) and (5.4) that there is some k1 > k0 such that
for all k > k1 we have

(∫
v2qk dµ

) 1

q

≤ 2c5

∫
|∇vk|2dµ .

Therefore, from (5.2), we have for all k > k1

d

dt

∫
v2kdµ+

1

2c5

(∫
v2qdµ

) 1

q

≤ c4(σp+ 1)

∫

Ak,t

F 2Gpε,σdµ .

Integrating this over time, and noting that Ak,0 = ∅, we find

sup
t∈[0,T ]

∫

Ak,t

v2kdµ +

∫ T

0

(∫
v2qdµ

) 1

q

dt(5.6)

≤ 2c5c4(σp+ 1)

∫ T

0

∫

Ak,t

F 2Gpε,σdµ dt .

We now exploit the interpolation inequality for Lp spaces:

|f |q0 ≤ |f |1−θ1 |f |θq ,

where 1 ≤ q0 ≤ q and 1
q0

= 1− θ + θ
q . Setting θ =

1
q0
, we obtain

∫

Ak,t

v2q0k dµ ≤
(∫

Ak,t

v2kdµ

)q0−1(∫

Ak,t

v2qdµ

) 1

q

.

Applying the Hölder inequality, we obtain

(∫ T

0

∫

Ak,t

v2q0k dµ dt

) 1

q0

≤
(

sup
t∈[0,T ]

∫

Ak,t

v2kdµ

) q0−1

q0



∫ T

0

(∫

Ak,t

v2qdµ

) 1

q

dt




1

q0

.
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We now use Young’s inequality: ab ≤
(
1− 1

q0

)
a

q0
q0−1 + 1

q0
bq0 on the right

hand side to obtain
(∫ T

0

∫

Ak,t

v2q0k dµ dt

) 1

q0

≤ sup
t∈[0,T ]

∫

Ak,t

v2kdµ+

∫ T

0

(∫

Ak,t

v2qdµ

) 1

q

dt .

Recalling (5.6), we arrive at

(∫ T

0

∫

Ak,t

v2q0k dµ dt

) 1

q0

≤ 2c5c4(σp + 1)

∫ T

0

∫

Ak,t

F 2Gpε,σdµ dt .(5.7)

Now, using the Hölder inequality, we have

∫ T

0

∫

Ak,t

F 2Gpε,σdµ dt ≤ |Ak,t|1−
1

r

(∫ T

0

∫

Ak,t

F 2rGprε,σdµ dt

) 1

r

(5.8)

≤ c6|Ak,t|1−
1

r

and

∫ T

0

∫

Ak,t

v2kdµ dt ≤ |Ak,t|1−
1

q0

(∫ T

0

∫

Ak,t

v2q0k dµ dt

) 1

q0

,(5.9)

where c6 := µ0(M)
(
k0
k1

)p
, and r is to be chosen. Finally, for h > k ≥ k1

we may estimate

|Ah,t| :=
∫ T

0

∫

Ah,t

dµ dt =

∫ T

0

∫

Ah,t

(Gε,σ − k)p+
(Gε,σ − k)p+

dµ dt

≤
∫ T

0

∫

Ah,t

(Gε,σ − k)p+
(h− k)p

dµ dt ,

so that, since Ah,t ⊂ Ak,t, and v
2
k = (Gε,σ − k)p+, we get

(h− k)p|Ah,t| ≤
∫ T

0

∫

Ak,t

v2kdµ dt .(5.10)

Putting together estimates (5.7), (5.8), (5.9), and (5.10), we obtain

|Ah,t| ≤
2c4c5c6(σp + 1)

(h− k)p
|Ak,t|γ

for all h > k ≥ k1, where γ := 2 − 1
q0

− 1
r . Now fix p > max

{
L1,

16
ℓ2

}

and choose σ < ℓp−
1

2 sufficiently small that σp < 1. Then, choosing
r > q0

q0−1 , so that γ > 1, we may apply Stampacchia’s Lemma. We

conclude

|Ak,t| = 0 ∀ k > k1 + d,
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where dp = c4c62
γ

γ−1
+1|Ak1,t|γ−1. We note that d is finite, since T is

finite and
∫

Ak1

dµ ≤
∫

Ak1

(Gε,σ)
p
+

kp1
dµ ≤ k−p1

∫
(Gε,σ)

p
+ dµ

≤ k−p1

∫
(Gε,σ(·, 0))p+ dµ0 ,

where the final estimate follows from Proposition 4.1.
Therefore, from the definition of Ak,t, we obtain Gε,σ ≤ k1 + d <∞.

Therefore,

−κ1
aκ2 + κ1

≤ ε+ (k1 + d)F−σ .

Since the homogeneous degree zero quantity ax1+x2
f(x1,x2)

is bounded above

on the compact slice K := Γ̄c0 ∩ {λ ∈ R
2 : λ1 + λ2 = 1}, we get bounds

on the whole cone, and hence we can estimate aκ1 + κ2 ≤ c7F for some
constant c7 > 0 (which is independent of ε). It follows that

−κ1 ≤ εCF + c7(k1 + d)F 1−σ ,

from which we easily obtain

−κ1 ≤ 2c7εF +Cε

for some constant Cε > 0. This completes the proof of Theorem 1.2.
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