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ON THE EVOLUTION OF HYPERSURFACES BY

THEIR INVERSE NULL MEAN CURVATURE

Kristen Moore

Abstract

We introduce a new geometric evolution equation for hyper-
surfaces in asymptotically flat spacetime initial data sets, that
unites the theory of marginally outer trapped surfaces (MOTS)
with the study of inverse mean curvature flow. A theory of weak
solutions is developed using level-set methods and an appropriate
variational principle. This new flow has a natural application as
a variational-type approach to constructing MOTS, and this work
also gives new insights into the theory of weak solutions of the
inverse mean curvature flow.

1. Introduction

In what follows we consider an initial data set (Mn+1, g,K) that arises
as a spacelike hypersurface Mn+1 in a Lorentzian spacetime (Ln+2, h),
with induced metric g and second fundamental form tensor K. We
further assume that the initial data set (M,g,K) is asymptotically flat,
that is, there exists a compact set Ω ⊂ M such that M\Ω consists
of a finite number of components, each diffeomorphic to R

n+1\B̄(0, 1)
and such that under these diffeomorphisms, the metric tensor g, Ricci
curvature Ric and second fundamental form K of M satisfy

|gij − δij | ≤
C

|x|n−1
, |gij,k| ≤

C

|x|n , Ric ≥ −C
g
|x|n

|Kij | ≤
C

|x|n , |Kij,k| ≤
C

|x|n+1
,
∣

∣

∣

∑

i

Kii

∣

∣

∣ ≤ C

|x| n+3

2

as |x| → ∞, where the derivatives are taken with respect to the Eu-
clidean metric.

Let ~n denote the future directed timelike unit normal vector field of
M ⊂ L, and consider a 2-sided hypersurface Σn ⊂ Mn+1 with globally
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defined outer unit normal vector field ν in M . The mean curvature
vector of Σ inside the spacetime L is then given by

~HΣ := Hν − P~n,

where H := divΣ(ν) denotes the mean curvature of Σ in M , and P :=
trΣK is the trace of K over the tangent space of Σ.

The new initial value problem is then defined as follows. Given a
smooth hypersurface immersion F0 : Σ → M , the evolution of Σ0 :=
F0(Σ) by inverse null mean curvature is the one-parameter family of
smooth immersions F : Σ× [0, T ) →M satisfying

(∗)







∂F

∂t
(x, t) =

ν

H + P
(x, t), x ∈ Σ, t ≥ 0,

F (·, 0) = F0.

The quantity H + P corresponds to the null expansion or null mean
curvature θ+Σt

of Σt := F (Σ, t) with respect to its future directed outward

null vector field l+ := ν + ~n,

θ+Σt
:= 〈 ~HΣt , l

+〉h = H + P,

and we assume that (H+P )|
Σ0
> 0 so that (∗) is parabolic and the sur-

face Σt expands under the flow. This flow is a generalisation of inverse
mean curvature flow, which corresponds to the special time-symmetric
case of (∗) where K ≡ 0. Analogous to inverse mean curvature flow,
in general it is expected that the null mean curvature of solutions of
(∗) will tend to zero at some points, and that singularities will develop.
The main part of this work is therefore devoted to developing a theory
of weak solutions of the classical flow (∗).

The motivation for introducing this particular generalisation of in-
verse mean curvature flow follows from the study of black holes and
mass/energy inequalities in general relativity. In particular, it is hoped
that this new flow will help to give insight into the long standing Penrose
conjecture in general relativity, which generalises the Riemannian Pen-
rose inequality, proven by Huisken and Ilmanen [10] using their theory
of weak solutions to inverse mean curvature flow (see [3] for an alterna-
tive proof by Bray, which applies to the case of multiple horizons).

More specifically, this flow is motivated by the theory of marginally
outer trapped surfaces in general relativity. Physically, the outward null
mean curvature θ+Σ measures the divergence of the outward directed

light rays emanating from Σ. If θ+Σ vanishes on all of Σ, then Σ is called
a marginally outer trapped surface, or MOTS for short. MOTS play
the role of apparent horizons, or quasi-local black hole boundaries in
general relativity, and are particularly useful for numerically modelling
the dynamics and evolution of black holes.

From a mathematical point of view, MOTS are the Lorentzian ana-
logue of minimal surfaces. However, since MOTS are not stationary
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solutions of an elliptic variational problem, the direct method of the
calculus of variations is not a viable approach to the existence the-
ory. One successful approach to proving existence of MOTS comes from
studying the blow-up set of solutions of Jang’s equation

(1)

(

gij − ∇iw∇jw

|∇w|2 + 1

)

(

∇i∇jw
√

|∇w|2 + 1
+Kij

)

= 0,

for the height function w of a hypersurface, which was an essential ingre-
dient in the Schoen-Yau proof of the positive mass theorem [15]. In their
analysis, Schoen and Yau showed that the boundary of the blow-up set of
Jang’s equation consists of marginally trapped surfaces. Building upon
this work, existence of MOTS in compact data sets with two boundary
components, such that the inner boundary is (outer) trapped and the
outer boundary is (outer) untrapped, was pointed out by Schoen [16],
with proofs given by Andersson and Metzger in [2], and subsequently
by Eichmair in [6] using a different approach. We see below that Jang’s
equation similarly plays a key role in the existence theory for weak so-
lutions of (∗).

To develop the weak formulation for the classical evolution (∗), we
use the level-set method and assume the evolving surfaces are given by
the level-sets,

(2) Σt = ∂{x ∈M
∣

∣ u(x) < t},
of a scalar function u : M → R. Then whenever u is smooth and
∇u 6= 0, the surface flow equation (∗) is equivalent to the degenerate
elliptic scalar PDE

(∗∗) divM

( ∇u
|∇u|

)

+

(

gij − ∇iu∇ju

|∇u|2
)

Kij = |∇u|.

In order to solve (∗∗), we employ the method of elliptic regularisation,
and study solutions, uε, of the strictly elliptic equation

(∗)ε divM

(

∇uε
√

|∇uε|2 + ε2

)

+

(

gij − ∇iuε∇juε
|∇uε|2 + ε2

)

Kij =
√

|∇uε|2 + ε2.

A notable feature of elliptic regularisation that is heavily exploited in
this work is that the downward translating graph

(3) Σ̃ε
t := graph

(uε
ε

− t

ε

)

solves the classical evolution (∗) in the product manifold (M × R, ḡ :=
g ⊕ dz2), where we extend the given data K to be parallel in the z-
direction. Furthermore, this elliptic regularisation problem sheds new
light on the study of Jang’s equation (1), since a rescaling of (∗)ε by a
factor of 1

ε can be interpreted as (1) with a gradient regularisation term.
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Analogous to the situation for Jang’s equation, the scalar term gijKij ,
representing the mean curvature of M inside the spacetime, obstructs
the existence of a subsolution barrier for (∗ε) at the inner boundary
Σ0. In order to overcome this problem we restrict our consideration to
space-time initial data sets satisfying gijKij ≥ 0. This restriction can
be reconciled with the fact that (∗∗) is an elliptic representation of the
classical flow (∗), since in the regularisation limit ε→ 0 the zero function
needs to be a subsolution barrier for (∗∗) (because u corresponds to the
evolution time t, and therefore must satisfy u ≥ 0).

To define weak solutions to (∗∗), we use a variational principle in-
spired by the energy functional

(4) J A
u,ν(F ) := |∂∗F ∩A| −

∫

F∩A
|∇u| −

(

gij − νiνj
)

Kij ,

defined for sets F of locally finite perimeter and any compact set A.
Here ∂∗F denotes the reduced boundary of F , and ν represents the unit
normal ∇u/|∇u| to the surfaces Σt defined by (2). The special case
K ≡ 0 corresponds to the functional employed by Huisken and Ilmanen
in [10], and weak solutions of (∗∗) necessarily exhibit the same jumping
phenomenon, characteristic of weak solutions of inverse mean curvature
flow. However, since ∇u/|∇u| is undefined on plateaus of the locally
Lipschitz function u, we must define an appropriate notion of normal
vector in these jump regions. For this reason, a careful analysis of the
jump region of the limit u of the regularised solutions uε to (∗)ε is vital
to determining the correct formulation of weak solutions to (∗), and con-
stitutes a significant part of this work. By contrast a complete analysis
of jump regions of inverse mean curvature flow is not included in [10],
since it was not necessary for their proof of the Riemannian Penrose
Inequality.

The existence of weak solutions to (∗∗), see Theorem 22, constitutes
the main result of this work. We point out that in addition to including
the weak existence result for inverse mean curvature flow from [10], The-
orem 22 proves existence for a richer notion of weak solutions to inverse
mean curvature flow. The variational principle defining weak solutions
also leads to a geometric characterisation of the evolution by inverse
null mean curvature, and in particular, of jump regions. We show that
the level sets Σt are outward optimising (see (57)) in the sense that they
minimise “area plus bulk energy P” on the outside, along the family of
surfaces. Since outer-trapped surfaces are not outward optimising, this
one-sided variational principle can then be exploited via the choice of an
outer-trapped initial surface Σ0 = ∂E0 to force Σ0 to jump immediately
to a smooth MOTS in M\Ē0; see Proposition 23.
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Proposition 23 highlights the utility of this flow as a variational type
approach to constructing MOTS in initial data sets containing an outer
trapped surface ∂E0, where trMK ≥ 0 on M\E0. We remark that if the
mean curvature of the initial data set instead satisfies trMK ≤ 0, the
corresponding existence result applies for the flow with speed equal to
the reciprocal of H−P , with analogous interpretations of the solution in
relation to marginally inner trapped surface (MITS) in the initial data
set.

The results of this paper are laid out as follows. We begin in Section
2 with a brief remark on the classical evolution by inverse null mean
curvature, and derive an interior estimate for the null mean curvature
of smooth solutions. In Section 3 we introduce the level-set formulation
of the flow, and prove existence of solutions, uε, to the elliptic regular-
isation problem. The translating graphs Σ̃ε

t given by (3) are then used
in Section 4 to study the jump regions of the limit, u, of the regularised
solutions uε. In Section 5 we introduce the variational formulation of
weak solutions, using the jump region analysis of Section 4 to motivate
the choice of definition of weak solutions. In Section 6 we introduce the
concept of outward optimisation to give a geometric characterisation of
jump regions of weak solutions, and show that the interior of the jump
region is foliated by smooth MOTS. The main existence result, Theorem
22, then follows in Section 7, and we discuss applications of the flow,
including Proposition 23 in Section 8.

Acknowledgements. I sincerely thank my advisor, Gerhard Huisken,
for introducing me to this topic and for his enthusiastic guidance
throughout the development of this work.

2. The smooth flow

Since the aim of this work is to develop the weak theory for the
evolution by inverse null mean curvature, we will not provide a classical
PDE analysis of (∗), except to remark that the leading order term of the
linearised equation is 1

(H+P )2
∆ on the right hand side, where ∆ denotes

the Laplace-Beltrami operator with respect to the metric g at time t.
This is an elliptic operator as long as (H + P )−2 remains non-singular,
so (∗) is parabolic so long as the null mean curvature of the evolving
surface remains strictly positive.

In Section 3 we construct an explicit, non-compact solution Σ̃ε
t of

(∗), for which we require an upper null mean curvature bound. The
objective of this section is therefore to derive the interior H + P esti-
mate (7) for smooth solutions of (∗) (which also holds for non-compact
solutions). We begin by stating the evolution equations for some fun-
damental quantities. Let ∇ be the connection on the initial data set
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(M,g,K) and let the induced connection and second fundamental form
on Σt be denoted by D and A = {hij} respectively.

Lemma 1. Smooth solutions of (∗) with H + P > 0 satisfy the fol-
lowing evolution equations.

(i)
d

dt
H =

1

(H + P )2
∆(H + P )− 2

|D(H + P )|2
(H + P )3

− 1

H + P
(|A|2 + R̄ic(ν, ν)).

(ii)
d

dt
ν = −D

(

1
H+P

)

.

(iii)
d

dt
P =

1

H + P
(∇νtrMK − (∇νK)(ν, ν))− 2

(H + P )2
Di(H+P )Kiν .

(iv)
d

dt
|Σt|+

∫

V (Σt)\V (Σ0)

P dV = |Σt|, whenever Σ0 is closed, where V (Σ)

denotes the volume enclosed by Σ.

Proof. The relevant evolution equations satisfied by general flows are
recorded in [11, 14], except for the evolution of P which satisfies

d

dt
P =

d

dt
trMK − νiνj

d

dt
Kij − 2νjKij

d

dt
νi

=
1

H + P
(∇νtrMK − (∇νK)(ν, ν))− 2

(H + P )2
Di(H + P )Kiν .

q.e.d.

Combining i) and ii) of Lemma 1 above, we obtain

(5)

d

dt
(H + P ) =

∆(H + P )

(H + P )2
− 2|D(H + P )|2

(H + P )3
− |A|2 + R̄ic(ν, ν)

H + P

+
∇νtrMK − (∇νK)(ν, ν)

H + P
− 2Di(H + P )Kiν

(H + P )2
,

and for the speed function ψ :=
1

H + P
,

∂ψ

∂t
= ψ2(∆ψ + (|A|2 +Ric(ν, ν) +∇νtrMK − (∇νK)(ν, ν))ψ(6)

+ 2DiψKiν).

Like in [10], the supremum σ(x) of radii r for which the interior
curvature estimate (7) below holds is defined as follows.

Definition 2. Let dx denote the distance to x. Then for any x ∈
M , we define σ(x) ∈ (0,∞] to be the supremum of radii R such that
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BR(x) ⊂⊂M , Ric ≥ − 1
100(n+1)R2 in BR(x), and there exists a function

p ∈ C2(BR(x)) such that

p(x) = 0, p ≥ d2x on ∂BR(x), yet |∇p| ≤ 3dx and ∇2p ≤ 3g on BR(x).

Lemma 3 (Interior null mean curvature estimate.). Let Σt be a
smooth solution of (∗) on M for 0 ≤ s ≤ t. Then for each x ∈ Σt

and R < σ(x)

(7) H(x, t) + P (x, t) ≤ max



(H + P )R,
λ

R
(√

α2 + 2nλ− α
)



 ,

where λ := 4
(

3n+ (12 + 3n)‖K‖C0R+ n‖K‖C1R2
)

, α := 12+
4n‖K‖C0R and (H+P )R is the maximum of H+P on BR, the parabolic
boundary of Σt ∩BR(x).

Proof. We wish to construct a subsolution to (6). Since

|A|2 ≥ H2

n
≥ 1

n

(

(H + P )2 − 2P (H + P )
)

,

and Dψ ≤ |∇ψ|, P ≤ n‖K‖C0 and ∇νP ≤ n‖K‖C1 , from (6) we obtain

∂ψ

∂t
≥ψ2∆ψ +

ψ

n
− ψ3

100(n + 1)R2
− 2‖K‖C0ψ2(8)

− n‖K‖C1ψ3 − 2|∇ψ| ‖K‖C0ψ2.

We allow the evolving surface Σt to have a smooth boundary ∂Σt and
define the parabolic boundary of the flow Σt ∩BR to be

BR = BR(x, t) := (BR ∩ Σ0)× {0} ∪ (∪0≤s≤t(BR ∩ ∂Σs)× {s}),
and

(H + P )R = (H + P )R(x, t) := sup
(y,s)∈BR

H(y, s) + P (y, s).

Consider the function φ = φδ(y) :=
Cδ

R

(

R2 − p(y)
)

, where

Cδ :=

(

max

(

R(H + P )R,
λ

(√
α2 + 2nλ− α

)

))−1

− δ,

for 0 < δ ≪ 1 and p as defined above. Note that ∆φ = trΣt(∇2φ) −
H〈∇φ, ν〉. Then for y ∈ Σt ∩BR, we have
(

∂

∂t
− φ2∆

)

φ = 〈∇φ, ∂y
∂t

〉 − φ2trΣt∇2φ+Hφ2〈∇φ, ν〉

= −Cδ

R
〈∇p, ν〉

(

ψ +
φ2

ψ
− Pφ2

)

+ φ2
Cδ

R
trΣt∩BR

(∇2p).(9)
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Since φ ≤ CδR ≤ 1

(H + P )R
− δR < ψ, it follows that φ < ψ on BR.

In order to obtain a contradiction, let 0 < s ≤ t denote the first time
when (ψ − φ)(y, s) = 0 for y ∈ Σs ∩BR(x). At this point

(

∂

∂t
− φ2∆

)

(ψ − φ) ≤ 0.

On the other hand, since φ < R, it follows from (8), (9) and the condi-
tions on p defined above that at the point (y, s)
(

∂

∂t
− φ2∆

)

(ψ − φ)

> φ

(

1

2n
− 2‖K‖C0φ− n‖K‖C1φ2 − 2|∇φ| ‖K‖C0φ

+
Cδ

R
〈∇p, ν〉(2− Pφ)− φ

Cδ

R
trΣt∩BR

(∇2p)

)

≥ φ

(

1

2n
− 2Cδ

(

3 + n‖K‖C0R
)

− C2
δ

(

3n+ 12‖K‖C0R+ n‖K‖C1R2

+ 3n‖K‖C0R
)

)

= 0.

Thus ψ > φ on all of Σt ∩BR(x). In particular ψ(x, t) > φ(x, t) = CδR,
and as δ was arbitrary it follows that ψ(x, t) ≥ C0R. q.e.d.

In Section 3 we see that the null mean curvature upper bound given
by Lemma 3 is the key to existence and regularity, and that this estimate
continues to hold for weak solutions. On the other hand, the reaction

term − |A|2
H+P in the evolution (5) of the null mean curvature in general

leads to singularity formation in finite time, analogous to inverse mean
curvature flow. We therefore turn to the question of a weak formulation
of solutions to the evolution by inverse null mean curvature.

3. Level-set description and elliptic regularisation

In this section we outline a level-set description of the evolution by
inverse null mean curvature. This level-set formulation allows jumps in
a natural way, because if u is constant on an open set Ω, the level sets
“jump” across Ω. We use the method of elliptic regularisation as a tool
to approximate solutions of the degenerate elliptic level-set problem by
smooth solutions of a strictly elliptic equation. Studying the proper-
ties of the regularised solutions helps to guide us towards the optimal
formulation for weak solutions of (∗∗), which we then define in Section 5.

Level-Set Formulation. The following ansatz lies at the foundation
of the level-set formulation. We assume that the evolving surfaces are
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given by the level-sets of a scalar function u :M → R via

(10) Et := {x : u(x) < t}, Σt := ∂Et.

Employing the terminology coined by White in [18], we call u the time-
of-arrival function for the evolution by null mean curvature. Then
wherever u is smooth and ∇u 6= 0, the normal vector to Σt is given

by ν =
∇u
|∇u| and the degenerate elliptic boundary value problem

(∗∗)















div

( ∇u
|∇u|

)

+

(

gij − ∇iu∇ju

|∇u|2
)

Kij = |∇u|,

u
∣

∣

∣

∂E0

= 0,

describes the evolution of the level-sets of u by inverse null mean cur-
vature. In this smooth setting, the left hand side is the null mean
curvature of Σt and the right hand side is the inverse speed of the fam-
ily of level-sets. Since |∇u| = H +P , the local uniform estimate (7) for
the null mean curvature suggests that it is reasonable to expect locally
Lipschitz solutions of (∗∗). However, in order to interpret (∗∗) as the
level-set formulation of the classical flow (∗), it is necessary for u to
be non-negative, and therefore for the zero function be a subsolution
barrier. In particular, this suggests that it only makes sense to study
(∗∗) on initial data sets (M,g,K) satisfying trMK ≥ 0 on M\E0. We
see below that this mean curvature restriction is also necessary for the
elliptic regularisation problem.

Elliptic regularisation. In order to solve the degenerate elliptic
problem (∗∗), we study solutions of the strictly elliptic equation on the
precompact domain ΩL := FL\Ē0, given by

(∗)ε div

(

∇uε
√

|∇uε|2 + ε2

)

+

(

gij − ∇iuε∇juε
|∇uε|2 + ε2

)

Kij =
√

|∇uε|2 + ε2

with Dirichlet boundary conditions

uε = 0 on ∂E0, and uε = L− 2 on ∂FL,

where we define FL := {v < L} for an appropriate comparison function
v defined below. In this section we prove existence of a smooth solution
of (∗)ε.

Rescaling (∗)ε via ûε :=
uε
ε

gives

(∗)ε̂ div

(

∇ûε
√

|∇ûε|2 + 1

)

+

(

gij − ∇iûε∇jûε
|ûε|2 + 1

)

Kij = ε
√

|∇ûε|2 + 1,
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and we see that the left hand side corresponds to the null mean cur-
vature Ĥε + P̂ε of the hypersurface graph(ûε) in the product manifold
(Mn+1 × R, ḡ), where ḡ := g ⊕ dz2 and the given data K is extended
to be constant in the z-direction. This rescaled equation (∗)ε̂ has the
geometric interpretation that the downward translating graph

(11) Σ̃ε
t := graph

(

ûε −
t

ε

)

,

solves (∗) smoothly in ΩL ×R. This is equivalent to the statement that
the function

(12) Uε(x, z) := uε(x)− εz, (x, z) ∈ ΩL × R,

solves (∗∗) in ΩL × R, since Σ̃ε
t = {Uε = t}, that is, Uε is the time-

of-arrival function for the solution Σ̃ε
t . Therefore elliptic regularisation

allows one to approximate solutions of (∗∗) by smooth, noncompact so-
lutions of (∗) one dimension higher.

In fact, (∗)ε̂ has the further interpretation as Jang’s equation (1)

with the gradient regularisation term ε
√

1 + |∇w|2. In [12], Jang used
equation (1) to generalise Geroch’s [7] approach to proving the positive
mass theorem from the time symmetric case to the general case. He
noted, however, that the equation cannot be solved in general, leaving
the question of existence and regularity of solutions open. As mentioned
in the introduction, the analytical difficulty is the lack of an a priori es-
timate for sup |w| due to the presence of the zero order term trM (K).
In [15], Schoen and Yau bypass this issue using a positive capillarity
regularisation term which provides a direct sup estimate via the maxi-
mum principle.

In the case of the Dirichlet problem (∗)ε, we see below that the zero
order term trM (K) obstructs the existence of a subsolution barrier at
the inner boundary. In order to obtain the required boundary gradient
estimate at this inner boundary, we impose the ambient mean curva-
ture restriction mentioned previously, that trM (K) = gijKij is nonneg-
ative in an appropriately large neighbourhood of the boundary ∂E0 of
M\E0. Similarly, it was observed by J. Metzger [13] that restricting to
trMK ≥ 0 in the capillarity regularised problem prevents the solution
from blowing-up to negative infinity over marginally inner trapped sur-
faces in the initial data set.

A priori estimates and existence for (∗)ε. As stated above, we
will use a comparison function v to prescribe the outer boundary ∂FL

of the annulus domain ΩL for the Dirichlet problem (∗)ε. Since M is
asymptotically flat, outside some compact set Ω ⊂ M we can choose
a radial coordinate chart such that for an appropriately chosen α > 0,
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the function v = α log r is a smooth subsolution of the approximating
level-set equation

(13) div

( ∇u
|∇u|

)

+ s

(

gij − ∇iu∇ju

|∇u|2
)

Kij = |∇u|,

for s ∈ [0, 1] in this asymptotic region M\Ω. Let

Eε,suε,s :=div

(

∇uε,s
√

|∇uε,s|2 + ε2

)

+ s

(

gij − ∇iuε,s∇juε,s
|∇uε,s|2 + ε2

)

Kij

−
√

|∇uε,s|2 + ε2,

To prove existence of solutions to the Dirichlet problem (∗)ε, we then
consider solutions of the family of approximating equations

(∗)ε,s











Eε,suε,s = 0 in ΩL,

uε,s = 0 on ∂E0,

uε,s = s(L− 2) on ∂FL,

for s ∈ [0, 1], where the subsolution v = α log r prescribes the outer
boundary ∂FL = ∂{v < L} for both the Dirichlet problems (∗)ε,s and
(∗)ε. We use barrier functions at the inner and outer boundaries to de-
rive the following interior and boundary gradient estimates. Aside from
the supersolution barrier at the outer boundary, the following Lemma
follows essentially as in [10, Lemma 3.4].

Lemma 4. For every L > 0, there exists ε(L) > 0 such that for
0 < ε < ε(L) and s ∈ [0, 1], a smooth solution of (∗)ε,s on Ω̄L satisfies
the following a priori estimates:

(14) uε,s ≥ −ε in Ω̄L, uε,s ≥ v + (s− 1)(L− 2)− 2 in F̄L\F0,

(15) uε ≤ C(L, ‖K‖C0
) in Ω̄L,

(16) |∇uε,s| ≤ H+ε+ n|p| on ∂E0, |∇uε,s| ≤ C(L, ‖K‖C0) on ∂FL,

(17) |∇uε,s(x)| ≤ max
∂ΩL∩Br(x)

|∇uε,x|+ ε+ C, x ∈ Ω̄L,

(18) |uε,s|C2,α(Ω̄L)
≤ C(ε, L, n, ‖K‖C0 , ‖K‖C1).

Proof. Let |λ| denote the size of the largest eigenvalue of Kij on Ω̄L.
a) We construct a subsolution that bridges from E0 to where v starts
in the asymptotic region, which allows for unrestricted jumps in the
compact part of the manifold.

Let Cut(E0) be the cut locus of E0 inM . We construct a subsolution
to (∗)ε onM\

(

E0∪Cut(E0)
)

. Define G0 = E0, Gd := {x : dist(x,E0) <
d} and choose dL large enough that GdL ⊇ FL. In general, for a surface
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moving in normal direction with speed f , the evolution of the mean
curvature is given by

(19)
∂H

∂t
= −∆f − |A|2f −Ric(ν, ν)f.

We can therefore estimate the mean curvature of the surfaces ∂Gd via

∂H

∂d
= −|A|2 −Ric(ν, ν) ≤ C1(L) on ∂Gd\Cut(E0), 0 ≤ d ≤ dL,

yielding

H∂Gd
≤ max

∂E0

H++C1d ≤ C2(L) on ∂Gd\Cut(E0), 0 ≤ d ≤ dL,

where H+ = max(0,H). Consider the prospective subsolution

v1(x) := f(d) = f(dist(x,G0)), x ∈ ḠdL\E0, f
′ < 0.

Since ∇v1 = f ′ν, we have ∇2
ijv1 = f ′〈∇eiν, ej〉 = f ′hij and thus

(gij − νiνj)∇2
ijv1 = f ′H∂Gd

≥ f ′C2.

Hence
√

f ′2 + ε2Eε,sv1 ≥− |f ′|C2 +
ε2f ′′

f ′2 + ε2
+ s
√

f ′2 + ε2gijKij − |f ′||Kνν |

− f ′2 − ε2.

In order to obtain an appropriate subsolution, it is in fact necessary to
restrict to initial data sets (M,g,K) with gijKij ≥ 0, so that we can

discard the bad term s
√

f ′2 + ε2gijKij . Then we can use the following
barrier

f(d) :=
ε

A
(−1 + e−Ad) on 0 ≤ d ≤ dL.

If we restrict ε such that ε ≤ e−AdL , then |f ′| = εe−Ad ≥ ε2 and
ε2 ≤ |f ′| ≤ ε. Then taking A := 2(C2 + |λ|+ 2) we obtain

(f ′2 + ε2)(|f ′|C2 + |f ′||Kνν |+ f ′2 + ε2) ≤ 2ε2(C2 + |Kνν |+ 2)|f ′|
≤ ε2f ′′.

This shows that the function

v1,s(x) :=
ε

2(C2 + |λ|+ 2)

(

e−(2C2+|λ|+2)d − 1
)

is a smooth subsolution for Eε,s on GdL\
(

E0 ∪Cut(E0)
)

for sufficiently
small ε. Furthermore, v1,s is a viscosity subsolution of Eε,s on all of
GdL\Ē0. Since u ≥ v1 on the boundary, it follows by the maximum
principle for viscosity solutions [4, Thm 3.3] that

(20) u ≥ v1 ≥ −ε in Ω̄L, and
∂u

∂ν
≥ ∂v1

∂ν
≥ −ε on ∂E0.

b) We construct a subsolution on F̄L\F0. Assume L > 1 and consider
the function v2 := L−1

L v − 1 + (s − 1)(L − 2). Then E0,sv2 = E0,sv +
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1
L |∇v| > 0 on F̄L\F0. Since the domain is compact, for all sufficiently

small ε we obtain Eε,sv2 > 0. From (20) we have that u ≥ −ε in Ω̄L;
thus u ≥ v2 on ∂F0 and u = s(L− 2) = v2 on ∂FL. It then follows from
the maximum principle that u ≥ v2 ≥ v + (s− 1)(L− 2)− 2 in F̄L\F0;
thus

(21)
∂u

∂ν
≥ −C(L) on ∂FL.

A rescaled version of v2 provides the required barrier when L ≤ 1.

c) The zero order term trM (K) prevents constant functions from being
supersolutions to (∗)ε,s, like in inverse mean curvature flow. We there-
fore construct a linear supersolution to (∗)ε on FL\

(

E0 ∪ Cut(∂FL)
)

,

where Cut(∂FL) is the cut locus of ∂FL in F̄L. Consider v3(x) :=
f(d) = f(dist(x,G0)) where G0 := ∂FL, Gd := {x : dist(x, ∂FL) < d}
and choose d0 large enough that Gd0 ⊇ ∂E0. From (19) we find ∂H

∂d ≥
−C1(L) on ∂Gd\Cut(∂FL), for 0 ≤ d ≤ d0, yielding

H∂Gd
≥ −max

∂FL

H−−C1d ≥ −C2(L) on ∂Gd\Cut(∂FL), 0 ≤ d ≤ d0,

whereH− = −min(H, 0). Setting v3(x) = f(d) := s(L−2)+
(

m+ 2
d0

)

d,

where m > 0 is to be chosen, we obtain
√

f ′2 + εEε,sf(d) ≤ f ′(C2 + 2|gijKij|+ |Kνν | − f ′).

Setting m := C2 + 2|gijKij | + |λ| ensures
√

f ′2 + εEε,sf(d) ≤ 0 for all
sufficiently small ε (so that ε ≤ f ′). Then v3(x) is a smooth supersolu-
tion on Gd0\

(

E0∪Cut(∂FL)
)

. Furthermore, v3 is a viscosity subsolution

on all of Gd0\Ē0. Since u = f on ∂FL and u < f on ∂E0, it follows by
the maximum principle for viscosity solutions that

u ≤ f ≤ L+md0 in Ω̄L,(22)

∂u

∂ν
≤ C2 + 2|gijKij |+ |p|+ 2

d0
= C(L, ‖K‖C0) on ∂FL.(23)

d) Choose a smooth function v4 which vanishes on ∂E0 such that

(24) H+ + n‖K‖C0 <
∂v4
∂ν

≤ H+ + ε+ n‖K‖C0 along ∂E0.

Let ν be the normal vector to ∂E0, and τ be the tangent to ∂E0, which
satisfies

ν = λ
∇v4
|∇v4|

+
√

λ2 − 1τ, for some λ ≥ 1.

Then

div

( ∇v4
|∇v4|

)

=
1

λ
div

( ∇u
|∇u|

)

−
√
λ2 − 1

λ
div(τ) =

1

λ
H∂E0

.
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Thus along ∂E0 we obtain

E0,sv4 <
1

λ
H∂E0

+ n‖K‖C0 −
(

H+ + n‖K‖C0

)

≤ 0.

This implies that E0v4 < 0 in the neighbourhood U := {0 ≤ v4 ≤ δ}, for
sufficiently small δ > 0. Now define the scaled-up function v5 :=

v4
1−v4/δ

,

for x ∈ U . So v5 → ∞ for v4 → δ, that is on ∂U\∂E0, and

(25) E0,sv5 = E0,sv4 + |∇v4| −
|∇v4|

(1− v4/δ)2
≤ E0,sv4 < 0.

For ε sufficiently small (depending on L and m) we obtain that
Eε,sv5 < 0 on the set V := {0 ≤ v5 ≤ L + md0}. From (22) we
have u ≤ L+md0 on Ω̄L, thus u ≤ v5 on ∂V . Then by the maximum
principle, u ≤ v5 on V , and therefore

(26)
∂u

∂ν
≤ ∂v5

∂ν
=
∂v4
∂ν

≤ H+ + ε+ n|λ| on ∂E0

for sufficiently small ε.

e) The desired interior gradient estimate (17) can be obtained from the
interior estimate for H + P in Lemma 3. Since we can not apply the
result directly to (∗)ε,s (except when s = 1), we instead rework the proof
of Lemma 3 for the evolution equation

(∗)s
∂F

∂t
=

1

H + sP
ν, s ∈ [0, 1],

to obtain the corresponding estimate

(27) H(x, t) + sP (x, t) ≤ max



(H + sP )R,
λ

(√
α2 + 2nλ− α

)



 .

Here λ and α are defined as above, and (H + sP )R is the maximum of
H + sP on PR, the parabolic boundary of Σ

s

t ∩BR(x).

Analogous to (11), the downward translating graph

(28) Σ̃ε,s
t := graph

(

uε,s
ε

− t

ε

)

is a smooth solution of (∗)s, described by the level-set function

Uε,s(x, z) := uε,s(x) − εz, since Σ̃ε,s
t = {Uε,s = t}. We then relate

estimate (27) to |∇uε,s| via (∗)ε,s, which asserts that

(H + sP )Σ̃ε,s
t

=
√

|∇uε,s|2 + ε2.
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Now let B := Bn+1
R (x, z) be an (n+1)-dimensional ball centered at the

point (x, z) ⊂ M × R. Since Σ̃ε,s
t is a translating solution to (∗s), its

parabolic boundary is just a translation of ∂ΩL in time. Furthermore,
as |∇uε,s| is independent of z, applying (27) to Σ̃ε,s

t ∩B yields
√

|∇uε,s|2 + ε2 ≤ sup
t

max
∂Σ̃ε,s

t ∩B

√

|∇uε,s|2 + ε2 + C ≤ max
∂ΩL∩Bn

R
(x)

|∇uε,s|+ ε+ C,

where C := λ

(
√
α2+2nλ−α)

is defined as in Lemma 3. For ε small enough,

we obtain from the boundary gradient estimates

(29) |∇uε,s(x)| ≤ max
∂E0∩BR(x)

H+ + 2 + C̃(L, ‖K‖C0) + C,

which leads to the Lipschitz estimate

|uε,s|C0,1(Ω̄L)
≤ C(L, n, ‖K‖C1).

Then by reworking the proof of the Nash-Moser-De Giorgi estimate ([8],
Thm 13.2), we obtain

|uε,s|C1,α(Ω̄L)
≤ C(ε, L, n, ‖K‖C1),

for some α = α(ΩL). This implies a bound on the Hölder modulus of
continuity for the coefficients of Eε,su, so Schauder theory improves this
estimate to C2,α

(30) |uε,s|C2,α(Ω̄L)
≤ C(ε, L, n, ‖K‖C1).

q.e.d.

Lemma 5 (Existence for the regularised problem). A smooth solution
of (∗)ε exists.

Proof. We first prove there is a solution of (∗ε,s) for s = 0 and small
ε. Let û = uε

ε and rewrite (∗)ε,0 as

(∗)ε̂











F (û) :=
1

√

|∇û|2 + 1
div

(

∇û
√

|∇û|2 + 1

)

= ε in ΩL,

û = 0 on ∂ΩL.

The map

F : C2,α
0 (Ω̄L) → Cα(Ω̄L)

is C1, and possesses the solution F (0) = 0 for ε = 0. The linearisation
of F at û = 0 is

DF |0 = ∆g : C
2,α
0 (Ω̄L) → Cα(Ω̄L).

The Laplacian on M is an isomorphism, so by the Implicit Function
Theorem there exists ε0 > 0 such that (∗)ε̂ has a unique solution for
0 ≤ ε < ε0.
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We now fix ε ∈ (0, ε0) and vary s. Let I be the set of s such that (∗)ε,s
has a solution uε,s ∈ C2,α(Ω̄L). We have shown that I contains 0. We
first show that I is open. Let π be the boundary value map u 7→ u|∂Ω.
Consider the map

G : C2,α(Ω̄L)× R → Cα(Ω̄L)× C2,α(∂ΩL),

defined by G(w, s) := Gs(w) =
(

Eε,s(w), π(w)− s(L− 2)χ∂FL

)

, so that

(∗)ε,s is equivalent to Gs(w) = (0, 0). Gs(w) is C1, and possesses the

solution G0(u0) = (0, 0), where u0 is the C2,α
0 (Ω̄L) solution from above.

The linearisation of G0 at u0 is the operator DG0
u0

given by

(31) DG0
u0

=

(

Aij∇i∇j +Bi∇i

π

)

: C2,α → Cα(Ω̄L)× C2,α(∂ΩL),

where

Aij =
1

√

1 + |∇u0|2

(

gij − ∇iu0∇ju0
1 + |∇u0|2

)

, Bi = ∇jA
ij − ε

∇iu0
√

|∇u0|2 + 1
.

Since DE0
u0
(w) is a linear elliptic equation with Hölder continuous co-

efficients, we can apply Schauder theory (eg [8], Thm 6.14) to deduce
that DG0

u0
is a bijective map with continuous inverse. It follows from

the Implicit Function Theorem that G maps a neighbourhood of (u0, 0)
onto a neighbourhood of (0, 0). Thus I is relatively open, which com-
pletes the proof of existence of uε ∈ C2,α(Ω̄) solving (∗)ε. Smoothness
then follows from standard Schauder estimates. q.e.d.

In view of the local uniform Lipschitz estimates for uε, by the Arzela
Ascoli theorem there exist sequences εi → 0, Li → ∞, a subsequence ui
and a locally Lipschitz function u :M\E0 → R such that

(32) ui → u

locally uniformly on M\E0, and by (29), u satisfies

(33) |∇u(x)| ≤ sup
∂E0∩BR(x)

H+ + C(L, n, ‖K‖C1 , R).

In the next section we will study the limit of the translating graphs
Σ̃ε
t = {Uε = t}, where the time-of-arrival function Uε was defined by

(12). By setting

(34) U(x, z) := u(x),

we obtain that Ui → U locally uniformly on (M\E0) × R, therefore U

is the time of arrival function of the limit of the smooth flow t 7→ Σ̃i
t.
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4. The limit of the translating ε-graphs Σ̃ε
t .

Our choice of variational formulation to define weak solutions to (∗∗),
detailed in the next section, is motivated by:

1) The variational properties of smooth solutions of (∗∗),
2) The limiting behaviour of the family Σ̃ε

t of translating solutions of
(∗∗) in M × R.

In particular, we show that the sets Et = {u < t}, associated to a
smooth solution u of (∗∗), minimise the parametric energy functional

(35) J A
u,ν(F ) := |∂∗F ∩A| −

∫

F∩A
|∇u| −

(

gij − νiνj
)

Kij

for each t > 0. That is, we have

(36) J A
u,ν(Et) ≤ J A

u,ν(F ),

for each set F of locally finite perimeter that differs from the set Et

on a compact subset A of the domain. Here P = trΣtK = (gij −
νiνj)Kij , where ν represents the unit normal ∇u/|∇u| to the surfaces
Σt = ∂Et. The functional (35), together with the minimisation principle
(36), generalises the variational formulation employed by Huisken and
Ilmanen in [10], and accordingly allows the evolving surfaces to jump
instantaneously over a positive volume at plateaus of the time-of-arrival
function u. However, in the weak setting, ∇u/|∇u| is undefined on
plateaus of the locally Lipschitz function u, so in order to incorporate
the extra P term for this new flow, we must define an appropriate notion
of normal vector in these jump regions. In this section we show that
such a vector field can be obtained by taking an appropriate limit of the
translating graphs Σ̃ε

t . Since the null mean curvature of these surfaces is
uniformly bounded, results of measure theory allow us to control them
in C1,α, which leads to a foliation of the interior of the jump region
{U = t0} = {u = t0 ×R}, at jump times t0, by hypersurfaces satisfying
the following result.

Proposition 6. Let U(x, z) = u(x), where u ∈ C0,1
loc

(M\E0) is the

limit of the solution uε of (∗∗)ε, as in (34). Then the interior, K̃t0 , of
the jump region {u = t0} × R = {U = t0} at jump times t0 is foliated
by hypersurfaces with local uniform C1,α estimates, where each such
hypersurface is either a vertical cylinder or a graph over an open subset
of {u = t0}. Furthermore, each hypersurface bounds a Caccioppoli set

that minimises JU,ν̃ in K̃t0 , where ν̃ denotes the C0,α
loc

normal vector field
to the hypersurface foliation.

The normal vector field ν̃ to this foliation extends ∇̄U
|∇̄U | =

(∇u,0)
|∇u| across

the jump region K̃t0 in M × R, and this extended vector field helps
motivate the definition of weak solutions to (∗∗) in the next section. In
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this context, hypersurfaces and sets in M ×R will be denoted by the ∼
superscript for the remainder of this work, unless otherwise stated, and
∇̄ denotes the connection on (M × R, ḡ).

To prove Proposition 6 we utilise the following compactness result for
sequences of minimisers of (35).

Compactness Property 7. Let Ω̃ ⊂ M × R , and let Ẽi ⊂ Ω̃ be
a sequence of sets with C1,α

loc
boundary such that ∂Ẽi → ∂Ẽ, locally in

C1,α, with outward unit normal νi ∈ C0,α
loc

(T Ω̃) to ∂Ẽi satisfying νi → ν

locally uniformly. Let Ui ∈ C0,1
loc

(Ω̃) satisfy Ui → U locally uniformly,

and assume that for each Ã ⊂⊂ Ω̃, supÃ |∇̄Ui| ≤ C(Ã) for large i.

If the sequence Ẽi minimises JUi,νi on Ω̃, then Ẽ minimises JU,ν in Ω̃.

Proof. We use the inequality

(37) JUi,νi(Ẽ1) + JUi,νi(Ẽ2) ≥ JUi,νi(Ẽ1 ∪ Ẽ2) + JUi,νi(Ẽ1 ∩ Ẽ2),

for an appropriate choice of Caccioppoli sets Ẽ1 and Ẽ2 such that Ẽ1∆Ẽ2

is precompact.

We first prove that Ẽ minimises JU,ν on the outside in Ω̃. To this

end, consider F̃ ⊃ Ẽ with F̃\Ẽ ⊂⊂ Ω̃ and a suitable compact set G ⊂ Ω̃

containing F̃\Ẽ. Since the boundary of G is not necessarily Lipschitz

continuous, we consider a compact set Ḡ ⊂ Ω̃ with smooth boundary
and G ⊂ int(Ḡ) such that

|∂∗(F̃ ∪ Ẽi) ∩ ∂Ḡ| = |∂∗(F̃ ∩ Ẽi) ∩ ∂∗Ḡ| = |∂Ẽi ∩ ∂Ḡ| = 0

for all i, with traces satisfying
∫

∂Ḡ |ϕ−
F̃∪Ẽi

− ϕ+
Ẽi
|dHn+1 → 0. This is

possible because F̃ ∪ Ẽi → Ẽ and Ẽi → Ẽ in L1
loc(Ω̃\G). Then setting

F̃i := Ẽi ∪ (F̃ ∩ Ḡ) we see that

|∂∗F̃i ∩ Ω̃| = |∂∗Ẽi ∩ (Ω̃\Ḡ)|+ |∂∗(F̃ ∪ Ẽi) ∩ Ḡ|+
∫

∂Ḡ
|ϕ−

F̃∪Ẽi
− ϕ+

Ẽi
|.

Now, since F̃i is an appropriate comparison function for Ẽi, we have

J Ḡ
Ui,νi

(Ẽi) ≤ J Ḡ
Ui,νi

(F̃i), implying

J Ḡ
Ui,νi(Ẽi) ≤ J Ḡ

Ui,νi(F̃ ∪ Ẽi) +

∫

∂Ḡ
|ϕ−

F̃∪Ẽi
− ϕ+

Ẽi
|.

Now inserting Ẽ1 = Ẽi and Ẽ2 = F̃ into (37) we obtain

(38) J Ḡ
Ui,νi(F̃ ) ≥ J Ḡ

Ui,νi(Ẽi ∩ F̃ )−
∫

∂Ḡ
|ϕ−

F̃∪Ẽi
− ϕ+

Ẽi
|.

Next we pass to limits. Since the trace term converges to zero, using
lower semicontinuity we obtain

J Ḡ
U,ν(F̃ ) ≥ J Ḡ

U,ν(Ẽ).
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The fact that Ẽ minimises JU,ν on the inside in G̃t0 amongst compet-

ing sets F̃ ⊂ Ẽ satisfying Ẽ\F̃ ⊂⊂ Ω̃ can similarly be proven by again

constructing Ḡ and considering the comparison function F̃i := Ẽi ∩ F̃
for i >> 1 large enough. q.e.d.

To prove Proposition 6 we draw upon regularity theory for obstacle
problems of the type (40) below. In particular, if the set Et := {u < t}
minimises Ju,ν, then it is almost minimal in the sense that

(39) |∂∗Et ∩BR| ≤ |∂∗F ∩BR|+ C(n, ‖Du‖∞, ‖K‖C0)Rn+1,

for Et∆F ⊂⊂ BR. This means we can apply partial regularity results of
geometric measure theory to obtain higher regularity for the level-sets
Σt = ∂Et. Specifically, we consider the following C1,α result (see for
example [17]), as quoted in [10].

Regularity Theorem 8. Let f be a bounded measurable function
on a domain Ω with smooth metric g and dimension n+1 < 8. Suppose
E contains an open set A and minimises the functional

(40) |∂∗F |+
∫

F
f

with respect to competitors F such that F ⊇ A, and F∆E ⊂⊂ Ω. If ∂A
is C1,α, 0 < α ≤ 1/2, then ∂E is a C1,α submanifold of Ω with C1,α

estimates depending only on the distance to ∂Ω, ess sup|f |, C1,α bounds
for ∂A, and C1 bounds (including positive lower bounds) for the metric
g. When n + 1 ≥ 8, this remains true away from a closed singular set
Z of dimension at most n− 7 that is disjoint from Ā.

Proof of Proposition 6: We break up the proof into the following
lemmata.

Lemma 9. The level-sets Σ̃ε
t = {Uε = t} are locally uniformly

bounded in C1,α.

Proof. Since Σ̃ε
t = {Uε = t} is a smooth solution of (∗) on (M\E0)×R,

with smooth normal vector field νε =
∇̄Uε

|∇̄Uε| , the functional JUε,νε is well

defined for sets F̃ ⊂ M × R of locally finite perimeter. Applying the
divergence theorem to νε exactly as in the proof of Smooth Flow Lemma
15 shows that Ẽε

t := {Uε < t} minimises JUε,νε in Ω := Ẽε
b\Ẽε

a for
a ≤ t ≤ b.

Now consider x̄ = (x, x′) ∈ (M\Ē0) × R, and d = dist(x̄, ∂E0 ×
R) = dist(x, ∂E0). Take L′ large enough that BM

2d (x) ⊂ FL′ . Then for
ε ≤ ε′ = ε(L′), (29) provides a uniform bound for |∇uε| (and thus also

|∇̄Uε| + PΣ̃ε
t
) on BM×R

d (x̄). It then follows from Theorem 8 that the

surfaces Σ̃ε
t ∩Bn+1

d (x) are uniformly bounded in C1,α in ε and t. q.e.d.
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Lemma 10. Let K̃t0 denote the interior of the jump region {U = t0},
at a jump time t0. Then each point X0 = (x0, z0) ∈ K̃t0 lies in a surface

Σ̃X0
⊂ K̃t0 that is locally uniformly bounded in C1,α, and is either a

vertical cylinder or a graph over an open subset of K̃t0 .

Proof. The sought-after surfaces are constructed using a pointwise
approach similar to that used by Heidusch [9] to prove local uniform
C1,1 regularity estimates for the level-sets of the weak solution to inverse
mean curvature flow. In particular, we fix a target point

(41) X0 = (x0, z0) ∈ K̃t0 ,

and construct a surface containing that point.
Given the convergent sequence εi → 0 that produces the limit u of the

elliptic regularised solution uε as in (32), we consider the corresponding

sequence of times, ti, at which the surfaces Σ̃i
ti = graph

(

ui

εi
− ti

εi

)

pass

through the target point X0. This is possible because the translating
graphs Σ̃i

t for −∞ < t < ∞ foliate Ωi × R; thus for every i there is a

unique ti such that X0 ∈ Σ̃i
ti .

In order to write each surface Σ̃i
ti locally as a graph over its tangent

space TX0
Σ̃i
ti , we use the exponential map to work locally in normal

coordinate charts on small Euclidean balls Bn+2. In particular, let
ι(X0) be the injectivity radius of X0 in M\E0 × R, and set

(42) d = d(X0) = min(ι(X0),dist(X0, ∂K̃t0)).

By Corollary 9 there exists ε0 > 0 such that for all t and ε ≤ ε0, the
surface pieces Σ̃i

ti ∩B
M×R

d (X0) are uniformly C1,α bounded in t and ε.
Now consider the exponential map

(43) expX0
= (expx0

, idR) : TX0
(M × R) ∩Bn+2

d (0, z0) → BM×R

d (X0),

and set

(44) Σ̂i
ti = exp−1

X0
(Σ̃i

ti ∩B
M×R

d (X0)) ⊂ TX0
(M × R).

In the R-direction the exponential map is just the identity, thus each
surface Σ̂i

ti translates downwards in exactly the same manner as Σ̃i
ti .

Furthermore, the surfaces Σ̂i
ti are uniformly C1,α bounded in t and ε.

Then there exists R > 0, depending only on the locally uniform
C1,α bound, such that Bn+2

R (X̂0) ⊆ Σ̂i
ti and thus the surface pieces

Σ̂i
ti ∩ Bn+2

R (X̂0) possess uniform C1,α bounds. Here X̂0 = (x̂0, ẑ0) =

exp−1
q (X0) is our target point.

The corresponding normals ν̂i(X̂0) to Σ̂i
ti ∩ Bn+2

R (X̂0) create a se-

quence, a subsequence of which converges uniformly to a vector ν̂(X̂0).

The normal space to ν̂(X̂0) defines a hyperplane T̂ containing X̂0. Then
by taking i ≫ 1 large enough, we can write the converging surfaces
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Σ̂i
ti ∩B

n+2
R (X̂0) as graphs of C

1,α functions ŵi over T̂ . By reducing R,

and taking i ≫ 1 large enough, we can then write each Σ̂i
ti locally as

the graph of ŵi over T̂ ∩Bn+1
R (x̂0).

By Arzela-Ascoli, there exists a further subsequence ŵij and a C1

function ŵ : T̂ ∩Bn+1
R (x̂0) → R such that

(45) ŵij → ŵ in C1(T̂ ∩Bn+1
R (x̂0)).

Here ŵ is locally the graph of a surface Σ̂X̂0
around X̂0, and T̂ =

TX̂0
Σ̂X0

. Since the C1,α bounds on ŵi were independent of i, it follows

that ŵ ∈ C1,α(T̂ ∩ Bn+1
R (x̂0)), with the same uniform C1,α bounds as

ŵi. Thus expq(Σ̂X̂0
) := Σ̃X0

∩ BM×R

d (X0) is uniformly C1,α bounded.

By successively taking subsequences, the Σ̃i
ti converge to a complete

hypersurface that we will henceforth denote by Σ̃X0
, since it coincides

with Σ̃X0
near X0.

Now X0 ∈ {U = t0} where, by hypothesis, t0 := limi→∞ ti is a

jump time. In order to argue that Σ̃X0
is contained in the set {U =

t0}, we note that it is a consequence of the above construction that

any y ∈ Σ̃X0
is the limit of a sequence yi ∈ Σ̃i

ti . The local uniform

convergence ui → u implies that ûi → û uniformly on Bn+1
d (0). Thus

the uniform convergence Ui → U on BM×R

d (X0), together with the fact
that limi→∞ yi = y then implies that U(y) = t0, since

|Ui(yi)− U(y)| ≤ |Ui(yi)− Ui(y)|+ |Ui(y)− U(y)| → 0,

and lim
i→∞

U i(yi) = lim
i→∞

ti = t0, thus Σ̃X0
⊂ {U = t0}.

This approach enables one to choose any point X0 in the jump region
K̃t0 and construct the corresponding surface Σ̃X0

containing X0. Since

each Σ̃X0
is the limit of the graphs Σ̃i

ti with local uniform C1,α bounds,

it is clear that each X̃0 is either a vertical cylinder or a graph over an
open subset of K̃t0 ∩M . Therefore, let ΩG denote the open region in

K̃t0 ∩M where |∇ûi| converges locally uniformly to a finite limit, and
let ΩC denote the region where |∇ûi| converges to infinity. Then the

translating nature of Σ̃ε
t together with the above construction dictates

that the Σ̃i
ti converge to a graph Σ̃X0

over ΩG, lying in a stack

(46) {Σ̃Xα} = Σ̃X0
+ αen+2, α ∈ R,

of vertical translates of Σ̃X0
. To see this, note that

X0 = (x0, z0) ∈ Σ̃
ij
tij

= graph

(

uij
εij

− tij
εij

)

→ graph(w) = Σ̃X0
,
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implies Xα := (x0, z0 + α) ∈ Σ̃
ij
tij−αεij

, where

Σ̃
ij
tij−αεij

= graph

(

uij
εij

−
tij − αεij

εij

)

→ graph(w) + αez := Σ̃Xα ,

where w := expq(ŵ). Therefore ΩG × R is bounded by vertical cylin-

ders, and filled by the stacks produced by the family {Σ̃Xα} of vertical

translations of each graph Σ̃X0
. q.e.d.

The possibility of two surfaces Σ̃P1
and Σ̃P2

from Lemma 10 touching
tangentially at one point P , such that the outward unit normals agree
at P and Σ̃P1

lies outside Σ̃P2
(in the direction of the outward normal

near P ) is ruled out by the strong maximum principle. Furthermore, the
intersection of two surfaces in the limit is ruled out by the translation
invariance of the surfaces Σ̃ε

t and their local uniform C1,α bounds.
We now argue that we can construct a “normal” vector field ν̃ on

K̃t0 using the surfaces from the proof of Lemma 10. Since the limit
surfaces are vertical cylinders or stacks of translation invariant graphs,
the normal vector field ν̃ to the family of surfaces in Kt0 is translation

invariant, and we need only show that we can construct Σ̃X0
for each

X0 ⊂ K̃t0 ∩ M . Therefore, choose a dense set of points in K̃t0 ∩ M .
This corresponds to a countable set of points {pi}, and for each such

pi ∈ K̃t0 ∩M, we consider the convergent subsequence εi such that Σ̃i
ti

converges to the hypersurface Σ̃Pi
in K̃t0 , where Pi := (pi, 0). Then by

taking a diagonal subsequence εi∗ , we obtain local convergence of Σ̃i∗
ti∗

to Σ̃Pi
for every point pi in the dense set.

Now consider a point p0 ∈ ΩG such that p0 is not in {pi}. We wish

to argue that we obtain local convergence to Σ̃P0
via the convergent

sequence εi∗ . There exists a point pi in the dense subset such that
dist(pi, p0) < d/10. Let

(47) dP := min(ι(P ),dist(P, ∂K̃t0)).

By Corollary 9, the surfaces Σ̃ε
t are uniformly bounded in BM×R

dpi
(Pi).

Then since BdPi
/10(P0) ⊂ BdPi

(Pi), the surfaces Σ̃ε
t ∩ BdPi

/10(P0) pos-

sess the same uniform C1,α bounds and we can take a convergent sub-
sequence of εi∗ such that we obtain convergence to a limit surface Σ̃P0

in BdPi
/10(P0). Therefore this approach constructs a complete graph

through each point x0 ∈ ΩG, and we obtain the vector field ν̃ in all of
ΩG.

Then given the uniform C0,α normal vector field ν̃ of the hypersur-
faces constructed through the dense set of points {pi}, we can extend the
vector field ν̃ to any points that have been missed in ΩC . Translating ν̃
in the en+2 direction, we obtain a normal vector field on the entire jump
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region K̃t0 . For the remainder of this work, let ν̃ denote this translation

invariant normal vector field to the surfaces Σ̃X0
foliating K̃t0 .

Lemma 11. Let ν̃ denote the normal vector field to the surfaces
foliating the jump region K̃t0 , as above. Then each surface Σ̃X0

in the

jump region bounds a Caccioppoli set that minimises JU,ν̃ in K̃t0 .

Proof. Consider the Caccioppoli set Ẽ that is bounded by the limit
hypersurface Σ̃X0

, such that ν̃ is the outward unit normal of the relative

boundary ∂Ẽ ∩ K̃t0 . The sets Ẽi
ti minimize the functional JUi,νi in

K̃t0 , where νi = ∇̄Ui

|∇̄Ui| . Passing these sets to limits as in the proof of

Lemma 10 to obtain the limit surface Σ̃X0
, Theorem 7 then says that

Ẽ minimises JU,ν̃ in K̃t0 . q.e.d.

Collecting the above results, we obtain a family of C1,α
loc hypersurfaces

foliating ΩG × R, and by extending the family of cylindrical hypersur-
faces in ΩC ×R to any missed points in ΩC , we obtain a foliation of the
entire interior region K̃t0 . At each point X0 = (x0, t0), the correspond-
ing leaf of the foliation passing through X0 is constructed by taking the
limit of the Σε

t locally around X0, as in Lemma 10. This completes the
proof of Proposition 6. q.e.d.

5. Variational formulation of weak solutions.

By freezing |∇u| − trΣtK and treating it as a bulk term, one may
interpret (∗∗) as the Euler-Lagrange equation of the functional

(48) Ju,ν(v) :=

∫

|∇v|+ v
(

|∇u| −
(

gij − νiνj
)

Kij

)

dx.

For a smooth family of solutions of (∗), we will see below that the
corresponding time-of-arrival function u defined by (10) satisfies

(49) Ju,ν(u) ≤ Ju,ν(v),

among competing locally Lipschitz functions v, that differ from u on
a compact subset of M\Ē0. The relationship between the variational
formulation (49) and the functional (35) is then given by the following
lemma.

Lemma 12. Let u be a locally Lipschitz function in the open set Ω,
and ν a measurable vector field on TΩ. Then u satisfies (49) on Ω if
and only if for each t, Et := {u < t} minimizes (35) in Ω.

Proof. This follows exactly as in [10, Lemma 1.1], with |∇u| − (gij −
νiνj)Kij replacing the bulk term |∇u|.

q.e.d.
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This equivalence between the two variational formulations also extends
to the initial value problem

(50)
u ∈C0,1

loc (M), ν a measurable vector field on T (M\E0),

E0 = {u < 0}, and u satisfies (49) in M\E0.

To see this equivalence, let Et be a nested family of open sets in M ,
closed under ascending union, and define u as in the statement of Lemma
12 by the characterisation Et = {u < t}. Then using Lemma 12 and
approximating up to the boundary, we see that (50) is equivalent to

(51)
u ∈ C0,1

locM, ν a measurable vector field on T (M\E0)

and Et minimises Ju,ν in M\E0 for each t > 0.

Lastly, by approximating sց t, we see that (50) and (51) are equivalent
to

(52)
u ∈ C0.1

loc (M), ν a measurable vector field on T (M\E0)

and {u ≤ t} minimises Ju,ν in M\E0 for each t ≥ 0.

We now present the precise definition of weak solutions to (∗∗). In the
previous section we highlighted the need to define the normal vector field
ν in jump regions in order to incorporate the P = (gij − νiνj)Kij term
into a variational formulation of weak solutions to (∗∗). We showed
that taking an appropriate limit of the smooth translating solutions
Σ̃ε
t = {Uε = t} of (∗) provides a constructive method of foliating the

interior K̃t0 of the jump region {U = t0} = {u = t0} × R by C1,α
loc

hypersurfaces Σ̃X0
in M ×R with uniform C0,α

loc unit normal vector field

ν̃. Each such hypersurface Σ̃X0
in the foliation is either (part of) a

vertical cylinder, or is a smooth graph over an open subset of K̃t0 , in
the stack

(53) Σ̃ + α en+2, α ∈ R,

of vertical translates of Σ̃. The normal vector field ν̃ to each vertical
cylinder is perpendicular to the z-direction, and could therefore be pro-
jected to M without loss of information. However, in the case of the
graphical hypersurfaces (53), information would be lost if one were to
define the vector field ν in (35) to be the projection of ν̃ to TM .

This motivates the choice to formulate the weak solution to (∗∗) one
dimension higher, in terms of a translation invariant function U(x, z) =

u(x) ∈ C0,1
loc (M × R), and a translation invariant vector field ν̄ ∈

C0,α
loc (T ((M\E0) × R)) that extends ∇̄U/|∇̄U | across the jump region.

One then considers the analogously defined functionals JU,ν̄ to (48) and
(35) for such pairs (U, ν̄) in M × R, and we remark that Lemma 12
and the initial value problem equivalences (50)-(52) hold in M ×R (for
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general U and ν̄ that are not necessarily translation invariant, like we
will demand for the weak solution of (∗∗)).

In Lemma 11 we showed that each of the surfaces Σ̃X0
foliating the

jump region K̃t0 bounds a Caccioppoli set that minimises JU,ν̃ in the

jump region K̃t0 . Together with Lemma 12, this motivates the restric-
tion in Definition 13 below that at each point X ∈ (M\Ē0) × R, ν̃(X)
be the normal vector to a C1,α hypersurface that bounds a Caccioppoli
set minimising JU,ν̄ in (M\E0)× R.

Definition 13. Let E0 ⊂ M be a precompact, open set with C2

boundary Σ0 = ∂E0. We call the pair (U, ν̄) a weak solution of (∗∗) with
initial condition E0 if U ∈ C0,1

loc (M × R) and ν̄ ∈ C0,α
loc (T (M\E0) × R)

satisfy

(i) U is translation invariant in the vertical direction. In particular,
there exists a locally Lipschitz function u : M → R such that
U(x, z) = u(x) and u satisfies

· u(x) ≥ 0 ∀x ∈M\E0,

· u
∣

∣

∂E0
= 0, u(x) < 0 ∀x ∈ E0,

· u(x) → +∞ as dist(x,E0) → ∞.

(ii) The set Ẽt = {U < t} minimises JU,ν̄ in (M\E0) × R for each
t > 0. At jump times t0, each point X0 = (x0, z0) in the interior

K̃t0 of the jump region {U = t0} lies in the boundary ∂ẼX0
∈ C1,α

loc

of a Caccioppoli set ẼX0
that minimises JU,ν̄ in K̃t0 .

(iii) ν̄ is a translation invariant, unit vector field such that

· ν̄(X + α ez) = ν̄(X) ∀X ∈ (M\E0)× R, α ∈ R,

· ν̄(X) is the normal vector to ∂Ẽt at each point X ∈ ∂Ẽt,

· ν̄(X) is the normal vector to ∂ẼX0
at each point X ∈ ∂ẼX0

,

at jump times t0.

Remarks. 1. Unlike in the weak formulation of inverse mean cur-
vature flow, which asks only that Et = {u < t} minimise Ju,ν for each
t > 0, we require the variational principle (36) for JU,ν̄ to be satisfied
everywhere, in particular in the interior of the jump region.
2. By Lemma 12, any weak solution (U(x, z) := u(x), ν) of (∗∗) satis-
fies (50) on (M\Ē0) × R. Furthermore, we find that (u, νM := ν̄

∣

∣

TM
)

satisfies (49) in M\Ē0.

Lemma 14. Let (U(x, z) := u(x), ν̄) be a weak solution of (∗∗) with
initial condition E0. Then the pair (u, , νM ) satisfies (49) on M\Ē0,
and Et = {u < t} minimises Ju,νM for each t > 0, where νM := ν̄

∣

∣

TM
.
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Proof. Since the tensor K is extended trivially in the z-direction, we
find

(54)
(

ḡij − ν̄iν̄j
)

Kij =
(

gij − νiMν
j
M

)

Kij ,

where νM := ν̄
∣

∣

TM
. Let Bu,νM := |∇u| −

(

gij − νiMν
j
M

)

Kij denote

the bulk term of Ju,νM . Let v be a locally Lipschitz function such that
{v 6= u} ⊂ A ⊂⊂M\Ē0. Let φ(z) be a cutoff function such that:

|φz| ≤ 2, φ = 1 on [0, s] and φ = 0 on R\(−1, s + 1).

Then V (x, z) := φ(z)v(x)+(1−φ(z))u(x) is an appropriate comparison

function for U , and letting Ã := A× [−1, s + 1], we obtain from (49)
∫

Ã
|∇u|+ uBu,νM =

∫

Ã
|∇̄U |+ U

(

|∇̄U | −
(

ḡij − ν̄iν̄j
)

Kij

)

≤
∫

Ã
|∇̄V |+ V

(

|∇̄U | −
(

ḡij − ν̄iν̄j
)

Kij

)

≤
∫

Ã
φ (|∇v|+ v Bu,νM ) + (1− φ) (|∇u|+ uBu,νM )

+ |φz|||v − u|.
This implies

s · J A
u,νM (u) = s

∫

A
|∇u|+ uBu,νM .

≤
∫

Ã
φ (|∇u|+ uBu,νM )

≤
∫

Ã
φ (|∇v|+ v Bu,νM ) + |φz|||v − u|

≤ (s+ 2)

∫

A
|∇v|+ v Bu,νM +

∫

A×([−1,0]⊂[1,2])
|φz||v − u|

≤ (s+ 2)J A
u,νM

(v) + 4

∫

A
|v − u|.

Dividing by s and passing s → ∞ proves that the pair (u, νM ) satisfies
(49). Lemma 12 then implies that the sets Et := {u < t} minimise
Ju,νM for each t > 0. q.e.d.

We now state some further properties of weak solutions of (∗∗). We
begin by showing that smooth solutions of the flow (∗) are weak solutions
in the domain they foliate. This follows as in [10, Lemma 2.3].

Smooth Flow Lemma 15. Let (Σt)a≤t<b be a smooth solution of
(∗) on M . Let U = t on Σt×R, U < a in the region bounded by Σa×R,

and Ẽt := {U < t}. Then Ẽt minimises JU,ν̄ in Ẽb\Ẽa for a ≤ t < b,
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where ν̄ is the smooth normal to the vertical cylinder Σt × R, given by

ν̄ = (νΣt , 0) =
∇̄U
|∇̄U | .

Proof. We consider the smooth normal ν̃ = ∇̄U
|∇̄U | and apply the diver-

gence theorem to relate JU,ν̃(Ẽt) to JU,ν̄(F̃ ) for a competing set F̃ of

finite perimeter with F̃∆Ẽt ⊂⊂ Ω̃. Let BU,ν̄ := |∇̄U | − (ḡij − ν̄iν̄j)Kij

denote the bulk energy term in JU,ν̄ .

JU,ν̄(Ẽt) = |∂Ẽt| −
∫

Ẽt

BU,ν̄ dx =

∫

∂Ẽt

ν∂Ẽt
· ν̄dHn−1 −

∫

Et

BU,ν̄ dx

=

∫

∂Ẽt∩ ¯̃F
ν∂

Ẽt
· ν̄dHn−1 +

∫

∂Ẽt\F̃
ν∂Ẽt

· ν̄dHn−1 −
∫

Ẽt

BU,ν̄ dx

=

∫

∂∗F∩ ¯̃Et

ν∂∗F̃ · ν̄dHn−1 +

∫

Ẽt\F̃
BU,ν̄ dx−

∫

Ẽt

BU,ν̄ dx

+

∫

∂∗F̃\Ẽt

ν∂∗F̃ · ν̄dHn−1 −
∫

F̃\Ẽt

BU,ν̄ dx

=

∫

∂∗F̃
ν∂∗F̃ · ν̄dHn−1 −

∫

F̃
BU,ν̄dx ≤ |∂∗F̃ | −

∫

F̃
BU,ν̄ dx

= JU,ν̄(F̃ ).

q.e.d.

Weak Mean Curvature. In view of the local C1,α estimates given by
Regularity Theorem 8, we can consider the weak mean curvature of the
surfaces Σ̃t = ∂{U < t}.

Let Ñ be a C1 hypersurface in M × R. Then a locally integrable
function H on Ñ is called the weak mean curvature provided

(55)

∫

Ñ
divÑXdµ =

∫

Ñ
Hν ·Xdµ, ∀X ∈ C∞

c (T (M × R)).

Lemma 16. Let Ẽt := {U < t} minimise JU,ν̄ in Ã := Ẽb\Ẽa, for

U ∈ C0,1
loc

(Ã). Then the surfaces Σ̃t = ∂Ẽt have weak mean curvature

H satisfying H = |∇̄U | − P for a.e. x ∈ Σ̃t and a.e. t ∈ (a, b), where
P = (ḡij − ν̄iν̄j)Kij .

Proof. Let X be a compactly supported vector field defined on M ,
and (Φs)−ε<s<ε the flow of diffeomorphisms generated by X with Φ0 =
idM . For minimisers of JU,ν, we use the area formula, the dominated
convergence theorem and the co-area formula in the form

∫

Rn+2

|∇̄f |dx =

∫ ∞

−∞

∫

{f=t}
dt
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to obtain

0 =
d

ds

∣

∣

∣

∣

s=0

JU,ν̄(U ◦Φ−1
s )

=
d

ds

∣

∣

∣

∣

s=0







∫

W̃

|∇(U ◦ Φ−1
s )|+ (U ◦ Φ−1

s )
(

|∇̄U | − (ḡij − ν̄iν̄j)Kij

)

dx







=
d

ds

∣

∣

∣

∣

s=0







∞
∫

−∞

∫

Σ̃t∩W̃

|det dΦs(x)|dHn(x)dt







−
∫

W̃

∇̄U ·X
(

|∇̄U | − (ḡij − ν̄iν̄j)Kij

)

dx

=

∞
∫

−∞

∫

Σ̃t∩W̃

divΣ̃t
XdHndt−

∫

W̃

ν̄ ·X|∇̄U |
(

|∇̄U | − (ḡij − ν̄iν̄j)Kij

)

dx,

since ν̄ =
∇̄U
|∇̄U | when ∇̄U 6= 0, and ν̄|∇̄U | = 0 when ∇̄U = 0. Then by

the co-area formula, we obtain

0 =

∫ ∞

−∞

∫

Σ̃t∩W̃

(

divΣ̃t
X + (P − |∇̄U |)ν̄

)

·XdHn+1dt.

Lebesgue differentiation and comparison with (55) yields the result.
q.e.d.

Exactly as in the proof of [10, Theorem 2.1], we also obtain the following
compactness theorem for the time-of-arrival function.

Compactness Property 17. Let Ui ∈ C0,1
loc

(Ω̃i) and ν̄i ∈ C0,α
loc

(T Ω̃i)

be a sequence of solutions of (49) on open sets Ω̃i ⊂M × R, such that

(56) Ω̃i → Ω̃, Ui → U, ν̄i → ν̄,

locally uniformly, and such that for each Ã ⊂⊂ Ω̃, supÃ |∇̄Ui| ≤ C(Ã),

for large i, where C(Ã) is independent of i. Then (U, ν̄) solves (49) on

Ω̃. In the special case where (Ui, ν̄i) is a sequence of weak solutions of
(∗∗) satisfying Definition 13, then the limit (U, ν̄) is a weak solution of
(∗∗).

6. Geometric characterisation of jump regions

In this section we introduce the concept of outward optimisation in
order to give a geometric characterisation of the criterion selecting jump
times. Since weak solutions (U(x, z) = u(x), ν̄) of (∗∗) are translation
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invariant and the level sets of U are vertical cylinders, this charac-
terisation follows from the parametric variational formulation (36) for
(u, νM := ν̄|TM ).

Let Ω be an open set in M . Then we call a set E outward optimising
(in Ω) with respect to ν, if E minimises “area plus bulk energy P” on
the outside in Ω. That is, if

(57) |∂∗E ∩A| ≤ |∂∗F ∩A|+
∫

F\E
(gij − νiνj)Kij ,

for any F containing E such that F\E ⊂⊂ Ω, and any compact set A
containing F\E. Here ν is a measurable vector field on F\E. The set
E is then called strictly outward optimising (in Ω) if equality in (57)
implies that F ∩ Ω = E ∩ Ω a.e.

We use this concept to define the strictly outward optimising hull of
a measurable set E ⊂ Ω. Specifically, we define E′ = E′

Ω to be the in-
tersection of the Lebesgue points of all the strictly outward optimising
sets in Ω that contain E. We call E′ the strictly outward optimising
hull of E (in Ω). Up to a set of measure zero, E′ may be realised by a
countable intersection, so E′ is strictly outward optimising, and open.

We then obtain the following interpretation of the variational formu-
lation.

Outward Optimising Property 18. Suppose that (U(x, z) :=
u(x), ν̄) is a weak solution of (∗∗) with initial condition E0, and that
M has no compact components. Then:

(i) For t > 0, Et is outward optimising in M with respect to νM :=
ν̄
∣

∣

TM
.

(ii) For t ≥ 0, E+
t is strictly outward optimising in M with respect to

νM .
(iii) For t ≥ 0, E′

t = E+
t , provided E

+
t is precompact.

(iv) For t > 0, |∂Et| = |∂E+
t |+

∫

E+
t \Et

(gij − νiMν
j
M)Kij , provided that

E+
t is precompact. This extends to t = 0 precisely if E0 is outward

optimising.

Furthermore, for general (U, ν̄) satisfying (50) in M ×R, the analogous

statements hold on compact sets Ω̃ ⊂M × R with

(58) |∂∗Ẽ ∩ Ã| ≤ |∂∗F̃ ∩ Ã|+
∫

F̃\Ẽ
(ḡij − ν̄iν̄j)Kij ,

replacing (57) in the definition of outward optimising.

To prove Outward Optimising Property 18, we will need the following
lemma.
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Lemma 19. Let (U, ν̄) satisfy (49) on Ω̃. Then U has no strict local

maxima or minima on Ω̃.

Proof. First assume that U possesses a strict local maximum so that
there is a connected, precompact component Ẽ of {U > t} for some t.
Define the Lipschitz function Vk by

(59) Vk :=

{

k on Êk := Ẽk ∩ Ẽ,
U on Ω̃\Êk,

for 0 < k < sup
Ẽ

U and Ẽk := {U > k}. Then (49) and Hölder’s inequal-

ity yield

∫

Êk

|∇̄U |(1 + U − k) ≤
∫

Êk

(U − k)C0 ≤ C0

(∫

Êk

(U − k)
n

n−1

)
n−1

n

|Êk|
1

n ,

(60)

where C0 = (n + 1)|λ| and |λ| is the size of the largest eigenvalue of K

on Ω̃. Then using the Sobolev inequality on the left hand side we obtain
(61)
∫

Êk

|∇̄U |(1 + U − k) ≥
∫

Êk

|∇̄U | =
∫

Êk

|∇̄(U − k)| ≥
(∫

Êk

(U − k)
n

n−1

)
n−1

n

.

Combining (60) and (61) we find 1 ≤ C0|Êk|1/n, which leads to a con-

tradiction since |Êk| can be made arbitrarily small by choosing k close
to sup

Ẽ

U .

Now assume that U possesses a strict local minimum and let Ẽ be
a connected, precompact component of {U < t} for some t, and again
consider the function Vk defined by (59), where this time k > inf

Ẽ
U and

Ẽk := {U < k}. Then as above, (49) and Hölder’s inequality yield

∫

Ẽk

|∇̄U |(1 + U − k) ≤ C0

(
∫

Ẽk

(U − k)
n

n−1

)
n−1

n

|Ẽk|
1

n ,(62)

and by restricting to k small enough that 1 + U − k ≥ 1
2 on Ẽk, we

obtain

(63)

∫

Ẽk

|∇̄U |(1 + U − k) ≥ 1

2

(
∫

Ẽk

(U − k)
n

n−1

)
n−1

n

.

Combining (62) and (63) we find 1/2 ≤ C0|Ẽk|1/n, which leads to a con-

tradiction since |Ẽk| can be made arbitrarily small by choosing k close
to inf

E
U .

In the case where (U(x, z) := u(x), ν̄) is a weak solution of (∗∗), re-
peating the above calculation for u on M , using (14), yields the desired
result. q.e.d.
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Proof of Outward Optimising Property 18: Refer to [10, Minimising
Hull Property 1.4].
(i) This follows immediately from Lemma 14.
(ii) From (52) we obtain for suitable A

(64) |∂∗E+
t ∩A| ≤ |∂∗F ∩A|+

∫

F\E+
t

(gij − νiMν
j
M )Kij − |∇u|dx,

for any t ≥ 0, any F with F∆E+
t ⊂⊂ M\E+

t , proving that E+
t is

outward optimising.
To prove strictly minimising, suppose F contains E+

t and

|∂E+
t ∩A| − |∂∗F ∩A| =

∫

F\E+
t

(gij − νiMν
j
M )Kij .

Then by (64), ∇u = 0 a.e. on F\E+
t . Since F is also outward opti-

mising, and the Lebesgue points of an outward optimising set form an
open set in M , by a measure zero modification we may assume F is
open. Then u is constant on each connected component of the open set
F\{u ≤ t}. Since M has no compact components, Lemma 19 (i) means
that no connected component of F can have closure disjoint from Ē+

t ,
therefore u = t on F\Et and F ⊆ E+

t . This proves that E+
t is strictly

outward optimising.
(iii) It is clear from part (ii) and the definition of E′

t that E′
t ⊆ E+

t .
Assume E+

t is precompact. Then if

|E′
t ∩A| = |E+

t ∩A|+
∫

E+
t \E′

t

(gij − νiMν
j
M )Kij ,

strict outward optimisation implies that E′
t = E+

t . Otherwise

|∂E′
t ∩A| < |∂E+

t ∩A|+
∫

E+
t \E′

t

(gij − νiMν
j
M )Kij ,

contradicting (64).
(iv) In view of (i), we can use E+

t as a competitor to obtain

(65) |∂Et ∩A| ≤ |∂E+
t ∩A|+

∫

E+
t \Et

(gij − νiMν
j
M )Kijdx,

for t > 0, and for t = 0 if E0 happens to be outward optimising itself.
Since E+

t is precompact, strict inequality in (65) would contradict (iii),
implying equality in (65), which proves (iv).

The proof for general (U, ν̄) satisfying (50) in Ω̃ ⊂M×R follows exactly
as above. q.e.d.

Outward Optimising Lemma 18 implies that ∂Et satisfies the obstacle
problem minimising “area plus bulk energy P”, with Et as the obstacle.
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This leads to a heuristic interpretation of the minimisation principle
(49). Namely, as long as Et remains strictly outward optimising, it
evolves by inverse null mean curvature, and when this condition is vio-
lated, Et jumps to E′

t and continues. This implies that the null mean
curvature is nonnegative on the weak solution after time zero. Further-
more, part (iv) of Lemma 18 implies that the monotonicity property

(66)
d

dt
|Σt|+

∫

Et\E0

P = |Σt|

derived in Lemma 1, also holds in the weak setting, as long as Σt re-
mains compact.

The outward optimising property also implies a stronger result for
the surfaces foliating the jump region in Proposition 26, namely we see
that each Σ̃X0

is a smooth MOTS in K̃t0 .

Proposition 20. Each surface Σ̃X0
from Proposition 6 in the fo-

liation of the interior K̃t0 of the jump region in M × R is a smooth
MOTS.

To prove Proposition 20, we require the following Lemma.

Lemma 21.

(67) |∇̄Ui| → 0 in L1
loc(K̃t0).

Proof. Recall d defined by (42), consider a target point X0 = (x0, z0)
such that z0 > 2d+ 1 and select a cutoff function φ ∈ C2

c (R) such that
φ ≥ 0 and sptφ ⊆ [z0 − 2d, z0 + 2d]. Then let T0 = z0 − 2d − 1, fix an
arbitrary time T > T0, and consider T0 ≤ t ≤ T and L ≥ T+3+z0+2d.

We wish to show that

lim inf
i→∞

∫

Σ̃i
ti
∩BM×R

d
(X0)

|D(H + P )|2 <∞.

To this end, we calculate

d

dt

∫

Σ̃ε
t

φ(z)(H + P )2

(68)

=

∫

Σ̃ε
t

2φ(H + P )
∂

∂t
(H + P ) + (H + P )2

∂φ

∂z
· νε
H + P

+ φH(H + P )
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= −2

∫

Σ̃ε
t

φ

(

(H + P )∆

(

1

H + P

)

+ |A|2 + R̄ic(νε, νε)− ∇̄νεP

+
2Di(H + P )

H + P
Kiνε

)

+ (H + P )
∂φ

∂z
· νε + φH(H + P )

=

∫

Σ̃ε
t

φ

(

−2
|D(H + P )|2
(H + P )2

− 2|A|2 − 2R̄ic(νε, νε) +H(H + P )

+2∇̄νεP − 4
Di(H + P )

H + P
Kiνε

)

− 2
φ

∂z
· D(H + P )

H + P
+ (H + P )

∂φ

∂z
· νε.

In view of the sup estimates (14) and (22) for uε, there is R(T ) > 0
depending only on the subsolution v and Kij such that

Σ̃ε
t ∩(M×sptφ) ⊆ S(T ) := (BR(T )\E0)× [z0−2d, z0+2d], T0 ≤ t ≤ T.

The Outward Optimising Property 18, applied to Ẽε
t compared to the

perturbation Ẽε
t ∪ S(T ), then provides the area estimate

(69)

|Σ̃ε
t ∩ (M × sptφ)| ≤ C(T ) +

∫

S(T )\Ẽε
t

P ≤ C(T, ‖K‖C0), T0 ≤ t ≤ T.

Together with the interior estimate (7), and the boundary gradient es-
timates for uε, this shows

|H + P | ≤ C(T, ‖K‖C1) on Σ̃ε
t ∩ (M × sptφ), T0 ≤ t ≤ T.

It follows that
∫

Σ̃ε
t

φ|H|(H+P )+φ(H+P )2+|(H+P )∇̄φ·νε| ≤ C(T, ‖K‖C1), T0 ≤ t ≤ T.

We estimate the Dφ and Kiνε terms via
∣

∣

∣

∣

2Dφ · D(H + P )

H + P

∣

∣

∣

∣

≤ 2
|Dφ|2
φ

+
φ

2

|D(H + P )|2
(H + P )2

≤ C +
φ

2

|D(H + P )|2
(H + P )2

,

∣

∣

∣

∣

4φ
Di(H + P )

H + P
Kiνε

∣

∣

∣

∣

≤ 8φ‖K‖2C0 +
φ

2

|D(H + P )|2
(H + P )2

.

Thus (68) becomes

(70)
d

dt

∫

Σ̃ε
t

φ(H + P )2 ≤
∫

Σ̃ε
t

−φ |D(H + P )|2
(H + P )2

+ C(T, ‖K‖C1),

and integrating gives

(71)

∫ T

T0

∫

Σ̃ε
t∩(M×[z0−2d,z0+2d])

|D(H + P )|2
(H + P )2

≤ C(T, ‖K‖C1),
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using a φ such that φ = 1 on [z0 − 2d, z0 + 2d].
Applying Fatou’s Lemma, for any sequence εi → 0 we obtain

(72) lim inf
i→∞

∫

Σ̃i
t∩(M×[z0−2d,z0+2d])

|D(H + P )|2
(H + P )2

<∞, a.e. t ≥ T0.

Now consider the subsequence εij → 0 from (45) such that Σ̃
ij
tij

→ Σ̃0

in C1(T ∩Bn+1
R (X0)), where T = TX0

Σ̃X0
. We write i = ij henceforth.

Since (72) only holds for a.e. t ≥ T0, it will take more work to argue
that lim inf

i→∞

∫

Σ̃i
ti
∩BM×R

d
(X0)

|D(H + P )|2 < ∞. To this end, we pick a

sequence t̂i such that t̂i → t0 + δ for some |δ| > 0, |t̂i − ti| ≤ εid and

(73) lim inf
i→∞

∫

Σ̃i

t̂i
∩(M×[z0−2d,z0+2d])

|D(H + P )|2 <∞.

Define ẑi :=
ui(x0)

εi
− t̂i
εi

and δi := ẑi− z0. Then the fact that Σ̃i
t̂i
is just

a translation of Σ̃i
ti by δi in the z-direction implies that

∫

Σ̃i
ti
∩BM×R

d
(X0)

|D(H + P )|2 =
∫

Σ̃i

t̂i
∩BM×R

d
(x0,z0+δi)

|D(H + P )|2,

for each i. Furthermore, the condition |t̂i − ti| ≤ εid implies that |δi| =
|ẑi − z0| ≤ d, which ensures that Σ̃i

t̂i
∩ BM×R

d (x0, z0 + δi) ⊂ M × [z0 −
2d, z0 + 2d], and thus from (73) we obtain that

lim inf
i→∞

∫

Σ̃i

t̂i
∩B

M×R

d
(x0,z0+δi)

|D(H+P )|2 ≤
∫

Σ̃i

t̂i
∩(M×[z0−2d,z0+2d])

|D(H+P )|2 <∞,

from which our desired estimate follows

(74) lim inf
i→∞

∫

Σ̃i
ti
∩BM×R

d
(X0)

|D(H + P )|2 <∞.

As in the proof of Lemma (10), the converging surfaces Σ̃i
ti can be writ-

ten locally, via the exponential map, as graphs of C1,α
loc functions wi over

the hyperplane T . This local C1,α convergence of the hypersurfaces,
together with the first variation of area formula and the Riesz Repre-
sentation Theorem then implies that HΣ̃

X0

exists weakly as a locally L1

function, with the weak convergence
(75)
∫

Σ̃i
ti

HΣ̃i
ti

νΣ̃i
ti

·X →
∫

Σ̃
X0

HΣ̃
X0

νΣ̃
X0

·X, X ∈ C0
c (T (M\E0 × R)).
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Then by (74) and Rellich’s theorem there exists a subsequence (again
denoted by i) such that

(76) (H + P )Σ̃i
ti

→ (H + P )Σ̃
X0

in L2(T ∩Bn+1
R (X0)).

Now the level-sets Σ̃i
ti = {Ui = ti} smoothly solve (∗) in Ωi × R, thus

(H + P )Σ̃i
ti

= |∇̄Ui|,

and

(77)

∫

Σ̃i
ti

|∇̄Ui|2 =
∫

Σ̃i
ti

(H + P )2 →
∫

Σ̃
X0

(H + P )2.

To proceed, we consider the special behaviour of the solution in the
jump region. Let us first consider the case where the limit surface
Σ̃X0

given by Lemma 10 is not a vertical cylinder. Then it is a graph,
which means that |∇ûi| converges locally uniformly to something finite,
and therefore that |∇ui| = εi|∇ûi| converges locally uniformly to 0.

In the other case the surface Σ̃X0
given by Lemma 10 is a vertical

cylinder. We know from (74) and (77) that |∇̄Uī| converges in L2 to
something finite. However this limit can only be zero since Ui → U
locally uniformly, and U is constant in the jump region (namely U = t0
on K̃t0 by hypothesis). Furthermore, since the local uniform convergence
of Ui → t0 holds for the entire sequence i, we must have L2 convergence
of the entire sequence |∇̄Ui|, which implies

∫

Σ̃i
ti

|∇̄Ui| → 0.

q.e.d.

Proof of Proposition 20: Proposition 6 and Lemma 21 imply that each
surface Σ̃X0

in the jump region bounds a Caccioppoli set that minimises

area plus bulk energy
(

ḡij − ν̃iν̃j
)

Kij in K̃t0 . To complete the proof

of Proposition 6, it remains to show that each surface Σ̃X0
in K̃t0 is

in fact a smooth MOTS. To proceed, we use the connection between
parametric and non-parametric variational problems, that follows from
the relationship between a function w ∈ BVloc(Ω) and its subgraph

(78) W = {(x, t) ∈ Ω× R : t < w(x)}.

In particular, let ϕW denote the characteristic function of the subgraph
(78). Then Theorem 14.6 in [Gi] states

(79)

∫

Ω

√

1 + |∇w|2 =

∫

Ω×R

|∇ϕW |.
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In (45) we established that at each point X0 ∈ K̃t0 , there exists a

subsequence ij and a function ŵ ∈ C1,α(B̂R(x̂0)) such that

ŵij → ŵ in C1(B̂R(x̂0)),

where B̂R(x̂0) := T̂ ∩Bn+1
R (x̂0), where

(80) graph(ŵ) = Σ̂X0
= exp−1

q

(

Σ̃X0
∩BM×R

R (X0)
)

.

Then Lemma 11 establishes that each surface Σ̃X0
bounds a Cacciop-

poli set E in K̃t0 that minimises area plus bulk energy (ḡij − ν̃iν̃j)Kij

in K̃t0 , where by construction ν̃ is the outward unit normal vector to

the relative boundary ∂Ẽ ∩ K̃t0 .

Therefore, writing the Caccioppoli set E locally as the subgraph of
w := exp−1

q (ŵ), we find from (79) that w minimises the functional

J̊
BR(x0)
ν̃ (w) :=

∫

BR(x0)

√

1 + |∇̄w|2dx

+

∫

BR(x0)

w(x)
∫

0

trMKij(x, τ) −Kij(x, τ)ν̃
i(x, τ)ν̃j(x, τ)dτdx

inBR(x0) := expq(B̂Rx̂0)), whose Euler-Lagrange equation is the MOTS
equation

(81) div

(

∇̄w
√

1 + |∇̄w|2

)

+
(

ḡij − ν̃iν̃j
)

Kij = 0,

and by construction ν̃ = (∇̄w,−1)√
1+|∇̄w|2

. The left hand side of (81) is an

elliptic operator of the form

Aw = aij(∇̄w)
(

∇̄i∇̄jw +
√

1 + |∇̄w|2Kij

)

,

where

aij(p) :=
1

√

1 + |p|2

(

ḡij − pipj

1 + |p|2
)

.

Since w ∈ C1,α(BR(x0)), a
ij ∈ C0,α(BR(x0)), Aw is strictly elliptic on

BR(x0). Schauder theory then implies that w ∈ C2,α(BR(x0)), and by
bootstrapping further we obtain w ∈ C∞(BR(x0)). Using a suitable

partition of unity, we obtain that each surface Σ̃X0
is a smooth MOTS

in K̃t0 . q.e.d.
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7. Existence of weak solutions

In this section we use the normal vector field ν̃ of the hypersurface

foliation of the jump region K̃t0 from Proposition 6 to extend ν̄ = ∇̄U
|∇̄U |

across the jump region, thereby constructing a globally defined normal
vector field ν̄. Existence of weak solutions is then proven by taking the
limit of the translating graphs Σ̃ε

t , using Compactness Property 7.

Theorem 22 (Existence of weak solutions). Let (Mn+1, g,K) be a
complete, connected, asymptotically flat initial data set without bound-
ary, that satisfies trMK ≥ 0. Then for any nonempty, precompact, open
set E0 ⊂M with C2 boundary, there exists a weak solution of (∗∗) with
initial condition E0.

Proof. Let U be the limit of Uε as given by (34). We construct the

vertical cylinders Σ̃t := ∂{U < t} and Σ̃+
t := ∂{U > t} with local

uniform C1,α bounds and unit normal vector field ν with local C0,α

bounds. Then using Theorem (7), we show that {U < t} minimises
JU,ν̄ in (M\E0) × R for each t, where ν̄ is extended in the jump re-

gions K̃t0 by the normal vector field ν̃ to the family of smooth MOTS

{Σ̃
X0

}X0∈K̃t0
.

i) In the case where Σ̃t = Σ̃+
t , the surface Σ̃t is constructed by fixing

a point X0 = (x0, z0) ∈ Σ̃t and considering the sequence of times ti
such that X0 ∈ Σ̃i

ti for each i. It then follows exactly as in the proof of

Lemma 10 that Σ̃i
ti converges locally uniformly to Σ̃t. Since Σ̃t = Σ̃+

t
is a vertical cylinder, convergence holds for the full sequence, and the

unit normal vector field ν̃ is equal to ∇̄U
|∇̄U | .

ii) We use a slightly different pointwise approach to construct Σ̃t and

Σ̃+
t when Σ̃t 6= Σ̃+

t . To this end, let X0 ∈ Σ̃+
t0 at a jump time t0.

Since there are only countably many such t0, there exists a sequence of
points Xi ∈ Σ̃ti with ti > t0, satisfying lim

i→∞
Xi = X0 and lim

i→∞
ti = t0.

For i ≫ 1 large enough, we can assume that Σ̃ti = Σ̃+
ti
, and as above

each surface piece Σ̃ti ∩ BM×R

R (Xi) can therefore be written via the
exponential map (denoted by the hat superscript) as the graph of a

C1,α function ŵi over TX̂i
Σ̂ti , where

Σ̂ti := exp−1
Xi

(Σ̃ti ∩BM×R

d (Xi)).

Now consider the sequence ν̂i of normal vectors to Σ̂ti at X̂i. Since the

ν̂i(X̂i) are uniformly bounded in C0,α, there exists a subsequence ν̂ij
and a unit vector field ν̂ such that ν̂ij → ν̂ uniformly on Bn+2

R̂
(X̂i). Let

T̂ denote the hyperplane containing X̂0 and orthogonal to ν̂(X̂0). For
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i ≫ 1 large enough, we can then write each surface Σ̂ti locally as the

graph of a C1,α function ŵi over T̂ ∩Bn+2

R̂
(X̂0). By Arzela-Ascoli, there

exists a further subsequence ŵij and a C1,α function ŵ : T̂ ∩Bn+1

R̂
(X̂i)

such that

ŵi → ŵ in C1(T̂ ∩Bn+1

R̂
(X̂i)),

where X̂0 ∈ graph ŵ and T̂ = TXgraph ŵ. In order to recognise graph ŵ
as a piece of Σ̂+

t0 and T̂ as TX̂0
Σ̂+
t0 , we consider a point Y ∈ graph ŵ.

Then there exists a sequence Yi ∈ graph ŵi ⊂ Σ̂ti such that Yi → Y ,

and thus Û(Yi) = ti implies Û(Y ) = t0, where Û := U ◦ exp .
In order to obtain a contradiction, assume that Y ∈ Ê+

t0
. Then there

exists δ > 0 such that Bn+2
δ (Y ) ∈ Ê+

t0 , however this contradicts the

fact that Yi ∈ Σ̂ti for ti > t0. Thus we deduce that graph ŵ ∈ Σ̂+
t0 as

required. The case where X0 ∈ Σ̃t0 for Σ̃t0 6= Σ+
t0 follows analogously.

In Proposition 6 we constructed a family of surfaces {Σ̃
X0

}X0∈K̃t0

foliating the jump region K̃t0 of U . This foliation has a C0,α
loc normal

vector field ν̃, which extends the vector field of the surfaces Σ̃t0 and Σ̃+
t0

across the jump region at jump times t0 via the definition

ν̄(x) :=































































∇̄U
|∇̄U |(x) if x ∈ Σt at regular times t,

ν̃ if x ∈ K̃t0 at a jump time t0,

lim
i→∞

∇̄U
|∇̄U |(xi) if x ∈ Σ̃t0 , where xi ∈ Σ̃ti

for xi → x, ti ր t0,

lim
i→∞

∇̄U
|∇̄U |(xi) if x ∈ Σ̃+

t0
, where xi ∈ Σ̃ti

for xi → x, ti ց t0.

This global interpretation of the normal vector field ν̄ in M\Ē0 × R

means the functional JU,ν̄ is well defined on M\Ē0 × R, and it follows
from Compactness Property 7 that the sets {U < t} minimises JU,ν̄ in
M\Ē0 × R for each t. The result then follows from Lemma 11. q.e.d.

8. Applications of weak solutions

In this section we highlight the natural applications of weak solutions
of (∗∗) to the existence theory for MOTS and to the theory of weak
solutions of IMCF.

MOTS. The one-sided variational principal associated with outward
optimisation implies that the solution must jump at t = 0 wherever the
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null mean curvature of Σ0 = ∂E0 is strictly negative. Together with
Proposition 20, this implies the following existence theorem for MOTS
in initial data sets (M,g,K) containing an outer trapped surface Σ0

such that θ+Σ0
< 0.

Proposition 23 (Existence of smooth MOTS). Let (Mn+1, g,K) be
an asymptotically flat initial data set of dimension n+ 1 ≤ 7 satisfying
trMK ≥ 0, and let E0 be any nonempty, precompact, smooth open set
in M satisfying θ+∂E0

< 0 with respect to the unit normal pointing out of

E0. Then the level set ∂{u > 0} of the weak solution (U(x, z) = u(x), ν̄)
of (∗∗) is a smooth MOTS in M\E0.

Proposition 23 highlights the natural application of the theory of
weak solutions to (∗∗) as a variational-type approach to constructing
marginally outer trapped surfaces. Let κ denote the largest eigenvalue
of K with respect to g across M\E0. Then in the special case where
the outermost MOTS in M\E0 satisfies

(82) |∂E| ≤ |∂F | − nκLn+1(E\F ),
for every closed MOTS ∂F in M\E0, then the weak solution to (∗∗)
in Proposition 23 will jump to the outermost MOTS Σ = ∂{u > 0} at
t = 0. In general, given any initial data, and any initial condition E0

satisfying θ+∂E0
< 0, the surface can’t jump beyond the outmost MOTS

at t = 0, and the MOTS ∂{u > 0} is an inner barrier for the outermost
MOTS Σ in M\E0.

We compare Proposition 23 to the following existence theorem com-
bining [2] and [6], as stated in [1].

Theorem 24 ([2, 6]). Let (M,g,K) be an initial data set of dimen-
sion n + 1 ≤ 7 and let Ω ⊂ M be a connected bounded open subset
with smooth embedded boundary ∂Ω. Assume this boundary consists of
two non-empty closed hypersurfaces ∂+Ω and ∂−Ω, possibly consisting
of several components, such that

(83) H∂+Ω − tr∂+ΩK > 0 and H∂+Ω + tr∂+ΩK > 0,

where the mean curvature scalar is computed as the tangential divergence
of the unit normal vector field that is pointing out of Ω. Then there
exists a smooth closed embedded hypersurface Σ ⊂ Ω homologous to
∂−Ω such that HΣ + trΣK = 0 (where HΣ is computed with respect to
the unit normal pointing towards ∂−Ω). Σ is λ-minimising in Ω for
λ = 2(n+1)κ, where κ denotes the largest eigenvalue of K with respect
to g across Ω.

Here λ-minimising in Ω means that the surface Σ arises as (a relative
boundary of) a subset E ⊂ Ω with perimeter Σ in Ω such that

(84) |∂E ∩W | ≤ |∂F ∩W |+ λLn+1(E∆F ),
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for every F ⊂ Ω such that E∆F ⊂⊂ W ⊂⊂ Ω. A detailed analysis of
such λ-minimising boundaries is carried out in [5]. We say that the set
E is λ-minimising on the outside/inside in Ω if E satisfies (84) for every
F such that E∆F ⊂⊂W , where F ⊆ E, F ⊇ E respectively.

Remark. Since minimising area plus bulk energy P is a stronger
condition than λ-minimising, weak solutions (U(x, z) = u(x), ν̄) of (∗∗)
satisfy the following λ-minimising properties, for λ := nκ, where κ
denotes the size of the largest eigenvalue of K on M\E0:

(i) The smooth MOTS ∂{u > 0} of Proposition 23 is λ-minimising.

(ii) The sets Ẽt = {U < t} and {U ≤ t} are λ-minimising on the
outside for each t > 0, t ≥ 0 respectively.

(iii) The surfaces Σ̃X0
foliating the interior K̃t0 of the jump region are

λ-minimising in K̃t0 .

Inverse mean curvature flow. We now discuss the above results in
the context of the work of Huisken and Ilmanen [10] on inverse mean
curvature flow. In particular, when applied to the special case K ≡ 0,
Definition 27 provides a new perspective on weak solutions to inverse
mean curvature flow, and the work of sections 4 and 6 carries over to
prove the analogous results for the jump region.

The degenerate elliptic equation

(⋆) divM

( ∇u
|∇u|

)

= |∇u|

describes inverse mean curvature flow of the level-sets of the scalar func-
tion u :M → R wherever |∇u| 6= 0. In [10], Huisken and Ilmanen define

a locally Lipschitz function u ∈ C0,1
loc (M) to be a weak solution of (⋆)

with initial condition E0 if E0 = {u < 0} and

(85) Ju(u) ≤ Ju(v), where Ju(v) = JA
u (v) :=

∫

A
|∇v|+ v|∇u|,

for every locally Lipschitz function v with {v 6= u} ⊂⊂ M\E0, where
the integral is performed over any compact set A ⊇ {u 6= v}. They then
showed that it follows that u is a weak solution if and only if the open
set Et := {u < t} minimizes the parametric energy functional

(86) JA
u (F ) = |∂∗F ∩A| −

∫

F∩A
|∇u|

in M\E0 for each t > 0.

Theorem 25 (Existence of weak solutions, [10]). Let M be a com-
plete, connected Riemannian manifold without boundary. Suppose there
exists a proper, locally Lipschitz, weak subsolution v of (85) with a pre-
compact initial condition. Then for any nonempty, precompact, smooth
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open set E0 in M , there exists a proper, locally Lipschitz weak solution
u of (⋆) with initial condition E0, which is unique on M\E0.

In [9], Heidusch proved optimal C1,1
loc regularity for the level-sets Nt =

∂{u < t} and N+
t = ∂{u > t} of the weak solution. The theory of weak

solutions to inverse mean curvature flow developed in [10], however,
does not include an analysis of the interior of jump regions. Applying
Proposition 20 in this special case where K ≡ 0, we obtain a foliation
of the interior of the jump region {u = t0} × R by area minimising
hypersurfaces, a result which was left open in [10].

Corollary 26. Let u be the weak solution of inverse mean curvature
flow given by Theorem 25. At a jump time t0, the interior K̃t0 of the
region {u = t0}×R is foliated by smooth area minimising surfaces, each
of which is either a vertical cylinder or a smooth graph over an open
subset of K̃t0 .

We can then utilise the jump region hypersurfaces of Corollary 26 to
present a new perspective on weak solutions of inverse mean curvature
flow. In particular, by instead considering the weak solution to be a
family of hypersurfaces one dimension higher in M × R, we can ask
for the functional JU , defined by (86), to be minimised everywhere in
(M\Ē0)× R, and obtain the following richer notion of weak solution.

Definition 27 (Alternative weak formulation). Let u be the unique,
locally Lipschitz weak solution to (⋆) on M\E0 given by Theorem 25,
and define the locally Lipschitz function U(x, z) := u(x) on (M\E0)×R.
The weak solution to (⋆) is defined to be the pair (U, ν), where ν is a

unit length, translation invariant extension of ∇̄U
|∇̄U | in the jump regions

such that at each point x ∈ K̃t0 , ν(x) is the normal vector to a C1,α

hypersurface passing through x, which bounds a Caccioppoli set that
minimises JU,ν in K̃t0 .

The following weak existence result is a corollary of Theorem 22.

Corollary 28 (Existence of weak solutions). Let M be a complete,
connected Riemannian n-manifold without boundary. Suppose there ex-
ists a proper, locally Lipschitz, weak subsolution of (85) with a pre-
compact initial condition. Then for any nonempty, precompact, smooth
open set E0 in M , there exists a weak solution satisfying Definition 27
in M\E0 × R with initial condition E0.

References

[1] L. Andersson, M. Eichmair & J. Metzger, Jang’s equation and it’s applications

to marginally outer trapped surfaces, Contemporary Mathematics 554: Complex
Analysis and Dynamical Systems IV (2011), MR 2884392, Zbl 1235.53019.



466 K. MOORE

[2] L. Andersson & J. Metzger, The area of horizons and the trapped region, Com-
mun. Math. Phys. 290 (2009) 941–972, MR 2525646, Zbl 1205.53071.

[3] H.L. Bray, Proof of the Riemannian Penrose Inequality using the Positive Mass

Theorem, J. Diff. Geom. 59 (2001) 177–267, MR 1908823, Zbl 1055.53052.

[4] M. Crandall, H. Ishii & P-L. Lions, User’s guide to viscosity solution of sec-

ond order partial differential equations, Bull. Amer. Math. Soc. 27 (1992) 1–67,
MR 1118699, Zbl 0755.35015.

[5] F. Duzaar & K. Steffen, λ-minimising currents, Manuscripta Math. 80 (1993)
403–447, MR 1243155, Zbl 0819.53034.

[6] M. Eichmair, The Plateau problem for marginally outer trapped surfaces, J. Diff.
Geom. 83 (2009) 551–584, MR 2581357, Zbl 1197.53075.

[7] R. Geroch, Energy Extraction, Ann. New York Acad. Sci. 224 (1973) 108–117,
Zbl 0942.53509.

[8] D. Gilbarg & N.S. Trudinger, Elliptic Partial Differential Equations of Second

Order, Springer (2001).

[9] M. Heidusch, Zur Regularität des inversen mittleren Krümmungsflusses, PhD
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[10] G. Huisken & T. Ilmanen, The inverse mean curvature flow and the Rie-

mannian Penrose Inequality, J. Diff. Geom. 59 (2001) 353–437, MR 1916951,
Zbl 1055.53052.

[11] G. Huisken & A. Polden, Geometric evolution equations for hypersurfaces, Cal-
culus of Variations and Geometric Evolution Problems, CIME Lectures at Ce-
traro of 1996 (S. Hildebrandt and M. Struwe, eds.), Springer, (1999) 45–84,
MR 1731639, Zbl 0942.35047.

[12] P.S. Jang, On the positivity of energy in general relativity, J. Math. Phys. 19
(1978) 1152–1155, MR 0488515.

[13] J. Metzger, Blowup of Jangs equation at outermost marginally trapped surfaces,
Comm. Math. Phys. 294 (2010) 61–72, MR 2575475, Zbl 1246.53100.

[14] M. Ritore & C. Sinestrari, Mean curvature flow and isoperimetric inequalities,
Birkhauser (2010).

[15] R. Schoen & S.T. Yau, Proof of the Positive Mass Theorem. II, Commun. Math.
Phys. 79 (1981) 231–260, MR 0612249, Zbl 0494.53028.

[16] R. Schoen, Talk given at the Miami Waves conference, January 2004.

[17] I. Tamanini, Regularity results for almost minimal oriented hypersurfaces in R
n

Quaderni del Dipartimento di Matmatica dell’Universita di Lecce (1984).

[18] B. White, Subsequent Singularities in Mean-convex Mean Curvature Flow,
Preprint arXiv: arXiv:1103.1469v3, (2013).

Stanford University
Stanford 94305, USA

E-mail address: klmoore@stanford.edu


